有理数乘除法专项练习题有答案
有理数的乘除法测试卷(有答案)
有理数的乘除法测试卷(有答案)一、单选题(共12题;共24分)1.﹣的倒数是()A. B. C. D.2.如果a÷b(b≠0)的商是负数,那么()A. a,b异号B. a,b同为正数C. a,b同为负数D. a,b同号3.5的倒数是( )A. -5B. 5C.D.4.的倒数得().A. B. C. D.5.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是()A. -3℃B. 8℃C. -8℃D. 11℃6.若a 是非零实数,则()A. a > -aB. a >C. a ≤|a|D. a≤a27.两数的和与积都是负数,这两个数为()A. 两数异号,且负数的绝对值较大B. 两数异号,且正数的绝对值较大C. 两数都是负数D. 两数的符号不同8.下列运算中,正确的是()A. ﹣2﹣1=﹣1B. ﹣2(x﹣3y)=﹣2x+3yC.D. 5x2﹣2x2=3x29.下列计算错误的是()A. 0.14=0.0001B. 3÷9×(-)=-3C. 8÷(-)=-32D. 3×23=2410.已知a、b为非零有理数,则的值不可能为()A. -2B. 1C. 0D. 211.(-2)2002+(-2)2003结果为( )A. -2B. 0C. -22002D. 以上都不对12.六位数由三位数重复构成,如256256,或678678等等,这类数不能被何数整除()A. 11B. 101C. 13D. 1001二、填空题(共6题;共20分)13.请你来玩“24”点游戏,给出3、﹣5、﹣12、7四个数凑成24的算式________14.一架直升机从高度为450m的位置开始,先以20m/s的速度上升60s,然后以12m/s的速度下降120s,这时,直升机的高度是________.15.3﹣2×(﹣5)2=________16.现在规定两种新的运算“﹡”和“◎”:a﹡b=a2+b2;a◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(﹣1)][2◎(﹣1)]=________.17.(2015•巴中)a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是=;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2015= ________.18.已知a,b的和,a,b的积及b的相反数均为负,则a,b,-a,a+b,b-a的大小关系是________ .(用“<”把它们连接起来)三、计算题(共4题;共30分)19.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.20.计算:[(﹣1)100+(1﹣)× ]÷(﹣32+2)21.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)27-18+43-32(3)(+ )﹣(﹣)﹣|﹣3|(4)(5)﹣64÷3 ×(6)∣-2∣2+∣+7∣7+∣0∣(7)(8)22.计算:(1)(﹣3)2÷2 ÷(﹣)+4+22×(﹣)(2)2 ﹣(﹣+ )×36.四、综合题(共3题;共26分)23.阅读下列材料并解决有关问题:我们知道|x|= ,所以当x>0时,= =1;当x<0时,= =﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+ =________;(2)已知a,b是有理数,当abc≠0时,+ + =________;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则+ + =________.24.观察下列等式:=1﹣,= ﹣,= ﹣,把以上三个等式两边分别相加得:+ + =1﹣+ ﹣+ ﹣=1﹣= .(1)猜想并写出:=________.(2)直接写出下列式子的计算结果:+ + +…+ =________.(3)探究并计算:+ + +…+ .25.对x,y定义一种新运算x[]y= (其中a,b均为非零常数),这里等式右边是通常的四则混合运算,例如:0[]2= =﹣2b.(1)已知1[]2=3,﹣1[]3=﹣2.请解答下列问题.①求a,b的值;②若M=(m2﹣m﹣1)[](2m﹣2m2),则称M是m的函数,当自变量m在﹣1≤m≤3的范围内取值时,函数值M为整数的个数记为k,求k的值;(2)若x[]y=y[]x,对任意实数x,y都成立(这里x[]y和y[]x均有意义),求a与b的函数关系式?参考答案一、单选题1. D2. A3. D4. A5. D6. C7. A8. D9. B 10.B 11.C 12. B二、填空题13.﹣5﹣7﹣(﹣12×3)14.210m15.-4716.﹣2017.-18.a<a+b<b<-a<b-a三、计算题19.解:原式=﹣4+3+8=720.解:原式=(1+ )÷(﹣7)= ×(﹣)=﹣21.(1)解:﹣20+(﹣14)﹣(﹣18)﹣13=-20-14+18-13=-29.(2)解:27-18+43-32 =20(3)解:(+ )﹣(﹣)﹣|﹣3|= -3=-1(4)解:=6(5)解:﹣64÷3 × = = -12.5(6)解:=4+1+0=5(7)解:=(-18)=-7(8)解:= =-1800+0.5=-1799.522.(1)解:(﹣3)2÷2 ÷(﹣)+4+22×(﹣)=9×=﹣6+4﹣6=﹣8(2)解:2 ﹣(﹣+ )×36===四、综合题23.(1)解:已知a,b是有理数,当ab≠0时,①a<0,b<0,+ =﹣1﹣1=﹣2;②a>0,b>0,+ =1+1=2;③a、b异号,+ =0.故+ =±2或0(2)解:已知a,b是有理数,当abc≠0时,①a<0,b<0,c<0,+ + =﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,+ + =1+1+1=3;③a、b、c两负一正,+ + =﹣1﹣1+1=﹣1;④a、b、c两正一负,+ + =﹣1+1+1=1.故+ + =±1或±3(3)解:已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,则+ + ═﹣﹣﹣=1﹣1﹣1=﹣1.故答案为:±2或0;±1或±3;﹣124.(1):(2)(3)解:+ + +…+====25.(1)解:①由1[]2=3,﹣1[]3=﹣2,得,解得.答:a的值为8,b的值为﹣1.②把a=8,b=﹣1代入x[]y= ,得x[]y= ,M=(m2﹣m﹣1)[](2m﹣2m2)=﹣2m2+2m+4=﹣2 + ,又∵﹣1≤m≤3,∴当m= 时,M取最大值;当m=﹣1时,M=0;当m=3时,M=﹣8.∴﹣8≤M≤ =4 ,∴k=8+4+1=13.(2)解:∵x[]y=y[]x,∴= ,∴ay2﹣ax2+4by2﹣4bx2=0,∴a(y2﹣x2)+4b(y2﹣x2)=0,即(a+4b)(y2﹣x2)=0.∵对任意实数x,y都成立,∴a+4b=0,∴a=﹣4b。
有理数的乘法和除法练习题汇总及答案
有理数的乘法和除法练习题汇总及答案一、有理数乘法练习题1、计算:(-3)×5答案:-15解析:两数相乘,异号得负,并把绝对值相乘。
所以(-3)×5 =-152、计算:4×(-6)答案:-24解析:异号相乘得负,4×(-6) =-243、计算:(-7)×(-8)答案:56解析:同号相乘得正,(-7)×(-8) = 564、计算:(-5)×0答案:0解析:任何数与 0 相乘,都得 05、计算:(-2)×(-3)×(-4)答案:-24解析:先确定符号,三个负数相乘,结果为负。
然后计算绝对值,2×3×4 = 24,所以最终结果为-246、计算:5×(-2)×(-6)答案:60解析:先确定符号,两个负数相乘得正,正数乘以正数得正。
5×2×6 = 607、计算:(-8)×(-125)答案:1000解析:同号相乘得正,8×125 = 10008、计算:(-025)×4答案:-1解析:异号相乘得负,025×4 = 1,所以(-025)×4 =-19、计算:(-3/4)×(-8/9)答案:2/3解析:同号相乘得正,分子相乘作分子,分母相乘作分母,约分可得 2/310、计算:(-6)×(-1/6)答案:1解析:互为倒数的两个数相乘得 1二、有理数除法练习题1、计算:(-18)÷6答案:-3解析:两数相除,异号得负,并把绝对值相除。
所以(-18)÷6 =-32、计算:24÷(-8)答案:-3解析:异号相除得负,24÷8 = 3,所以 24÷(-8) =-33、计算:(-36)÷(-9)答案:4解析:同号相除得正,36÷9 = 44、计算:0÷(-7)答案:0解析:0 除以任何一个不等于 0 的数,都得 05、计算:(-20)÷(-5)÷(-2)答案:-2解析:按照从左到右的顺序依次计算,(-20)÷(-5) = 4,4÷(-2) =-26、计算:(-12)÷(1/3)答案:-36解析:除以一个数等于乘以这个数的倒数,(-12)÷(1/3) =(-12)×3 =-367、计算:(-2/3)÷(-4/9)答案:3/2解析:同号相除得正,除以一个分数等于乘以这个分数的倒数,(-2/3)÷(-4/9) =(-2/3)×(-9/4) = 3/28、计算:56÷(-14/15)答案:-60解析:56÷(-14/15) = 56×(-15/14) =-609、计算:(-18)÷(-2/3)÷(-3)答案:-9解析:先将除法转化为乘法,(-18)÷(-2/3) =(-18)×(-3/2) = 27,27÷(-3) =-910、计算:(-8/9)÷(-4/27)×(-3/2)答案:-3解析:先将除法转化为乘法,(-8/9)÷(-4/27) =(-8/9)×(-27/4) = 6,6×(-3/2) =-9三、综合练习题1、计算:(-4)×6÷(-2)答案:12解析:先计算乘法,(-4)×6 =-24,再计算除法,-24÷(-2) = 122、计算:(-5/6)×(-3/10)÷(-1/2)答案:-1/2解析:先计算乘法,(-5/6)×(-3/10) = 1/4,再计算除法,1/4÷(-1/2) =-1/23、计算:(-8)×(-5)×(-0125)答案:-5解析:先确定符号,三个负数相乘,结果为负。
人教版七年级数学上册有理数乘除法试题(含答案)
人教版七年级数学上册有理数乘除法试题(含答案)1.有理数乘除法的基本法则如下:1) 乘法交换律:对于有理数a和b,有ab=ba。
2) 乘法结合律:对于有理数a、b和c,有(ab)c=a(bc)。
3) 乘法分配律:对于有理数a、b和c,有a(b+c)=ab+ac。
4) 有理数的乘法法则:对于有理数a和b,同号得正,异号得负,并将绝对值相乘。
5) 倒数的定义:乘积为1的两个数互为倒数。
6) 除以一个数等于乘以这个数的倒数。
2.单选题:1) 答案为C,因为只有①和①互为倒数。
2) 答案为B,因为1的倒数的绝对值是1.3) 答案为C,因为只有选项C是正确的。
4) 答案为B,因为-2×3=-6.5) 答案为C,因为0.24×(1/15)×(-14/61)=-0.016.6) 答案为B,因为a1=-1/2,a2=-3/2,a3=-1/2,a4=-5/2,依此类推,可得a2019=-1008.7) 答案为B,因为12-7×(-4)+8÷(-2)=36.8) 答案为D,因为-2①3=-2+(-2)×3=-8.9) 答案为A,因为取-5和4相乘得到最大积20.10) 答案为丙同学,因为他的计算是正确的。
二、填空题1.272.2019a - 2018b3.(1) 2.(2) -27.(3) -4.(4) -3a4.-145.-1三、解答题16.1) -0.31252) -0.517.1) 6802) -1/5618.1) 正确。
因为(-115)/(-1236) = 115/1236,(-)×(-12) = 12,所以(-115)/(-1236) = 12/1236 = 1/103,1/103 = 0.xxxxxxxx,所以(-)÷(-) = 0.xxxxxxxx。
2) (-1113)/(-) = 1113/,(-)×(-12) = 12,所以(-1113)/(-) = 12/ = 3/6092,3/6092 = 0.xxxxxxxx,所以(-1113)/(-) = 0.xxxxxxxx。
七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)
七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.0.4的倒数是( )A .14B .4C .52 2.下列几种说法中,正确的是( )A .0是最小的数B .最大的负有理数是-1C .任何有理数的绝对值都是正数D .0没有倒数3.若|a|=5,|b|=3,那么a •b 的值是( )A .15B .-15C .±15D .以上都不对 4.下列运算正确的是( )A .﹣3+2=﹣5B .3×(﹣2)=﹣1C .﹣1﹣1=﹣2D .﹣32=95.若 a , b , c 分别表示 √2 的相反数、绝对值、倒数,则下列结论正确的是( )A .a >bB .b <cC .a >cD .b =2c6.某位打字员每分钟能打200字,如果她每天工作8小时,那么一本书100万字的中篇小说至少要连续打( )A .12天B .11天C .10天D .9天7.已知 (a −1)(1−c)(c −a)>0 ,则 1,a ,c 三点在数轴上的位置一定不是..下图选项中的( ) A .B .C .D .8.将2019减去它的12,再减去余下的13,再减去余下的14,最后减去余下的12019,则最后的差是( )A .12019B .20182019C .(20182019)2D .1二、填空题9.倒数是本身的数有.10.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价万元.11.计算:(38﹣56)×(﹣24)= .12.如果|a|a=﹣1,则a 013.按照如图所示的操作步骤,若输入x的值为1,则输出的值为.三、解答题14.计算:(1)2﹣(﹣6)+7﹣15(2)﹣4÷23﹣(﹣23)×(﹣30)15.已知a,b互为相反数,且a≠0,c,d互为倒数,m的绝对值是最小的正整数求m2-ab +2021(a+b)2022-cd的值.16.将四个数3,-4, 4,-6进行加、减、乘、除四则运算,使其运算结果等于24,请你直接写出至少五个不同的算式.补充说明:每个算式中,每个数仅用一次.......,同一运算符号可用多次或不用,可用括号. 17.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.18.一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?19.阅读下列材料:计算:124÷(13−14+112)解法一:原式= 124÷13−124÷14+124÷112=124×3−124×4+124×12=1124解法二:原式= 124÷(13−14+112)=124÷212=124×6=14解法三:原式的倒数= (13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4 所以,原式= 14.(1)上述得到的结果不同,你认为解法 是错误的;(2)请你选择合适的解法计算:(−142)÷(16−314−23+27)参考答案1.C2.D3.C4.C5.D6.B7.B8.D9.1和-l10.9.911.1112.<13.1114.(1)解:2﹣(﹣6)+7﹣15 =8+7﹣15=0(2)解:﹣4÷23﹣(﹣23)×(﹣30)=﹣6﹣20=﹣2615.解:∵a,b互为相反数,且a≠0,c,d互为倒数,m的绝对值是最小的正整数∴a+b=0,ab=-1,cd=1,m=±1∴原式=1-(-1)+0-1=1.16.解:①3×(−4)×(−6+4)=−12×(−2)=24;②3×4×[−4−(−6)]=12×2=24;③(−4−4)×(−6+3)=−8×(−3)=24;④−4×(−6)×(4−3)=24×1=24;⑤4×(−6)×(−4+3)=−24×(−1)=24 .17.解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣45※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a ※(b+c )=a (b+c )+1=ab+ac+1,a ※b+a ※c=ab+1+ac+1=ab+ac+2. ∴a ※(b+c )+1=a ※b+a ※c .18.(1)解:60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨)则下午运完货物后存货59.4吨(2)解:(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元)则下午货车共得运费320元19.(1)一(2)解:方法一:原式=(−142)÷(16−46−314+414)=(−142)÷(−12+114) =(−142)÷(−37) =118方法二:原式的倒数= =(16−314−23+27)÷(−142)=(16−314−23+27)×(−42) =16×(−42)−314×(−42)−23×(−42)+27×(−42) =−7+9+28−12=18∴原式=118。
初中数学:有理数乘除法混合运算计算(含答案)
初中数学:有理数乘除法混合运算计算(含答案)1.1) (-)×(-3)/(-1)/3;2) (-8)/(-1)/(-9).2.1) -0.75×(-0.4)×1;2) 0.6×(-)×(-)×(-2).3.1) -0.75×(-0.4)×1;2) 0.6×(-)×(-)×(-2).4.25×(?missing number?)5.missing number?)6.1) -0.75×(-0.4)×1;2) 0.6×(-)×(-)×(-2).7.1) (-36)/9/(-?missing number?);2) (-)×(-3)/(-1)/3.8.9.missing number?).10.4×(?missing number?)11.1) (-48)×0.125+48×(?missing number?);2) (?)×(-36)+(-3)×(-3)-6×3.12.1) (?missing number?);2) (?missing number?).13.1) (?missing number?);2) (?missing number?).14.36)××(-?missing number?).15.3)/3×(?missing number?).16.1) (-9)×31;2) 99-(-8)×(-31)-(-16)×31;36).17.1) (-48)×0.125+48×+(-48)×(?missing number?);2) (?missing number?)×(-36).18.1) (-3)×(-9)-8×(-5);2) -63/7+45/(-9);3) (-)×1/(-1);4) (1-+)/(-48).19.1) 10×(?missing number?);2) (?)×12;3) 19×(-11)+(?missing number?).20.missing number?).21.1) (-8)×(-12)×(-0.125)×(-)×(-0.001);2) (-1)×/(-)×2/(-)+(-2.5)/(-0.25)×(?missing number?).22.1) 10/(-)×6;2) (?missing number?)×(-6);3) -3/(-)+36/(-).23.1) -3/(-?missing number?);2) (-?missing number?)/(-?missing number?)-(-6). 24.missing number?)×(-72).25.missing number?)×(-72).26.8)×(-8)+(-7)×(-8)-15×8.27.1) (-32)/4×(-8);2) -0.75/(-1)/(-2).28.32×(-)+(-11)×(-)-21×(-).29.54×(-54)+54×(-).30.missing number?)2)(﹣2.5)÷(﹣0.5)÷(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.75×(﹣0.4)×1=0.3;(2)(﹣2.5)÷(﹣0.5)÷(﹣2)=2.5.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.3.计算:1)(﹣7)×(﹣5)÷(﹣4)×(﹣2);2)﹣3×﹣0.5×﹣2.5.分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)(﹣7)×(﹣5)÷(﹣4)×(﹣2)=﹣17.5;(2)﹣3×﹣0.5×﹣2.5=3.75.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.4.计算:1)(﹣)÷(﹣0.5)×(﹣6);2)﹣1.5÷(﹣0.75)×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)(﹣)÷(﹣0.5)×(﹣6)=72;(2)﹣1.5÷(﹣0.75)×(﹣2)=4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.5.计算:1)﹣4.5÷(﹣0.9)×(﹣2);2)(﹣0.8)÷0.2×(﹣)×2.分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣4.5÷(﹣0.9)×(﹣2)=20;(2)(﹣0.8)÷0.2×(﹣)×2=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.6.计算:1)﹣0.4×(﹣)÷(﹣0.2);2)(﹣0.2)÷0.05×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.4×(﹣)÷(﹣0.2)=2;(2)(﹣0.2)÷0.05×(﹣2)=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.7.计算:1)﹣0.6×(﹣)÷(﹣0.3);2)(﹣0.4)÷0.1×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.6×(﹣)÷(﹣0.3)=4;(2)(﹣0.4)÷0.1×(﹣2)=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.8.计算:1)﹣1.2÷(﹣0.3)×(﹣2);2)(﹣0.6)÷0.2×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.2÷(﹣0.3)×(﹣2)=﹣8;(2)(﹣0.6)÷0.2×(﹣3)=﹣9.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.9.计算:1)﹣0.5×(﹣)÷(﹣0.25);2)(﹣0.8)÷0.4×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.5×(﹣)÷(﹣0.25)=4;(2)(﹣0.8)÷0.4×(﹣2)=﹣4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.10.计算:1)﹣1.5÷(﹣0.75)×(﹣2);2)(﹣0.6)÷0.3×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.5÷(﹣0.75)×(﹣2)=4;(2)(﹣0.6)÷0.3×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.11.计算:1)﹣0.8×(﹣)÷(﹣0.4);2)(﹣0.5)÷0.25×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.8×(﹣)÷(﹣0.4)=4;(2)(﹣0.5)÷0.25×(﹣2)=﹣4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.12.计算:1)﹣1.6÷(﹣0.4)×(﹣2);2)(﹣0.4)÷0.2×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.6÷(﹣0.4)×(﹣2)=8;(2)(﹣0.4)÷0.2×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.13.计算:1)﹣1.8×(﹣)÷(﹣0.6);2)(﹣0.3)÷0.15×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.8×(﹣)÷(﹣0.6)=3;(2)(﹣0.3)÷0.15×(﹣2)=﹣4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.14.计算:1)﹣2.4÷(﹣0.6)×(﹣2);2)(﹣0.2)÷0.1×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣2.4÷(﹣0.6)×(﹣2)=8;(2)(﹣0.2)÷0.1×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.15.计算:1)﹣3÷(﹣0.6)×(﹣2);2)(﹣0.1)÷0.05×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣3÷(﹣0.6)×(﹣2)=10;(2)(﹣0.1)÷0.05×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.16.计算:1)(﹣8)×2÷(﹣0.4)×(﹣2);2)(﹣0.2)÷0.1×(﹣4).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)(﹣8)×2÷(﹣0.4)×(﹣2)=80;(2)(﹣0.2)÷0.1×(﹣4)=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.17.计算:1)(﹣)×(﹣2)÷(﹣0.4)×(﹣2);2)(﹣0.1)÷0.05×(﹣5).分8.计算:(-8+9)÷(-1)分析:将除法变为乘法,再根据乘法分配律计算即可求解。
有理数的乘除法练习题(含答案)
第一章有理数1.4 有理数的乘除法1.计算12–12×3的结果是A.0 B.1 C.–2 D.–1 2.若等式–2□(–2)=4成立,则“□”内的运算符号是A.+ B.–C.×D.÷3.计算1–(–2)×(–2)÷4的结果为A.2 B.54C.0 D.34-4.|–13|的倒数是A.13B.3 C.–13D.–35.–0.3的倒数是A.10.3B.−10.3C.103D.−1036.2×(–3)=__________.7.计算:523()12 1234+-⨯.8.计算:22 (7)()7-⨯-.9.计算:34(7)(2) 25-÷-⨯+.10.计算:236(3)2(4)-⨯-+⨯-.11.12()2⨯-的结果是A.–4 B.–1 C.14-D.3212.计算:740(16) 2.54÷--÷=A.–1.1 B.–1.8 C.–3.2 D.–3.9 13.下列各数中,与–2的积为1的是A.12B.–12C.2 D.–214.计算11(6)()666⨯-÷-⨯的值为A.1 B.36 C.1-D.+615.计算(1+14+56−12)×12时,下列可以使运算简便的是A.运用乘法交换律B.运用加法交换律C.运用乘法分配律D.运用乘法结合律16.在–3,–2,–1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是__________.17.有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c=__________.18.计算:5 (8)[7(3 1.2)]6-⨯-+-⨯.19.计算:11336()964⨯--.20.计算:11 (1)(9)()32-⨯-÷-.21.(–0.25)×(–79)×4×(–18).22.计算:12112 ()() 3031065-÷-+-.23.计算:(14+512–56)×(–60).24.阅读后回答问题:计算(–52)÷(–15)×(–115)解:原式=–52÷[(–15)×(–115)]①=–52÷1②=–52③(1)上述的解法是否正确?答:__________;若有错误,在哪一步?答:__________;(填代号)错误的原因是:__________;(2)这个计算题的正确答案应该是:25.(2018•陕西)–711的倒数是A.711B.−711C.117D.−11726.(2018•吉林)计算(–1)×(–2)的结果是A.2 B.1 C.–2 D.–3 27.(2018•遂宁)–2×(–5)的值是A.–7 B.7 C.–10 D.10 1.【答案】D【解析】111323===122222-⨯---,故选D.2.【答案】C【解析】–2×(–2)=4.故选C.3.【答案】C【解析】1–(–2)×(–2)÷4=1–4÷4=1–1=0,故选C.4.【答案】B【解析】|–13|=13,13的倒数是3,故选B.5.【答案】D【解析】–0.3=–310,故–0.3的倒数是−103.故选D.6.【答案】–6【解析】根据有理数的乘法法则可得2×(–3)=–6.9.【答案】3 5【解析】3431143(7)(2)()252755-÷-⨯+=-⨯-⨯=.10.【答案】33【解析】236(3)2(4)-⨯-+⨯-2318833=+-=.11.【答案】B【解析】2×(–12)=–(2×12)=–1.故选B.12.【答案】C【解析】原式=575242--÷=572245--⨯=2571010--=3210-=–3.2,故选C.13.【答案】B【解析】∵–2×12=–1,–2×(–12)=1,–2×2=–4,–2×(–2)=4,∴与–2的积为1的是–12.故选B.14.【答案】B【解析】首先确定积的符号,然后将除法转化为乘法再进行计算.原式=16×6×6×6=36.15.【答案】C【解析】∵算式符合乘法分配律的形式,∴运用乘法分配律可以使运算简便.故选C.16.【答案】30【解析】正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.最大乘积是:(–3)×(–2)×5=3×2×5=30.故答案为:30.19.【答案】–29【解析】11311336()363636462729 964964⨯--=⨯-⨯-⨯=--=-.20.【答案】–24【解析】114(1)(9)()9224323-⨯-÷-=-⨯⨯=-.21.【答案】【解析】原式=–(14×79×4×18)=–14.22.【答案】1 10 -【解析】原式=14114()()30661010-÷+--=151()()3062-÷-=11()()303-÷=1()330-⨯=110-.23.【答案】10【解析】原式=14×(–60)+512×(–60)–56×(–60)=–15+(–25)+50=–40+50=10.24.【答案】(1)不正确;①;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;(2)190.【解析】(1);不正确;错误在第①步;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;25.【答案】D【解析】–711的倒数是–117,故选D.26.【答案】A【解析】(–1)×(–2)=2.故选A.27.【答案】D【解析】(–2)×(–5)=+2×5=10,故选D.。
2022-2023学年七年级上数学:有理数的乘除法(附答案解析)
2022-2023学年七年级上数学:有理数的乘除法
一.选择题(共5小题)
1.下列说法中,正确的是()
A.3.6÷0.4=9,所以3.6能被0.4整除
B.12的因数有6个
C.一个素数和一个合数一定互素
D.在正整数中,偶数都是合数
2.甲、乙、丙三人从A地徒步去B 地,甲用了小时,乙用了0.4小时,丙用了小时,那么甲、乙、丙三人的速度之比为()
A.10:12:15B.15:12:10C.6:5:4D.4:6:5
3.下列说法中,错误的是()
A.3能整除15
B.在正整数中,除了奇数就是偶数
C.在正整数中,除2外所有的偶数都是合数
D.一个正整数乘以一个假分数,积一定大于它本身
4.表示有理数a,b的点在数轴上的位置如图所示,以下四个式子中正确的是()
A.a+b>0B.ab>0C.a+2>0D.a﹣b<0
5.有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是()
A.|a|>|b|B.a+b>0C.a﹣b>0D.ab>0
二.填空题(共5小题)
6.14与35的最小公倍数是.
7.求比值:0.25平方米:100平方分米.
8.计算:﹣2÷=.
9.六(4)班昨天有27人到校上课,另有3人请假没来,昨天六(4)班的出勤率是.
第1页(共10页)。
有理数的乘除法(含答案)
1.4 有理数的乘除法●知识单一性训练1.4.1 有理数的乘法一、有理数的乘法法则及其运算律1.一个有理数和它的相反数相乘,积为()A.正数 B.负数 C.正数或0 D.负数或02.计算(-3)×(4-12),用分配律计算过程正确的是()A.(-3)×4+(-3)×(-12) B.(-3)×4-(-3)×(-12)C.3×4-(-3)×(-12) D.(-3)×4+3×(-12)3.下列说法正确的是()A.异号两数相乘,取绝对值较大的因数的符号; A.异号两数相乘,取绝对值较大的因数的符号;B.同号两数相乘,符号不变;C.两数相乘,如果积为负数,那么这两个因数异号;D.两数相乘,如果积为正数,那么这两个因数都为正数4.已知abc>0,a>c,ac<0,下列结论正确的是()A.a<0,b<0,c>0 B.a>0,b>0,c<0C.a>0,b<0,c<0 D.a<0,b>0,c>05.如果ab=0,那么一定有()A.a=b=0 B.a=0 C.b=0 D.a,b至少有一个为06.计算:(1)-2(m+3)+3(m-2);(2)5(y+1)-10×(y-110+15).7.若有理数m<n<0时,确定(m+n)(m-n)的符号.8.小林和小华二人骑自行车的速度分别为每小时12千米和每小时11千米,•若两人都行驶2小时,小林和小华谁走的路程长?长多少千米?9.登山队员攀登珠穆朗玛峰,在海拔3000m时,气温为-20℃,已知每登高1000m,•气温降低6℃,当海拔为5000m和8000m时,气温分别是多少?二、多个有理数相乘积的符号的确定10.三个数的积是正数,那么三个数中负数的个数是()A.1个 B.0个或2个 C.3个 D.1个或3个11.下面计算正确的是()A.-5×(-4)×(-2)×(-2)=80B.(-12)×(13-14-1)=0C.(-9)×5×(-4)×0=180D.-2×5-2×(-1)-(-2)×2=812.绝对值不大于4的整数的积是()A.6 B.-6 C.0 D.2413.在-2,3,4,-5这四个数中,任取两个数相乘,所得的积最大的是_______.14.若干个有理数相乘,其积是负数,则负因数的个数是_______.15.+(16)×5911×(-29.4)×0×(-757)=______.16.-4×125×(-25)×(-8)=________.17.计算:(1)(-10)×(-13)×(-0.1)×6;(2)-3×56×145×(-0.25).1.4.2 有理数的除法三、有理数的除法法则18.若两个有理数的商是正数,和为负数,则这两个数()A.一正一负 B.都是正数 C.都是负数 D.不能确定19.若两个数的商是2,被除数是-4,则除数是()A.2 B.-2 C.4 D.-420.一个非0的有理数与它的相反数的商是()A.-1 B.1 C.0 D.无法确定21.若ab>0,则的值是()A.大于0 B.小于0 C.大于或等于0 D.小于或等于022.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数()A.一定相等 B.一定互为倒数C.一定互为相反数 D.相等或互为相反数23.当x=_______时,51x没有意义.24.若一个数与它的绝对值的商是1,则这个数是______数;若一个数与它的绝对值的商是-1,则这个数是_______数.25.两个因数的积为1,已知其中一个因数为-72,那么另一个因数是_______.26.若||mm=1,则m________0.27.某地探测气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃,若该地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米.四、有理数的乘除混合运算28.计算(-1)÷(-10)×110的结果是()A.1 B.-1 C.1100D.-110029.(-113)÷(-3)×(-13)的值是______.30.若ab<0,bc<0,则ac________0.31.计算:(1)-34×(-112)÷(-214);(2)15÷(-5)÷(-115);(3)(-3.5)÷78×(-34).五、有理数加减乘除混合运算32.计算(-12)÷[6+(-3)]的结果是()A.2 B.6 C.4 D.-4 33.计算:(1)(-1117)×15+(+517)×15+(-13713)÷5+(+11313)÷5;(2)-8-[-7+(1-23×0.6)÷(-3)].34.已知│3-y│+│x+y│=0,求x yxy的值.●能力提升性训练1.现有四个有理数3,4,-6,10,运用有理数的四则混合运算写出三种不同方法的运算式,使其结果等于24,运算如下:(1)______,(2)_____,(3)______,另有四个有理数,3,-5,7,-13时,可通过运算式(4)________,使其结果等于24.2.计算:(1)-3y+0.75y-0.25y;(2)5a-1.5a+2.4a.3.计算:(1)3(2m-13);(2)-7y+(2y-3)-2(3y+2).4.某班分小组举行知识竞赛,评分标准是:答对一道题加10分,•答错一道题扣10分,不答不得分.已知每个小组的基本分为100分,有一个小组共答20道题,•其中答对了10道题,不答的有2道题,结合你学过的有理数运算的知识,求该小组最后的得分是多少.5.已知a的相反数是123,b的相反数是-212,求代数式32a ba b+-的值.6.若定义一种新的运算为a*b=1abab-,计算[(3*2)]*16.7.若│a+1│+│b+2│=0,求:(1)a+b-ab;(2)ba+ab.8.已知a,b互为相反数,c,d互为倒数,且a≠0,那么3a+3b+ba-cd的值是多少?●针对性训练1.计算(-245)×(-2.5); 2.计算(-114)×(+45).3.计算-13×23-0.34×27+13×(-13)-57×0.34.4.计算37÷5×15; 5.计算(-112)×(-34)÷(-214).6.计算(-11223)()4267314÷-+-; 7.计算(213-312+1445)÷(-116).●中考全接触1.(2005,厦门)下列计算正确的是()A.-1+1=0 B.-1-1=0 C.3÷13=1 D.3=62.(2006,长春)化简m-n-(m+n)的结果是()A.0 B.2m C.-2n D.2m-2n3.(2006,浙江)若家用电冰箱冷藏室的温度是4℃,•冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度是()A.18℃ B.-26℃ C.-22℃ D.-18℃4.(2006,南昌)下列四个运算中,结果最小的是()A.1+(-2) B.1-(-2) C.1×(-2) D.1÷(-2)5.(2005,江西)计算(-2)×(-4)=_______.6.(2005,云南)计算(-12)×(-14)=________.7.(2005,陕西)5×(-4.8)+│-2.3│=________.8.(2006,温州)若x-y=3,则2x-2y=________.9.(2005,南通)计算(-12+23-14)×│-12│.答案:【知识单一性训练】1.D [提示:如1×(-1)=-1,一个正数和一个负数相乘,积为负数,但不要漏掉0的情况.]2.A [提示:(-3)×(4-12)=(-3)×[4+(-12)]=(-3)×4+(-3)×(-12),强调过程,而不是结果.]3.C [提示:根据有理数乘法法则,例如-2×4=-8,A错;(-2)×(-4)=8,B错;(-2)•×(-5)=10,D错.故C正确.]4.C [提示:由ac<0,得a与c异号,由a>c,得a>0,c<0.由abc>0,得b<0,故选C.] 5.D [提示:0同任何数相乘都得0.]6.解:(1)-2(m+3)+3(m-2)=-2m-6+3m-6=m-12.(2)5(y+1)-10×(y-110+15)=5y+5-10y+1-2=-5y+4.7.解:因为m<n<0,所以│m│>│n│,m+n<0,所以m-n<0,所以(m+n)(m-n)>0,•即(m+n)(m-n)的符号为正.8.解:小林走的路程为12×2=24(千米),小华走的路程为11×2=22(千米),• 因为24>22,所以小林走的路程比小华长,小林比小华多走24-22=2(千米),答:小林走的路程比小华长2千米.9.解:当海拔为5000m时,-20-500030001000-×6=-32(℃);当海拔为8000m时,-20-800030001000-×6=-50℃,•因此当海拔为5000m时,气温为-32℃,当海拔为8000m时,气温为-50℃.10.B [提示:几个不为零的有理数相乘,积的符号由负因数的个数决定,• 因为三个数的积是正数,所以负因数为偶数个或0个,故选B.]11.A [提示:(-12)×(13-14-1)=(-12)×13+(-12)×(-14)+(-12)×(-1)=-4+3+12=11;(-9)×5×(-4)×0=0;-2×5-2×(-1)-(-2)×2=-10+2+4=-4,故B,C,D都错,A对.]12.C [提示:绝对值不大于4的整数为0,±1,±2,±3,±4,所以它们的积为0,故选C.]13.12 [提示:3×4=12,其余积为负数和小于12.]14.奇数 [提示:由几个不为零的有理数相乘的法则可知.]15.0 [提示:任何有理数同0相乘都得0.]16.-100000 [提示:原式=-(4×125×25×8)=-100000.]17.解:(1)(-10)×(-13)×(-0.1)×6=-(10×13×110×6)=-2.(2)-3×56×145×(-0.25)=3×56×95×14=98.18.C [提示:从商为正数得出两个数同号,从和为负数得出两个数都为负数,• 若两个数都为正数,积只能为正数.]19.B [提示:分清除数、被除数的含义,用-4÷2=-2.]20.A [提示:可取特殊值计算,如:2的相反数是-2,那么2÷(-2)=-1,故选A.]21.A [提示:由ab>0可得a,b同号,则ab是正数.]22.D [提示:不要漏掉互为相反数这种情况.]23.1 [提示:当x=1时,x-1=0,除数为0,没意义.]24.正负 [提示:正数的绝对值是它本身,负数的绝对值是它的相反数.]25.-27[提示:另一个因数是1÷(-72)=-27.]26.> [提示:若m>0,│m│=m,则||mm=mm=1;若m<0,│m│=-m,则||mm=mm-=-1,m为分母,•不能等于0.]27.解:21(39)6--×1=10(千米),答:此处的高度是10千米.28.C [提示:(-1)÷(-10)×110=(-1)×(-110)×110=1100.故选C.]29.-427[提示:原式=(-43)×(-13)×(-13)=-427.]30.> [提示:因为ab<0,所以a,b异号,又因为bc<0,所以b,c异号,所以a,c同号,故ac>0.]31.解:(1)-34×(-112)÷(-214)=-34×(-32)×(-89)=-1.(2)-15÷(-5)÷(-115)=-15×(-15)•×(-56)=-52.(3)(-3.5)÷78×(-34)=(-72)×87×(-34)=3.32.D [提示:(-12)÷[6+(-3)]=(-12)÷3=-4,故选D.]33.解:(1)(-1117)×15+(+517)×15+(-13713)÷5+(+11313)÷5=(-1117)×15+(+517)×15+(-13713)×15+(+11313)×15=15×[(-1117)+(+517)+(-13713)+(+11313)]=15×[-6+(-24)]=15×(-30)=-6.(2)-8-[-7+(1-23×0.6)÷(-3)]=-8-[-7+(1-23×35)×(-13)]=-8-[-7+(1-25)×(-13)]=-8-[-7+35×(-13)]=-8-(-7-15)=-8+715=-45.34.解:│3-y│+│x+y│=0,且│3-y│≥,│x+y│≥0,所以3-y=0,x+y=0,•所以y=3,x=-3,所以330339x yxy+-+==-⨯-=0.【能力提升性训练】1.(1)4-(-6×10)÷3 (2)(10-6+4)×3 (3)10-[3×(-6)]-4 (4)[(-5)×(-13)+7]÷3 2.解:(1)-3y+0.75y-0.25y=(-3+0.75-0.25)y=-2.5y.(2)5a-1.5a+2.4a=(5-1.5+2.4)a=5.9a.3.解:(1)3(2m-13)=3×2m-3×13=6m-1.(2)-7y+(2y-3)-2(3y+2)=-7y+2y-3-2×3y+(-2)×2=-7y+2y-3-6y-4=(-7+2-•6)y-7=-11y-7.4.解:根据题意,得100+10×10+(20-10-2)×(-10)=100+100-80=120(分).答:该小组最后的得分是120分.5.解:因为a的相反数是123,则a=-123,因为b的倒数是-212,则b=1÷(-212)=-25.所以32a ba b+-=2213()352212()35-+⨯---⨯-=(-53-65)÷(-53+45)=(-251825124313431543)()()()151515151515151313-÷-+=-÷-=⨯=.6.解:因为a*b=1abab-,所以[(3*2)*16=32132⨯-⨯*16=(-65)*16=6115656111()1565-⨯-=--⨯+=-16.7.解:因为│a+1│+│b+2│=0,且│a+1│≥0,│b+2│≥0,所以a+1=0,b+2=0,• 所以a=-1,b=-2,所以,(1)a+b-ab=-1+(-2)-(-1)×(-2)=-3-2=-5.(2)ba+ab=2112--+--=2+12=52.8.解:因为a,b互为相反数,所以a+b=0,ba=-1.因为c,d互为倒数,所以c.d=1,•所以3a+3b+ba-cd=3(a+b)+ba-cd=3×0+(-1)-1=-2.【针对性训练】1.解:(-245)×(-2.5)=(-145)×(-52)=7.2.解:(-114)×(+45)=(-54)×(+45)=-1.3.解:-13×23-0.34×27+13×(-13)-57×0.34=-13×23+13×(-13)-0.34×27-57×0.34=-13×(23+13)-0.34×(27+57)=-13×1-0.34×1=-13-0.34=-13.34.4.解:37÷5×15=37×15×15=3725.5.解:(-112)×(-34)÷(-214)=(-32)×(-34)×(-94)=-(32×34×94)=-12.6.解:(-11223114245618 )()()() 42673144284-+-÷-+-=-÷1281841 ()().4284422814 =-÷=-⨯=-7.解:(213-312+1445)÷(-116)=(73-72+4945)×(-67)=73×(-67)+(-72)×(-67)+4945×(-67)=-2+3-141411151515=-=.【中考全接触】【中考全接触】1.A [提示:互为相反数的和为0.]2.C [提示:去括号时,要注意括号前的符号.] 3.D [提示:4-22=-18(℃).]4.C [提示:1+(-2)=-1,1-(-2)=1+2=3,1×(-2)=-2,1÷(-2)=-12,通过比较C最小.]5.8 [提示:同号相乘得正.] 6.1 87.-21.7 [提示:注意运算顺序.] 8.6 [提示:2x-2y=2(x-y)=2×3=6.]9.解:(-12+23-14)×│-12│=(-12+23-14)×12=(-12)×12+23×12+(-14)×12=-6+8-3=-1.。
人教版七年级数学上册第一章《有理数的乘除法》课时练习题(含答案)
人教版七年级数学上册第一章《有理数的乘除法》课时练习题(含答案)一、单选题1.与1134⎛⎫-- ⎪⎝⎭互为倒数的是( ) A .143-⨯ B .34⨯C .143⨯ D .34-⨯ 2.已知有理数a ,b ,c 满足0abc ≠,则||||||a b c b a c ++的值不可能为( ) A .3 B .3- C .1 D .23.计算()162⎛⎫-⨯- ⎪⎝⎭的结果是( ) A .-3 B .3 C .-12 D .124.计算1(6)3⎛⎫-÷- ⎪⎝⎭的结果是( ) A .18- B .2 C .18 D .2-5.计算(﹣1)÷3×(﹣13)的结果是( ) A .﹣1 B .1 C .19 D .9 6.如果0abcd <,0a b +=,0cd >,那么这四个数中负数有( )A .4个B .3个C .2个D .1个或3个 二、填空题7.23的倒数是________.8.体育用品商店出售一种排球,按八折处理,每个36元,这种排球原价__元. 9.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是___. 10.在-5,-3,-2,1,2,7这五个数中任取两数相乘,所得乘积中的最小数与最大数之差的绝对值为________.三、解答题11.阅读材料:求1+2+22+23+24+……+22019的值.解:设S =1+2+22+23+24+ (22019)将等式两边同时乘以2,得2S =2+22+23+24+…+22019+22020,将下式减去上式得2S-S=22020-1,请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34……+3n(其中n为正整数).12.下面是佳佳同学的一道题的解题过程:2÷(-1314+)×(-3)=[2÷(-13)+214÷]×(-3),①=2×(-3)×(-3)+2×4×(-3),②=18-24,③=6,④(1)佳佳同学开始出现错误的步骤是;(2)请给出正确的解题过程.13.已知有理数-16,-10,c在数轴上对应的点分别是A,B,C三点,BC-AB=4.(1)请在数轴上画出点A,B,并求B,C两点间的距离;(2)求AC中点表示的数参考答案1.D2.D3.B4.C5.C6.D7.3 28.459.90.10.5011.(1)211-1;(2)12(3n+1-1) 12.(1)①;13. 10(2)AC中点表示的数为-8或-18。
1.4 有理数的乘除法 试卷1(含答案)
有理数的除法 练习题一、计算:(1)(-18)÷6-6; (2)(-63)÷(-7)×9;(3)(-36)÷6-7×6; (4)1÷(-9)-91;(5)0÷(-8)-(-8); (6)16÷(-3)31⨯.二、计算:(7)( 94- )÷(32- )-(-6.5)÷0.13;(8)( 53- )÷( 52- )+52 ÷(-1).三、 计算(9)(7624-)-(-6)×0;(10)-3.5÷87 +( 43- )×34;(11)(-6)÷(-2)+(-4)×(511-);(12)-81÷)16()49(412-⨯-+;(13)-3.375)121181(3612375.412-⨯-⨯+⨯;(14)我们规定“⊗”是一种数学运算符号。
两数A,B 通过“⊗”运算得(A+2)⨯21-B.即A ⊗B=(A+2)⨯21-B,例如4⊗5=(4+2)⨯21-5=-2. 求(-5)⊗4的值;(15)一天,小红和小丽利用温差测量山峰的高度。
小红在山顶测得温度是-1℃,小丽此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约下降0.8℃,这个山峰的高度大约是多少米?【答案】 一、计算:(1)(-18)÷6-6; (2)(-63)÷(-7)×9; 解:原式=-9 解:原式=81 (3)(-36)÷6-7×6; (4)1÷(-9)-91; 解:原式=-48 解:原式=-92 (5)0÷(-8)-(-8); (6)16÷(-3)31⨯. 解:原式=8 解:原式=-916 二、计算:(7)( 94- )÷(32- )-(-6.5)÷0.13; 解:原式=3250(8)( 53- )÷( 52- )+52 ÷(-1).解:原式=1011三、 计算(9)(7624-)-(-6)×0;解:原式=7624-(10)-3.5÷87 +( 43- )×34;解:原式=-5(11)(-6)÷(-2)+(-4)×(511-); 解:原式=547(12)-81÷)16()49(412-⨯-+; 解:原式=0(13)-3.375)121181(3612375.412-⨯-⨯+⨯;解:原式=13(14)我们规定“⊗”是一种数学运算符号。
有理数乘除练习题含答案可直接打印
有理数乘法(1)1 、填空:(1)5×(-4)= __;(2)(-6)×4= __;(3)(-7)×(-1)= ___; (4)(-5)×0 =___; (5)=-⨯)23(94___;(6)=-⨯-)32()61( ___; (7)(-3)×=-)31( 2、填空:(1)-7的倒数是___,它的相反数是___,它的绝对值是___; (2)522-的倒数是___,-2.5的倒数是___; (3)倒数等于它本身的有理数是___。
3、计算: (1) )32()109(45)2(-⨯-⨯⨯-; (2) (-6)×5×72)67(⨯-;(3)(-4)×7×(-1)×(-0.25); (4)41)23(158)245(⨯-⨯⨯- 4、一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零 5、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数 拓展提高1、32-的倒数的相反数是___。
2、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )A 、a >0,b >0B 、a <0,b >0C 、a,b 异号D 、a,b 异号,且负数的绝对值较大3、计算: (1))5(252449-⨯; (2)125)5.2()2.7()8(⨯-⨯-⨯-;(3)6.190)1.8(8.7-⨯⨯-⨯-; (4))251(4)5(25.0-⨯⨯-⨯--。
4、计算:(1))8141121()8(+-⨯-; (2))48()6143361121(-⨯-+--。
5、计算:(1))543()411(-⨯- (2)34.075)13(317234.03213⨯--⨯+⨯-⨯-6、已知,032=-++y x 求xy y x 435212+--的值。
七年级上册数学《有理数的乘除法》练习题(含答案):人教版
书山有路勤为径;学海无涯苦作舟
七年级上册数学《有理数的乘除法》练习题(含答
案):人教版
要想让自己在考试时取得好成绩,除了上课要认真听讲外还需要课后多做练习,接下来为大家推荐了有理数的乘除法练习题,希望能帮助到大家。
一、选择题
1.如果两个有理数在数轴上的对应点在原点的同侧,那幺这两个有理数的积( )
A.一定为正
B.一定为负
C.为零
D. 可能为正,也可能为负
2.已知两个有理数a,b,如果ab 小于0,且a+b 小于0,那幺( )
A、a 大于0,b 大于0
B、a 小于0,b 大于0
C、a,b 异号
D、a,b 异号,且负数的绝对值较大
3.下列运算结果为负值的是( )
A.(-7)乘以(-6)
B.6 乘以(-4)
C.0 乘以(-2)
D.(-7)-(-15)
4 .下列运算错误的是( )
A.(-2)乘以(-3)=6
B.
C.(-5)乘以2=-10
D.2 乘以(-4)=-8
5.若a+b 大于0,ab 大于0,则这两个数( )
A.都是正数
B.是符号相同的非零数
C.都是负数
D.都是非负数
6.下列说法正确的是( )
A.负数没有倒数
B.正数的倒数比自身小
今天的努力是为了明天的幸福。
有理数的乘除法同步练习题及答案
有理数的乘除法同步练习题及答案一、选择题1、计算÷×-15的结果是 A.-1 B.-12C.1D.-252、已知两个有理数a,b,如果ab A.a>0,b0C.a,b异号D.a,b异号且负数的绝对值较大3、小刚去距县城28千米的旅游点游玩,先乘车后步行.全程共用了1小时,已知汽车速度为每小时36千米,步行的速度每小时4千米,则小刚乘车路程和步行路程分别是A.26千米, 千米 B.27千米, 1千米 C.25千米, 千米D.24千米, 千米4、猜猜“它”是谁:“它”的倒数等于16与﹣4的商,“它”是A、﹣B、?14C、4D、145、若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6.!=4×3×2×1=24,…,则10098!的值为 A.5049B.99!C.900D.2!、下列说法中正确的有①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积. A.1个 B.2个C.3个 D.4个7、这是为了运算简便而使用 [?]?[?]A.乘法交换律B.乘法结合律C.乘法分配律D.乘法结合律和交换律、下列计算正确的是A.+=+7B.-=-C.×=1D.÷2=-19、已知a与b互为相反数,则下列式子:①a+b=0,②a=-b,③b=-a,④a=b,⑤ab??1,其中一定成立的是A.1个 B.2个 C.3个 D.4个10、若|x-1+| y+2|+|z-3|=0则的值为A、4B、-4C、0D、10二、填空题11、如图所示的运算程序中,若开始输入的x值为36,我们发现第1次输出的结果为18,第次输出的结果为9,……第2014次输出的结果为___________.12、已知│a│=,│b│=,且ab<0,则a+b的值为_____________.13、若a、b互为相反数,c、d互为倒数,m的绝对值是2.则2a-3cd+2b+m=_________。