基于51单片机的四足机器人
基于51单片机的智能搬运机器人系统设计

基于51单片机的智能搬运机器人系统设计基于51单片机的智能搬运机器人系统设计包括以下几个方面:1. 硬件设计:a. 机器人底盘:选择适合搬运任务的底盘结构,如四轮驱动或履带式底盘。
b. 传感器:选择合适的传感器,如红外线传感器、超声波传感器、编码器等,用于感知环境、测量距离和速度等。
c. 电机驱动:选择合适的电机驱动模块,用于控制底盘的运动。
d. 通信模块:添加无线通信模块,如蓝牙或Wi-Fi模块,用于与上位机或其他设备进行通信。
e. 电源管理:设计合适的电源管理电路,确保机器人系统的稳定供电。
2. 软件设计:a. 系统控制:使用51单片机的编程语言(如C语言)编写控制程序,实现机器人的基本运动控制、路径规划和避障等功能。
b. 传感器数据处理:编写程序读取传感器数据,并进行数据处理和分析,以获取环境信息。
c. 通信协议:设计合适的通信协议,实现机器人与上位机或其他设备的数据交互。
d. 状态监测与反馈:编写程序实现机器人状态的监测与反馈,如电池电量监测、运动状态监测等。
3. 系统功能设计:a. 路径规划:根据预设的目标位置和环境信息,设计路径规划算法,使机器人能够自主选择最优路径进行搬运任务。
b. 避障功能:基于传感器数据,设计避障算法,使机器人能够自主避开障碍物,确保安全运行。
c. 自主充电功能:设计机器人自主充电功能,当电池电量低于一定阈值时,机器人能够自动返回充电桩进行充电。
d. 远程控制功能:通过无线通信模块,实现机器人的远程控制,使用户可以通过上位机或移动设备对机器人进行控制和监控。
以上是基于51单片机的智能搬运机器人系统设计的基本内容,具体实现还需要根据具体的需求和环境进行细化和优化。
一种基于单片机的四足步行机器人设计及步态研究.

一种基于单片机的四足步行机器人设计及步态研究周晓东,汤修映,农克俭中国农业大学工学院,北京(100083E-mail:摘要 :本论文通过对四足动物结构及其行走步态的研究, 设计制作了一台四足步行机器人样机, 按照多足步行机器人行走的稳定性原则, 设计出了慢走和对角小跑两种步态的具体过程,并采用单片机作为控制系统,实现了这两种步态,实验证明,所设计的步态具有良好的稳定性。
关键词:四足机器人;步态;慢走;对角小跑中图法分类号:TP2421. 引言步行机器人是一种腿式移动机构, 具有轮式、履带式等移动机器人所不具备的优点, 该类机器人能够在复杂的非结构环境中稳定地行走, 代替人完成许多危险作业, 被广泛地应用于军事运输、矿山开采、核能工业、星球表面探测、消防及营救、建筑业、农业及森林采伐、示教娱乐等众多行业。
因此, 长期以来, 多足步行机器人技术一直是国内外机器人领域研究的热点之一 [1][2]。
而四足机器人具有实现静态步行的最少腿数 [3],也适合于动态步行,以实现高速移动,因此,对四足步行机器人的研究,具有特殊的重要性。
本文以四足爬行动物为模仿对象, 通过对其结构和步态的分析和研究, 设计出了一台四足步行机器人, 采用单片机控制系统,使其能够模仿四足动物的慢走、对角小跑等步态。
2. 四足步行机构总体结构设计与自由度2.1步行机构总体结构分析图 1为所设计的四足步行机器人总体结构示意图, 由图可知, 该机构由四条腿及机体组成,每条腿的结构完全相同,在各主动驱动关节(膝关节、臀关节、髋关节上分别装有直1踝关节 2小腿 3膝关节 4大腿 5臀关节6髋关节 7机体 8控制系统电路板图 1 总体结构示意图Fig.1 The sketch of the overall configuration流电机,整个机体上共装有 12个独立的驱动电机。
而被动关节(踝关节采用球铰链结构, 脚底部粘上胶皮以增大和地面的摩擦力, 同时可对脚与地面之间的撞击起到缓冲作用, 小腿和大腿组成平面连杆机构, 它们均可以绕着自身的关节轴在一定的角度范围内摆动, 而整条腿又可以绕着髋关节转动。
51单片机智能机器人实验报告

51单片机智能机器人实验报告智能机器人实验报告电子稿实验一教你的机器人“走路”一、要求与目的熟悉机器人用于走路的“脚”,要教你的机器人学会走路,同时你要掌握控制机器人走路的基本方法。
二、内容1、机器人为什么会“走”要想让机器人移动,就要控制电机的转动。
控制机器人“行走”的基本指令是motor(x,y)函数和drive(x,y)函数。
2、驱动电机的函数通过JC程序控制电机转动,使机器人行走的指令有两个,它们是motor(x,y)函数和drive(x,y)函数,介绍:一、motor(x,y)函数此函数是“启动”电机,x取值1、2,分别表示左右两个电机;y表示电机转速两个电机同时以相同速度启动,意味着什么?机器人将怎样运动?答:机器人将直走。
进一步讨论:如果将一侧电机速度改为0,机器人将会怎样运动?(顺时针、逆时针旋转)答:左侧电机速度为零,则逆时针旋转;反之,则顺时针旋转。
实验题一:让机器人顺时针、逆时针旋转(1)用vjc语言或者流程图让能力风暴顺时针走直径约1米的圆形路径;程序:void main(){while(1){motor( 1 , 80 );motor( 2 , 20 );}stop();}(2)用vjc语言或者流程图让能力风暴逆时针走约1米立方的正方形路径;程序:void main(){while(1){drive( 100 ,0);wait( 1.000000 );stop();motor( 1 , -20 );motor( 2 , 20 );wait( 0.500000 );stop();}}实验题二:首先机器人前进2秒,之后机器人逆时针旋转1.8秒,然后机器人前进1秒,最后停下来。
小结:motor函数主要是实现旋转。
实验代码:Void main(){Drive(60,0);Wait(2.000000);Stop();Drive(0,-60);Wait(1.800000);Stop();Drive(80,0);Wait(1.000000);Stop();}二、drive(x,y)函数此函数是“直行”,x表示基准速度,y表示左右电机与基准速度的差。
基于单片机的工业机器人控制器设计

基于单片机的工业机器人控制器设计摘要:随着工业自动化的不断发展,工业机器人在生产领域的应用越来越广泛。
而工业机器人的控制系统是整个系统的关键部分,其中单片机作为控制器的核心部件起着至关重要的作用。
本文主要介绍了一种基于单片机的工业机器人控制器设计方案,以及相关的硬件和软件设计。
设计方案中采用了先进的单片机芯片作为控制器的核心,结合相关外围模块和传感器实现了工业机器人在生产中的各项功能。
在软件设计方面,通过对控制算法的优化和相关模块的编程实现了工业机器人的精确控制和复杂任务的执行。
该设计方案在实际应用中具有较高的可靠性和灵活性,能够满足不同生产场景下的工业机器人控制需求。
1.引言工业机器人是指在工业生产中用于替代人工完成物料搬运、零部件装配、焊接、喷涂等工作的自动化设备。
随着工业化程度的不断提升,工业机器人的应用范围逐渐扩大,已经成为现代工业生产不可或缺的一部分。
工业机器人的控制系统是其核心部分,决定了机器人的性能和功能,而单片机作为控制器的核心部件,其设计质量和性能对整个系统的稳定性和可靠性具有重要影响。
2.1 控制器选型在工业机器人控制器的设计中,单片机的选型是至关重要的。
对于工业机器人来说,其控制系统需要具备高性能、高可靠性和较大的扩展性,因此在选用控制器的时候需要考虑这些因素。
本设计方案中选用了一款性能较为优异的32位单片机芯片作为控制器的核心,该芯片具备较高的运算速度和较大的存储空间,同时支持多种外设接口和通信接口,可以满足工业机器人在生产中的各项需求。
2.2 外围模块设计除了单片机芯片之外,工业机器人控制器还需要配备各种外围模块,包括驱动模块、传感器模块、通信模块等。
驱动模块用于控制机器人的各个执行机构,需要提供足够的功率和精确的控制能力;传感器模块用于获取机器人在生产中的各项参数,如位置、速度、力等;通信模块则用于和上位机或其他设备进行数据交换和控制指令的传输。
在本设计方案中,针对不同的外围模块,设计了相应的电路和接口,确保其能够和单片机芯片进行稳定可靠的通信和数据交换。
四足机器人设计方案书

浙江大学“海特杯”第十届大学生机械设计竞赛“四足机器人”设计方案书“四足机器人”设计理论方案自从人类发明机器人以来,各种各样的机器人日渐走入我们的生活。
仿照生物的各种功能而发明的各种机器人越来越多。
作为移动机器平台,步行机器人与轮式机器人相比较最大的优点就是步行机器人对行走路面的要求很低,它可以跨越障碍物,走过沙地、沼泽等特殊路面,用于工程探险勘测或军事侦察等人类无法完成的或危险的工作;也可开发成娱乐机器人玩具或家用服务机器人。
四足机器人在整个步行机器中占有很大大比重,因此对仿生四足步行机器人的研究具有很重要的意义。
所以,我们在选择设计题目时,我们选择了“四足机器人”,作为我们这次比赛的参赛作品。
一.装置的原理方案构思和拟定:随着社会的发展,现代的机器人趋于自动化、高效化、和人性化发展,具有高性能的机器人已经被人们运用在多种领域里。
特别是它可以替代人类完成在一些危险领域里完成工作。
科技来源于生活,生活可以为科技注入强大的生命力,基于此,我们在构思机器人的时候想到了动物,在仔细观察了猫.狗等之后我们找到了制作我们机器人的灵感,为什么我们不可以学习小动物的走路呢,于是我们有了我们机器人行走原理的灵感。
为了使我们所设计的机器人在运动过程中体现出特种机器人的性能及其运动机构的全面性,我们在构思机器人的同时也为它设计了一些任务:1. 自动寻找地上的目标物。
2. 用机械手拾起地上的目标物。
3.把目标物放入回收箱中。
4. 能爬斜坡。
图一如图一中虚线所示的机器人的行走路线,机器人爬过斜坡后就开始搜寻目标物体,当它发现目标出现在它的感应范围时,它将自动走向目标,同时由于相关的感应器帮助,它将自动走进障碍物中取出物体。
二.原理方案的实现和传动方案的设计:机器人初步整体构思如上的图二和图三,四只腿分别各有一个电机控制它的转动,用一个电机驱动两条腿的抬伸。
根据每只腿的迈步先后实现机器人的前进,后退,左转和右转,在机器人腿迈出的同时,它也会相应地进行抬伸,具体实现情况会在下文详细说明。
基于单片机的仿生四足机器人设计与实现

基于单片机的仿生四足机器人设计与实现
徐永前;马西沛;程晓舟;熊绍托;黄友权
【期刊名称】《产业与科技论坛》
【年(卷),期】2024(23)9
【摘要】仿生四足机器人有着广泛的应用和研究价值,它可用于运输、作为机械宠物、辅助工人工作或代替人类在某些特殊环境下进行作业。
而对生物行为的模拟,
也可能让我们发现某些机械结构所具备的运动和力学优势,并将这些仿生机械结构
应用到更多领域。
本仿生四足机器人采用全肘式腿型配置,大腿由舵机直接带动其
旋转;小腿的运动则采用空间四杆机构,通过杠杆的方式使其摆动。
步态选择为对角
步态,单片机采用英飞凌TC264。
仿生四足机器人还装有陀螺仪,用于感知运动姿态。
为了方便发送指令和查看反馈数据,该仿生四足机器人除板载按键以外,还配有无线
转串口模块和蓝牙模块两种通讯模块。
【总页数】3页(P36-38)
【作者】徐永前;马西沛;程晓舟;熊绍托;黄友权
【作者单位】上海工程技术大学机械与汽车工程学院;上海工程技术大学继续教育
学院
【正文语种】中文
【中图分类】TP2
【相关文献】
1.基于STC单片机的仿生六足机器人设计
2.基于单片机的六足仿生机器人设计
3.基于单片机的四足智能机器人设计与实现
4.基于STM32的四足仿生机器人控制系统设计与实现
5.基于STM32单片机的四足仿生蜘蛛机器人控制系统设计
因版权原因,仅展示原文概要,查看原文内容请购买。
基于C51单片机设计的机器人

学生姓名:学号:班级:ቤተ መጻሕፍቲ ባይዱ
答辩地点:J523实验室
答辩内容记录:
答辩成绩
合计
分值
各项分值
评分标准
实际得分
合计得分
备注
25
10
在规定时间内能就所设计的内容进行阐述,言简意明,重点突出,论点正确,条理清晰。
15
在规定时间内能准确、完整、流利地回答教师所提出的问题。
答辩小组成员(签字):
年月日
成绩评定表
2、学生成绩由指导教师根据学生的设计情况给出各项分值及总评成绩。
3、指导教师评语一栏由指导教师就学生在整个设计期间的平时表现、设计完成情况、报告的质量及答辩情况,给出客观、全面的评价。
4、所有学生必须参加综合设计的答辩环节,凡不参加答辩者,其成绩一律按不及格处理。答辩小组成员应由2人及以上教师组成。
Keywords:Embedded systems;AT89C51; Sensor; The ring car
摘
嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成,执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。执行装置可以很简单,如小车上的一个小型的电机,当接收到某种信号时启动电机。基于AT89C51芯片的单片机与多种传感器和舵机的组合设计成的擂台小车就是一个嵌入式系统,通过传感器检测到的数据来做出判断,以执行各种命令,实现擂台格斗的功能。传感器是一种将非电量转换为电量信号的检测装置,灵活的运用它,可以赋予小车感知能力。
3.应用C语言的各种知识;
4.学习编程技术和技巧
条件:
每人一套“C51+AVR版两轮教育机器人套件“
任务:
设计擂台机器人,在规定的场地内活动,搜索对手,找到对手,并将对手推出场地。
四足机器人运动及稳定控制关键技术综述

四足机器人运动及稳定控制关键技术综述目录一、内容概览 (2)1. 四足机器人概述 (3)2. 研究背景与意义 (4)3. 研究现状和发展趋势 (5)二、四足机器人运动原理及结构 (7)1. 四足机器人运动原理 (8)1.1 动力学模型建立 (9)1.2 运动规划与控制策略 (10)2. 四足机器人结构组成 (11)2.1 主体结构 (13)2.2 关节与驱动系统 (14)2.3 感知与控制系统 (17)三、四足机器人运动控制关键技术 (19)1. 运动规划算法研究 (20)1.1 基于模型预测控制的运动规划算法 (21)1.2 基于优化算法的运动规划策略 (22)2. 稳定性控制策略研究 (23)2.1 静态稳定性控制策略 (25)2.2 动态稳定性控制策略 (26)3. 路径规划与轨迹跟踪控制技术研究 (27)3.1 路径规划算法研究 (28)3.2 轨迹跟踪控制策略设计 (29)四、四足机器人稳定控制实现方法 (31)1. 基于传感器反馈的稳定控制方法 (32)1.1 传感器类型与布局设计 (34)1.2 传感器数据采集与处理技术研究 (35)2. 基于优化算法的稳定控制方法应用探讨 (37)一、内容概览四足机器人运动机制:阐述四足机器人的基本运动模式,包括行走、奔跑、跳跃等,以及不同运动模式之间的转换机制。
稳定性分析:探讨四足机器人在运动过程中的稳定性问题,包括静态稳定性和动态稳定性,以及影响稳定性的因素。
运动控制关键技术:详细介绍四足机器人运动控制的关键技术,包括运动规划、轨迹跟踪、力控制等,以及这些技术在实现机器人稳定运动中的应用。
传感器与感知技术:介绍四足机器人运动及稳定控制中涉及的传感器与感知技术,包括惯性测量单元(IMU)、激光雷达、视觉传感器等,以及这些技术在机器人运动控制中的作用。
控制算法与策略:探讨四足机器人运动及稳定控制中常用的控制算法与策略,包括基于模型的控制、智能控制方法等,以及这些算法在实际应用中的效果。
四足仿生机器人毕业设计

摘要:本毕业设计旨在设计一款具有高度仿生特性的四足仿生机器人。
通过对动物运动机理的研究和分析,结合先进的机器人技术,构建出具备灵活运动、稳定行走以及适应复杂环境能力的机器人系统。
本文详细阐述了机器人的设计理念、结构设计、运动控制算法以及实验验证等方面的内容,旨在为四足仿生机器人的研究和应用提供有益的参考和借鉴。
一、概述随着机器人技术的不断发展,仿生机器人因其能够模拟生物的运动方式和行为特征而受到广泛关注。
四足仿生机器人作为仿生机器人的重要研究领域之一,具有广阔的应用前景,如军事侦察、灾害救援、科学探索等。
设计一款高性能的四足仿生机器人,对于推动机器人技术的发展和应用具有重要意义。
二、机器人设计理念(一)仿生目标本机器人的设计理念是以动物的四足运动方式为蓝本,力求实现机器人在行走、奔跑、攀爬等方面具有与动物相似的运动性能和灵活性。
(二)功能需求机器人具备稳定的行走能力,能够在不同地形上行走自如;具有快速的运动速度和敏捷的动作响应能力,能够适应复杂的环境变化;具备一定的负载能力,能够携带相关设备进行作业。
(三)结构设计原则结构设计遵循轻量化、紧凑化和可扩展性的原则,确保机器人具有良好的机动性和稳定性。
考虑到机器人的可维护性和可更换性,采用模块化的设计结构。
三、机器人结构设计(一)机械结构机器人的机械结构主要包括机身、腿部机构和驱动系统。
机身采用轻质材料制作,具有良好的强度和刚度,能够承受机器人的自重和外部载荷。
腿部机构采用模仿动物腿部的结构设计,包括髋关节、膝关节和踝关节等关节,通过电机驱动实现腿部的运动。
驱动系统包括电机、减速器、编码器等部件,为腿部机构提供动力和精确的运动控制。
(二)传感器系统为了实现机器人的自主运动和环境感知,机器人配备了多种传感器,包括编码器、陀螺仪、加速度计、压力传感器等。
编码器用于测量电机的转角和转速,陀螺仪和加速度计用于检测机器人的姿态和运动状态,压力传感器用于测量机器人腿部与地面的接触力。
四足仿生机器人论文关节运动控制器论文

四足仿生机器人论文关节运动控制器论文摘要:从相关实验结果来看,所设计的四足机器人的关节运动控制器具有良好的性能。
还能够在其它小型、中型功率的直流电机中运用这个控制器,特别适宜于设计和构造以CAN总线为基础的分布式控制系统,实用性特征非常鲜明。
同时,具有一定的扩展能力,可作为递阶分布式控制系统的底层控制器,为四足仿生机器人的后续研究奠定了良好的基础。
Design and Research of Joint Motion Controller for Four - legged Bionic RobotMA Peng-bo[Key words]Bionic robot; Motion control system;Controller;STM32;前言隨着机器人技术的迅猛发展,在很大程度上刺激了人们对机器人产品的强烈需求。
在这种情况下,设计制造实用性强,劳动效率高,具有较强的环境适应能力的机器人成为主要设计方向。
当前,人们所设计的仿生足类机器人能够灵活运动,能够快速地适应各种复杂的作业环境,发展前景非常广阔。
仿生四足机器人是一种典型的足式机器人,具有轮式或履带式机器人不可比拟的优势:该类机器人具有对复杂地面的良好适应能力;能够实现机身运动轨迹与足端运动轨迹的有效解耦从而保证机身运动稳定;在合理的步态规划下能够保证功率的最小损耗[1-3]。
此外,为保证机器人具有足够的自动化程度,要求机载控制系统能够实时地处理各种复杂环境反馈信息,并能准确地发出控制指令,为了保证机器人达到良好的运动特性,本文分别提出结构类似的分层式的控制体系结构,对控制任务进行分担,提高系统实时性。
此外,双足机器人步入四足机器人的承载能力强,后者的稳定性更好。
而且四足机器人比六足机器人相比,前者的机构更加简单、能够有效地适应作业环境,具有良好的灵活性[4]。
所以,本文以四足类机器人作为自己的研究对象,设计和规划四足机器人的运动控制器。
《2024年一种新型四足仿生机器人性能分析与仿真》范文

《一种新型四足仿生机器人性能分析与仿真》篇一一、引言四足仿生机器人是一种以自然界生物为蓝本,具有高度仿生学和动态稳定性的机器人技术。
随着科技的不断发展,新型四足仿生机器人的设计与研究越来越受到重视。
本文旨在深入分析一种新型四足仿生机器人的性能,并通过仿真实验来验证其设计及功能实现的可行性。
二、新型四足仿生机器人设计与技术概述该新型四足仿生机器人设计采用了先进的机械结构设计、高性能的驱动系统和精确的控制系统。
机器人具备高度仿真的四足运动能力,能够在复杂地形中实现稳定行走和灵活运动。
此外,该机器人还具备较高的环境适应性,能够在不同环境下进行作业。
三、性能分析1. 运动性能:该新型四足仿生机器人采用先进的运动控制算法,使机器人能够快速、准确地完成各种动作。
在复杂地形中,机器人能够保持动态平衡,实现稳定行走。
此外,机器人还具备快速反应能力,能够在短时间内完成紧急动作。
2. 负载能力:该机器人具备较高的负载能力,能够在不同环境下承载重物进行作业。
通过优化机械结构和驱动系统,提高了机器人的负载能力,从而拓宽了其应用范围。
3. 环境适应性:该机器人具备较高的环境适应性,能够在多种环境中进行作业。
例如,在室外环境中,机器人能够应对不同的地形和气候条件;在室内环境中,机器人能够进行精确的定位和操作。
4. 能源效率:采用高效能电池和节能控制算法,使机器人在保证性能的同时,实现了较低的能源消耗。
这有助于延长机器人的工作时间,提高其使用效率。
四、仿真实验为了验证该新型四足仿生机器人的性能,我们进行了仿真实验。
仿真实验中,我们模拟了不同地形和环境条件,对机器人的运动性能、负载能力和环境适应性进行了测试。
实验结果表明,该机器人在各种环境下均能实现稳定行走和灵活运动,且具备较高的负载能力和环境适应性。
此外,机器人的能源效率也得到了显著提高。
五、结论通过对一种新型四足仿生机器人的性能分析与仿真实验,我们得出以下结论:1. 该机器人具备高度仿真的四足运动能力,能够在复杂地形中实现稳定行走和灵活运动。
《具有串并混联结构腿的四足机器人设计》范文

《具有串并混联结构腿的四足机器人设计》篇一一、引言四足机器人是现代机器人技术中的重要组成部分,其在多种领域,如科研、军事、工业等领域均有广泛的应用。
其关键部分为具有灵活和适应性强的腿机构,使得四足机器人可以稳定、有效地移动于不同的复杂环境中。
为了解决这个问题,本篇论文提出了具有串并混联结构腿的四足机器人设计,这一设计方案能够在不同地面上灵活地实现行进、爬行和跨越障碍等动作。
二、四足机器人设计概述本设计的四足机器人采用串并混联结构腿的设计理念,即腿部结构既包含串联机构也包含并联机构。
这种设计方式可以有效地提高机器人的运动灵活性和稳定性。
1. 串联机构:串联机构在机器人腿部设计中主要起到支撑和驱动的作用。
通过串联的多个关节,可以实现腿部的弯曲和伸展,从而使得机器人能够进行各种复杂的动作。
2. 并联机构:并联机构则主要起到增强稳定性和负载能力的作用。
通过多个并联的连杆和驱动器,可以增加机器人在复杂环境中的运动能力和负载能力。
三、四足机器人设计详细方案1. 腿部结构设计:在腿部设计中,我们采用一种串并混联的组合方式。
这种设计方式使得腿部在拥有足够强度的同时,又保持了足够的灵活性。
我们采用高强度的材料制作连杆和关节,以增强机器人的负载能力和耐用性。
2. 关节设计:在关节设计中,我们采用电机驱动的方式。
电机通过传动装置(如齿轮或皮带)驱动关节的转动,从而实现腿部的运动。
此外,我们还设计了阻尼装置,以减少运动过程中的冲击和振动。
3. 控制策略:我们采用基于反馈的控制策略,通过传感器实时获取机器人的运动状态和环境信息,然后根据这些信息调整机器人的运动策略。
此外,我们还采用了优化算法,以提高机器人在复杂环境中的运动效率和稳定性。
四、实验与结果分析我们通过实验验证了设计的有效性。
实验结果表明,具有串并混联结构腿的四足机器人在各种复杂环境中均能实现稳定、有效的移动。
在行进、爬行和跨越障碍等动作中,该机器人均表现出较高的灵活性和适应性。
基于单片机的四足仿生机械狗设计

基于单片机的四足仿生机械狗设计作者:周真友陈彬王琰琳杨钊来源:《科技视界》2018年第08期【摘要】本项目从仿生角度考虑,通过机械结构的设计、数学模型的建立和分析,建立一种机构合理、自由度较少的四足仿生机械机构代替目前复杂控制模式的多自由度的腿部结构。
此机构运动轨迹和动物运动轨迹相似,能够正常跨越障碍,具有很流畅的协调性。
并在此基础上可增添智能系统,增加其应用范围。
【关键词】单片机;机械结构;传感器;仿生设计中图分类号:TP24 文献标识码: A 文章编号: 2095-2457(2018)08-0063-0020 引言机器人有很多种,家庭机器人,军事机器人,农业机器人等等,这里设计的产品就是主要应用于救援,到达人类不能到达得地方,并采集数据,其运动简单,而且能负重产品比较新颖。
由于其机械连杆结构,自由度比较少,所以结构稳定,能耗比较少。
1 结构设计本机构主要基于机械连杆机构控制关节的运动和行走,电机带动主动轴转动,主动轴通过偏心轮带动从动轮转动,从动轮通过机械连杆机构带动前3、4脚向前运动,当3、4脚落地带动1、2脚向前运动。
如此往复如图1所示。
此机器人主体是一个躯体和四个脚,提供动力部分是电机,其腿部分是基节为主体。
基节连接着躯体平台,其中各个关节都是通过轴连接,电机驱动主动轴旋转,主动轴带着机械连杆机构通过轴运动,使得脚1和脚3一起向前运动然后带动脚2脚4也向前运动,每次运动都会有两个支撑脚和地面相接触。
其主要材料是PVC,所以材质轻、容易拆装。
若系统需要强动力性和结构稳定性,可改装为钢板等其它材质。
1-4:仿生机械狗四足结构;5:电机;6:控制平台2 系统硬件设计本系统的控制芯片是51单片机,具有很好的嵌入性,体积也很小。
系统主要以传感器和输入按键作为输入部分,输出部分包括电机、显示屏。
电源部分采用可充电的大容量电池来供电,能够提供足够的电压以及电流来驱动电机转动和系统运作,系统机械结构简单,便于携带。
基于单片机设计的简易智能机器人

基于单片机设计的简易智能机器人智能机器人是指能够模仿或执行人类行为的机器人。
现如今,随着技术的发展和进步,智能机器人的应用范围越来越广泛。
本文将介绍基于单片机设计的简易智能机器人。
为了实现智能机器人的功能,我们需要使用单片机作为智能机器人的核心控制器。
单片机是一种集成电路,具有处理和控制数字信息的能力。
我们可以根据机器人的不同需求选择适合的单片机,如Arduino、Raspberry Pi等。
下面,我们将以Arduino为例,介绍基于单片机设计的简易智能机器人。
一、硬件设计:1.机械结构:智能机器人的机械结构可以采用机械臂、轮式底盘等不同形式。
根据机器人的应用场景和功能需求,选择适合的机械结构。
2.传感器模块:智能机器人需要传感器模块来获取环境信息。
常用的传感器模块包括超声波传感器、红外线传感器、摄像头等。
传感器模块可以通过串口或I2C等方式与单片机进行通信。
3.电机驱动:机器人需要电机来驱动机械结构的运动。
电机驱动模块可以控制电机的速度和方向。
常用的电机驱动模块有直流驱动模块和步进驱动模块。
4.电源模块:为了让机器人能够正常运行,需要提供电源。
电源模块可以选择锂电池、电池组等不同形式,以满足机器人的功耗需求。
二、软件设计:1. 控制算法:智能机器人的控制算法可以通过编程实现。
我们可以使用Arduino IDE等开发环境,采用C/C++等编程语言来编写机器人的控制程序。
控制程序可以根据传感器获取的数据,计算出机器人的运动方向和行为。
2.通信协议:为了实现与外界的信息交互,可以为智能机器人添加无线通信模块。
无线通信模块可以选择蓝牙模块、WiFi模块等,以便机器人可以与智能设备、服务器等进行通信。
3. 视觉识别:智能机器人可以通过摄像头模块获取图像信息,并进行图像处理和分析。
我们可以使用OpenCV等图像处理库,实现机器人的视觉识别功能,如颜色识别、人脸识别等。
4.人机交互:为了与人类进行交互,智能机器人可以搭配显示屏、喇叭等模块。
基于AT89C51单片机设计的简易智能机器人

基于AT89C51单片机设计的简易智能机器人(转)基于AT89C51单片机设计的简易智能机器人张宏,王德合(空军第一航空学院,河南省信阳市464000)引言随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数器、并行和串行接口、看门狗、前置放大器、A/D转换器、D/A转换器等多种电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。
这种技术促使机器人技术也有了突飞猛进的发展,目前人们已经完全可以设计并制造出具有某些特殊功能的简易智能机器人。
1 设计思想与总体方案1.1 简易智能机器人的设计思想本机器人能在任意区域内沿引导线行走,自动绕障,在有光源引导的条件下能沿光源行走。
同时,能检测埋在地下的金属片,发出声光指示信息,并能实时存储、显示检测到的断点数目以及各断点至起跑线间的距离,最后能停在指定地点,显示出整个运行过程的时间。
1.2 总体设计方案和框图本设计以AT89C5l单片机作为检测和控制核心。
采用红外光电传感器检测路面黑线及障碍物,使用金属传感器检测路面下金属铁片,应用光电码盘测距,用光敏电阻检测、判断车库位置,利用PWM(脉宽调制)技术动态控制电动机的转动方向和转速。
通过软件编程实现机器人行进、绕障、停止的精确控制以及检测数据的存储、显示。
通过对电路的优化组合,可以最大限度地利用51单片机的全部资源。
P0口用于数码管显示,P1口用于电动机的PWM驱动控制,P2,P3口用于传感器的数据采集与中断控制。
这样做的优点是:充分利用了单片机的内部资源,降低了总体设计的成本。
该方案总体方案见图1。
2 系统的硬件组成及设计原理此系统的硬件部分由单片机单元、传感器单元、电源单元、声光报警单元、键盘输入单元、电机控制单元和显示单元组成,如图2所示。
2.1 单片机单元本系统采用AT89C51单片机作为中央处理器。
其主要任务是扫描键盘输入的信号启动机器人,在机器人行走过程中不断读取传感器采集到的数据,将得到的数据进行处理后,根据不同的情况产生占空比不同的PWM脉冲来控制电机,同时将相关数据送显示单元动态显示,产生声光报警信号。
基于ARM和CPLD的四足机器人嵌入式控制器硬件平台设计的开题报告

基于ARM和CPLD的四足机器人嵌入式控制器硬件平台设计的开题报告一、选题背景现代机器人技术的发展越来越快,机器人在生产制造、军事、医疗等领域都得到了广泛应用。
四足机器人是一种仿生机器人,具有较好的越障能力和适应性。
为了提高四足机器人的运动控制精度、稳定性和安全性,需要设计一种高性能的嵌入式控制器,以实现对四足机器人的精细控制。
二、选题意义通过设计基于ARM和CPLD的四足机器人嵌入式控制器,可以实现以下目标:1.提高四足机器人的运动控制精度和稳定性;2.提高四足机器人的越障能力和适应性;3.减少运动控制的延迟时间,提高运动控制响应速度;4.提高四足机器人的安全性,减少失控的可能性。
三、主要内容与技术路线1.硬件平台设计(1)选用ARM Cortex-M系列微控制器作为主控芯片,具有较高的性能和低功耗特性;(2)选用CPLD芯片作为辅助控制器,可以完成一些高速逻辑电路的实现;(3)选用高效稳定的电源管理芯片,以确保系统稳定可靠。
2.软件设计(1)采用RT-Thread实时操作系统,以便于任务的切换和调度;(2)使用HAL库和底层驱动程序,以实现系统的各项功能;(3)使用PID算法和模糊控制算法,以实现对四足机器人的运动控制。
四、预期成果完成基于ARM和CPLD的四足机器人嵌入式控制器硬件平台设计,实现以下功能:1.稳定实时运动控制,实现四足机器人的前进、后退、转弯等基础动作;2.越障功能,实现对一些简单障碍物的越过;3.反馈控制,实现位置和速度反馈控制,进一步提高四足机器人的运动稳定性和精度。
五、进度安排第一阶段(1-2周):调研和分析当前四足机器人控制器的市场和技术现状,确定设计方案和技术路线。
第二阶段(3-4周):完成硬件平台的设计与制作,包括电源管理电路、输入输出电路等。
第三阶段(5-6周):完成控制系统软件的设计与实现,包括操作系统、驱动程序等。
第四阶段(7-8周):完成系统调试和优化,验证系统的功能和性能。
单片机应用系统设计方案四足步行器

单片机应用系统课程设计目录一.引言---------------------------------------------------------------------3。
课题应用相关调研-----------------------------------------------------3。
二.单片机基本原理------------------------------------------------------3。
STC11F02E单片机简介----------------------------------------------3。
三.硬件电路设计------------------------------------------------------------4。
1.电路组成-------------------------------------------------------------4。
2.芯片分析-------------------------------------------------------------6。
3.LN298N驱动模块-------------------------------------------------8。
4. 直流电机模块----------------------------------------------------10。
四.软件设计----------------------------------------------------------------14。
1.资源配置-----------------------------------------------------------15。
2.流程图---------------------------------------------------------------16。
基于Nano单片机的四足导盲机器人设计

基于Nano单片机的四足导盲机器人设计摘要:随着科技的进步和文明的发展,以及我国对于高新科技技术的大力支持,机器人领域的技术发展日趋成熟。
目前我国在各个领域都投入了相当大的力度来大力发展机器人,因为机器人的大量使用,将会为我国的生产生活节省人力成本,为人们的日常生活带来便利。
目前我国对于导盲机器人的研究尚处于发展的处级阶段,而制作一台导盲机器人将会对我国的弱势群体提供极大的有效的帮助,为盲人的生活带来更多的便利和快捷。
所以本论文致力于发明一种较为高效率的,基于Nano的四足导盲机器人。
本文中主要了使用无刷电机、电调和磁编码器等技术为导盲机器人提供了进行行走方式的控制,并且使用了温湿度、光照等传感器来监测当时环境的具体状况,便于使用者及时进行路线的规划。
本文所设计的导盲犬还能够存储地图路线,获取实时地图画面后对潜在的危险进行规避,对当前路况进行诊断,便于使用者寻找最佳的路线。
关键词:导盲;路况识别;传感器引言:随着科技的进步,社会生产力迅猛发展,机器人行业得到了蓬勃发展,其中四足机器人发展迅速,被广泛应用。
四足机器人是一种仿生机器人,在跨越地形障碍方面具有很大的优势,足式移动机器人对行走路面的要求很低,它可以跨越障碍物,在各种崎岖不平的复杂路面上行进。
并且四足机器人是一种综合性极强的研究产物,它以机电一体化技术为主导,综合了单片机技术、液压、传感器技术等多方面的知识,四足机器人具有高机动性,适应能力强,对于导盲工作来说,四足机器人技术是最适合的。
目前,各国的对于四足机器人的研究越来越普遍。
其中包括:美国的Spot系列机器狗、“阿尔法狗”、第三代“猎豹”机器人;瑞士的“ANYmal”以及中国的四足仿生机器人,目前“波士顿动力”机器人已经在市场上销售。
我国虽然起步较晚,但大有后来居上的趋势。
本文所设计的机器导盲犬就是基于四足机器人技术,通过使用无刷电机、电调和磁编码器、温湿度、光照等传感器技术,实现了四足机器人的导盲作用。
以MCS—51单片机为核心研制的四脚步行机器人分布...

以MCS—51单片机为核心研制的四脚步行机器人分布...刘多伟
【期刊名称】《电讯技术》
【年(卷),期】1990(030)002
【摘要】本文描述一个四脚步行机器人的微处理器分布式实时控制系统,介绍系统的主从分布式松耦合结构.该系统采用了2只8088CPU,一只8087协处理器和14只8031单片机.文中设计了一个系统管理员来负责整个系统的时序控制,用C写的系统管理程序具有移植性好和执行速度快的特点.而松耦合的任务处理器则根据系统管理员的指令来执行特定的算法.本文将首先介绍把整个系统控制分解为一组单独执行的任务(即电机伺服)的方法,然后重点讨论基于8031单片机的全数字式直流伺服系统的设计以及步行机的实时控制等问题.模块化设计、并行处理、数字化和分布控制技术使得整个控制系统的性能和可靠性均得到了提高.
【总页数】6页(P71-76)
【作者】刘多伟
【作者单位】无
【正文语种】中文
【中图分类】TP242
【相关文献】
1.基于Protues仿真的MCS-51单片机教学实践与探讨--利用仿真软件解决MCS-51单片机教学中常见的问题 [J], 侯俊才;杨蜀秦
2.基于MCS-51单片机的智能机器人迷宫车设计 [J], 李雪霞;何扣芳
3.基于四脚支持的四足机器人斜面步行研究 [J], 王利利;张磊
4.基于增强型MCS-51单片机的可避障竞步机器人控制系统设计 [J], 陆宽; 蒋善超
5.基于Intel 8088微处理器和MCS-51单片机的四脚步行机器人分步式控制系统[J], 刘多伟
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学期末考试试卷开/闭卷开卷A/B卷N/A课程编号13032700011303270002 课程名称EDA技术与实践(2)学分2.0命题人(签字) 审题人(签字) 2015 年10 月20 日设计考试题目:完成一个集成电路或集成系统设计项目基本要求:2-3位同学一组,完成一个完整的集成电路设计项目或是一个集成系统设计项目。
规格说明:1.题目自定。
1)集成电路设计项目i.若为IC设计项目需要完成IC设计的版图。
ii.若采用FPGA实现数字集成电路设计,需要进行下板测试。
2)集成系统设计项目,需使用FPGA开发板或嵌入式开发板,完成一个完整的集成系统作品。
3)作品需要课堂现场演示,最后提交报告,每个小组单独一份报告,但需阐述各个成员的工作。
2.评分标准:2015年第二学期,建议作品内容:•完成一个行走机器人,基本要求o2-8只脚o能行走o可以用单片机,嵌入式,FPGA方案一、设计目的:通过设计一个能够走动的机器人来增加对动手能力,和对硬件电路设计的能力,增强软件流程设计的能力和对设计流程实现电路功能的能力,在各个方面提升自己对电子设计的能力。
二、设计仪器和工具:本设计是设计一个能走动的机器人,使用到的仪器和工具分别有:sg90舵机12个、四脚机器人支架一副、单片机最小系统一个、电容电阻若干、波动开关一个、超声遥控模块一对、杜邦线若干、充电宝一个。
三、设计原理:本次设计的机器人是通过51单片机控制器来控制整个电路的。
其中,舵机的控制是通过产生一个周期为20毫秒的高电平带宽在0.5到2.5ms之间的pwm信号来控制。
12路Pwm信号由单片机的定时器来产生。
51单片机产生12路pwm信号的原理是:以20毫秒为周期,把这20毫秒分割成8个2.5ms,因为,每个pwm信号的高电平时间最多为2.5ms,然后在前六个2.5ms中分别输出两个pwm信号的高电平,例如,在第一个2.5ms中输出第一个和第二个pwm信号的高电平时,首先开始时,把信号S1、S2都置1,然后比较两个高电平时间,先定时时间短的高电平时间,把高电平时间短的那个信号置0,再定时两个高电平时间差,到时把高电平时间长的按个信号置0,然后,定时(2.5-较长那个高电平时间),在第二个2.5ms开始时,把S3、S4置1,接下来和上面S1、S2一样,以此类推,在六个2.5ms 中输出12路pwm信号来控制舵机。
原理图如图1.通过超声模块来控制机器人前进、后退、向前的左转、向前的右转、向后的左转、向后的右转几个动作。
控制模块电路,D0,D1,D2,D3分别为超声接受模块的输出,输出为高电平,要加NPN作为开关。
四、设计步骤:1、设计好硬件电路,焊接51单片机的最小系统和各个硬件电路。
2、设计好软件的流程图,如图2。
3、写产生12路控制舵机的pwm信号的程序并在proteus中测试,如图3。
4、设计出行走步态,四脚机器人的步态是采用对角的相互前进来实现的,如图4。
5、写出流程图中各个模块的软件,包括前进函数、后退函数、左转和右转的函数,并逐个烧到单片机中测试。
6、按流程图把各个函数组合到主函数中,完成所有软件的编写,并烧到单片机中测试,并不断的调试。
图2.流程图图3.在proteus里测试并调试pwm信号初始状态:先迈一对脚迈另一对并另一对支撑身体前进图4,行走步态五、遇到的问题及解决:1、此设计的pwm信号输出使用定时器来产生每个信号的高电平和低电平,每次定时时间到,都会会关掉定时器并执行中断函数,在此过程中会消耗一定的时间,等到给定时器赋值下一次定时时间并开始定时时,就会产生一定的时间延时,造成每次高电平时间都会变长一点,且总的加起来会使20ms周期变长,因此,需要稍微减小高电平的定时时间,并结合proteus仿真确定最准确值。
2、由于机器人的四个脚都是自己组装的,可能会有存在不平衡和对称,当对角的两只脚同时向前迈同一个角度时,会使机器人向一个方向偏转而不沿直线前进,这时要结合实际测试来调整机器人的各个脚的前迈角度来使机器人平衡的沿直线前进,比如,一只脚迈多点,另一边的脚迈少点。
六、心得与体会:通过这次设计,我更加的熟悉基本的硬件电路和软件的设计,特别是软件的流程图设计。
更加熟悉软硬件电路结合的测试与调试。
六、实验实物图:设计代码:#include<reg51.h>#define uchar unsigned char#define uint unsigned intuint pwm[12],p_min1,p_max1,p_min2,p_max2,p_min3,p_max3,p_min4,p_max4,p_min5,p_max5, p_min6,p_max6,p1,p2,p3,p4,p5,p6,p11,p21,p31,p41,p51,p61;//高电平带宽sbit s0=P2^0;//12路输出信号sbit s1=P2^1;sbit s2=P2^2;sbit s3=P2^3;sbit s4=P2^4;sbit s5=P2^5;sbit s6=P2^6;sbit s7=P2^7;sbit s8=P0^6;sbit s9=P0^4;sbit s10=P0^2;sbit s11=P0^0;sbit up=P1^0;sbit right=P1^4;sbit left=P1^2;sbit down=P1^6;uchar s_num,f,b,r,l,back_flag;forward_flag;void back();//后退void forward(); //前进void back_right(); //后右转、前左转void back_left(); //后左转、前右转void scan_key();//遥控监控void labor_init();//机器人的初始状态void delay(uint i) //延时函数,延时一秒{uint j;for(i;i>0;i--)for(j=110;j>0;j--);}void init(void)//中断初始函数{TMOD=0x01;TR0=1;ET0=1;EA=1;}void rate(uint p[12])//pwm的排序函数{p_min1=(p[0]<=p[1]?(p[0]):(p[1]))-40;p_max1=p[0]>p[1]?(p[0]):(p[1]);p_min2=(p[2]<=p[3]?p[2]:p[3])-64;p_max2=p[2]>p[3]?p[2]:p[3];p_min3=(p[4]<=p[5]?p[4]:p[5])-64;p_max3=p[4]>p[5]?p[4]:p[5];p_min4=(p[6]<=p[7]?p[6]:p[7])-64;p_max4=p[6]>p[7]?p[6]:p[7];p_min5=(p[8]<=p[9]?p[8]:p[9])-64;p_max5=p[8]>p[9]?p[8]:p[9];p_min6=(p[10]<=p[11]?p[10]:p[11])-64;p_max6=p[10]>p[11]?p[10]:p[11];p1=p_max1-p_min1-21;p2=p_max2-p_min2-42;p3=p_max3-p_min3-42;p4=p_max4-p_min4-42;p5=p_max5-p_min5-42;p6=p_max6-p_min6-42;p11=2400-p_max1;p21=2400-p_max2;p31=2400-p_max3;p41=2400-p_max4;p51=2400-p_max5;p61=15500-p_max6;TH0=-p_min1/256;TL0=-p_min1%256;s_num=0;s0=1;s1=1;init();}void scan_key(){if(P1!=0xff){delay(5);if(up==0){f=0;}if(down==0)b=0;if(right==0)r=0;if(left==0)l=0;}}void time0() interrupt 1 //中断产生12路pwm信号{TR0=0;switch(s_num){case 0:if(pwm[0]<=pwm[1]){if(pwm[0]==pwm[1]){s0=0;s1=0;s_num++;TH0=-(p1-0)/256;TL0=-(p1-0)%256;break;} elses0=0;}elses1=0;TH0=-p1/256;TL0=-p1%256;s_num++;break;case 1:if(pwm[0]>pwm[1])s0=0;elses1=0;TH0=-p11/256;TL0=-p11%256;s_num++;break;case 2:s2=1;s3=1;TH0=-p_min2/256;TL0=-p_min2%256;s_num++;break;case 3:if(pwm[2]<=pwm[3]){if(pwm[2]==pwm[3]){s2=0;s3=0;s_num++;TH0=-p2/256;TL0=-p2%256;break;}elses2=0;}elses3=0;TH0=-p2/256;TL0=-p2%256;s_num++;break;case 4:if(pwm[2]>pwm[3])s2=0;elses3=0;TH0=-p21/256;TL0=-p21%256;s_num++;break;case 5:s4=1;s5=1;TH0=-p_min3/256;TL0=-p_min3%256;s_num++;break;case 6:if(pwm[4]<=pwm[5]){if(pwm[4]==pwm[5]){s4=0;s5=0;s_num++;TH0=-p3/256;TL0=-p3%256;break;} elses4=0;}elses5=0;TH0=-p3/256;TL0=-p3%256;s_num++;break;case 7:if(pwm[4]>pwm[5])s4=0;elses5=0;TH0=-p31/256;TL0=-p31%256;s_num++;break;case 8:s6=1;s7=1;TH0=-p_min4/256;TL0=-p_min4%256;s_num++;break;case 9:if(pwm[6]<=pwm[7]){if(pwm[6]==pwm[7]){s6=0;s7=0;s_num++;TH0=-p4/256;TL0=-p4%256;break;} elses6=0;}elses7=0;TH0=-p4/256;TL0=-p4%256;s_num++;break;case 10:if(pwm[6]>pwm[7])s6=0;elses7=0;TH0=-p41/256;TL0=-p41%256;s_num++;break;case 11:s8=1;s9=1;TH0=-p_min5/256;TL0=-p_min5%256;s_num++;break;case 12:if(pwm[8]<=pwm[9]){if(pwm[8]==pwm[9]){s8=0;s9=0;s_num++;TH0=-p5/256;TL0=-p5%256;break;} elses8=0;}elses9=0;TH0=-p5/256;TL0=-p5%256;s_num++;break;case 13:if(pwm[8]>pwm[9])s8=0;elses9=0;TH0=-p51/256;TL0=-p51%256;s_num++;break;case 14:s10=1;s11=1;TH0=-p_min6/256;TL0=-p_min6%256;s_num++;break;case 15:if(pwm[10]<=pwm[11]){if(pwm[10]==pwm[11]){s10=0;s11=0;s_num++;TH0=-p6/256;TL0=-p6%256;break;}elses10=0;}elses11=0;TH0=-p6/256;TL0=-p6%256;s_num++;break;case 16:if(pwm[10]>pwm[11])s10=0;elses11=0;TH0=-p61/256;TL0=-p61%256;s_num++;break;case 17:s0=1;s1=1;s_num=0;TH0=-p_min1/256;TL0=-p_min1%256;break;}scan_key();TR0=1;}void motor_init1()//给所有信号都设高电平时间为1.5毫秒{uchar i;for(i=0;i<12;i++)pwm[i]=1500;}void labor_init()//机器人的初始状态{motor_init1();l=1;f=1;r=1;b=1;back_flag=0;forward_flag=0;rate(pwm);//delay(200);while(1){if(r==0){r=1;back_right();}if(l==0){l=1;back_left();}if(f==0){f=1;forward();}if(b==0){b=1;back();}}}void back(){back_flag=1;forward_flag=0;motor_init1();pwm[8]=pwm[8]+300;pwm[9]=pwm[9]-250;pwm[2]=pwm[2]+150;pwm[3]=pwm[3]-150;pwm[7]=pwm[7]+50;//pwm[0]=pwm[0]-80;//pwm[5]=pwm[5]+80;//pwm[11]=pwm[11]-30;rate(pwm);delay(500);pwm[3]=pwm[3]+320;pwm[8]=pwm[8]-200;pwm[4]=pwm[4]+600;pwm[5]=pwm[5]+600;pwm[6]=pwm[6]+600;pwm[7]=pwm[7]+600;rate(pwm);delay(300);pwm[4]=pwm[4]-600;pwm[5]=pwm[5]-600;pwm[6]=pwm[6]-600;pwm[7]=pwm[7]-600;rate(pwm);delay(300);while(1){if(r==0){r=1;back_right();}if(l==0){l=1;back_left();}if(f==0){f=1;forward();}if(b==0)b=1;pwm[3]=pwm[3]-320;pwm[8]=pwm[8]+200;pwm[2]=pwm[2]-270;pwm[9]=pwm[9]+320;pwm[1]=pwm[1]-600;pwm[0]=pwm[0]-600;pwm[10]=pwm[10]-600;pwm[11]=pwm[11]-600;rate(pwm);delay(300);pwm[1]=pwm[1]+600;pwm[0]=pwm[0]+600;pwm[10]=pwm[10]+600;pwm[11]=pwm[11]+600;rate(pwm);delay(500);pwm[2]=pwm[2]+270;pwm[9]=pwm[9]-320;pwm[3]=pwm[3]+320;pwm[8]=pwm[8]-200;pwm[4]=pwm[4]+600;pwm[5]=pwm[5]+600;pwm[6]=pwm[6]+600;pwm[7]=pwm[7]+600;rate(pwm);delay(300);pwm[4]=pwm[4]-600;pwm[5]=pwm[5]-600;pwm[6]=pwm[6]-600;pwm[7]=pwm[7]-600;rate(pwm);delay(500);if(P1!=0xff)forward();}}void back_right(){motor_init1();pwm[8]=pwm[8]+50;pwm[9]=pwm[9]-50;//pwm[2]=pwm[2]+150;//pwm[3]=pwm[3]-150;pwm[7]=pwm[7]+100;//pwm[0]=pwm[0]-80;//pwm[5]=pwm[5]+80;//pwm[11]=pwm[11]-30; rate(pwm);delay(300);pwm[3]=pwm[3]-70;pwm[8]=pwm[8]-70;pwm[4]=pwm[4]+600; pwm[5]=pwm[5]+600; pwm[6]=pwm[6]+600; pwm[7]=pwm[7]+600;rate(pwm);delay(300);pwm[4]=pwm[4]-600; pwm[5]=pwm[5]-600; pwm[6]=pwm[6]-600; pwm[7]=pwm[7]-600;rate(pwm);delay(300);while(1){if(r==0){if(back_flag==1){r=1;back_right();}if(forward_flag==1){r=1;back_left();}}if(l==0){if(back_flag==1){l=1;back_left();}if(forward_flag==1){l=1;back_right();}}if(f==0){f=1;forward();}if(b==0){b=1;back();}pwm[3]=pwm[3]+70; pwm[8]=pwm[8]+70; pwm[2]=pwm[2]-70; pwm[9]=pwm[9]-70; pwm[1]=pwm[1]-600; pwm[0]=pwm[0]-600; pwm[10]=pwm[10]-600; pwm[11]=pwm[11]-600; rate(pwm);delay(300);pwm[1]=pwm[1]+600; pwm[0]=pwm[0]+600;pwm[10]=pwm[10]+600;pwm[11]=pwm[11]+600;rate(pwm);delay(500);pwm[2]=pwm[2]+70;pwm[9]=pwm[9]+70;pwm[3]=pwm[3]-70;pwm[8]=pwm[8]-70;pwm[4]=pwm[4]+600;pwm[5]=pwm[5]+600;pwm[6]=pwm[6]+600;pwm[7]=pwm[7]+600;rate(pwm);delay(300);pwm[4]=pwm[4]-600;pwm[5]=pwm[5]-600;pwm[6]=pwm[6]-600;pwm[7]=pwm[7]-600;rate(pwm);delay(300);}}void back_left(){motor_init1();pwm[8]=pwm[8]+50;pwm[9]=pwm[9]-50;//pwm[2]=pwm[2]+150;//pwm[3]=pwm[3]-150;pwm[6]=pwm[6]+50;pwm[7]=pwm[7]+100;//pwm[0]=pwm[0]-80;//pwm[5]=pwm[5]+80;//pwm[11]=pwm[11]-30; rate(pwm);delay(300);pwm[3]=pwm[3]+70;pwm[8]=pwm[8]+70;pwm[4]=pwm[4]+600; pwm[5]=pwm[5]+600; pwm[6]=pwm[6]+600; pwm[7]=pwm[7]+600;rate(pwm);delay(300);pwm[4]=pwm[4]-600; pwm[5]=pwm[5]-600; pwm[6]=pwm[6]-600; pwm[7]=pwm[7]-600;rate(pwm);delay(300);while(1){if(r==0){if(back_flag==1){r=1;back_right();}if(forward_flag==1){r=1;back_left();}}if(l==0){if(back_flag==1){l=1;back_left();}if(forward_flag==1){l=1;back_right();}}if(f==0){f=1;forward();}if(b==0){b=1;back();}pwm[3]=pwm[3]-70; pwm[8]=pwm[8]-70; pwm[2]=pwm[2]+70; pwm[9]=pwm[9]+70; pwm[1]=pwm[1]-600; pwm[0]=pwm[0]-600; pwm[10]=pwm[10]-600; pwm[11]=pwm[11]-600; rate(pwm);delay(300);pwm[1]=pwm[1]+600; pwm[0]=pwm[0]+600;pwm[10]=pwm[10]+600;pwm[11]=pwm[11]+600;rate(pwm);delay(500);pwm[2]=pwm[2]-70;pwm[9]=pwm[9]-70;pwm[3]=pwm[3]+70;pwm[8]=pwm[8]+70;pwm[4]=pwm[4]+600;pwm[5]=pwm[5]+600;pwm[6]=pwm[6]+600;pwm[7]=pwm[7]+600;rate(pwm);delay(300);pwm[4]=pwm[4]-600;pwm[5]=pwm[5]-600;pwm[6]=pwm[6]-600;pwm[7]=pwm[7]-600;rate(pwm);delay(300);}}void forward(){forward_flag=1;back_flag=0;motor_init1();pwm[2]=pwm[2]-150;pwm[3]=pwm[3]+220;pwm[8]=pwm[8]+10;pwm[11]=pwm[11]-20; rate(pwm);delay(500);pwm[3]=pwm[3]-300; pwm[8]=pwm[8]+300; pwm[4]=pwm[4]+600; pwm[5]=pwm[5]+600; pwm[6]=pwm[6]+600; pwm[7]=pwm[7]+600; rate(pwm);delay(300);pwm[4]=pwm[4]-600; pwm[5]=pwm[5]-600; pwm[6]=pwm[6]-600; pwm[7]=pwm[7]-600; rate(pwm);delay(300);while(1){if(r==0){r=1;back_left();}if(l==0){l=1;back_right();}if(b==0){b=1;back();}if(f==0)f=1;pwm[3]=pwm[3]+300; pwm[8]=pwm[8]-300; pwm[2]=pwm[2]+300; pwm[9]=pwm[9]-280; pwm[1]=pwm[1]-600; pwm[0]=pwm[0]-600; pwm[10]=pwm[10]-600; pwm[11]=pwm[11]-600; rate(pwm);delay(300);pwm[1]=pwm[1]+600; pwm[0]=pwm[0]+600; pwm[10]=pwm[10]+600; pwm[11]=pwm[11]+600; rate(pwm);delay(500);pwm[2]=pwm[2]-300; pwm[9]=pwm[9]+280; pwm[3]=pwm[3]-300; pwm[8]=pwm[8]+300; pwm[4]=pwm[4]+600; pwm[5]=pwm[5]+600; pwm[6]=pwm[6]+600; pwm[7]=pwm[7]+600; rate(pwm);delay(300);pwm[4]=pwm[4]-600; pwm[5]=pwm[5]-600; pwm[6]=pwm[6]-600; pwm[7]=pwm[7]-600; rate(pwm);delay(500);if(P1!=0xff)back();}}void main(void){labor_init();}。