钢筋含量控制措施与含钢量限额
国内含钢量统计参照与控制范围
国内含钢量统计参照与控制范围结构成本的优化应以满足规范要求、保证结构安全和建筑产品的品质为前提。
在设计管理中应避免“含钢量指标越低,结构设计就越优秀”的仅强调成本单一衡量指标的极端思想。
一、国内60栋统计结果:(分析:偏保守,用于估算,完全可以达此指标。
) 对8度,三类场地:框架一般每平米65~70公斤;(24米以下)框剪一般每平米70~75公斤;(25米~60米)剪力墙一般每平米75~80公斤。
(61米~80米,25层;81米~100米,32层)对8度,二类场地:框架一般每平米55~60公斤;(24米以下)框剪一般每平米60~65公斤;(25米~60米)剪力墙一般每平米65~70公斤。
(61米~80米,25层;81米~100米,32层)对7度,三类场地:框架一般每平米55~60公斤;(24米以下)框剪一般每平米60~65公斤;(25米~60米)剪力墙一般每平米65~70公斤。
(61米~80米,25层;81米~100米,32层)对7度,二类场地:框架一般每平米45~50公斤;(24米以下)框剪一般每平米50~55公斤;(25米~60米)剪力墙一般每平米55~60公斤。
(61米~80米,25层;81米~100米,32层)对6度,二类场地:框架一般每平米35~40公斤;(24米以下)框剪一般每平米40~45公斤;(25米~60米)剪力墙一般每平米45~55公斤。
(61米~80米,25层;81米~100米,32层)对6度,三类场地:框架一般每平米40~45公斤;(24米以下)框剪一般每平米45~55公斤;(25米~60米)剪力墙一般每平米50~60公斤。
(61米~80米,25层;81米~100米,32层)二、某六度区,风荷载约0.6KN/M2,地面以上含钢量控制范围(分析:用于估算,可以做到。
)注:按结构面积计。
注:北京、西安:约(八度区,第一组,风荷载约0.45KN/M2)上海、天津:约(七度半区,第二组,风荷载约0.6KN/M2深圳、珠海、广州:约(七度区,第一组,风荷载约0.75KN/M2武汉、宁波、东莞:约(六度区,第一组,风荷载约0.5KN/M2(分析:指标合理,用于目标管理。
钢筋混凝土结构含钢量控制的措施
钢筋混凝土结构含钢量控制的措施摘要:本文从方案和施工图设计两个阶段看手,总结出控制多高层住宅建筑钢筋混凝土结构含钢量的技术措施。
关键词:含钢量;混凝土用量;优化设计Abstract:From the scheme and structural design of two phases, this dissertation summed up out of the measures on control in amount of steel bar in reinforced concrete structure of multi-storey and tall residential buildings.Key words:the amount of steel bar; the amount of concrete;optimization design一、引言土建工程造价一般占建筑总造价(不包括工艺设备)的70%~80%;在土建工程造价中,约75%为材料费,材料费中钢筋费约占40%~70%。
为了降低造价,大部分业主都要求设计者尽量降低含钢量。
控制含钢量必须从方案阶段着手,重视结构概念设计。
概念设计,是指设计人员在从结构选型、布置,分析计算,截面设计到细部处理的整个设计过程中,对所遇到的问题依据建筑结构在各种情况下工作的一般规律(主要是建筑、结构专业的基础理论),结合实践经验,综合考虑各方面因素,确定合理的分析、处理方法,力求得到最为经济、合理的结构设计方案。
一栋单体钢筋混凝土建筑物,其单位面积用钢量的大小不仅反映出设计人员的技术水平,更重要的是成为投资方最为关注的指标。
它将直接影响房地产开发项目的经济效益,对此设计方应给予充分的理解和配合。
二、方案阶段影响结构含钢量的因素2.1平面长度尺寸当结构单元长度和宽度比值大于等于6时,成为超长建筑。
超长建筑由于必须考虑混凝土的收缩应力和温度应力,相对于非超长建筑主要对待的仅是荷载产生的应力,其单位面积用钢量显然要多些。
全国各地建筑含钢量及钢筋含量指标
全国各地建筑含钢量及钢筋含量指标(参考)含钢量,又称单位面积钢筋含量,以工程中钢筋总量除以建筑面积得来。
含钢量和工程造价息息相关,其指标更是考核设计水平和成本控制的绩效。
相传万科的24层建筑含钢量仅仅为43.5kg/平方,其造价控制可见一斑。
下面是全国各地的含钢量,供大家参考。
1、北京某二十二层住宅楼全现浇剪力墙满堂基础,地下2层,地上22层,檐高62.6米,一类工程,钢筋88.78/平米。
2、30层左右的一般的就是80.00公斤/平米3、江苏扬州地区多层砖混住宅一般在30左右,多层框架一般在45左右,短肢剪力墙小高层住宅一般在60~70。
4、北京某工程地上三幢二十四和二十六层办公楼全现浇框架结构满堂基础,地下3层三幛连体带车库人防,地上24/26层,檐高76.8米一类工程,钢筋132.22/平米。
基础底板主楼厚度2000mm,其他1800~800厚5、乌鲁木齐市某高层住宅楼,剪力墙结构,地下一层,地上18层,筏板基础,檐高54.6米。
每平方米含钢量64.57公斤6、乌鲁木齐市某综合楼,框架结构,地下一层,地上九层,筏板基础,檐高42.9,有部分钢骨柱、钢绞线。
每平方米含钢量131.28公斤(含钢骨柱及钢绞线)。
施工期2005年至2007年。
该工程因业主要求的大开间和不设一片剪力墙的要求,含钢量交高。
7、乌鲁木齐市某地下车库,地下一层,框架结构,筏基加独立基础。
每平方米含钢量148.58公斤。
施工期2004年至2005年。
8、其实含钢量不能一概而论,不同的结构,甚至不同的设计人员设计出的含钢量都不相同,一般来说,广东多层厂房每平方米含钢量是70公斤9、山东济南某项目小高层(地上11层、地下1层,满堂基础,剪力墙结构)单方钢筋49KG,多层(砖混结构)单方钢筋29KG10、北京某工程地上二幢二十四和12层住宅楼及C1地下车库全现浇筏板基础,地下2层二幛连体带车库人防,钢筋132.22/平米。
基础底板厚度600~800厚。
浅谈建筑结构含钢量的控制措施
浅谈建筑结构含钢量的控制措施引文:现如今建设单位出于对成本控制的考虑,往往对设计单位都有"限额设计"的要求。
所谓限额设计,通俗而言,就是不超出预期的投资额,完成对工程项目的设计任务。
在建筑结构的整体造价中(不含工艺设备),土建工程造价占据绝大部分,而在各类工程材料中,尤以钢材价格为最贵,所以建筑结构用钢量是控制成本的一个重要方面。
如何在结构设计中有效地控制用钢量,需要我们首先研究影响用钢量的各种因素。
1.影响用钢量的因素1.1自然条件建筑物所处的地区不同,作用在建筑物上的外力也不同,这些外力包括地震作用、风荷载等。
处于抗震设防烈度高或风荷载较大的地区,建筑结构的含钢量必然就高,反之相反。
处于气候环境恶劣,昼夜温差极大的地区,为抵抗温度应力而配置抗拉性能优良的钢筋,必会造成结构含钢量的上升。
对各类建筑场地类别,如场地土质差,浅层土承载力低,不得不选用桩基础或较厚的钢筋混凝土筏板基础,含钢量也会随之上升;如地基承载力较高时,基础可以采用浅基础或基础所需底面积小时,钢筋用量必然会少一些。
1.2结构体系和方案的选择针对各类不同的结构体系和方案,设计师根据其不同的工作机理,在满足结构安全的情况下,采用经济合理的结构体系和方案。
1.3建筑平面、立面布置及造型方案设计师过于追求造型复杂、标新立异的建筑,造成建筑结构的平面、立面的不规则。
这类建筑进行地震作用和内力计算时,针对其薄弱部位,需采取有效构造措施来保证安全,这必会造成用钢量的增加。
此外,整个建筑的立面造型过于复杂,这不仅对结构安全及抗震性没有益处,反而会造成钢筋用量的增加。
1.4荷载取值设计师在建模过程中,荷载取值应和实际情况相吻合,不能随意更改。
荷载数值与用钢量为倍数关系,故荷载取值偏大,势必会造成用钢量增大。
1.5混凝土强度等级和钢筋强度等级规范规定,对梁板其最小配筋率,由公式可得出,在最小配筋率大于0.2%时,混凝土强度等级与最小配筋率呈线性关系,故混凝土强度等级越高,配筋率越大,耗费钢筋越多。
建筑结构设计中含钢量的控制措施
建筑结构设计中含钢量的控制措施摘要:建筑物的含钢量与建筑物的体型有着重要关联,同时直接影响工程的经济收益,本文从结构设计的角度,对含钢量的控制措施作出分析和阐述,有一定参考价值。
关键词:建筑结构设计;含钢量;控制措施中图分类号:s611 文献标识码:a 文章编号:1影响含钢量的因素及控制措施影响结构含钢量的因素首先是建筑物的体型,包括建筑物的开间、进深、层高,平面形状的凹凸、竖向立面的缩进、悬挑等等。
建筑布置的任何平面不规则或竖向不规则都将导致含钢量的增加。
有些结构工程师往往过于迁就建筑专业,不对某些无必要的不规则情况提出意见,造成结构平面或竖向严重不规则,将一个本来可以不超限的高层做成超限高层,大大增加了结构含钢量,造成了浪费。
这就要求结构工程师提前介入建筑方案的讨论,使最终的建筑方案尽可能简单、规则。
在确定建筑物的体型后,就要进行结构选型和结构布置。
我们主要根据建筑物的高度及建筑的空间使用功能确定结构形式。
结构布置应均匀、对称,力求刚心和质心重合,尽量避免出现gb50011-2010建筑抗震设计规范(以下简称《新抗规》)第3.4.3条及jgj3-2002高层建筑混凝土结构技术规程(以下简称《高规》)第4.3.3条等相关不规则情况。
这样就给下阶段设计工作中合理控制结构含钢量打下良好的基础。
2 在结构设计阶段对含钢量进行有效控制1.1结构计算模型荷载取值荷载取值的大小直接影响结构含钢量是否合理,过小的荷载会导致结构的不安全,过大的荷载则造成浪费。
设计工作中应尽量选用轻质墙体材料,根据建筑墙身做法详细计算荷载,门窗荷载应折去。
活载应根据具体建筑功能严格按gb50009-2001建筑结构荷载规范(2006版)(以下简称《荷载规范》)取值。
非固定隔墙的荷载应折入楼面活载。
对于《荷载规范》4.1.2条可以折减的项目,应予以折减。
结构工程师应该对各种结构形式的单位面积质量有一定了解。
1.2结构计算参数的选择目前结构设计计算软件有很多,每个计算软件都有大量参数需要结构工程师设置,这些参数都会影响结构含钢量,必须了解其意义及对计算结果的影响。
全国各地建筑含钢量及钢筋含量指标(精)
全国各地建筑含钢量及钢筋含量指标(参考)含钢量,又称单位面积钢筋含量,以工程中钢筋总量除以建筑面积得来。
含钢量和工程造价息息相关,其指标更是考核设计水平和成本控制的绩效。
相传万科的24层建筑含钢量仅仅为43.5kg/平方,其造价控制可见一斑。
下面是全国各地的含钢量,供大家参考。
1、北京某二十二层住宅楼全现浇剪力墙满堂基础,地下2层,地上22层,檐高62.6米,一类工程,钢筋88.78/平米。
2、30层左右的一般的就是80.00公斤/平米3、江苏扬州地区多层砖混住宅一般在30左右,多层框架一般在45左右,短肢剪力墙小高层住宅一般在60~70。
4、北京某工程地上三幢二十四和二十六层办公楼全现浇框架结构满堂基础,地下3层三幛连体带车库人防,地上24/26层,檐高76.8米一类工程,钢筋132.22/平米。
基础底板主楼厚度2000mm,其他1800~800厚5、乌鲁木齐市某高层住宅楼,剪力墙结构,地下一层,地上18层,筏板基础,檐高54.6米。
每平方米含钢量64.57公斤6、乌鲁木齐市某综合楼,框架结构,地下一层,地上九层,筏板基础,檐高42.9,有部分钢骨柱、钢绞线。
每平方米含钢量131.28公斤(含钢骨柱及钢绞线)。
施工期2005年至2007年。
该工程因业主要求的大开间和不设一片剪力墙的要求,含钢量交高。
7、乌鲁木齐市某地下车库,地下一层,框架结构,筏基加独立基础。
每平方米含钢量148.58公斤。
施工期2004年至2005年。
8、其实含钢量不能一概而论,不同的结构,甚至不同的设计人员设计出的含钢量都不相同,一般来说,广东多层厂房每平方米含钢量是70公斤9、山东济南某项目小高层(地上11层、地下1层,满堂基础,剪力墙结构)单方钢筋49KG,多层(砖混结构)单方钢筋29KG10、北京某工程地上二幢二十四和12层住宅楼及C1地下车库全现浇筏板基础,地下2层二幛连体带车库人防,钢筋132.22/平米。
基础底板厚度600~800厚。
钢筋含量控制措施与含钢量限额
钢筋含量控制措施与含钢量限额钢筋是三大材中总价值最大的一项成本,因此控制含钢量成了成本控制的重中之重,今天就向你分享恒大.万达两巨头的钢筋含量控制标准:第一部分:标杆企业钢筋含量控制措施1、建筑方案的早期协作从方案设计开始结构设计工程师应尽早参与到方案设计中,要在平面布置、立面造型、柱网尺寸等方面提出结构设计工程师的建议和要求,以求在后期的施工图设计中为降低结构用钢量掌握主动权。
方案设计应该控制以下要点:(建筑物的体量,包括平面尺寸,柱网尺寸,层高,总高度等因素,决定了结构的形式,因而也就决定了结构的造价范围。
)1.1 建筑平面布置上力求方正,尽量避免出现平面不规则,控制平面长宽比,房间(板块)分隔不要相差太大。
(尽量避免出现平面不规则,这就可以少布置或不需要布置抗扭构件来降低钢筋的使用量; 控制平面长宽比:平面长宽比较大的建筑物,由于两主轴方向的整体刚度相差甚远,在水平力作用下,两向构件受力的不均匀性造成配筋不均,增加钢筋用量。
房间(板块)分隔不要相差太大,相邻板块相差越大会导致计算负筋增大。
)1.2 建筑物的体型规整,结构的侧向刚度和水平承载力沿高度宜均匀变化,层高相差不要太大。
(避免因为层间刚度比不满足规范要求而增加抗侧力构件,从而提高钢筋用量)注:以上2.1、2.2条可参照按《抗规》《高混规》相关条款。
1.3立面上尽量少作一些通过钢筋累积起来的复杂构架、外凸较大的线条大样等。
(对抗震及提高承载力没有任何帮助而只会提高钢筋用量的构件建议建筑通过配色或者简约的线条来实现建筑物的美观。
或者通过设计一些二次装修的玻璃幕墙、玻璃顶棚、钢结构网架来完善建筑的功能和保持造型的新颖)1.4 采暖、通风、给排水、电力及建筑物的竖向运输设备等服务设施对结构设计在某些情况下也会有重大影响。
2 结构布置2.1 合理选择结构体系,高烈度区可采用“隔震”“耗能减震”技术。
(应根据建筑平面布置、竖向布置和使用功能要求合理选择结构体系,如美国纽约102层的帝国大厦采用的是框架-剪力墙体系,用钢量为206 kg/m2;而芝加哥110层的西尔斯大厦,采用束筒体系,用钢量仅161kg/m2,比帝国大厦降低了20%。
建筑含筋量限额
——
7
高层酒店式公寓
28层H=90米
65~70
0.38~0.42
8
别墅混凝土用量和用筋量介于
多层砌体住宅和高层11~12层之间
注:以上数据按抗震7度区规则结构设计。
二、新规范统计数据
序号
度数
结构型式
钢筋含量kg/m2
砼含量
m3/m2
备注
1~65
——
剪力墙
65~70
——
2
7度
框架
45~50
——
框剪
55~60
——
剪力墙
65~70
——
3
6度
框架
35~40
——
框剪
40~45
——
剪力墙
55~60
——
注:以上均为二类场地,可以根据实际情况考虑1.1的浮动系数。
注:每平方米的钢筋含量与结构类型、抗震等级、建筑场地类别等很多因素有关,另外:
1、与钢筋等级有关:三级钢较省量;
一、旧规范统计数据
序号
结构型式
钢筋含量kg/m2
砼含量
m3/m2
备注
1
多层砌体住宅
30
0.3~0.33
2
多层框架
38~42
0.33~0.35
3
小高层11~12层
50~52
0.35
4
高层17~18层
54~60
0.36
5
高层30层H=94米
65~75
0.42~0.47
6
框架高层住宅标准层
60
——
框架住宅转换层
2、新的钢筋混凝土设计规范(2010版)实施后钢筋含量将大幅提高,钢筋量平均提高15%(斜截面提高25%,抗震规范提高20%);
建筑结构设计中含钢量的控制措施
验收管理
严格进行结构验收,对不符合要求的部位及时整改,确保结构安全。
材料选用与采购管理
材料选用
根据设计要求和规范标准,选用合适的钢筋材料,如HRB400E、 HRB500E等高强度钢筋。
采购管理
建立规范的采购流程,选择信誉良好的供应商,确保钢筋质量和供 应及时。
库存管理
合理安排钢筋库存,避免积压和浪费,降低库存成本。
随着新技术和新材料的不断涌现,未来建筑结构 设计中将有更多选择,含钢量控制将更加灵活和 多样化。
智能化和数字化技术的应用
智能化和数字化技术的应用将进一步提高建筑结 构设计的精度和效率,有助于实现更严格的含钢 量控制。
06
结论与展望
研究成果总结
含钢量控制措施的有效性
本研究通过提出一系列含钢量控制措施,有 效地降低了建筑结构设计的含钢量,提高了 建筑的经济性和环保性。
精细化设计
通过精细化设计,减少不必要的构件和连接,从而降低含钢量。
标准化和模块化
采用标准化的构件和连接方式,提高施工效率,同时降低含钢量。
未来发展趋势预测
1 2 3
绿色建筑和可持续发展
随着绿色建筑和可持续发展的理念逐渐普及,未 来建筑结构设计中将更加注重环保和节能,含钢 量控制将更加严格。
新技术和新材料的应用
加强实践应用研究
应加强含钢量控制措施在实践中的应用研究,以验证其实际效果和 经济效益。
探索新的优化技术
可以探索新的结构优化技术和方法,进一步提高含钢量控制的效果, 为建筑结构设计提供更加经济、环保的方案。
THANKS
谢谢您的观看
结构优化设计
通过合理的结构设计和优化,本研究成功地减少了 钢材的使用量,同时保持了结构的安全性和稳定性 。
控制钢筋混凝土结构含钢量的一些措施
控制钢筋混凝土结构含钢量的一些措施1.合理设计结构:在结构设计过程中,应根据结构的受力要求、荷载情况、使用寿命等因素,合理确定结构的截面形状、尺寸和受力构造。
通过优化设计,使结构在满足强度和刚度要求的前提下,尽可能减小截面尺寸,减少钢筋的使用量。
2.选用适当的材料:在选材过程中,应选择高强度、高性能的钢材和混凝土。
高强度钢材能够满足更高的受力要求,减少钢筋的使用量。
同时,高性能混凝土具有较高的抗压、抗弯和抗裂性能,可以减小截面的尺寸,从而减少钢筋的使用量。
3.使用预应力设计:预应力设计是一种通过施加预先应力,来抵消结构在使用过程中的受力产生的应力的设计方法。
通过适当施加预应力,可以减小混凝土结构的活载应力和变形,减少钢筋的使用量。
4.利用合理的构造形式和节点处理:在结构的构造形式和节点处理上,应采用合理的布置和连接方式,使结构形成比较均匀的受力分布。
合理的布置和连接可以增加结构的刚度和强度,减小局部应力集中,减少钢筋的使用量。
5.加强质量控制:在施工过程中,应加强对混凝土的配制和浇筑、钢筋的加工和安装等环节的质量控制。
通过严格控制施工质量,可以减少材料浪费和缺陷,减小钢筋的使用量。
6.善用新技术和材料:随着科学技术的不断发展,新的技术和材料不断涌现,可以为控制钢筋混凝土结构的含钢量提供新的思路和手段。
如高效的施工设备、纤维增强复合材料等,能够提高施工效率和质量,减少钢筋的使用量。
7.引入计算机辅助设计和分析:利用计算机辅助设计和分析软件,可以更加准确地进行结构的设计和分析。
通过仿真和优化计算,进一步减小钢筋的使用量。
综上所述,控制钢筋混凝土结构含钢量的措施有很多,需要综合考虑结构的特点、使用要求和经济性等因素。
通过合理设计结构、选用适当材料、利用预应力设计、合理构造形式和节点处理、加强质量控制、善用新技术和材料、引入计算机辅助设计和分析等措施,可以有效地减小钢筋的使用量,提高结构的质量、安全性和经济性。
钢筋混凝土结构含钢量的控制措施
浅谈钢筋混凝土结构含钢量的控制措施摘要:随着社会的发展与进步,重视钢筋混凝土结构含钢量对于现实生活中具有重要的意义。
本文主要介绍钢筋混凝土结构含钢量的控制措施的有关内容。
关键词钢筋混凝土结构;含钢量;因素;控制措施;中图分类号:tu375文献标识码: a 文章编号:引言如何在满足安全可靠的前提下,尽量减小用钢量,是现阶段设计人员需要面对的问题。
首先需要明确的是,结构方案的合理性和规则性是决定结构体系含钢量的首要因素。
一、影响含钢量的因素1.1 自然条件处在地震设防烈度等级高或者风压大的地区, 含钢量高, 反之较低。
在气候恶劣、温差变化剧烈的地区, 为抵抗温度应力, 增加抗拉性能优良的钢筋配置,也是工程师常用的办法。
建筑场地土质差, 浅层土承载力低, 持力层埋深大时, 需要采用桩基础或很厚的钢筋混凝土筏板, 含钢量自然大。
1.2 政策法规为了增强结构的耐久性而需多用一些钢材应属合理使用, 为了增强延性和防倒塌能力, 还要合理增大构造用钢量。
新修订的规范对非抗震结构中受弯、偏心受拉和轴心受拉构件中的受拉纵向钢筋最小配筋率改用特征值表达式和下限值相结合的取值方法, 使其取值水准适度提高; 对抗震框架梁受拉纵向钢筋最小配筋率增加特征值表达式, 适度提高了其在混凝土强度等级偏高情况下的取值; 适度提高了非抗震受压构件和抗震框架柱的纵向钢筋最小配筋率取值; 新增了基础底板最小配筋率的取值规定。
1.3 设计参数建筑专业的设计对含钢量影响最大的一个方面,是建筑物的规则性, 具体体现在开间、进深、层高、平面形状的凹凸、竖向立面的缩进悬挑等等。
如果一个总面积不大的房子, 开间、进深、层高各不相同, 平面立面多有变化, 其含钢量必然很大, 这也是一般公共建筑(剧院、体育馆等) 比同等面积的住宅办公楼含钢量大一两倍的原因。
此外, 对于工业厂房, 影响含钢量的设计参数则是厂房的跨度、高度、柱距、吊车吨位和楼面荷载。
结构设计最重要的一点是结构方案和选型, 要想在现有建筑方案的基础上降低含钢量, 必须进行多方案比较。
全国各地建筑含钢量及钢筋含量指标(精)
全国各地建筑含钢量及钢筋含量指标(参考)含钢量,又称单位面积钢筋含量,以工程中钢筋总量除以建筑面积得来。
含钢量和工程造价息息相关,其指标更是考核设计水平和成本控制的绩效。
相传万科的24层建筑含钢量仅仅为43.5kg/平方,其造价控制可见一斑。
下面是全国各地的含钢量,供大家参考。
1、北京某二十二层住宅楼全现浇剪力墙满堂基础,地下2层,地上22层,檐高62.6米,一类工程,钢筋88.78/平米。
2、30层左右的一般的就是80.00公斤/平米3、江苏扬州地区多层砖混住宅一般在30左右,多层框架一般在45左右,短肢剪力墙小高层住宅一般在60~70。
4、北京某工程地上三幢二十四和二十六层办公楼全现浇框架结构满堂基础,地下3层三幛连体带车库人防,地上24/26层,檐高76.8米一类工程,钢筋132.22/平米。
基础底板主楼厚度2000mm,其他1800~800厚5、乌鲁木齐市某高层住宅楼,剪力墙结构,地下一层,地上18层,筏板基础,檐高54.6米。
每平方米含钢量64.57公斤6、乌鲁木齐市某综合楼,框架结构,地下一层,地上九层,筏板基础,檐高42.9,有部分钢骨柱、钢绞线。
每平方米含钢量131.28公斤(含钢骨柱及钢绞线)。
施工期2005年至2007年。
该工程因业主要求的大开间和不设一片剪力墙的要求,含钢量交高。
7、乌鲁木齐市某地下车库,地下一层,框架结构,筏基加独立基础。
每平方米含钢量148.58公斤。
施工期2004年至2005年。
8、其实含钢量不能一概而论,不同的结构,甚至不同的设计人员设计出的含钢量都不相同,一般来说,广东多层厂房每平方米含钢量是70公斤9、山东济南某项目小高层(地上11层、地下1层,满堂基础,剪力墙结构)单方钢筋49KG,多层(砖混结构)单方钢筋29KG10、北京某工程地上二幢二十四和12层住宅楼及C1地下车库全现浇筏板基础,地下2层二幛连体带车库人防,钢筋132.22/平米。
基础底板厚度600~800厚。
全国各地建筑含钢量及其钢筋含量计划指标
全国各地建筑含钢量及其钢筋含量计划指标
一、全国各地建筑钢量及其钢筋含量计划指标
1、全国各地建筑钢量指标
(1)全国各地建筑钢量指标:每个单位新建建筑用钢比重应达到1.1~1.5kg/m3,抗震钢量指标应按抗震设计规范加以考虑。
(2)全国各地建筑中所用钢的产地原则上应为我国本土生产。
(3)我国建筑设计规范和结构技术标准对于各类厂家产品的质量要求均设有严格的质量要求。
2、全国各地钢筋含量指标
(1)全国各地钢筋含量指标:混凝土构件中钢筋的含量应满足《混凝土结构设计规范》的有关要求,其中每立方米的混凝土中加入钢筋数量不宜少于4.0kg。
(2)各地钢筋的原材料及正机规格应符合《混凝土结构设计规范》的有关要求。
(3)钢筋的抗拉断力及其他性能要求应符合国家标准的相关要求,同时应补充钢筋均匀分布在混凝土中的要求,以保证混凝土结构的稳定性和刚性。
(4)钢筋本身的表面应无弯曲、折痕、锈蚀等缺陷,部件的连接处不得有折断现象,热处理时应采用热处理规范指定的温度及时间。
(5)经过热处理的钢筋应经过液体检测,确保其表面无孔洞及锈蚀现象。
建筑结构设计中含钢量的控制措施
建筑结构设计中含钢量的控制措施
建筑结构设计中的含藏量的控制,是许多建筑项目中非常重要的部分,因此必须采取
有效的控制措施。
首先,在建筑结构设计阶段要重视概念设计,建立起正确的含钢量控制观念。
要在初
步设计中合理选择钢占比,不低于规范要求,以免影响施工结构安全,也不要太高,不要
影响建筑的经济性。
其次,在设计过程中,应注重分析力学问题,适当松弛结构设计的要求以控制钢的量。
在设计中不仅要考虑框架的整体稳定性,通过改变框架的插穿形式等处理方法,控制钢成
型材的含量。
此外,还可以采取创新性技术,如形状记忆合金杆构件等,以减少结构复杂度,减少
钢量。
最后,在建筑施工过程中,必须严格对含钢量进行实时监控,采用形状与尺寸测量、
材料质量检验等技术方法,确保含钢量在控制范围之内。
综上所述,建筑结构设计中的含钢量的控制,是保障项目安全及降低施工成本的重要
因素之一。
因此,要采取有效的控制措施,按照有效的程序,确保建筑结构设计符合规范
要求,建筑项目的实施顺利。
措施钢筋的含量
措施钢筋的含量引言在建筑工程中,措施钢筋是一种十分重要的材料,用于加强和增加混凝土结构的强度与稳定性。
因此,正确计算和确定措施钢筋的含量对于保证工程质量和安全具有至关重要的作用。
本文将介绍措施钢筋的概念、计算方法以及相关注意事项。
控制原则在进行措施钢筋的计算之前,我们需要了解控制原则。
措施钢筋的含量应该符合以下几个原则:1.符合设计要求:措施钢筋的含量应根据建筑设计要求进行计算,以满足强度和稳定性的要求。
2.合理分配:措施钢筋应按照结构的受力特点和布置要求进行合理分配,以确保力的传递和均匀分布。
3.经济可行:在满足工程设计要求的前提下,应尽量减少措施钢筋的使用量,降低工程造价。
计算方法措施钢筋的计算方法主要有两种:按照最小面积计算和按照最小含量计算。
最小面积计算最小面积计算方法是根据结构受力特点和设计要求,确定措施钢筋的最小截面面积,然后按照已知的钢筋规格计算措施钢筋的数量。
1.确定最小截面面积:根据结构的受力特点和设计要求,在每个截面上计算措施钢筋的最小截面面积。
这个面积通常由建筑设计师或结构工程师确定。
2.确定钢筋规格:根据已知的最小截面面积,选择合适的钢筋规格进行计算。
钢筋规格通常以直径表示,如:φ12、φ16等。
3.计算措施钢筋的数量:根据已知的最小截面面积和钢筋规格,计算措施钢筋的数量。
计算公式如下:钢筋数量 = 最小截面面积/ (π * (钢筋直径 / 2)^2 )最小含量计算最小含量计算方法是根据结构的受力特点和设计要求,确定措施钢筋的最小含量,然后根据已知的钢筋规格计算措施钢筋的数量。
1.确定最小含量:根据结构的受力特点和设计要求,确定措施钢筋的最小含量。
通常,最小含量是以单位长度或单位面积表示的,例如:每米长度的钢筋含量、每平方米面积的钢筋含量等。
2.确定钢筋规格:根据已知的最小含量,选择合适的钢筋规格进行计算。
3.计算措施钢筋的数量:根据已知的最小含量和钢筋规格,计算措施钢筋的数量。
建筑结构设计中含钢量的控制措施
建筑结构设计中含钢量的控制措施建筑结构设计中含钢量的控制措施随着经济的发展,城市化进程加快,建筑业发展迅速,建筑结构设计成为了城市建设中不可缺少的一环。
在建筑结构设计中,钢材作为一种重要的材料,被广泛应用于框架结构、支撑结构、悬挂结构、墙板结构等多种结构中,并且在现代建筑中使用越来越广泛,极大地推动了建筑框架结构的发展。
然而,过度使用钢材会带来高昂成本和环境问题,因此建筑结构设计中含钢量的控制成为了必要的措施之一。
本文将就建筑结构设计中含钢量的控制措施进行探讨。
一、合理选用钢材建筑结构设计中,选择合适的钢材非常重要。
在钢材品种上应选择满足强度、延展性、耐腐蚀性、可焊性等要求的钢材,不应过度追求高强度、高韧性而导致材料成本过高。
在建筑结构设计中,应该采用节流型设计,尽量减少材料的浪费,根据建筑设计的需要,选用合理的钢材规格和型号,使得钢材的重量和数量得到最佳控制。
二、优化结构设计方案建筑结构设计应该尽可能地优化各部分的设计方案,以减少钢材的使用。
其中,可考虑采用大跨度桥架等新型结构设计方案,同时在结构设计中,要合理布置各种构件,使钢材得到更合理的利用,减少无用材料,将可能的大悬挂拉杆缩短等。
以降低整个建筑工程含钢量,实现建筑结构设计中含钢量的控制。
三、加强施工质量控制在钢结构施工过程中,可采用集中预拌混凝土、预制材料和压铸铸件等方式,尽量减少现场制造和切割工作。
同时,加强材料的质量管控,避免材料浪费。
加强现场施工组织和管理,做好施工过程中现场监督、验收等工作,增强施工质量控制能力,以避免材料浪费和误切误用等造成的财经损失。
四、推广新材料的应用探索推广新型建筑材料的应用,例如高性能混凝土、高性能钢材、工程塑料等新型材料的应用,可有效地降低建筑结构设计中的含钢量。
其中,高性能混凝土作为一种高强、高耐久的建筑材料,不仅可以减少钢材的使用量,同时还有助于保护环境和节约资源。
因此,通过推广高性能混凝土等新型材料的应用,可以有效地降低建筑结构设计中的含钢量。
钢筋混凝土结构含钢量的一般范围和合理控制方法
第37卷第7期建 筑 结 构2007年7月钢筋混凝土结构含钢量的一般范围和合理控制方法谭泽先(中机国际工程设计研究院 长沙410007)[提要] 综合多种统计数据,编制出各类钢筋混凝土结构含钢量的一般范围表,分析影响含钢量的因素,提出可通过优化设计方案,采取合理的基础形式,采用HR B400级钢筋等措施来降低含钢量,可供土建有关人员参考。
[关键词] 含钢量 钢筋 造价 建筑 结构 设计G eneral Scope and Control Method of Steel Content of Building StructureΠT an Z exian(China Machinery InternationalEngineering Design&Research Institute,Changsha410007,China)Abstract:C om prehending many kinds of statistics data,the tables of general scope including steel quantity of all kinds of building structure have been w orked out.The in fluence factors of steel content are analyzed and the proposes of reducing the steel content are put forward for relevant civil construction designers reference only.K eyw ords:steel content;rein forcing steel;cost;architecture;structure;design1 含钢量的一般范围实际工程含钢量的统计数据大多为20世纪90年代以前的。
建筑工程结构含钢量混凝土含量限额设计指标
建筑工程结构含钢量混凝土含量限额设计指标建筑工程的结构设计是指建筑物主体结构的设计,其中包括了各种结构材料的使用量限额。
其中,钢材和混凝土是建筑工程中最常用的结构材料之一、下面我将介绍一些关于建筑工程结构含钢量和混凝土含量限额的设计指标。
首先,关于钢材的使用量限额。
钢材在建筑工程中的应用主要包括钢筋和钢结构。
钢筋是混凝土中常用的加强材料,其主要作用是增强混凝土的抗拉强度和抗剪强度。
在结构设计中,钢筋的使用量需要根据建筑物的结构类型、荷载情况和使用要求等进行合理确定。
根据相关规范,建筑工程中的结构含钢量应满足以下指标:1.钢筋的使用量应符合结构设计的要求,保证结构的强度和稳定性;2.钢筋的保护层厚度应满足规范要求,保护钢筋免受腐蚀和损坏;3.钢筋的连接方式和布置应符合规范要求,保证结构的连接可靠性和稳定性;4.钢结构的使用量应满足结构设计的要求,保证结构的强度和稳定性。
其次,关于混凝土的使用量限额。
混凝土是建筑工程中最常用的结构材料之一,其主要作用是提供结构的强度和稳定性。
在结构设计中,混凝土的使用量需要根据建筑物的结构类型、荷载情况和使用要求等进行合理确定。
根据相关规范,建筑工程中的混凝土含量应满足以下指标:1.混凝土的配合比应满足结构设计的要求,保证混凝土的强度和耐久性;2.混凝土的浇筑高度和质量应符合规范要求,保证混凝土的质量和施工质量;3.混凝土的抗裂性和抗渗性应符合规范要求,保证混凝土的使用寿命和结构的稳定性;4.混凝土的养护期应符合规范要求,保证混凝土的强度和耐久性。
总结起来,建筑工程中的结构含钢量和混凝土含量的设计指标主要包括了材料的使用量、保护和连接方式、强度和耐久性等要求。
这些指标的合理设计和实施可以保证建筑物的结构安全性和使用寿命。
因此,在建筑工程的结构设计过程中,需要根据相关规范和要求,合理确定结构含钢量和混凝土含量的限额,并加强质量控制和工程监管,确保建筑工程的结构安全和可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢筋含量控制措施与含钢量限额钢筋是三大材中总价值最大的一项成本,因此控制含钢量成了成本控制的重中之重,今天就向你分享恒大.万达两巨头的钢筋含量控制标准:第一部分:标杆企业钢筋含量控制措施1、建筑方案的早期协作从方案设计开始结构设计工程师应尽早参与到方案设计中,要在平面布置、立面造型、柱网尺寸等方面提出结构设计工程师的建议和要求,以求在后期的施工图设计中为降低结构用钢量掌握主动权。
方案设计应该控制以下要点:(建筑物的体量,包括平面尺寸,柱网尺寸,层高,总高度等因素,决定了结构的形式,因而也就决定了结构的造价范围。
)1.1 建筑平面布置上力求方正,尽量避免出现平面不规则,控制平面长宽比,房间(板块)分隔不要相差太大。
(尽量避免出现平面不规则,这就可以少布置或不需要布置抗扭构件来降低钢筋的使用量; 控制平面长宽比:平面长宽比较大的建筑物,由于两主轴方向的整体刚度相差甚远,在水平力作用下,两向构件受力的不均匀性造成配筋不均,增加钢筋用量。
房间(板块)分隔不要相差太大,相邻板块相差越大会导致计算负筋增大。
)1.2 建筑物的体型规整,结构的侧向刚度和水平承载力沿高度宜均匀变化,层高相差不要太大。
(避免因为层间刚度比不满足规范要求而增加抗侧力构件,从而提高钢筋用量)注:以上2.1、2.2条可参照按《抗规》《高混规》相关条款。
1.3立面上尽量少作一些通过钢筋累积起来的复杂构架、外凸较大的线条大样等。
(对抗震及提高承载力没有任何帮助而只会提高钢筋用量的构件建议建筑通过配色或者简约的线条来实现建筑物的美观。
或者通过设计一些二次装修的玻璃幕墙、玻璃顶棚、钢结构网架来完善建筑的功能和保持造型的新颖)1.4 采暖、通风、给排水、电力及建筑物的竖向运输设备等服务设施对结构设计在某些情况下也会有重大影响。
2 结构布置2.1 合理选择结构体系,高烈度区可采用“隔震”“耗能减震”技术。
(应根据建筑平面布置、竖向布置和使用功能要求合理选择结构体系,如美国纽约102层的帝国大厦采用的是框架-剪力墙体系,用钢量为206 kg/m2;而芝加哥110层的西尔斯大厦,采用束筒体系,用钢量仅161kg/m2,比帝国大厦降低了20%。
)2.2 结构布置影响建筑物结构用钢量的因素,首先是建筑物的体型(平面长度尺寸及长宽比、竖向高宽比、立面形状等),其次是柱网尺寸、层高以及主要抗侧力构件所在位置等。
2.2.1控制平面长度尺寸,合理设缝。
(即结构单元是否超长当建筑物较长,而结构又不设永久缝时就成为超长建筑。
超长建筑由于必须考虑混凝土的收缩应力和温度应力,它相对于非超长建筑(主要对待的仅是荷载产生的应力),其单位面积用钢量显然要多些)2.2.2控制平面长宽比。
(平面长宽比较大的建筑物,不论其是否超长,由于两主轴方向的动力特性(也即整体刚度)相差甚远,在水平力(风力或地震)作用下,两向构件受力的不均匀性造成配筋不均。
使得其单位面积用钢量相对于平面长宽比接近1.0的建筑物要多,这是不言而喻的。
)2.2.3 控制竖向高宽比。
(这主要针对高层建筑而言,为了保证结构的整体稳定并控制结构的侧向位移,势必要设置较刚强的抗侧力构件来提高结构的侧向刚度,这类构件的增多自然使得用钢量增多。
)2.2.4竖向体型应规则和均匀。
(即外挑或内收程度以及竖向刚度有否突变等。
如侧向刚度从下到上逐渐均匀变化,则其用钢量就较少,否则将增多。
较典型的、有竖向刚度突变的就是设置转换层的高层建筑。
)2.2.5平面形状应规则。
(若平面形状较规则,凸凹少则用钢量就少,反之则较多,平面形状是否规则不仅决定了用钢量的多少,而且还可以衡量结构抗震性能的优劣,从这点分析得知用钢量节约的结构其抗震性能未必就低。
)2.2.6柱网尺寸应均匀。
(包括柱网绝对尺寸及其疏密程度。
它直接影响到梁板楼盖的结构布置。
一般而言,柱网大的楼盖用钢量较多,反之虽则较少但同时因柱数增多而使柱构件用钢量增加,其中柱端及梁柱节点区内加密箍筋的增加量几乎占全部增加量的50%。
柱网尺寸较均匀一致,不仅使结构(包括柱和梁)受力合理,而且其用钢量要比柱网疏密不一的要节省。
)2.2.7控制层高。
(对于高层建筑而言。
层高与用钢量之间很难确定某种关系,换言之不能肯定层高对用钢量的影响究竟有多大。
就柱的箍筋而言总高度相同的建筑物,层高较小即层数较多,其配筋量反而较多,但按单位面积摊销后其用钢量可能反而更少。
至于跨层柱,由于其受力的复杂性以及截面较大,用钢量一般比正常层高的柱要多。
在满足建筑功能的前提下,适当降低层高,会使工程造价降低。
有资料表明:层高每下降10厘米,工程造价降低1%左右,墙体材料可节约10%左右。
)2.2.8抗侧力构件位置。
(刚度中心与质量中心相重合或靠近,或者抗侧力构件所在位置能产生较大的抗扭刚度,结构的抗扭效应小,因而结构整体用钢量就少,反之则多。
)2.3 采用新型楼盖体系(楼盖体系是建筑结构的基本组成部分之一,其重量占整个房屋重量的22%左右。
楼盖结构多次重复使用,其累计质量占建筑总质量的很大比例。
降低楼盖质量,可大幅度减轻建筑总质量,从而减轻地震作用;同时,还可降低墙、柱及基础的造价。
降低楼盖体系自身高度,不仅可减少层高,节约建筑空间,还可降低围护结构、管线材料及施工机具的费用。
目前,国内外常见的钢筋混凝土楼盖体系有如下几种:①现浇梁板式楼盖;②井字楼盖;③无梁楼盖;④预应力框架扁梁密肋楼盖;⑤无粘结预应力无梁楼盖。
钢筋用量最少的是无粘结预应力无梁楼盖、其次是预应力框架扁梁密肋楼盖,钢筋用量最多的是井字楼盖和现浇梁板式楼盖。
近年出现了许多新研制的楼盖系统,钢筋用量减少10%~30%。
)(当前流行的豪宅大面积客厅,其空间面积达40~60 m2,甚至更大,如此板块采用普通混凝土平板,即使施加了预应力,其用钢量都会较多,其主要原因是板的跨度和自重均较大。
大跨度由使用功能决定而无法改变,要节省用钢量,只能往“自重”上考虑,即改变楼板的结构形式。
采用先进技术的现浇双向空心楼板、加轻质填充块的双向密肋楼板都是可以考虑的途径。
)2.4梁布置时不必每幅墙下都布置梁(有时一些小板块上的隔墙,即使把隔墙荷载等效为板面荷载,其计算结果也是构造配筋。
当板跨小、布梁多时使用钢量肯定会增多,而且可能使楼面荷载多次传递,造成受力不合理。
)2.5 计算参数1 结构抗震等级和柱的单双偏压计算模式等设计参数对含钢率有较大影响,应认真结合规范和具体工程情况进行选择。
2 计算振型数应合理(用来判断参与计算振型数是否够的重要概念是有效质量系数,《高层建筑混凝土结构技术规程》第5.1.13条规定B级高度高层建筑结构有效质量系数应不小于0.9,《建筑抗震设计规范》第5.2.2条条文说明中建议有效质量系数应不小于0.9。
一般来讲当有效质量系数大于0.9时,基底剪力误差小于5%,所以满足规范要求即可没有必要过多增加振型数,使计算用时增加和计算书增厚。
)3 周期折减系数(周期折减系数的取值直接影响到竖向构件的配筋,如果盲目折减,势必造成结构刚度过大,吸收的地震力也增大,最后柱配筋随之增大。
)4 偶然偏心(《高规》规定,高层建筑在计算位移比时应考虑偶然偏心的影响、计算单项地震作用时应考虑偶然偏心的影响。
根据规范要求高层结构在计算时均应考虑偶然偏心的影响,考虑偶然偏心后结构墙及梁用钢量将增加3%左右。
)5双向地震扭转效应(《高规》规定质量与刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响。
在实际工程中要求在刚性楼板假定及偶然偏心荷载作用下位移比不小于1.2时应考虑双向地震作用。
考虑双向地震作用后结构配筋一般增加5%~8%,单构件最大可能增加1倍左右,可见双向地震作用对结构用钢量影响较大。
控制高层结构位移比不超标是是否考虑双向地震作用的关键,也是控制钢筋用量的关键环节。
)6 斜交抗侧力构件方向的附加地震作用(《抗震规范》第5.1.1.2条规定,有斜交抗侧力构件的结构,当相交角度大于15o时应分别计算各抗侧力构件方向的水平地震作用。
考虑多方向地震对构件配筋有明显的影响,配筋平均增加5%左右。
)3 荷载取值3.1活载应根据建筑功能严格按《建筑结构荷载规范》GB50009和《全国民用建筑工程设计技术措施》取值,不要擅自放大,对于一些特殊功能的建筑(规范未做规定的),应会同甲方共同测算活荷载的取值或按《建筑结构荷载规范》条文说明4.1.1条酌情取值。
对于《建筑结构荷载规范》第4.1.2条可折减的项目,应严格按所列系数折减,尤其是消防车活载。
对工业建筑,原则上应按工艺设计中设备的位置确定活载取值,活载不折减。
如果按GB50009—2001附录C取值,活载也不折减,但应分别对板、次梁及墙柱基础取不同值进行分步计算,取相应的计算结果对各构件配筋。
动力荷载应成乘以相应的动力放大系数。
3.2恒载可以由构件和装修的尺寸和材料的重量直接计算,材料的自重可采用《建筑结构荷载规范》。
恒荷载计算应当准确。
在计算填充墙线荷载应扣除上一层梁高及门窗洞口部分重量。
(建筑结构的恒载在计算时要充分考虑使用功能。
目前房地产开发前景广阔,但是开发楼盘的使用功能往往是一个未知数,既就是商品住宅也要考虑装修面层的做法,水泥地面、水磨石、地板砖(湿铺:水泥沙浆粘贴;干铺:细石混凝土加水泥浆粘贴)、木地板、大理石、花岗岩等等应有尽有,怎样选定合理的荷载取值要充分的了解市场需要,不能盲目选用大值,这样才能使设计安全可靠经济适用。
)3.3建筑结构的水平荷载主要是风荷载和地震作用(工业建筑中还有吊车荷载、动力荷载等),计算依据是《建筑结构荷载规范》和《建筑结构抗震设计规范》。
3.4 在建筑结构计算时要合理的考虑使用荷载组合,使得使用荷载合理有效,结构在设计合理使用年限内处于安全状态。
3.5 墙体材料:应采用轻质材料,以减轻建筑自重。
(房屋越高,建筑自重越大,引起的水平地震作用越大,对竖向构件的地基造成的压力也越大,从而带来一连串的不利影响。
因此,目前在高层建筑中,已大量推广应用轻型隔墙、轻质外墙板,以及采用陶粒、火山渣等为骨料的轻质混凝土,以减轻建筑自重。
这些都能减少结构的用钢量。
隔墙费用占房屋造价的12%左右。
同济大学建筑设计研究院针对一座上海地区正在建造的28层剪力墙结构的高层住宅建筑作了采用石膏板内隔墙系统与传统砖石混凝土墙体系统的造价和经济性比较。
研究表明,在高层住宅建筑中采用轻质石膏板内隔墙体系,主要的土建结构造价(包括楼板、外墙、内墙、梁、基础结构体系等)比传统砖石混凝土体系的土建结构造价降低10%,建筑工程的总造价降低4.27%。
)4、构件设计4.1 板4.1.1 板钢筋应采用高强度钢筋(冷轧带肋,三级钢),合理选择楼板的混凝土强度等级。
(弯构件最小配筋率不应小于0.2和45ft/fy中的较大值,表明提高钢筋的强度可减小配筋率。