人教版八年级数学上册课时练:第十一章 《三角形》 (拔高篇)【答案】

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时练:第十一章《三角形》(拔高篇)

一.选择题

1.如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()

A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC 2.已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为()

A.2cm B.3cm C.5cm D.8cm

3.如图,在△ABC中,AB=AC,∠A=112°,E,F,D分别是AB,AC,BC上的点,且BE=CD,BD=CF,则∠EDF的度数为()

A.30°B.34°C.40°D.56°

4.花花不慎将一块三角形的玻璃打碎成了如图所示的四块(图中所标①、②、③)、④),若要配块与原来大小一样的三角形玻璃,应该带()

A.第①块B.第②块C.第③块D.第④块

5.下列说法:(1)三角形具有稳定性;(2)有两边和一个角分别相等的两个三角形全等(3)三角形的外角和是180°(4)全等三角形的面积相等.其中正确的个数是()A.1个B.2个C.3个D.4个

6.已知△ABC的三个内角三条边长如图所示,则甲、乙、丙三个三角形中,和△ABC全等的图形是()

A.甲和乙B.乙和丙C.只有乙D.只有丙

7.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()

①△AFB≌△AEC;

②BF=CE;

③∠BFC=∠EAF;

④AB=BC.

A.①②③B.①②④C.①②D.①②③④

8.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()

A.7 B.8 C.9 D.10

9.如图,在△ABC中,D是BC上一点,DE⊥AB,DF⊥AC,DE=DF,G是AC上一点,DG∥AB,下列一定正确的是()

①△ADE≌△ADF;②BE=CF;③AG=DG.

A.①②B.①③C.②③D.①②③

10.如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()

A.1 B.2 C.3 D.4

二.填空题

11.如图,在△ABC中,D、E分别是AC,AB上的点,若△ADE≌△BDE≌△BDC,则∠DBC的度数为.

12.在△ABC中,已知∠A=60°,∠ABC的平分线BD与∠ACB的平分线CE相交于点O,∠BOC的平分线交BC于F,则下列说法中正确的是.

①∠BOE=60°,②∠ABD=∠ACE,③OE=OD④BC=BE+CD

13.如图,四边形ABCD的对角线AC、DB交于点E,AB=CD,AC=DB,图中全等的三角形共

有对.

14.如图,AB=AC,AD=AE,点B、D、E在一条直线上,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=度.

15.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是度.(用含α的代数式表示)

三.解答题

16.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求证:AD平分∠BAC;

(2)已知AC=16,DE=4,求△ADC的面积.

17.如图,在△ABC中,∠A=90°,CD平分∠ACB,交AB于点D,过点D作DE⊥BC于点E.(1)求证:△ACD≌△ECD;

(2)若BE=EC,求∠ADE的度数.

18.如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点O,∠BAC=60°.

探究:判断△AEF的形状,并说明理由;

发现:DO与AD之间有怎样的数量关系,请直接写出你的结论,不必说明理由.

19.已知,在△ABC中,AC=BC.分别过A,B点作互相平行的直线AM和BN.过点C的直线分别交直线AM,BN于点D,E.

(1)如图1.若CD=CE.求∠ABE的大小;

(2)如图2.∠ABC=∠DEB=60°.求证:AD+DC=BE.

20.如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.

(1)求证:∠BEC=∠BAF;

(2)判断△AFC的形状并说明理由.

(3)若CD=2,求EF的长.

参考答案一.选择题

1.解:∵∠ABC=∠DCB,BC=CB,

要使得△ABC≌△DCB,

可以添加:∠A=∠D,AB=DC,∠ACB=∠DBC,故选:C.

2.解:∵∠CAD=∠EAD,AD=AD,∠CDA=∠EDA,∴△ADC≌△ADE(ASA),

∴DE=CD,

∵BC=5cm,BD=3cm,

∴CD=2cm,

∴DE=2cm,

故选:A.

3.解:∵AB=AC,∠A=112°,

∴∠B=∠C=34°,

在△BDE和△CFD中,

∴△BDE≌△CFD(SAS),

∴∠BED=∠CDF,∠BDE=∠CFD,

相关文档
最新文档