圆的一般方程说课稿
高中数学说课稿:《圆的标准方程》.doc
高中数学说课稿:《圆的标准方程》"说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。
下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴!高中数学说课稿:《圆的标准方程》【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用"启发式"问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I.直接应用内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用提升能力问题四 1.求以点为圆心,并且和直线相切的圆的方程.2.求过点,圆心在直线上且与轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III.实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.2.求圆过点的切线方程.3.求圆过点的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块"用武"之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:.②已知圆的方程是,经过圆上一点的切线的方程是:.2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争"使教育过程成为一种艺术的事业".。
高中数学《圆的标准方程》说课稿范文
高中数学《圆的标准方程》说课稿范文高中数学《圆的标准方程》说课稿范文在教学工作者开展教学活动前,时常需要编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。
怎样写说课稿才更能起到其作用呢?以下是小编帮大家整理的高中数学《圆的标准方程》说课稿范文,欢迎阅读与收藏。
高中数学《圆的标准方程》说课稿1一、说教学背景1、教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节。
圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。
圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。
2、学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。
但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。
另外学生在探究问题的能力,合作交流的意识等方面有待加强。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3、教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题。
(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识。
(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4、教学重点与难点(1)重点:圆的标准方程的求法及其应用。
(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:二、教法学法分析1、教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。
高二数学说课稿《圆的标准方程》
高二数学说课稿《圆的标准方程》圆的标准方程是高中数学的一个重要知识点,下面小编为大家搜集的一篇“高二数学说课稿《圆的标准方程》”,供大家参考借鉴,希望可以帮助到有需要的朋友!1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本*质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1)知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3)情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4.教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:。
圆的方程说课稿
圆的方程说课稿圆的方程说课稿【教材分析】圆这种常见的几何图形在初中几何中就做了比较系统的研究,在解析几何中再次利用解析法研究圆,目的在于增加对圆的新的认识,为进一步学习圆锥曲线以及其它曲线方程奠定基础。
本部分内容要特别注意与初中平面几何知识的联系。
【教学目标】掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
【教学重点】圆的标准方程及相关问题【课时安排】6课时第一课时【教学目标】1、掌握圆的标准方程的基本形式,能根据圆的标准方程熟练的找出圆的圆心和半径。
2、根据已知条件熟练的求圆的标准方程。
【教学重点】根据已知条件熟练的求圆的标准方程【教学过程】1、问题引入:已知圆的圆心是(),C a b ,半径是r 的圆的方程。
要求:学生利用直译法求出方程()()222x a y b r -+-=2、教师定义圆的标准方程:()()222x a y b r -+-=是圆心为(),C ab ,半径是r 的圆的方程。
强调:⑴标准方程的优点在于可以快速找出圆的圆心和半径;⑵圆心在原点时,圆的方程为222x y r +=。
3、求圆的标准方程:例1、求过点()()2,3,2,5A B ---且圆心在直线230x y --=上的圆的方程。
要求:学生思考,回答。
教师点评两种解法,即:待定系数法和几何方法。
同时做好解题过程的演示。
练习:⑴课本77页练习第1题;⑵圆心在y 轴上,半径为5,并且经过点()()3,2,3,10A B -,求圆的方程。
例2、求以()1,3C 为圆心,并且和直线3470x y --=相切的圆的方程。
要求:学生思考,回答。
教师点评两种解法,即:代数法和几何方法。
重点强调几何法。
练习:课本77页练习第2题小结:圆的标准方程的特点及求法。
第二课时【教学目标】掌握点与圆、直线与圆、圆与圆的位置关系的判断方法。
【教学重点】直线与圆的位置关系的判断方法【教学过程】1、回顾性练习:求与x 轴切于点()5,0,并在y 轴上截取的弦长为10的圆的方程。
圆的一般方程教案(正式)讲课讲稿
4.2.1圆的一般方程一、复习提问,引入课题问题:求过三点(0,0),(1.1),(4,2)的圆的方程?【师生互动】学生在教师指导下展开小组讨论,回顾旧知识,最后得出运用圆的知识很难解决问题。
因为圆的标准方程很麻烦,用直线的知识解决又有其简单的局限性。
于是老师提问,有没有其他的解决方法呢?带着这个问题我们共同研究圆的一般方程。
【辅助手段】:多媒体课件幻灯片展示问题。
二、探索研究,讲授新课 请同学们写出圆的标准方程:222()()x a y b r -+-=、圆心(a ,b)、半径r把圆的标准方程展开,并整理:22222220x y ax by a b r +--++-= 取D=-2a E=-2b F=222a b r +-220x y Dx Ey F ++++=这个方程就是圆的方程.反过来给出一个形如220x y Dx Ey F ++++=的方程,它表示的曲线一定是圆吗?把220x y Dx Ey F ++++=配方得: 222224()()224D E D E Fx y +-+++= 【师生互动】配方和展开由学生完成,教师最后展示结果。
问题:这个方程是不是表示圆?⑴当2224D E F +-﹥0时,方程表示以(-2D ,2E)为圆心,以22142D E F +-为半径的圆. ⑴以复习回顾的形式提出新难题,引出新课程,指出本节课的主要内容. ⑵质疑提问,小组讨论,提高了学生学习的兴趣.⑴学生动笔、思考,老师引导、启发,让学生学会独立分析问题,解决问题,初步体会数学的魅力.⑵引导学生自己探索寻找圆的一般方程在什么时候表示圆,形成分类讨论、等价转化等数学思想,培养学生思维的多样性、创造性,体验成功解决问题的喜悦.⑶通过对一个方程的讨论,得出圆的一般方程,并指出不是所有的方程都可以 表示圆。
使得学生的认识不断加深,同时一般方程则只需确定三个系数,而条件给出了三个坐标,不妨试着先写出圆的一般方程。
【教师讲解】设圆的方程为220x y Dx Ey F ++++=∵A(0,0),B(1,1),C(4,2)在圆上,所以它们的坐标是方程的解,代入方程得到:2042200F D E F D E F =⎧⎪+++=⎨⎪+++=⎩即D=-8 E=6 F=O∴所求的方程为22860x y x y +-+=222142r D E F =+-=5、2D -=4、2E-=-3∴圆心坐标为(4,-3)或将220x y Dx Ey F ++++=化为圆的标准方程: 22(4)(3)25x y -++=【归纳总结】应用待定系数法的一般步骤 ⑴根据条件,选择是标准方程还是一般方程。
圆的一般方程》教案(公开课)
圆的一般方程》教案(公开课)
x2+y2+Dx+Ey+F=0和圆的一般方程x2+y2+Dx+Ey+F=0的异同点是什么?
答案:相同点是都是二元二次方程,不同点是圆的一般方程有限制条件D2+E2-4F>0,且表示的轨迹为圆形,而二元二次方程的轨迹可以是圆、椭圆、双曲线或者无图形.因此,圆的一般方程的特点是必须满足限制条件D2+E2-4F>0,且表示的轨迹为圆形.
四)求圆的一般方程的标准方程
1.通过配方求圆心和半径
将圆的一般方程x2+y2+Dx+Ey+F=0化为标准方程(x-
a)2+(y-b)2=r2,可以得到圆心坐标为(a,b),半径为
r=√(a2+b2-F).
2.用待定系数法,由已知条件导出圆的方程
以求圆心坐标为例,假设圆心坐标为(a,b),则圆的一般方程为(x-a)2+(y-b)2=r2,展开可得x2+y2-2ax-2by+(a2+b2-
r2)=0.由此,可以列出方程组:
x2+y2-2ax-2by+(a2+b2-r2)=0
x1^2+y1^2-2ax1-2by1+(a2+b2-r2)=0
x2^2+y2^2-2ax2-2by2+(a2+b2-r2)=0
解方程组得到a=(x1+x2)/2,b=(y1+y2)/2,r=√[(x1-
x2)2+(y1-y2)2]/2.
五)实际问题的应用
通过配方和待定系数法,可以解决一些实际问题,如求解两个圆的位置关系、求解圆与直线的交点等等.
五、教学反思
本节课主要讲解了圆的一般方程,重点在于让学生掌握通过配方和待定系数法求解圆的一般方程的方法,以及圆的一般方程的特点和应用.在教学过程中,要引导学生深入思考,分析问题,培养解决实际问题的能力.同时,要注意让学生掌握基本概念和公式,避免死记硬背.。
圆的标准方程(说课稿)
通过推导圆的标准方程,加深学生对用坐标法 求曲线方程的理解。通过求圆的标准方程,理解 必须确定了圆心坐标和半径才能确定一个圆的方 程。
教材 分析
教学 评价
教学 方法
圆的标 准方程
板书 设计
教具 准备
教学 过程
彩色 粉笔
小黑板
教学 用具
三角板
圆规
教材 分析
教学 评价
教学 方法
圆的标 准方程
板书 设计
一、教材的地位和作用
教材 分析 二、教学目标
三、教学重难点
二、教学目标
● 1.知识目标 ①正确掌握圆的定义、圆的标准方程及其推导
过程; ②根据圆心坐标、半径熟练地写出圆的标准方
程和从圆的标准方程熟练地求出圆心和半径. ●2.能力目标
培养用代数的方法解决几何问题的能力、逻辑思 维能力. ●3.情感目标
圆的标 准方程
板书 设计
教具 准备
教学 过程
板书 设计
一、圆的方程
圆的标准方程 注意:
三、练习
1.圆心在原点 2.圆心不在 二、例题 四、作业 原点
教材 分析
教学 评价
教学 方法
圆的标 准方程
板书 设计
教具 准备
教学 过程
教学 过程
创设情景 合作探究 反馈练习 知识回顾 布置作业 引入新课 获得新知 引用拓展 反思提高 分层落实
三、反馈练习,引用拓展
1.写出下列各圆的方程 (1)圆心在原点,半径为3; (2)圆心在C(3,,4)半径为 ;5 (3)经过点 P(5,,1)圆心在点 C(;8, 3) 2.根据圆的方程口答出它的圆心和半径
D
A
O
C
B
教学 过程
圆的一般方程说课课件
针对学习中,学生容易 针对学习中 学生容易 忽视前提条件 D2+E24F>0而设计。 而设计。
五、课堂练习,形成方法 课堂练习, 1、教科书P123 练习 、2、3 、教科书 练习1、 、 2、经过圆x2+2x+y2=0的圆心 ,且与直线 、经过圆 的圆心C,且与直线x+y=0垂直的直线 的圆心 垂直的直线 方程为______ 方程为
六、课堂小结 1、任一圆的方程可写为x 1、任一圆的方程可写为x2+y2+Dx+Ey+F=0, 但方程x 不一定表示圆, 但方程 2+y2+Dx+Ey+F=0不一定表示圆,只有当 不一定表示圆 D2+E2-4F>0时才表示一个圆。 时才表示一个圆。 时才表示一个圆 2、用待定系数法求圆方程的一般步骤: 、用待定系数法求圆方程的一般步骤: ;(2)列方程组; (1)设圆方程;( )列方程组; )设圆方程;( (3)求系数; )求系数; (4)写出圆的方程。 )写出圆的方程。
1、培养学生主 动探究知识、 动探究知识、合 作交流的意识; 作交流的意识; 2、培养学生勇 于思考, 于思考,探究问 题的精神; 题的精神; 3、在体验数学 美的过程中激发 学生的学习兴趣。 学生的学习兴趣。
4、教学重难点
重点
(1)圆的一般方程; )圆的一般方程; (2)待定系数法求圆的方程 )待定系数法求圆的方程.
2、学情分析 、
圆的一般方程是学生在掌握了求曲线方程一般方法的 基础上,在学习过圆的标准方程之后进行研究的, 基础上,在学习过圆的标准方程之后进行研究的, 但 由于学生学习解析几何的时间还不长、学习程度较浅, 由于学生学习解析几何的时间还不长、学习程度较浅, 且对坐标法的运用还不够熟练, 且对坐标法的运用还不够熟练,在学习过程中难免会 出现困难.另外学生在探究问题的能力 合作交流的意 出现困难 另外学生在探究问题的能力,合作交流的意 另外学生在探究问题的能力 识等方面有待加强. 识等方面有待加强
中职数学圆的一般方程说课稿
圆的一般方程说课稿【一】教材分析1.教材所处的地位和作用《圆的一般方程》安排在职业中学数学基础模块下册第八章第三节二小节第一课时。
圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。
圆的一般方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是思想方法上都有着深远的意义,所以本课内容在整个解析几何中起着承前启后的作用。
2.学情分析圆的一般方程是学生在掌握了求直线方程一般方法的基础上,在学习过圆的标准方程之后进行研究的, 但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。
另外我们职业中学的学生运算能力普遍较弱,学生在探究问题的能力,合作交流的意识以及数学学习的自信心都有待加强。
根据上述教材所处的地位和作用分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标知识与技能:(1)掌握圆的一般方程及一般方程的特点(2)能将圆的一般方程化成圆的标准方程,进而求圆心和半径(3) 能用待定系数法由已知条件求出圆的方程过程与方法:(1)在师生合作以及小组合作中进一步培养学生用代数方法研究几何问题的能力;(2)探索圆的一般方程的过程中加深对数形结合思想的理解和加强待定系数法的运用;情感态度与价值观:(1)培养学生主动探究知识、合作交流的意识;(2)培养学生勇于思考,探究问题的精神。
(3)在体验数学美的过程中激发学生的学习兴趣,增强数学学习的自信心。
根据以上对教材、学情及教学目标的分析,我确定如下的教学重点和难点:4.教学重点与难点重点:(1)圆的一般方程。
(2) 待定系数法求圆的方程。
难点:(1)圆的一般方程的应用(2)二元二次方程与圆的一般方程的关系。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法分析为了充分调动学生学习的积极性,本节课采用“探究”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我利用多媒体课件进行辅助教学,借助信息技术创设问题情境,利用多媒体教学的直观节省时间提高教学效率。
圆的一般方程 说课稿 教案 教学设计
圆的一般方程课 型:新授课教学目标: 1.在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径.掌握方程x 2+y 2+Dx +Ey +F=0表示圆的条件.2.能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法求圆的方程。
教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数D 、E 、F .教学难点:对圆的一般方程的认识、掌握和运用教学过程:一、课题引入:问题:求过三点A (0,0),B (1,1),C (4,2)的圆的方程。
利用圆的标准方程解决此问题显然有些麻烦,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程。
二、探索研究:请同学们写出圆的标准方程:(x -a)2+(y -b)2=r 2,圆心(a ,b),半径r .把圆的标准方程展开,并整理:x 2+y 2-2ax -2by +a 2+b 2-r 2=0.取222,2,2r b a F b E a D -+=-=-=得 022=++++F Ey Dx y x ①这个方程是圆的方程.反过来给出一个形如x 2+y 2+Dx +Ey +F=0的方程,它表示的曲线一定是圆吗?把x 2+y 2+Dx +Ey +F=0配方得44)2()2(2222F E D E y D x -+=+++ ② 这个方程是不是表示圆?(1)当D 2+E 2-4F >0时,方程② 表示以(-2D ,-2E )为圆心,F E D 42122-+为半径的圆;(2)当0422=-+F E D 时,方程只有实数解2D x -=,2E y -=,即只表示一个点(-2D ,-2E ); (3)当0422<-+F E D 时,方程没有实数解,因而它不表示任何图形综上所述,方程022=++++F Ey Dx y x 表示的曲线不一定是圆只有当0422>-+F E D 时,它表示的曲线才是圆,我们把形如022=++++F Ey Dx y x (0422>-+F E D )的方程称为圆的一般方程。
圆的一般方程 说课稿 教案 教学设计
圆的方程【教学目标】1. 掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,会用待定系数法求圆的标准方程。
2. 在掌握圆的标准方程的基础上,掌握圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径.掌握方程022=++++F Ey Dx y x 表示圆的条件.能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法求圆的方程。
【导入新课】情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?新授课阶段1.圆的标准方程的推导确定圆的基本条件为圆心和半径,设圆的圆心坐标为A (a ,b ),半径为r 。
(其中a 、b 、r 都是常数,r >0)设M (x ,y )为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P ={M ||MA |=r },由两点间的距离公式让学生写出点M适合的条件r = ①化简可得:222()()x a y b r -+-= ②从而得到圆的标准方程222()()x a y b r -+-=方程②就是圆心为A (a ,b ),半径为r 的圆的方程,我们把它叫做圆的标准方程。
思考:如何判定点在圆外还是圆内呢?点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内 例1 平面内有两定点A (-1,0)、B (1,0),在圆(x -3)2+(y -4)2=4上求一点P ,使取得最大值或最小值,并求出最大值和最小值.【解法一】 连结PO 并延长一倍至Q ,则PO 为△P AB 的中线,PQ 为平行四边形的一条对角线,利用三角形中线长公式或利用平行四边形的两条对角线的平方和等于四边的平方和,得∣AP ∣2+∣BP ∣2=2+2∣OP ∣2当PO 经过已知圆圆心C (3,4)时,∣OP ∣有最大值和最小值.此时PO 的方程为y= 43x ,该方程与圆的方程(x -3)2+(y -4)2=4联列解得 P 1(95 ,125 ),P 2(215 ,285).由圆的方程(x -3)2+(y -4)2=4知,圆的半径为r =2,∣OC ∣=5故∣OP ∣最大值为∣OP 2∣=5+2=7,∣OP ∣的最小值为∣OP 1∣=5-2=3.∣AP ∣2+∣BP ∣2的最大值为2+2×49=100,∣AP ∣2+∣BP ∣2的最小值为2+2×9=20.【解法二】 设p (3+2cosθ,4+2sinθ),则∣AP ∣2+∣BP ∣2=(4+2cosθ)2+(4+2sinθ)2 +(2+2cosθ)2+(4+2sinθ)2=60+24cosθ+32sinθ=60+40cos(θ-φ)(cosφ= 35 ,sinφ=45) ∵cos(θ-φ)max =1, cos(θ-φ)min =-1,∴∣AP ∣2+∣BP ∣2的最大值为60+40=100,∣AP ∣2+∣BP ∣2的最小值为60-40=20.当cos(θ-φ) =1 时,cosφ= 35 ,sinφ=45 , cosθ= 35 ,sinθ = 45此时P 点坐标为(215 ,285). 当cos(θ-φ) =-1 时,cosφ= 35 ,sinφ=45 , cosθ=- 35 , sinθ=-45此时P 点坐标为(95 ,125). 2.圆的一般式方程根据圆的标准方程:(x -a )2+(y -b )2=r 2,圆心(a ,b ),半径r .把圆的标准方程展开,并整理:x 2+y 2-2ax -2by +a 2+b 2-r 2=0.取222,2,2r b a F b E a D -+=-=-=得022=++++F Ey Dx y x ① 这个方程是圆的一般式方程。
圆的一般方程 课件 教案 教案课程 说课稿
1 2
x2 y2 1 (x3)2 y2 2
化简得 x2y22x30, 即为所求的曲线方程
配方得 (x1)2y24
所求曲线是以C(-1,0)为圆心,2为半径的圆
画图
13
思考题:
与两个定点 O(0,0),A(3,0)距离的比为 k(k 0)
的点的轨迹都是圆吗?
14
巩固练习
1、判断下列方程是否表示圆? 如果是 ,请求出圆的 圆心及半径.
怎样先求出圆心和半径,再求圆的方程?
y
圆心:两条弦的中垂线的交点
M1
M2
半径:圆心到圆上一点的距离
O
x
C
例题讲练
例2.已知一曲线是与两个定点O(0,0)、A(3,0)距离的比 为 1 的点的轨迹,求此曲线的方程,并画出曲线。
2
解:设点M(x, y)是曲线上的任意一点, 则点M属于集合
PM|
OM AM
2 2
(3) 当 D 2E24F0时, ①不表示任何图形.
我们把方程
(
x2y2Dx E y F0( D 2E24F0)
称为圆的一般方程
问题:
1.与一般的二元二次方程 A 2 x B x C 2 y D y E x F y 0
相比,圆的一般方程有哪些特点?
(1)AC0 (2)B0
4 x2 4y2 4 x 1y2 90
a2 bD2 r28 (1 a )E2 (61 b)2 r2 (4 aF)2 (04 b)2 r2
所求圆的方程为 x2y28x6y0
圆的半 r5径 ,圆心坐(4标 ,3)是 11
例1.求过三点O(0,0)、M1(1,1)、M 2 (4,2)的圆的方程,并求 这个圆的半径和圆心坐标.
圆的一般方程说课稿
知 a、b、r
x a 2 y b 2 r2
圆的方程
配
展
方
开
x2y2Dx EyF0 知 D、E、F
D2+E2-4F>0
教材分析 教法分析 教学设计 板书设计
知识运用
例1.每位学生写一条形如方程(1)的二元二次 方程,然后判断它是否是圆的方程?如果是, 请写出圆心坐标和半径. 例2.求过三点O(0,0),A(1,1),B(4,2)的圆的 方程,并求这个圆的半径和圆心坐标.
一般方程突出了方程形式上的特点:
① x 2 和 y 2 的系数相同,且不为0.
②没有形如 x y的二次项.
①、②是一般二元二次方程 A 2 x B x C 2 y y D E x F y 0 的必要条件,但不是充分条件.
思考:二元二次方程表示圆的充要条件是什么﹖
教材分析 教法分析 教学设计 板书设计
其中圆心的坐标和半径各是什么?
a,b r
教材分析 教法分析 教学设计 板书设计
探索新知
直线方程有多种形式,圆的方程是否还可以 表达成其他形式?
想一想,若把圆的标准方程展开,会得到怎样 的形式呢?
教材分析 教法分析 教学设计 板书设计
展开得:x2+y2-2ax-2by+a2+b2-r2=0
令:-2a=D; -2b=E; a2+b2-r2=F 得
22 1 D2E24F为半径的圆; 2
2当 D2E24F0时,方程只 x有 D实 , y数 E解 ,
2
2
即只表示一 D, 个 E) 点; ( 22
3当 D2E24F0时 ,方程没有 ,因实 而数 它
表示任何图形.
教材分析 教法分析 教学设计 板书设计
说课稿——圆的标准方程
说课稿——圆的标准方程
圆是一个重要的概念,它是许多几何图形的基本元素,而更重要的是,它也是科学研究和应用中一个重要的因素。
对于学习圆的标准方程来说,一定要先了解圆是什么,以及它的基本特性是什么,从而了解它的标准方程是什么。
首先,让我们来了解一下圆是什么。
圆是一种平面图形,它是由点组成的闭合曲线,任意两点的距离都是定值的,这个定值就是圆的半径。
从定义上来看,圆是一种特殊的椭圆,它的中心就是椭圆的中心,并且它的长轴等于它的短轴,也就是说,所有椭圆的周长都是相同的。
接下来,让我们看一下圆的基本特性。
圆有很多特性,这些特性中有许多是非常重要的,从而可以帮助我们更好的理解它的标准方程。
首先,由于圆的周长都是相同的,因此它的弧度是相同的。
圆的面积也是一个定值,它的面积是径径,也就是Pi平方。
最后,圆的中心点到圆周上任意一点的距离是一个定值,也就是半径。
根据以上内容,我们可以得出圆的标准方程:(x-a)+(y-b)=r。
其中,a和b是圆心坐标,r是半径。
一般来说,当我们知道圆心和
半径,就可以通过这个标准方程来确定一个圆。
综上所述,圆的标准方程是(x-a)+(y-b)=r,它包含了圆的三个
基本特性,即周长、面积和中心点到圆周上任意一点的距离,我们可以通过这三个特性来推导出它的标准方程。
谢谢大家!。
《圆的一般方程》教案(公开课)
《圆的一般方程》教案一、教学目标(一)知识教学点使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.(二)能力训练点使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力.(三)学科渗透点通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.二、教材分析1.重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.(解决办法:(1)要求学生不要死记配方结果,而要熟练掌握通过配方求圆心和半径的方法;(2)加强这方面题型训练.)2.难点:圆的一般方程的特点.(解决办法:引导学生分析得出圆的一般方程的特点,并加以记忆.)3.疑点:圆的一般方程中要加限制条件D2+E2-4F>0.(解决办法:通过对方程配方分三种讨论易得限制条件.)三、活动设计讲授、提问、归纳、演板、小结、再讲授、再演板.四、教学过程(一)复习引入新课前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.(二)圆的一般方程的定义1.分析方程x3+y2+Dx+Ey+F=0表示的轨迹将方程x2+y2+Dx+Ey+F=0左边配方得:(1)(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程半径的圆;(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形.这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、法.2.圆的一般方程的定义当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程.(三)圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的系数可得出什么结论?启发学生归纳结论.当二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有条件:(1)x2和y2的系数相同,不等于零,即A=C≠0;(2)没有xy项,即B=0;(3)D2+E2-4AF>0.它才表示圆.条件(3)通过将方程同除以A或C配方不难得出.教师还要强调指出:(1)条件(1)、(2)是二元二次方程(2)表示圆的必要条件,但不是充分条件;(2)条件(1)、(2)和(3)合起来是二元二次方程(2)表示圆的充要条件.(四)应用与举例同圆的标准方程(x-a)2+(y-b)2=r2一样,方程x2+y2+Dx+Ey+F=0也含有三个系数D、E、F,因此必具备三个独立的条件,才能确定一个圆.下面看一看它们的应用.例1求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0,(2)x2+y2+2by=0.此例由学生演板,教师纠错,并给出正确答案:(1)圆心为(4,-3),半径为5;(2)圆心为(0,-b),半径为|b|,注意半径不为b.同时强调:由圆的一般方程求圆心坐标和半径,一般用配方法,这要熟练掌握.例2求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.解:设所求圆的方程为x2+y2+Dx+Ey+F=0,由O、A、B在圆上,则有解得:D=-8,E=6,F=0,故所求圆的方程为x2+y2-8x+6=0.例2小结:1.用待定系数法求圆的方程的步骤:(1)根据题意设所求圆的方程为标准式或一般式;(2)根据条件列出关于a、b、r或D、E、F的方程;(3)解方程组,求出a、b、r或D、E、F的值,代入所设方程,就得要求的方程.2.关于何时设圆的标准方程,何时设圆的一般方程:一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.再看下例:例3求圆心在直线l:x+y=0上,且过两圆C1∶x2+y2-2x+10y-24=0和C2∶x2+y2+2x+2y-8=0的交点的圆的方程.(0,2).设所求圆的方程为(x-a)2+(y-b)2=r2,因为两点在所求圆上,且圆心在直线l上所以得方程组为故所求圆的方程为:(x+3)2+(y-3)2=10.这时,教师指出:(1)由已知条件容易求圆心坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程.(2)此题也可以用圆系方程来解:设所求圆的方程为:x2+ y2-2x+10y-24+λ(x2+y2+2x+2y-8)=0(λ≠-1)整理并配方得:由圆心在直线l上得λ=-2.将λ=-2代入所假设的方程便可得所求圆的方程为x2+y2+6x-6y+8=0.此法到圆与圆的位置关系中再介绍,此处为学生留下悬念.的轨迹,求这个曲线的方程,并画出曲线.此例请两位学生演板,教师巡视,并提示学生:(1)由于曲线表示的图形未知,所以只能用轨迹法求曲线方程,设曲线上任一点M(x,y),由求曲线方程的一般步骤可求得;(2)应将圆的一般方程配方成标准方程,进而得出圆心坐标、半径,画出图形.(五)小结1.圆的一般方程的定义及特点;2.用配方法求出圆的圆心坐标和半径;3.用待定系数法,导出圆的方程.五、布置作业1.求下列各圆的一般方程:(1)过点A(5,1),圆心在点C(8,-3);(2)过三点A(-1,5)、B(5,5)、C(6,-2).2.求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.3.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.4.A、B、C为已知直线上的三个定点,动点P不在此直线上,且使∠APB=∠BPC,求动点P的轨迹.作业答案:1.(1)x2+y2-16x+6y+48=0(2)x2+y2-4x-2y-20=02.x2+y2-x+7y-32=03.所求的轨迹方程为x2+y2-8x-4y+10=0(x≠3,x≠5),轨迹是以4.以B为原点,直线ABC为x轴建立直角坐标系,令A(-a,0),C(c,0)(a >0,c>0),P(x,y),可得方程为:(a2-c2)x2+(a2-c2)y2-2ac(a+c)x=0.当a=c时,则得x=0(y≠0),即y轴去掉原点;当a≠c时,则得(x-与x轴的两个交点.六.板书设计。
圆的标准方程说课稿
圆的标准方程说课稿 The document was finally revised on 2021《圆的标准方程》的说课稿各位老师、同学们,大家好!今天我说课的题目是《圆的标准方程》,按大纲要求《圆的方程》这一节共分三课时,我今天要说的是第一课时的内容——圆的标准方程.下面我将从三个方面来阐述我对这节课的教学认识,分别是,教学背景分析、教法学法分析、以及具体的教学过程与设计.首先,我对本节课的教学背景进行一些分析:在这里我分四小点进行说明.【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.在新课表实验教材中,被安排在必修二的平面解析几何初步中,我们知道,圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.而圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对接下来直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析:圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1)知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3)情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4.教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导学生通过建模来解决问题2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求r、的过程.ba、下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维反馈训练形成方法小结反思拓展引申下面我详细叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为,高为3m 的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股CD 的长度转移为用曲线的方程来解决.一方定理求线段面帮助学生回顾旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的一般方程说课稿
一:教材分析
1.教材的地位与作用
本节课是人教版《数学》必修2第四章《圆与方程》第1节《圆的方程》第二课时的教学内容。
《圆的一般方程》是在学习了《圆的标准方程》等知识的基础上对解析几何进一步深入认识,提高学生运用坐标法、数形结合法研究几何的能力,为后来进一步学习圆锥曲线奠定基础。
是会考与高考的一个重要考点。
2.教学的重点与难点
(1)教学重点:圆的一般方程的特征,一般方程与标准方程间的互化,根据已知条件由待定系数法确定一般方程中的系数,D、E、F.
(2)教学难点:对圆的一般方程的认识、掌握和运用
二:教学目标
知识与技能:(1)理解圆的一般方程,由圆的一般方程确定圆的圆心半径.掌握
方程x2+y2+Dx+Ey+F=0表示圆的条件.
(2)能通过配方等手段,把圆的一般方程化为圆的标准方程.能用
待定系数法求圆的方程。
(3):培养学生探索发现及分析解决问题的实际能力。
过程与方法:通过对方程x2+y2+Dx+Ey+F=0表示圆的条件的探究,培养学生探索发现及分析解决问题的实际能力。
情感态度价值观:渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
三:学情分析
1.认知分析:学生已经学习了《圆的标准方程》,《直线与方程》,基本掌握了用坐标法,数形结合法等研究几何问题,这形成了学生思维的“最近发展区”。
在解析几何的学习过程中,要注重数与形的内在联系,切实做到数形结合。
学生在学习过程中往往注重数学的结论,经常乎视产生知识的过程和形成的数学思想与方法。
2.能力分析:学生已经掌握了一定的归纳能力,但是在数学知识的应用能力方面尚需一定的培养和提高
3.情感分析:多数学生在数学的学习方面有一定的兴趣,能够积极的参与研究,但是在合作交流的意识方面,有待加强
四:教法分析
由以上的学情分析,本课教学采取新课程的教学理理念“学生为主体,教师为主导”的探究性学习模式。
通过问题情境---探索研究----知识应用---课堂练习---课堂小结环节。
多媒体的利用:将本课中所涉及到的问题,例题全都做成幻灯片。
但相关例题的解题过程及知识点应板书在黑板上,强调数学解题过程完整的重要性。
五:教学过程:
1、问题情境:
问题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程。
意图:利用圆的标准方程解决此问题显然有些麻烦,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程。
2、探索研究:
思考:方程x 2+y 2-2x+4y+1=0与方程x 2+y 2
-2x-4y+6=0分别表示什么图形?
意图:使新知识建立在学生已有的知识之上,是旧知识的应用与延伸;突破教学难
点:引导学生发现形如:x 2+y 2+Dx +Ey +F=0的方程可能表示圆,但不一定。
促使
学生进一步探究在什么条件下,一定表示圆。
采用特殊到一般的认知方式。
探究:方程在什么条件下x 2+y 2+Dx +Ey +F=0(记为方程②)表示圆
这个方程是圆的方程. 引导学生采用配方法,对照圆的标准方程,将其配成类似于圆的标准方程的形式(配方过程由学生去完成)。
发现有三种可能
(1)当D 2+E 2-4F >0时,方程②表示以(-2D
,-2E
)为圆心,F E D 42
122-+为半径的圆;(2)当0422=-+F E D 时,方程只有实数解2D x -
=,2
E y -=,即只表示一个点(-2D ,-2E );(3)当0422<-+
F E D 时,方程没有实数解,因而它不表示任何图形
总结得到圆的一般方程的定义:综上所述,方程022=++++F Ey Dx y x 表示的曲线不一定是圆 只有当042
2>-+F E D 时,它表示的曲线才是圆,我们把形如022=++++F Ey Dx y x 的表示圆的方程称为圆的一般方程
思考:圆的标准方程与圆的一般方程各有什么特点?
意图:启发学生归纳圆的一般方程的特点:
(1)①x 2和y 2
的系数相同,不等于0.
②没有xy 这样的二次项.
(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.
(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
3、知识应用:
例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。
()()222214441290244412110
x y x y x y x y +-++=+-++= 学生自己分析探求解决途径
意图:①、用配方法将其变形化成圆的标准形式。
②、运用圆的一般方程的判断方法求解。
注意方程不表示圆的条件。
例2(问题情境):求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
意图:据已知条件,很难直接写出圆的标准方程,而圆的一般方程则需确定三个系数,而条件恰给出三点坐标,不妨试着先写出圆的一般方程 通过等定系数法求方程。
学生合作讨论交流,归纳得出待定系数法的一般步骤:
①、根据提议,选择标准方程或一般方程;
②、根据条件列出关于a 、b 、r 或D 、E 、F 的方程组;
③、解出a 、b 、r 或D 、E 、F ,代入标准方程或一般方程。
例3、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆上()2
214x y ++=运动,求线段AB 的中点M 的轨迹方程。
教师利用几何画板将支点M 作动态演示,学生观察M 的轨迹,再思考求轨迹方程的方法。
引导学生建立点M 与点A 坐标之间的关系,就可以建立点M 的坐标满足的条件,求出点M 的轨迹方程。
意图:引导学生利用转移法求轨迹方程,进一步提高学生的探究能力,为后面的圆锥曲线的学习打下基础。
4、课堂练习:课堂练习P134练习第1、2、3题
意图:及时检查学生对本节课的掌握情况,对知识点进行巩固,对存在的问题加以引导。
5、课堂小结 :
1.对方程02
2=++++F Ey Dx y x 的讨论(什么时候可以表示圆) 2.与标准方程的互化
3.用待定系数法求圆的方程
4.求与圆有关的点的轨迹(转移法)。
课后作业:P134习题4.1第1、2、6题
六: 板书设计。