三角形的内切圆.习题集(2014-2015)-教师版

合集下载

三角形的内切圆练习题

三角形的内切圆练习题

三角形的内切圆练习题三角形的内切圆练习题在数学中,三角形是一个基础而重要的概念。

而在三角形的内部,有一个特殊的圆形,称为内切圆。

内切圆是可以与三角形的三条边都相切的圆形,它有着许多有趣的性质和应用。

在本文中,我们将通过一些练习题来探索三角形的内切圆。

练习题1:设三角形ABC的三个内角分别为∠A、∠B和∠C,内切圆的半径为r。

证明:三角形ABC的面积S等于内切圆的半径r与三角形ABC三边长之和的乘积的一半,即S = r × (AB + BC + AC) / 2。

解答:我们可以通过两种方法来证明这个结论。

方法一:利用三角形的高度我们知道,三角形的面积可以通过底边与高度的乘积来计算。

考虑三角形ABC,假设内切圆的圆心为O,与三边AB、BC和AC分别相切于点D、E和F。

连接AO、BO和CO,分别延长到与内切圆相交于点P、Q和R。

由于AO与DO垂直且相等,所以DO是三角形ABC的高度。

同样地,EO和FO也是三角形ABC 的高度。

因此,我们可以得到三角形ABC的面积S = DO × AB / 2 + EO × BC /2 + FO × AC / 2。

另一方面,根据内切圆的性质,我们知道DO = EO = FO = r。

将这个结果代入到上面的等式中,我们可以得到S = r × (AB + BC + AC) / 2,证明完成。

方法二:利用三角形的面积公式我们知道,三角形ABC的面积可以通过海伦公式来计算,即S = √[s(s - AB)(s- BC)(s - AC)],其中s是三角形的半周长,即s = (AB + BC + AC) / 2。

我们将这个面积公式代入到S = r × (AB + BC + AC) / 2中,可以得到S = √[s(s - AB)(s - BC)(s - AC)] = r × (AB + BC + AC) / 2。

通过对等式两边进行平方操作,我们可以得到等式两边的平方相等,从而证明了这个结论。

三角形的内切圆-练习题 含答案

三角形的内切圆-练习题 含答案

三角形的内切圆副标题题号一二总分得分一、选择题(本大题共2小题,共6.0分)1.下列语句正确的个数是过平面上三点可以作一个圆;平分弦的直径垂直于弦;在同圆或等圆中,相等的弦所对的圆周角相等;三角形的内心到三角形各边的距离相等.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:过平面上不在同一直线上的三点可以作一个圆,错误;平分弦不是直径的直径垂直于弦,故错误;在同圆或等圆中,相等的弦所对的圆周角相等,错误;三角形的内心到三角形各边的距离相等,正确,正确的有1个,故选A.利用确定圆的条件、垂径定理、圆周角定理及三角形的内心的性质分别判断后即可确定正确的选项;本题考查了确定圆的条件、垂径定理、圆周角定理及三角形的内心的性质等知识,解题的关键是能够了解有关的定义及定理,难度不大.2.如图,在中,,点I是内心,则的大小为A.B.C.D.【答案】C【解析】解:,,点I是内心,,,,,故选:C.根据三角形内角和定理求出,根据内心的概念得到,,根据三角形内角和定理计算即可.本题考查的是三角形的内切圆和内心,掌握三角形的内心的概念、三角形内角和定理是解题的关键.二、填空题(本大题共1小题,共3.0分)3.如图,O是内一点,且O到三边AB、BC、CA的距离相等,若,则______度【答案】125【解析】解:点O到三边AB、BC、CA的距离相等,点O是三角形的内心,.根据点O到三边AB、BC、CA的距离相等,知三角形是内心,从而结合角平分线的定义和三角形的内角和定理,即可得到.熟悉三角形的内心的性质:三角形的内心是三角形的三条角平分线的交点,它到三角形的三边的距离相等;当O是内心时,则.。

《三角形的内切圆》专题练习

《三角形的内切圆》专题练习

《三角形的内切圆》专题练习一、选择题1.O是△ABC的内心,∠BOC为130°,则∠A的度数为()A.130° B.60° C.70° D.80°2.下列图形中一定有内切圆的四边形是()A.梯形 B.菱形 C.矩形 D.平行四边形3.如图,⊙O内切于△ABC,切点为D、E、F,若∠B=50°,∠C=60°,•连结OE,OF,DE,DF,∠EDF等于() A.45° B.55° C.65° D.70°二、填空题1.一个直角三角形的两条直角边长分别为6、8,则它的内切圆半径为。

2.一个等边三角形的边长为4,则它的内切圆半径为。

3.在△ABC中, AB=AC=5cm,BC=8cm,则它的内切圆半径为。

4.顶角为120°的等腰三角形的腰长为4cm,则它的内切圆半径为。

三、解答下列各题1.如图,⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F、若AB=7,AC=5,BC=6,求AD、BE、CF的长。

2.如图,△ABC中,内切圆I和边BC、AB、AC分别相切于点D、E、F,⑴探求∠EDF与∠A的度数关系。

⑵连结EF,△EDF按角分类属于什么三角形。

⑶I是△EDF的内心还是外心?r。

(4)圆M的半径4.如图,ΔABC的∠C=Rt∠,BC=4,AC=3,两个外切的等圆⊙O1,⊙O2各与AB,AC,BC相切于F,H,E,G,求两圆的半径。

5.已知Rt △ABC 中,∠ACB =90°,AC =6,BC =8。

(Ⅰ)如图①,若半径为r 1的⊙O 1是Rt △ABC 的内切圆,求r 1;(Ⅱ)如图②,若半径为r 2的两个等圆⊙O 1、⊙O 2外切,且⊙O 1与AC 、AB 相切,⊙O 2与BC 、AB 相切,求r 2;(Ⅲ)如图③,当n 大于2的正整数时,若半径r n 的n 个等圆⊙O 1、⊙O 2、…、⊙O n 依次外切,且⊙O 1与AC 、BC 相切,⊙O n 与BC 、AB 相切,⊙O 1、⊙O 2、⊙O 3、…、⊙O n-1均与AB 边相切,求r n 。

三角形内切圆练习题

三角形内切圆练习题

三角形内切圆练习题三角形内切圆练习题三角形是几何学中的基本形状之一,而内切圆则是与三角形密切相关的概念。

在几何学中,内切圆是指与三角形的三条边都相切的圆。

研究三角形内切圆的性质和问题,不仅能够加深对几何学的理解,还能够培养逻辑思维和问题解决能力。

下面,我们来通过一些练习题来深入探讨三角形内切圆的特性。

练习题一:已知三角形的三边长为a、b、c,内切圆的半径为r,求内切圆的面积。

解析:根据内切圆的定义,我们知道内切圆的半径r等于三角形的面积S除以半周长s的差值,即r = S/s。

其中,半周长s等于三角形的周长的一半,即s = (a + b + c)/2。

所以,内切圆的面积可以表示为S = rs。

练习题二:已知三角形的内切圆的半径r,求三角形的面积S。

解析:根据内切圆的定义,我们知道内切圆的半径r等于三角形的面积S除以半周长s的差值,即r = S/s。

所以,三角形的面积可以表示为S = rs。

练习题三:已知三角形的内切圆的半径r,求三角形的周长。

解析:根据内切圆的定义,我们知道内切圆的半径r等于三角形的面积S除以半周长s的差值,即r = S/s。

所以,三角形的周长可以表示为s = S/r。

练习题四:已知三角形的内切圆的半径r和面积S,求三角形的周长。

解析:根据内切圆的定义,我们知道内切圆的半径r等于三角形的面积S除以半周长s的差值,即r = S/s。

所以,三角形的周长可以表示为s = S/r。

结合已知条件,我们可以得到s = S/r,进而求得三角形的周长。

练习题五:已知三角形的两边长a和b,以及内切圆的半径r,求三角形的第三边长c。

解析:根据内切圆的定义,我们知道内切圆的半径r等于三角形的面积S除以半周长s的差值,即r = S/s。

所以,三角形的面积可以表示为S = rs。

根据海伦公式,我们知道三角形的面积S可以表示为S = √(s(s-a)(s-b)(s-c)),其中s = (a + b + c)/2。

(整理版)《三角形的内切圆》练习题

(整理版)《三角形的内切圆》练习题

《三角形的内切圆》练习题
一、复习回忆
判断直线是圆的切线有哪些方法?
二、探索活动
活动一:如图1,点P在⊙O上,过点P作⊙O的切线.
活动二:如图2,点D、E、F在⊙O上,分别过点D、E、F作⊙O的切线,3条切线两两相交于点A、B、C.
活动三:△ABC,如何作⊙O,使它与△ABC的3边都相切呢?
与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
问题1:分别作出以下三角形的内切圆,并观察内心的位置,你有什么发现?
问题2:比拟三角形的外心和内心,完成以下表格.
名称确定方法“心〞的性质“心〞的位置
外心〔三角形外接圆
的圆心〕
内心〔三角形内切圆
的圆心〕
三、达标训练
1.如图,I 是△ABC 的内心.根据以下条件,求∠BIC 的度数. 〔1〕∠B=50°,∠C=60°; 〔2〕∠A=50°.
2.如图,在△ABC 中,内切圆O 与边BC 、CA 、AB 分别相切于点D 、E 、F.
〔1〕当∠B=60°,∠C=70°,求∠EDF 的度数.
〔2〕假设连结EF ,那么△DEF 是什么三角形〔从角的方面考虑〕?并说明理由.
3.如图,等边△ABC 的边长为a .求它的内切圆与外接圆的半径.
四、延伸拓展
1.如图,Rt △A BC 中,∠C=90°,内切圆⊙I 分别切A C ,BC 于D ,E. 〔1〕四边形CDIE 是什么特殊四边形?为什么? 〔2〕如果AC=8,BC=6,求⊙I 的半径.
A
B
C I
D
E。

专题34 三角形的内切圆问题(教师版)-2021年中考数学模型技巧讲义(二轮)

专题34  三角形的内切圆问题(教师版)-2021年中考数学模型技巧讲义(二轮)

专题34 三角形的内切圆问题【规律总结】1、“直角三角形内切圆半径等于两直角边的和与斜边差的一半.” 又可叙述为:“直角三角形内切圆半径等于它的半周长与斜边的差.”或"直角三角形内切圆的直径等于两直角边的和与斜边的差.”2、“三角形内切圆半径等于三角形的面积与半周长的商.”【典例分析】例1.(2020·湖北武汉市·九年级月考)如图,在ABC ∆中,60BAC ∠=︒其周长为20,I是ABC ∆BIC ∆的外接圆半径为( )A .7B .C .2D . 【答案】D【分析】过C 作CD⊥AB 于D ,由60BAC ∠=︒结合面积求出BC 的长,由内心可以求出120?BIC ∠=,BIC ∆的外接圆圆心为O,F 是O 优弧BC 上任意一点,过O 作OE⊥BC 于E ,求出圆心角2120BOC F ∠=∠=︒,最后由垂径定理求出半径OB【详解】过C 作CD⊥AB 于D ,BIC ∆的外接圆圆心为O,F 是O 优弧BC 上任意一点,过O 作OE⊥BC于E ,设,,AB c AC b BC a ===,⊥60BAC ∠=︒,⊥11,,22AD b DC BD c b ===-,⊥在ABC ∆周长为20⊥112022ABC S CD AB =⨯=,⊥20c =⊥=40bcRt BDC 中,222BD CD BC +=⊥2221())2c b a -+= 222c b bc a +-=⊥在ABC ∆周长为20,⊥+=20c b a +⊥22222()3(20)340a c b bc b c bc a =+-=+-=--⨯解得7BC a ==⊥I 是ABC ∆的内心⊥BI 、CI 分别平分⊥ABC 、⊥ACB ⊥11,22IBC ABC ICB ACB ∠=∠∠∠= ⊥60BAC ∠=︒⊥120?ABC ACB ∠+∠= ⊥1180180()120?2BIC IBC ICB ABC ACB ∠=-∠-∠=-∠+∠= ⊥+180BIC F ∠∠=°⊥60F ∠=︒⊥2120BOC F ∠=∠=︒⊥OE⊥BC ⊥1602BOE BOC ∠=∠=︒,1722BE BC ==⊥72OB BE ===故选D【点睛】 本题综合考察三角形的内心和外心,熟记内心和外心的性质是解题的关键例2.(2019·广东广州市·九年级一模)如图,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,⊙O 为ABC ∆的内切圆,OA ,OB 与⊙O 分别交于点D ,E .则劣弧DE 的长是_______.【答案】32π 【分析】先利用勾股定理计算出10AB =,再利用直角三角形内切圆半径的计算方法得到681022OD +-==,接着三角形角平分线的性质得到135AOB ∠=︒,然后根据弧长公式计算劣弧DE 的长.【详解】解:90C ∠=︒,8AC =,6BC =,10AB ∴==, O 为ABC 的内切圆,681022OD +-∴==,OA 平分BAC ∠,OB 平分ABC ∠, 1190909013522AOB C ∴∠=︒+∠=︒+⨯︒=︒, ∴劣弧DE 的长135231802ππ⨯⨯==. 故答案为32π. 【点睛】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了直角三角形内切圆半径的计算方法和弧长公式.例3.(2020·安徽芜湖市·芜湖一中九年级)如图1,设ABC ∆是一个锐角三角形,且AB AC ≠,Γ为其外接圆,O H 、分别为其外心和垂心,CD 为圆Γ直径,M 为线段BC 上一动点且满足2AH OM =.(1)证明:M 为BC 中点;(2)过O 作BC 的平行线交AB 于点E ,若F 为AH 的中点,证明: EF FC ⊥;(3)直线AM 与圆Γ的另一交点为N (如图2),以AM 为直径的圆与圆Γ的另一交点为P .证明:若AP BC OH 、、三线共点,则AH HN =;反之也成立.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)连接AD ,BD ,得090ADB DBC ∠=∠=,结合H 为垂心,//,//AD BH BD AH ,得出四边形ADBH 为平行四边形,得到BD AH =,结合平行,O 为CD 中点,可得M 为BC 中点;(2)过E 作EG BC ⊥,由EGHF , EGFA 为平行四边形,证明H 为FGC ∆的垂心,从而得到EF FC ⊥;(3)设AM 与OF 交点为I ,得到MH AP ⊥,证明H 是AMQ ∆的垂心,证明AP BC OH 、、三线共点得,,O H Q 三点共线,得到AH HN =.【详解】解:(1)连接,AD BD ,则DA AC ⊥,DB BC ⊥又H 为ABC ∆垂心⊥BH AC ⊥,AH BC ⊥⊥//,//AD BH BD AH⊥四边形ADBH 为平行四边形⊥2DB AH OM ==,又O 为CD 中点⊥M 为BC 中点(2)过E 作EG BC ⊥连接GH ,由(1)可知四边形EGHF 为平行四边形,四边形EGFA 为平行四边形 ⊥,CH AB AB GF ⊥⊥CH GF ⊥⊥H 为FGC ∆垂心⊥,GH GH CF EF ⊥而⊥EF FC ⊥(3)设AM 与OF 交点为I由(1)可知四边形OMFA 为平行四边形⊥I 为直径AM 中点而圆I 与圆Γ相交弦为AP⊥,OF AP MH OF ⊥而⊥MH AP ⊥设,MC AP Q 交于则H 为AMQ ∆垂心⊥QH AM ⊥AP BC OH 、、三线共点⇔,,O H Q 三点共线⇔OH AN⊥⇔AH HN=【点睛】本题考查了圆内的综合问题,熟知圆的性质,平行四边形的判定和性质,垂心的作用是解题的关键.【好题演练】一、单选题1.(2020·浙江金华市·九年级学业考试)如图,⊙O是等边⊙ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则⊙EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【分析】连接OE,OF.求出⊥EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.⊥⊥O是⊥ABC的内切圆,E,F是切点,⊥OE⊥AB,OF⊥BC,⊥⊥OEB=⊥OFB=90°,⊥⊥ABC 是等边三角形,⊥⊥B=60°,⊥⊥EOF=120°, ⊥⊥EPF=12⊥EOF=60°, 故选:B .【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.(2020·浙江温州市·九年级二模)如图,已知矩形ABCD 的周长为16,E 和F 分别为ABC ∆和ADC ∆的内切圆,连接AE ,CE ,AF ,CF ,EF ,若37AECF ABCD S S =四边形矩形,则EF 的长为( )A.B.C.D.【答案】B【分析】设AB=x ,BC=y ,内切圆半径为r ,由矩形的对称性知ABCE ADCF S S =四边形四边形,结合直角三角形内切圆半径与三角形面积间的关系得到x 、y 、r 的关系式,再由37AECF ABCD S S =四边形矩形推导出x 、y 、r 的关系,从而分别求出r ,xy 、22xy +的值,最后由勾股定理求得EF 值. 【详解】如图,设AB=x ,BC=y ,内切圆半径为r ,则⊥矩形ABCD 的周长为16,⊥x+y=8①⊥E 和F 分别为ABC ∆和ADC ∆的内切圆,⊥11(22ABC S xy x y r ∆==++② 由矩形的对称性知ABCE ADCF S S =四边形四边形, ⊥37AECFABCD S S =四边形矩形, ⊥247ABCE ABCD S S =四边形矩形, ⊥112()4227xr yr xy +=, 即()47x y r xy +=③ 由①、②、③联立方程组,解得:r=1,xy=14,2236x y +=,作EH⊥FH 于H ,由勾股定理得:222EF EH FH =+22(2)(2)x y =-+-224()8x y x y =+-++=36-32+8=12,⊥EF=故选:B.【点睛】本题主要考查了矩形的性质、直角三角形内切圆性质、勾股定理等知识,熟练掌握三角形内切圆半径与面积、周长间的关系是解答的关键.二、填空题3.(2019·沙坪坝区·重庆八中九年级月考)如图,O 是四边形ABCD 的内切圆,连接OA 、OB 、OC 、OD .若108AOB ∠=︒,则COD ∠的度数是____________.【答案】72︒【分析】如图,设四个切点分别为点,,,E F G H ,分别连接切点与圆心,可以得到4对全等三角形,进而得到12∠=∠,34∠=∠,56∠=∠,78∠=∠,根据这8个角和为360°,⊥1+⊥8=108AOB ∠=︒,即可求出COD ∠=⊥5+⊥4=72°.【详解】解:设四个切点分别为点,,,E F G H ,分别连接切点与圆心,则OE AB ⊥,OF CB ⊥,OG CD ⊥,OH AD ⊥且OE OF OG OH ===, 在Rt BEO ∆与Rt BFO ∆中OE OF OB OB=⎧⎨=⎩ ⊥Rt BEO Rt BFO ∆∆≌,⊥12∠=∠,同理可得:34∠=∠,56∠=∠,78∠=∠,1145(3456)[360(1278)]22COD ∠=∠+∠=∠+∠+∠+∠=︒-∠+∠+∠+∠ 11[3602(18)][3602108]7222=︒-∠+∠=︒-⨯︒=︒.故答案为:72︒【点睛】本题考查了切线的性质,添加辅助线构造全等等知识点,一般情况下,已知直线为圆的切线,构造过切点的半径是常见辅助线做法.4.(2019·湖南广益实验中学九年级月考)如图,将边长为8的正方形纸片ABCD沿着EF 折叠,使点C落在AB边的中点M处。

北师大版九年级数学下册3.6 第2课时 切线的判定及三角形的内切圆(含答案)

北师大版九年级数学下册3.6 第2课时 切线的判定及三角形的内切圆(含答案)
3
A.130°
B.60°
C.70°
D.80°
3.下列图形中一定有内切圆的四边形是( )
A.梯形
B.菱形
C.矩形
D.平行四边形
4.如图,⊙O 内切于△ABC,切点为 D、E、F,若∠B=50°,∠C=60°,•连结 OE,OF,
DE,DF,∠EDF 等于( )
A.45°
B.55°
C.65°
D.70°
5.如图,△ABC 内接于⊙O,AB 是⊙O 的直径,∠CAD=∠ABC,判断直线 AD 与⊙O 的位置关系, 并说明理由。
3.6 直线和圆的位置关系
第 2 课时 切线的判定及三角形的内切圆
1.OA 平分∠BOC,P 是 OA 上任意一点(O 除外),若以 P 为圆心的⊙P 与 OC 相切,那
么⊙P 与 OB 的位置位置是( )
A.相交
B.相切
ቤተ መጻሕፍቲ ባይዱ
C.相离 D.相交或相切
2.O 是△ABC 的内心,∠BOC 为 130°,则∠A 的度数为( )
6.如图,BC 与⊙O 相切于点 B,AB 为⊙O 直径,弦 AD∥OC,求证:CD 是⊙O 的切线。
7.如图,AD 是∠BAC 的平分线,P 为 BC 延长线上一点,且 PA=PD.求证:PA 与⊙O 相切.
1
8.已知如图所示,在梯形 ABCD 中,AD∥BC,∠D=90°,AD+BC=AB,以 AB 为直径作 ⊙O,求证:⊙O 和 CD 相切.
9.如图,AB 是⊙O 的直径,CD⊥AB,且 OA2=OD·OP.求证:PC 是⊙O 的切线.
10.如图,⊙O 分别切△ABC 的三条边 AB、BC、CA 于点 D、E、F、若 AB=7,AC=5,BC=6, 求 AD、BE、CF 的长。

九年级数学下册 第2章 2.5.4 三角形的内切圆练习 (新版)湘教版

九年级数学下册 第2章 2.5.4 三角形的内切圆练习 (新版)湘教版

2.5.4 三角形的内切圆知|识|目|标1.经过观察、讨论、猜想教材“议一议”与“动脑筋”,理解三角形的内切圆的概念及其作法.2.结合方程思想,会求直角三角形内切圆的半径.目标一 掌握三角形的内心的性质与内切圆的画法例1 教材补充例题某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛.(1)若要使花坛面积最大,请你在这块公共区域(如图2-5-17)内确定圆形花坛的圆心P ; (2)若这个等边三角形的边长为18米,请计算出花坛的面积.图2-5-17【归纳总结】对三角形的内切圆的理解及内切圆的作图步骤:(1)任何一个三角形都只有唯一的内切圆,而一个圆可以有无数个外切三角形. (2)三角形内切圆的作图步骤:①分别作三角形任意两个内角的平分线,设两条内角平分线相交于点I ; ②过交点I 作三角形任意一边的垂线段;③以交点I 为圆心,以②中垂线段长为半径作圆,则所作的圆为三角形的内切圆. (3)三角形的内切圆是三角形内所作的最大的圆,也是三角形能够覆盖的最大的圆,在材料的使用率最大上直接得到体现.目标二 会进行三角形内切圆的有关计算例2 教材例6针对训练如图2-5-18,在△ABC 中,内切圆I 和边BC ,CA ,AB 分别相切于点D ,F ,E.求证:(1)∠FDE =90°-12∠A ;(2)∠BIC =90°+12∠A.图2-5-18【归纳总结】三角形内切圆的有关计算: (1)三角形的内切圆与三角形的三边都相切,因此三边所在直线均是内切圆的切线,连接圆心与切点,即可构造直角三角形;图2-5-19(2)设三角形的内心为I ,则内心I 向三角形一边张开的角的度数等于这边的对角的一半加上90°.即如图2-5-19,∠I =∠A2+90°.例3 高频考题如图2-5-20,在Rt △ABC 中,∠C =90°,AC =3,BC =4,AB =5.⊙O 是△ABC 的内切圆,与三边分别相切于点E ,F ,G. (1)求证:内切圆的半径r =1; (2)连接OA ,求tan ∠OAG 的值.图2-5-20【归纳总结】三角形内切圆半径的计算方法:(1)若三角形的三边长分别为a ,b ,c ,内切圆的半径为r 内,三角形的面积为S ,则有: ①S =12(a +b +c)·r 内;②r 内=2Sa +b +c.(2)直角三角形中,a ,b 为直角边长,c 为斜边长,内切圆半径为r 内,则有r 内=a +b -c2.知识点 三角形的内切圆、内心1.三角形的内切圆是指与三角形各边都相切的圆;三角形内切圆的圆心是三角形______________的交点,叫作三角形的内心.2.(1)“内切”“外切”只不过是相对位置的内与外,“内”是相对三角形而言,“外”是相对圆而言.(2)正确区分三角形的外接圆与内切圆、接与切、外心与内心这三组概念:①若三角形的三个顶点在圆上,则圆在三角形的外部,这个圆叫作三角形的外接圆.②若三角形的三边都和圆相切,则圆在三角形的内部,这个圆叫作三角形的内切圆.三角形的顶点都在圆上叫作“接”,三角形的边都与圆相切叫作“切”.③内心是三角形三条角平分线的交点,而外心是三角形三边垂直平分线的交点.3.三角形的外接圆与内切圆以及外心与内心的性质对比如下:如图2-5-21,△ABC是一张周长为17 cm的三角形纸片,BC=5 cm,⊙O是它的内切圆,小明准备用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN剪下△AMN,小明认为剪下的三角形的周长随直线MN的变化而变化.你认为他的看法正确吗?如果你有不同的意见,请说出你的理由.图2-5-21教师详解详析【目标突破】例1 [解析] 由题意可知三角形为正三角形,设计方案可根据内切圆性质及正三角形的性质,在三角形内作内切圆使圆形花坛面积最大,然后由圆的性质求出内切圆的半径,再求出其面积.解:(1)要使花坛面积最大,需在△ABC 内作一个内切圆,则此圆面积最大,图①中的点P 即为所求.(2)如图②,过点P 作PD ⊥BC ,垂足为D ,连接PB.由题意,知在Rt △BPD 中,BD =9米,∠PBD =30°,∴tan 30°=PD BD ,∴PD =BD·tan 30°=9×33=3 3,∴花坛的面积为π×(3 3)2=27π(米2).例2 [解析] (1)欲证∠FDE =90°-12∠A ,观察图形,联想切线的性质、圆周角定理、四边形的内角和定理,需连接IE ,IF ,则∠AEI =∠AFI =90°.因此,在四边形AEIF 中,有∠EIF =180°-∠A ,所以∠FDE =12∠EIF =12(180°-∠A),问题得证;(2)在△IBC 中,∠BIC =180°-(∠1+∠2).因为BI ,CI 分别是∠ABC ,∠ACB 的平分线,所以∠1=12∠ABC ,∠2=12∠ACB.再根据三角形内角和定理可得结论.证明:(1)如图,连接IE ,IF.∵AB ,AC 是⊙I 的切线, ∴∠AEI =∠AFI =90°.∵∠A +∠AEI +∠EIF +∠AFI =360°, ∴∠A +∠EIF =180°, ∴∠EIF =180°-∠A. ∵∠FDE =12∠EIF ,∴∠FDE =12(180°-∠A),∴∠FDE =90°-12∠A.(2)∵点I 是△ABC 的内心, ∴∠1=12∠ABC ,∠2=12∠ACB.∵∠1+∠2+∠BIC =180°, ∴∠BIC =180°-12(∠ABC +∠ACB).∵∠ABC +∠ACB =180°-∠A , ∴∠BIC =180°-12(180°-∠A),即∠BIC =90°+12∠A.例3 [解析] (1)如图,连接OE ,OF ,OG.由⊙O 是△ABC 的内切圆,∠C =90°,得到四边形CEOF 是正方形,根据切线长定理列方程得到结果;(2)连接OA ,在Rt △AOG 中,由锐角三角函数得到结果.解:(1)证明:如图,连接OE ,OF ,OG. ∵⊙O 是△ABC 的内切圆,∠C =90°, ∴易证四边形CEOF 是正方形, ∴CE =CF =r.由切线长定理知AG =AE =3-r ,BG =BF =4-r. ∵AG +BG =5,∴(3-r)+(4-r)=5,解得r =1.(2)连接OA.在Rt △AOG 中,∵r =1,AG =3-r =2,∴tan ∠OAG =OG AG =12.备选目标 三角形的内心与各顶点的连线平分三角形内角性质的应用例 如图所示,⊙O 为Rt △ABC 的内切圆,切点分别为D ,E ,F ,∠C =90°,AB =c ,AC =b ,BC =a.设⊙O 的半径为r.求证:r =aba +b +c.[解析] 连接OA ,OB ,OC ,则S △ABC =S △OAC +S △OBC +S △OAB =12AC·BC.证明:连接OA ,OB ,OC ,OD ,OE ,OF , 则OD ⊥AC ,OE ⊥BC ,OF ⊥AB. ∵OD =OE =OF =r , ∴S △OAC =12AC·OD=12br.同理S △OBC =12ar ,S △OAB =12cr.∴S △ABC =S △OAC +S △OBC +S △OAB =12(a +b +c)r.又∵S △ABC =12AC·BC=12ab ,∴12(a +b +c)r =12ab ,∴r =aba +b +c. [归纳总结] (1)内心是三角形三个内角平分线的交点,因此,①内心与各顶点的连线一定平分该内角;②内心到各边的距离相等,这个距离即是内切圆的半径.(2)若在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,内切圆的半径为r ,由以上性质可推出S △ABC =12(a +b +c)r ;直角三角形内切圆的半径r =a +b -c 2=aba +b +c (a ,b 分别是直角三角形两直角边的长,c 为斜边长).【总结反思】[小结] 知识点 1.三条角平分线 [反思] 小明的看法错误,理由略.。

三角形的内切圆与内心精选题41道

三角形的内切圆与内心精选题41道

三角形的内切圆与内心精选题41道一.选择题(共13小题)1.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°2.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连接OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4B.CD﹣DF=2﹣3C.BC+AB=2+4D.BC﹣AB=2 3.如图,△ABC中,∠A=80°,点O是△ABC的内心,则∠BOC的度数为()A.100°B.160°C.80°D.130°4.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.25.若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B.C.D.6.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2C.2﹣D.﹣27.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16B.14C.12D.108.如图,点O为△ABC的内心,∠A=60°,OB=2,OC=4,则△OBC的面积是()A.B.C.2D.49.如图,点I和O分别是△ABC的内心和外心,若∠AIB=125°,则∠AOB的度数为()A.120°B.125°C.135°D.140°10.如图,在Rt△ABC中,∠C=90°,BC=3,AB=5,⊙O是Rt△ABC的内切圆,则⊙O 的半径为()A.1B.C.2D.11.如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则tan∠B的值为()A.B.C.D.12.下列说法:①平分弦的直径垂直于弦②三点确定一个圆,③相等的圆心角所对的弧相等④垂直于半径的直线是圆的切线⑤三角形的内心到三条边的距离相等其中不正确的有()A.1个B.2个C.3个D.4个13.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步二.填空题(共19小题)14.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=.15.点I为△ABC的内心,连AI交△ABC的外接圆于点D,若AI=2CD,点E为弦AC的中点,连接EI,IC,若IC=6,ID=5,则IE的长为.16.直角三角形的两条直角边分别是5和12,则它的内切圆半径为.17.已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4﹣19,则△ABC的内切圆半径=.18.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,I是△ABC的内心,则∠BIA的度数是°.19.如图,△ABC中,若AC=4,BC=3,AB=5,则△ABC的内切圆半径R=.20.如图,已知圆O为Rt△ABC的内切圆,切点分别为D、E、F,且∠C=90°,AB=13,BC=12,则圆O的半径为.21.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是步.22.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,a=10,⊙O内切于Rt△ABC,且半径为4,则a+b+c=.23.如图,已知边长为a的正方形ABCD内有一边长为b的内接正方形EFGH,则△EBF的内切圆半径是.24.如图所示,三角形ABC中,AC=6cm,BC=8cm,AB=10cm,则它的内切圆半径为cm.25.如图,Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点为D,E,F,若AD=5,BE=12,则△ABC的周长为.26.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=5,BC=13,CA=12,则阴影部分的面积为(结果保留π).27.已知△ABC中,⊙I为△ABC的内切圆,切点为H,若BC=6,AC=8,AB=10,则点A到圆上的最近距离等于.28.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有公共点,则r的取值范围是.29.如图,点O是△ABC的内心,AO的延长线交△ABC的外接圆于点D,交BC于点E,设=a,则=.(用含a的代数式表示)30.《九章算术》是我国古代数学名著,也是古代东方数学的代表作之一.书中记载了一个问题:“今有勾五步,股十二步,问勾中容圆径几何?”译文:“如图,今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该直角三角形内切圆的直径为步.31.如图,△ABC的内切圆⊙O分别与AB,AC,BC相切于点D,E,F.若∠C=90°,AC=6,BC=8,则⊙O的半径等于.32.△ABC中,AB=AC=13,BC=24,点I是△ABC的内心,点O是△ABC的外心,则OI=.三.解答题(共9小题)33.如图,⊙O是△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D,连接BD,BE.(1)求证:DB=DE;(2)若AE=3,DF=4,求DB的长.34.如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若=4,求△ABC的周长.35.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.求证:DE=DB.36.如图,⊙O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是△ABD的内心.求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD=2BD.37.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D、过D作直线DG∥BC.(1)求证:DG是⊙O的切线;(2)求证:DE=CD;(3)若DE=2,BC=8,求⊙O的半径.38.我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则S=①这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设p=(周长的一半),则S=②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①⇒②或者②⇒①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,△ABC的内切圆半径为r,三角形三边长为a,b,c,仍记p=,S为三角形面积,则S=pr.39.如图,△ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC,AB,AC切于点D,E,F,求AE,BD和CF的长.40.如图,△ABC中,AC=BC,点I是△ABC的内心,点O在边BC上,以点O为圆心,OB长为半径的圆恰好经过点I,连接CI,BI.(1)求证:CI是⊙O的切线;(2)若AC=BC=5,AB=6,求sin∠ABI值.41.如图,在6×6的正方形网格中,有部分网格线被擦去.点A,B,C在格点(正方形网格的交点)上.(1)请用无刻度的直尺在图1中找到三角形ABC的外心P;(2)请用无刻度的直尺在图2中找到三角形ABC的内心Q.三角形的内切圆与内心精选题41道参考答案与试题解析一.选择题(共13小题)1.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.2.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连接OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4B.CD﹣DF=2﹣3C.BC+AB=2+4D.BC﹣AB=2【分析】设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,证明△OMG≌△GCD,得到OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.设AB=a,BC=b,AC =c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),所以c=a+b﹣2.在Rt△ABC中,利用勾股定理求得(舍去),从而求出a,b 的值,所以BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,从而得到CD﹣DF=,CD+DF=.即可解答.【解答】解:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,∵将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,∴OG=DG,∵OG⊥DG,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC,在△OMG和△GCD中,∴△OMG≌△GCD,∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),∴c=a+b﹣2.在Rt△ABC中,由勾股定理可得a2+b2=(a+b﹣2)2,整理得2ab﹣4a﹣4b+4=0,又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,解得(舍去),∴,∴BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,∴CD﹣DF=,CD+DF=.综上只有选项A错误,故选:A.【点评】本题考查了三角形的内切圆和内心,切线的性质,勾股定理,矩形的性质等知识点的综合应用,解决本题的关键是三角形内切圆的性质.3.如图,△ABC中,∠A=80°,点O是△ABC的内心,则∠BOC的度数为()A.100°B.160°C.80°D.130°【分析】根据∠A=80°,求出∠ABC+∠ACB,再根据点O是△ABC的内心,求出∠OBC+∠OCB,根据三角形内角和定理求出∠BOC的度数即可.【解答】解:∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∵点O是△ABC的内心,∴∠OBC+∠OCB=(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣50°=130°.故选:D.【点评】本题考查了三角形的内切圆与内心,三角形内角和定理,圆周角定理的应用,主要考查学生运用定理进行推理和计算的能力.4.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选:B.【点评】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.5.若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B.C.D.【分析】连接内心和直角三角形的各个顶点,设直角三角形的两条直角边是a,b.则直角三角形的面积是;又直角三角形内切圆的半径r=,则a+b=2r+c,所以直角三角形的面积是r(r+c);因为内切圆的面积是πr2,则它们的比是.【解答】解:设直角三角形的两条直角边是a,b,则有:S=,又∵r=,∴a+b=2r+c,将a+b=2r+c代入S=得:S=r=r(r+c).又∵内切圆的面积是πr2,∴它们的比是.故选:B.【点评】此题要熟悉直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半,能够把直角三角形的面积分割成三部分,用内切圆的半径进行表示,是解题的关键.6.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2C.2﹣D.﹣2【分析】由于直角三角形的外接圆半径是斜边的一半,由此可求得等腰直角三角形的斜边长,进而可求得两条直角边的长;然后根据直角三角形内切圆半径公式求出内切圆半径的长.【解答】解:∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为2,∴它的内切圆半径为:R=(2+2﹣4)=2﹣2.故选:B.【点评】本题考查了三角形的外接圆和三角形的内切圆,等腰直角三角形的性质,要注意直角三角形内切圆半径与外接圆半径的区别:直角三角形的内切圆半径:r=(a+b﹣c);(a、b为直角边,c为斜边)直角三角形的外接圆半径:R=c.7.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16B.14C.12D.10【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC的周长=2+2+5+5=14,【解答】解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.【点评】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.8.如图,点O为△ABC的内心,∠A=60°,OB=2,OC=4,则△OBC的面积是()A.B.C.2D.4【分析】过点C作CH⊥BO的延长线于点H,根据点O为△ABC的内心,∠A=60°,可得∠BOC=180°﹣∠OBC﹣∠OCB=90°+A=120°,所以∠COH=60°,利用含30度角的直角三角形可得CH的长,进而可得△OBC的面积.【解答】解:如图,过点C作CH⊥BO的延长线于点H,∵点O为△ABC的内心,∠A=60°,∴∠BOC=180°﹣∠OBC﹣∠OCB=90°+A=120°,∴∠COH=60°,∵OB=2,OC=4,∴OH=2∴CH=2,∴△OBC的面积=OB•CH=2×2=2.故选:B.【点评】本题考查了三角形的内切圆与内心,角平分线的性质,解决本题的关键是掌握三角形的内心定义.9.如图,点I和O分别是△ABC的内心和外心,若∠AIB=125°,则∠AOB的度数为()A.120°B.125°C.135°D.140°【分析】根据圆周角定义,以及内心的定义,可以利用∠C表示出∠AIB和∠AOB,即可得到两个角的关系.【解答】解:∵点O是△ABC的外心,∴∠AOB=2∠C,∴∠C=∠AOB,∵点I是△ABC的内心,∴∠IAB=∠CAB,∠IBA=∠CBA,∴∠AIB=180°﹣(∠IAB+∠IBA)=180°﹣(∠CAB+∠CBA),=180°﹣(180°﹣∠C)=90°+∠C,∴2∠AIB=180°+∠C,∵∠AOB=2∠C,∴∠AIB=90°+∠AOB,∴4∠AIB﹣∠AOB=360°.∵∠AIB=125°,∴∠AOB=140°.故选:D.【点评】本题考查了三角形的内接圆与内心,三角形的外接圆与外心,解决本题的关键是正确利用∠C表示∠AIB的度数.10.如图,在Rt△ABC中,∠C=90°,BC=3,AB=5,⊙O是Rt△ABC的内切圆,则⊙O 的半径为()A.1B.C.2D.【分析】根据三角形内切圆与内心的性质和三角形面积公式解答即可.【解答】解:∵∠C=90°,BC=3,AB=5,∴AC==4,如图,分别连接OA、OB、OC、OD、OE、OF,∵⊙O是△ABC内切圆,D、E、F为切点,∴OD⊥BC,OE⊥AC,OF⊥AB于D、E、F,OD=OE=OF,∴S△ABC=S△BOC+S△AOC+S△AOB=BC•DO+AC•OE+AB•FO=(BC+AC+AB)•OD,∵∠C=90°,∴AC•BC=(BC+AC+AB)•OD,∴OD==1.故选:A.【点评】此题考查三角形内切圆与内心,勾股定理,熟练掌握三角形内切圆的性质.11.如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则tan∠B的值为()A.B.C.D.【分析】设⊙O的半径是R,PE=PF=x,BQ=y,连接OD,OG,OF,OE,得出正方形CDOE和OGQF,推出OD=CD=CE=OE=GQ=QF=R,求出y=2R,x=R,根据锐角三角函数值求出即可.【解答】解:设⊙O的半径是R,PE=PF=x,BQ=y,连接OD,OG,OF,OE,∵⊙O内切于Rt△ABC,∴∠ODC=∠OEC=90°=∠C,AD=AG,∵OD=OE,∴四边形CDOE是正方形,∴OD=CD=CE=OE=R,同理OG=GQ=FQ=OF=R,则PQ=CP,AC=AQ,∵PQ⊥AB,∠C=90°,∴∠C=∠PQB=90°,∵∠B=∠B,∴△BQP∽△BCA,∴==,∴BC=2BQ=2y,根据BG=BE得:y+R=2y﹣R,解得:y=2R,在Rt△PQB中,由勾股定理得:PQ2+BQ2=BP2,即(2R)2+(R+x)2=(4R﹣R﹣x)2,解得:x=R,即PQ=R+R=R,BQ=2R,tan B===.故选:C.【点评】本题考查了正方形的性质和判定,切线的性质,勾股定理,相似三角形的性质和判定,切线长定理等知识点的应用,主要考查学生的推理和计算能力,难度偏大.12.下列说法:①平分弦的直径垂直于弦②三点确定一个圆,③相等的圆心角所对的弧相等④垂直于半径的直线是圆的切线⑤三角形的内心到三条边的距离相等其中不正确的有()A.1个B.2个C.3个D.4个【分析】举出反例图形,即可判断①②③④;根据角平分线性质即可推出⑤.【解答】解:如图∵弦CD和直径AB,符合AB平分弦CD,且AB是直径,但AB和CD不垂直,∴①错误;∵在同一直线上的三点不能确定一个圆,∴②错误;∵如图圆心角∠COD=∠AOB,但弧AB和弧CD不相等,∴③错误;∵如图CD⊥半径OA,但CD不是圆的切线,∴④错误;∵根据角平分线的性质即可得出三角形的内心到三角形的三边距离相等,∴⑤正确;∴不正确的有4个,故选:D.【点评】本题考查了确定圆的条件,角平分线的性质,垂径定理,切线的判定,圆周角定理等知识点的应用.13.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步【分析】由勾股定理可求得斜边长,分别连接圆心和三个切点,设内切圆的半径为r,利用面积相等可得到关于r的方程,可求得内切圆的半径,则可求得内切圆的直径.【解答】解:如图,在Rt△ABC中,AC=8,BC=15,∠C=90°,∴AB==17,∴S△ABC=AC•BC=×8×15=60,设内切圆的圆心为O,分别连接圆心和三个切点,及OA、OB、OC,设内切圆的半径为r,∴S△ABC=S△AOB+S△BOC+S△AOC=×r(AB+BC+AC)=20r,∴20r=60,解得r=3,∴内切圆的直径为6步,故选:B.【点评】本题主要考查三角形的内切圆,连接圆心和切点,把三角形的面积分成三个三个角形的面积得到关于r的方程是解题的关键.二.填空题(共19小题)14.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=1.【分析】在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理可得AB=5,设△ABC 的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,可得OD⊥AB,OE⊥BC,OF⊥AC,可得矩形EOFC,再根据切线长定理可得CE=CF,所以矩形EOFC是正方形,可得CE=CF=r,所以AF=AD=3﹣r,BE=BD=4﹣r,进而可得△ABC的内切圆半径r的值.【解答】解:在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理,得AB=5,如图,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,∴OD⊥AB,OE⊥BC,OF⊥AC,∵∠C=90°,∴四边形EOFC是矩形,根据切线长定理,得CE=CF,∴矩形EOFC是正方形,∴CE=CF=r,∴AF=AD=AC﹣FC=3﹣r,BE=BD=BC﹣CE=4﹣r,∵AD+BD=AB,∴3﹣r+4﹣r=5,解得r=1.则△ABC的内切圆半径r=1.故答案为:1.【点评】本题考查了三角形的内切圆与内心,解决本题的关键是掌握三角形的内切圆与内心.15.点I为△ABC的内心,连AI交△ABC的外接圆于点D,若AI=2CD,点E为弦AC的中点,连接EI,IC,若IC=6,ID=5,则IE的长为4.【分析】延长ID到M,使得DM=ID,连接CM.想办法求出CM,证明IE是△ACM的中位线即可解决问题;【解答】解:延长ID到M,使得DM=ID,连接CM.∵I是△ABC的内心,∴∠IAC=∠IAB,∠ICA=∠ICB,∵∠DIC=∠IAC+∠ICA,∠DCI=∠BCD+∠ICB,∠BCD=∠IAB,∴∠DIC=∠DCI,∴DI=DC=DM,∴∠ICM=90°,∴CM==8,∵AI=2CD=10,∴AI=IM,∵AE=EC,∴IE=CM=4,故答案为4.【点评】本题考查三角形的内心、三角形的外接圆、三角形的中位线定理、直角三角形的判定、勾股定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.16.直角三角形的两条直角边分别是5和12,则它的内切圆半径为2.【分析】先利用勾股定理计算出斜边的长,然后利用直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边)求解.【解答】解:直角三角形的斜边==13,所以它的内切圆半径==2.故答案为2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边).17.已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4﹣19,则△ABC的内切圆半径=1.【分析】由非负性可求a,b,c的值,由勾股定理的逆定理可证△ABC是直角三角形,∠ABC=90°,由面积法可求△ABC的内切圆半径.【解答】解:∵b+|c﹣3|+a2﹣8a=4﹣19,∴|c﹣3|+(a﹣4)2+()2=0,∴c=3,a=4,b=5,∵32+42=25=52,∴c2+a2=b2,∴△ABC是直角三角形,∠ABC=90°,设内切圆的半径为r,根据题意,得S△ABC=×3×4=×3×r+×4×r+×r×5,∴r=1,故答案为:1.【点评】本题考查了三角形的内切圆与内心,勾股定理的逆定理,利用三角形面积公式求内切圆半径是本题的关键.18.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,I是△ABC的内心,则∠BIA的度数是135°.【分析】根据圆周角定理求出∠C=90°,求出∠CAB+∠CBA=90°,根据三角形的内切圆得出∠IAB=∠CAB,∠IBA=CBA,求出∠IAB+∠IBA=(∠CAB+∠CBA)=45°,根据三角形内角和定理求出即可.【解答】解:∵△ABC是⊙O的内接三角形,AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵I是△ABC的内心,∴∠IAB=∠CAB,∠IBA=CBA,∴∠IAB+∠IBA=(∠CAB+∠CBA)=45°,∴∠AIB=180°﹣(∠CAB+∠CBA)=180°﹣45°=135°,故答案为:135.【点评】本题考查了三角形的内切圆,圆周角定理,三角形的内角和定理等知识点,能综合运用知识点进行推理是解此题的关键.19.如图,△ABC中,若AC=4,BC=3,AB=5,则△ABC的内切圆半径R=1.【分析】先利用勾股定理的逆定理得到△ABC为直角三角形,∠ACB=90°,然后利用△ABC的内切圆半径R=进行计算.【解答】解:∵AC=4,BC=3,AB=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°,∴△ABC的内切圆半径R===1.故答案为1.【点评】本题考查了三角形内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心.也考查了勾股定理的逆定理.20.如图,已知圆O为Rt△ABC的内切圆,切点分别为D、E、F,且∠C=90°,AB=13,BC=12,则圆O的半径为2.【分析】设BF=BD=x,利用切线长定理,构建方程先求出证明四边形OECF是矩形,推出OE=CF即可解决问题.【解答】解:在Rt△ABC中,∵∠C=90°,AB=13,BC=12,∴AC==5,∵⊙O为Rt△ABC的内切圆,切点分别为D,E,F,∴BD=BF,AD=AE,CF=CE,如图,连接OE,OF,∵OE⊥AC,OF⊥BC,OE=OF,∴∠OEC=∠C=∠OFC=90°,∴四边形OECF是正方形,设OE=OF=CE=CF=x,则AD=AE=5﹣x,BF=BD=12﹣x,∵AD+BD=13,∴5﹣x+12﹣x=13,∴x=2,则圆O的半径为2.故答案为:2.【点评】本题考查三角形的内切圆与内心,勾股定理,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是6步.【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.【解答】解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,故答案为:6.【点评】此题考查了三角形的内切圆与内心,掌握Rt△ABC中,两直角边分别为为a、b,斜边为c,其内切圆半径r=是解题的关键.22.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,a=10,⊙O内切于Rt△ABC,且半径为4,则a+b+c=60.【分析】设切点分别是D、E、F,连接OD、OE、OF,则OD⊥AC,OE⊥BC,OF⊥AB,Rt△ABC中,AC²+BC²=AB²,可得b²+10²=(b+2)²,解得b=24,进而可得答案.【解答】解:设切点分别是D、E、F,连接OD、OE、OF,则OD⊥AC,OE⊥BC,OF ⊥AB,∵∠C=90°,∴四边形OECD是正方形,∴CE=CD=r=4,∴AD=b﹣4,BE=10﹣4=6,根据切线长定理可得:AF=AD=b﹣4,BF=BE=6,AB=c=b﹣4+6=b+2,Rt△ABC中,AC²+BC²=AB²,∴b²+10²=(b+2)²,解得b=24,c=b+2=26,∴a+b+c=10+24+26=60.故答案为:60.【点评】本题考查了切线的性质和切线长定理,利用勾股定理列出方程是解题关键.23.如图,已知边长为a的正方形ABCD内有一边长为b的内接正方形EFGH,则△EBF的内切圆半径是.【分析】首先利用正方形的性质得出△AEH≌△BFE(AAS),再利用直角三角形内切圆半径求法得出即可.【解答】解:∵边长为a的正方形ABCD内有一边长为b的内接正方形EFGH,∴∠AEH+∠FEB=90°,∠AEH+∠AHE=90°,∴∠AHE=∠BEF,在△AEH和△BFE中,,∴△AEH≌△BFE(AAS),∴AE=BF,∴BE+BF=AB=a,故△EBF的内切圆半径是.故答案为:.【点评】此题主要考查了正方形的性质以及全等三角形的判定与性质,得出△AEH≌△BFE(AAS)是解题关键.24.如图所示,三角形ABC中,AC=6cm,BC=8cm,AB=10cm,则它的内切圆半径为2 cm.【分析】先判定三角形为直角三角形,再利用切线长定理求解.【解答】解:如图,设内切圆半径为r(cm),在△ABC中,AC2+BC2=AB2,∴△ABC为直角三角形,∵OE=OD,CD=CE,OE⊥AC,OD⊥BC,AC⊥BC,∴四边形OECD为正方形,∵AE=AF=(6﹣r)cm,BD=BF=(8﹣r)cm,∴AB=AF+BF=6﹣r+8﹣r=10cm,解得r=2cm,故答案为2cm.【点评】本题主要考查了三角形的内切圆,解题关键是利用切线长定理进行求解.25.如图,Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点为D,E,F,若AD=5,BE=12,则△ABC的周长为40.【分析】利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理得出答案.【解答】解:连接EO,DO,∵⊙O是△ABC的内切圆,切点分别为D,E,F,∴OE⊥BC,OD⊥AC,BF=BE=12,AD=AF=5,EC=CD,又∵∠C=90°,∴四边形ECDO是矩形,又∵EO=DO,∴矩形OECD是正方形,设EO=x,则EC=CD=x,在Rt△ABC中BC2+AC2=AB2故(x+12)2+(x+5)2=172,解得:x=3,∴△ABC的周长=8+15+17=40.故答案为40.【点评】此题主要考查了三角形内切圆与内心,切线长定理,勾股定理,正方形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.26.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=5,BC=13,CA=12,则阴影部分的面积为26﹣2π(结果保留π).【分析】由勾股定理的逆定理得△ABC是直角三角形,∠A=90°,证出四边形AEOF是正方形,得OE=OF=(AB+AC﹣BC)=2,正方形AEOF的面积=22=4,求出扇形EOF的面积=π,得扇形OEDF的面积=3π,求出△ABC的面积=30,进而得出答案.【解答】解:∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠A=90°,∵△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,∴OE⊥AC,OF⊥AB,OD⊥BC,OE=OF=OD,∴四边形AEOF是正方形,∴∠EOF=90°,OE=OF=(AB+AC﹣BC)=(5+12﹣13)=2,正方形AEOF的面积=22=4,∴扇形EOF的面积=×π×22=π,∴扇形OEDF的面积=π×22﹣π=3π,∵△ABC的面积=AB×AC=×5×12=30,∴阴影部分的面积=30﹣(4﹣π)﹣3π=26﹣2π;故答案为:26﹣2π.【点评】本题考查了直角三角形的内切圆与内心、切线的性质、勾股定理的逆定理、正方形的判定与性质、扇形面积公式等知识;熟练掌握勾股定理的逆定理,熟记直角三角形内切圆半径=(两条直角边的和﹣斜边长)是解题的关键.27.已知△ABC中,⊙I为△ABC的内切圆,切点为H,若BC=6,AC=8,AB=10,则点A到圆上的最近距离等于2﹣2.【分析】连接IA,IA与⊙I半径的差即为点A到圆上的最近距离,只需求出IA和⊙I半径即可得答案.【解答】解:连接IA,设AC、BC分别切⊙I于E、D,连接IE、ID,如答图:∵BC=6,AC=8,AB=10,∴BC2+AC2=AB2∴∠C=90°∵⊙I为△ABC的内切圆,∴∠IEC=∠IDC=90°,IE=ID,∴四边形IDCE是正方形,设它的边长是x,则IE=EC=CD=ID=IH=x,∴AE=8﹣x,BD=6﹣x,由切线长定理可得:AH=8﹣x,BH=6﹣x,而AH+BH=10,∴8﹣x+6﹣x=10,解得x=2,∴AH=6,IH=2,∴IA==2,∴点A到圆上的最近距离为2﹣2,故答案为:2﹣2.【点评】本题考查三角形内切圆,解题关键是利用切线长定理求出内切圆的半径.28.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有公共点,则r的取值范围是1≤r≤.【分析】作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,根据题意得出四边形OECF是正方形,得出OF=CF,由勾股定理得出AB==5,由内心的性质得出CF =OF=1,AF=AC﹣CF=3,由勾股定理求出OA,由直线与圆的位置关系,即可得出结果.【解答】解:作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,连接OA、OB,如图所示则四边形OECF是正方形,∴OF=CF=OE=CE,∵∠C=90°,AC=4,BC=3,∴AB==5,∵O是△ABC的内心,∴CE=CF=OF=OE=(AC+BC﹣AB)=1,∴AF=AC﹣CF=3,BE=BC﹣CE=2,∴OA===,OB===,当r=1时,以O为圆心,r为半径的圆与线段AB有唯一交点;当1<r≤时,以O为圆心,r为半径的圆与线段AB有两个交点;当<r≤时,以O为圆心,r为半径的圆与线段AB有1个交点;∴以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是1≤r≤;故答案为1≤r≤.【点评】本题考查了直线与圆的位置关系、三角形的内切圆与内心、勾股定理、直角三角形内切圆半径的计算等知识;熟练掌握直线与圆的位置关系,由勾股定理求出OA是解决问题的关键.29.如图,点O是△ABC的内心,AO的延长线交△ABC的外接圆于点D,交BC于点E,设=a,则=a﹣1.(用含a的代数式表示)【分析】过O作OF∥BD交AB于F,连接BD,通过三角形内心的性质可以得出∠F AO =∠EAC,然后证明△FBO≌△EBO,然后根据成比例线段的性质,根据=a,得出=a,BF=BE,=a﹣1,从而得出=a﹣1.【解答】解:过O作OF∥BD交AB于F,连接BD,∴∠AOF=∠ADB=∠ACE,。

三角形的内切圆练习题

三角形的内切圆练习题

三角形的内切圆一、回顾旧知:如图,要在S区建一个集贸市场,使它到公路距离相等,离公路与铁路交叉处500米。

这个集贸市场应建在何处?二、结合问题、自主探究1、思考:已知一张三角形铁皮余料,现要用它截出一个最大的圆形,如何截?你能将此问题变成数学问题吗?(1)要使圆最大,圆应满足什么条件?(2)圆心怎么找?2、请用用尺规作图在右中做出所要求做的圆:3、阅读课本填空:(1)____________________________________的圆叫做三角形的内切圆。

(2) 三角形的内切圆有__个,圆的内切三角形有__个。

(3) 三角形的内心是三角形的_____________________的交点,是三角形____的圆心。

(5) 三角形的内心和三角形的外心的区别:三、运用知识、巩固提高1、如图,已知△ABC中,∠ABC=500,∠ACB=750,点O是内心,求∠BOC的度数。

变式:若已知O是△ABC的外心,则∠BOC的度数是_____.结论:O是△ABC的内心,∠BOC=__________.O是△ABC的外心, ∠BOC=__________.2、如图△ABC的内切圆半径为r, △ABC的周长为l求△ABC的面积。

3、如图,△ABC的内切圆⊙O与BC 、CA、 AB分别相切于点D、E、F,且AB=9cm ,BC=14 cm,CA=13 cm求AF、BD、CE的长。

结论:若△ABC中,BC=a,AC=b,AB=c,则AF=AE=____________;BF=BD=___________;CE=CD=_______________. 4、已知⊙O是Rt△ABC的内切圆,BC=a,AC=b,AB=c求Rt△ABC的内切圆的半径。

结论:Rt△ABC的内切圆的半径r=___________,外接圆的半径R=________。

三角形的内切圆同步练习(含答案解析)

三角形的内切圆同步练习(含答案解析)

三角形的内切圆
1.如图2-5-40,⊙O是△ABC的内切圆,则点O是△ABC的()
图2-5-40
A.三条边的垂直平分线的交点
B.三条角平分线的交点
C.三条中线的交点
D.三条高的交点
2.如图2-5-41,在△ABC中,∠ABC=50°,∠ACB=80°,点O是内心,则∠BOC的度数是()
图2-5-41
A.105°B.115°C.120°D.130°
3.如图2-5-42,△ABC的三边与⊙O分别相切于点D,E,F,已知AB=7 cm,AC =5 cm,AD=2 cm,则BC=________cm.
图2-5-42
4.如图2-5-43,等边三角形ABC的内切圆半径为2,那么AB的长为________.
图2-5-43
5.为美化校园,学校准备在如图2-5-44所示的三角形(△ABC)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛.(用圆规、直尺作图,不写作法,保留作图痕迹)
图2-5-4
6.等边三角形的内切圆半径、外接圆半径和高的比为()
A.1∶2∶ 3 B.1∶2∶ 3
C.1∶3∶2 D.1∶2∶3
1。

最新湘教版初中数学九年级下册2.5.4三角形的内切圆重点习题

最新湘教版初中数学九年级下册2.5.4三角形的内切圆重点习题

254 三角形的内切圆1下列说法中,不正确的是( )A.三角形的内心是三角形三条内角平分线的交点B.锐角三角形、直角三角形、钝角三角形的内心都在三角形内部.垂直于半径的直线是圆的切线D.三角形的内心到三角形的三边的距离相等2.给出下列说法:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中正确的有( )A.1个 B.2个.3个 D.4个3 一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )A.21 B.20 .19 D.184 一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )A.21 B.20 .19 D.185△AB中,AB=A,∠A为锐角,D为AB边上的高,I为△AD的内切圆圆心,则∠AIB的度数是()A.120° B.125°.135° D.150°6.如图,⊙I是△AB的内切圆,切点分别为点D、E、F,若∠DEF=52,则∠A=________.7.已知:如图,⊙O内切于△AB,∠BO=105°,∠AB=90°,AB=20c.求B、A 的长.8.已知:如图,△AB三边B=a,A=b,AB=c,它的内切圆O的半径长为r.求△AB的面积S.9.已知:如图,⊙O是Rt△AB的内切圆,∠=90°.(1)若A=12c,B=9c,求⊙O的半径r;(2)若A=b,B=a,AB=c,求⊙O的半径r.。

北师大版九年级下册数学习题课件3.6.4三角形的内切圆

北师大版九年级下册数学习题课件3.6.4三角形的内切圆

10,∴AO=
10 2.
∵∠DPA+∠PAD=90°,∠PAD+∠BAC=90°,
∴∠DPA=∠BAC.
又∵∠PAO=∠ABC=90°,∴△PAO∽△ABC,
10
∴APOC=ABOC,∴PO=ABOC·AC=
2 1
×
10=5.
探究培优
14.【2019·呼和浩特】如图,以 Rt△ ABC 的直角边 AB 为直径的 ⊙O 交斜边 AC 于点 D,过点 D 作⊙O 的切线与 BC 交于点 E, 弦 DM 与 AB 垂直,垂足为 H. (1)求证:E 为 BC 的中点.
探究培优
(3)若 cos∠PAB= 1100,BC=1,求 PO 的长.
解:∵PA 为⊙O 的切线,AC 为⊙O 的直径,∴∠PAB+∠BAC
=90°,∠C+∠BAC=90°,
∴∠PAB=∠C,
∴cos
C=cos∠PAB=
10 10 .
探究培优
在 Rt△ ABC 中,cos C=BACC=A1C= 1100,∴AC=
夯实基础
7.【2020·济宁】如图,在△ ABC 中,点 D 为△ ABC 的内心,∠ A=60°,CD=2,BD=4.则△ DBC 的面积是( ) A.4 3 B.2 3 C.2 D.4
夯实基础
【点拨】过点 B 作 BH⊥CD,交 CD 的延长线于点 H,如图所示. ∵点 D 为△ ABC 的内心,∴∠DBC+∠DCB=12(∠ABC+∠ACB) =12(180°-∠A).∵∠A=60°,∴∠BDC=180°-(∠DBC+∠ DCB)=180°-12(180°-∠A)=90°+12∠A=90°+12×60°=120°, ∴∠BDH=60°.
夯实基础
在 Rt△ BDH 中,∵BD=4,∠BDH=60°, ∴DH=2,BH=2 3.∵CD=2, ∴△DBC 的面积=12CD·BH=12×2×2 3=2 3. 【答案】B

湘教版九年级数学下册三角形的内切圆同步练习题

湘教版九年级数学下册三角形的内切圆同步练习题

2.5.4 三角形的内切圆1.下列说法中,不正确的是( )A.三角形的内心是三角形三条内角平分线的交点B.锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C.垂直于半径的直线是圆的切线D.三角形的内心到三角形的三边的距离相等2.给出下列说法:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中正确的有( )A.1个B.2个C.3个D.4个3.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )A.21 B.20 C.19 D.184.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )A.21 B.20 C.19 D.18 5.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120°B.125°C.135°D.150°6.如图,⊙I是△ABC的内切圆,切点分别为点D、E、F,若∠DEF=52o,则∠A=____ ____.7.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC的长.8.已知:如图,△ABC三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.9.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x +12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x +15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,则k的取值范围是..◆类型三一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m<0,∴m<-1,∴m+1<1-1,即m+1<0,m-1<-1-1,即m-1<-2,∴一次函数y=(m+1)x+m-1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k≠013.B 14.k≥1。

浙教版数学九年级下册《三角形的内切圆》习题.docx

浙教版数学九年级下册《三角形的内切圆》习题.docx

《三角形的内切圆》习题1.如图1,⊙O内切于△ABC,切点为D,E,F.已知∠B=50°,∠C=60°,•连结OE,OF,DE,DF,那么∠EDF等于( )A.40°B.55°C.65°D.70°图1图2图32.如图2,⊙O是△ABC的内切圆,D,E,F是切点,∠A=50°,∠C=60°,•则∠DOE=( )A.70°B.110°C.120°D.130°3.如图3,△ABC中,∠A=45°,I是内心,则∠BIC=( )A.112.5°B.112°C.125°D.55°4.下列命题正确的是( )A.三角形的内心到三角形三个顶点的距离相等B.三角形的内心不一定在三角形的内部C.等边三角形的内心,外心重合D.一个圆一定有唯一一个外切三角形5.在Rt△ABC中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为( )A.1.5,2.5B.2,5C.1,2.5D.2,2.56.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别切于D,E,F.(1)求证:BF=CE;(2)若∠C=30°,CE=23,求AC的长.7.如图,⊙I切△ABC的边分别为D,E,F,∠B=70°,∠C=60°,M是DEF上的动点(与D,E不重合),∠DMF的大小一定吗?若一定,求出∠DMF的大小;若不一定,请说明理由.8.如图,△ABC 中,∠A =m °.(1)如图(1),当O 是△ABC 的内心时,求∠BOC 的度数;(2)如图(2),当O 是△ABC 的外心时,求∠BOC 的度数;(3)如图(3),当O 是高线BD 与CE 的交点时,求∠BOC 的度数.9.如图,在半径为R 的圆内作一个内接正方形,•然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )A .(22)n RB .(12)n RC .(12)n -1RD .(22)n -1R10.如图,⊙O 为△ABC 的内切圆,∠C =90°,AO 的延长线交BC 于点D ,AC =4,•DC =1,则⊙O 的半径等于( )A .45B .54C .34D .5611.如图,已知正三角形ABC 的边长为2a .(1)求它的内切圆与外接圆组成的圆环的面积;(2)根据计算结果,要求圆环的面积,•只需测量哪一条弦的大小就可算出圆环的面积;(3)将条件中的“正三角形”改为“正方形”“正六边形”,你能得出怎样的结论?(4)已知正n 边形的边长为2a ,请写出它的内切圆与外接圆组成的圆环面积.初中数学试卷鼎尚图文**整理制作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例1
】 如图所示,ABC △中,内切O ⊙和边BC ,CA ,AB 分别相切于点D ,E ,F .若70FDE ∠=︒,
求A ∠的度数.
O
F
E
D C B A
O F
E
D C B
A
【解析】 分别连接OE ,OF ,则OF AB ⊥,OE AC ⊥
∴3609090180A EOF ∠+∠=︒-︒-︒=︒
而EOF ∠与FDE ∠是同弧所对的圆心角和圆周角 ∴2EOF FDE ∠=∠
∴180240A FDE ∠=︒-∠=︒.
【例2】 如图,O ⊙是ABC △的内切圆,D E F 、、是切点,18cm AB =,20cm BC =,12cm AC =,又直
线MN 切O ⊙于G ,交AB BC 、于M N 、,则BMN △的周长为______________.
O N M G
F E
D
C B
A
【答案】26cm
【例3】 Rt ABC △中,9068C AC BC ∠=︒==,
,,则ABC △的内切圆半径r =________. 【答案】2
【例4】 如图,
O 为Rt ABC ∆的内切圆,9043ACB AC BC ∠=︒==,,,求内切圆半径r .
4
3O
C
B
A
4
3
O
C
B
A
P
N
M
O C
B
A
【答案】方法一:
连接OA OB OC ,,, ∵43AC BC ==,, ∴5AB =
∵BOC AOC AOB ABC S S S S ∆∆∆∆++=,
设三角形的底BC AB AC ,,各为a b c ,,,
课堂练习
三角形的内切圆学案
即11112222ar br cr ab ++=,∴341345r ⨯==++ 方法二:
设O 切BC AC ,,AB 于M N ,,P 三点, 由切线长定理可知:CN CM AN AP BM BP ===,, ∴()()CM CN CB BM AC AN +=-+- BC AC BP AP =+--
3452BC AC AB =+-=+-= ∵CM CN =,∴1CM =, 由90C OM BC ON AC ∠=︒⊥⊥,,可证得四边形OMCN 为正方形. ∴1OM MC ==,即O 的半径1r =.
【例5】 如图,1O 和2O 为Rt ABC ∆的内切等圆,43AC BC ==,,求1O 的半径r .
O 2
O 1C
B
A
【答案】连接1212BO AO CO CO ,,,.
则121212ABC BCO ACO CO O ABO O S S S S S ∆∆∆∆=+++梯形, 即34(25)(2.4)234r r r r r r ++++-=⨯,解得5
7
r =
. O 2
O 1
C
B
A
【例6】 如图,12
n O O O ,为Rt ABC ∆的内切等圆,43AC BC ==,,求1O 的半径r .
O n
O 2
O 1C
B
A ⋅⋅⋅⋅⋅⋅⋅⋅⋅
【答案】参见前一变式的解法,由面积易得,
∵111n n n ABC BO C CO O ACO BAO O S S S S S ∆∆∆∆=+++梯形,
即1111121
3434(22)()[2(1)5]222252
r r n r r n r r ⨯⨯=⨯+⨯+-⨯-+-+, ∴65
12236(1)5
r n n ==++-.
【例7】 如图,若两等圆12O O ,与Rt ABC ∆的边BC 及AC AB ,的延长线相切,且两等圆外
切,求此时两等圆的半径r .
O 2
O 1B
A
C
【答案】连接121122O O O C O A O B O A ,,,,,
∵112212ABC ACO O O A AO B O O BC S S S S S ∆∆∆∆=+++梯形, 即()()12424523r r r r r r =+⋅++-+,解得,6
7
r =
. 【例8】 若将上面变式中的n 个等圆,放到ABC ∆外相邻两圆相外切,且与线段BC 相切,与线
段AB AC ,的延长线相切,求这些圆的半径r .
O n
O 1C
B
A
分析:连接111n n n O C O A O O O B O A ,,,,,
则111n n n ABC AO C AO O ABO BCO O S S S S S ∆∆∆∆=++-梯形,
即4(22)(4)5[(22)3]12r n r r r n r r +-⋅++--+=,解得6
41
r n =
-. 【例9】 圆外切四边形的对边和相等:BC AD CD AB +=+;
O
D
C
B
A
【答案】由切线长定理可设线段长度如图所示;
则BC AD d c b a CD AB +=+++=+;
d d c
c
b
b a
a O
H
G F E D
C B A
【例10】 如图1,△ABC 是⊙O 的内接正三角形,点P 为BC 上一动点.
(2)如图2,四边形ABCD 是⊙O 的内接正方形,点P 为BC 上一动点. (3)如图3,六边形ABCDEF 是⊙O 的内接正六边形,点P 为BC 上一动点. 请探究P A 、PB 、PC 三者之间有何数量关系,并给予证明.
【答案】(1)PA PB PC =+(2)2PA PC PB =+(3)3PA PC PB =+
【例11】 如图,在边长为
103的等边三角形纸片上剪下一块圆形和一块扇形纸片,使它们恰好作成一个圆
锥模型,它的底面半径是___________.
【答案】1017
【练1】已知Rt △ABC 中,∠ACB =90°,AC =6,BC =8.
(1) 如图①,若半径为r 1的⊙O 1是Rt △ABC 的内切圆,求r 1;
(2) 如图②,若半径为r 2的两个等圆⊙O 1、⊙O 2外切,且⊙O 1与AC
、AB 相切,⊙O 2与BC 、AB 相切,
求r 2;
(3) 如图③,当n 大于2的正整数时,若半径r n 的n 个等圆⊙O 1、⊙O 2、…、⊙O n 依次外切,且 ⊙
课后作业
O1 与AC、BC相切,⊙O n与BC、AB相切,⊙O1、⊙O2、⊙O3、…、⊙O n-1均与AB边相切,求r n.
【答案】
12
r=,
210 7
r=,。

相关文档
最新文档