2020高考数学压轴题汇编圆锥曲线解题技巧《圆锥曲线解题十招全归纳》01223
高中数学圆锥曲线解题的十个大招(适用于2020高考)
1高中数学圆锥曲线解题的十个大招招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k - ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 32。
221212()()AB x x y y =-+-222141k k k -=+212k d k+=222314112k k k k -++=39k =053x =。
【涉及到弦的垂直平分线问题】2这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
高中数学圆锥曲线解题技巧总结
高中数学圆锥曲线解题技巧总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN解圆锥曲线问题的常用方法大全1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。
圆锥曲线解题方法技巧归纳(整理)
圆锥曲线解题方法技巧归纳一、知识储备:1.直线方程的形式(1)直线方程的形式有五种:点斜式、两点式、斜截式、截距式、一般式。
(2 )与直线相关的重要内容(3 )弦长公式直线y kx b 与圆锥曲线两交点 A(x 1,y 1), B(x 2,y 2)间的距离:AB 1 k 2 X 1 X2I ,:(1 k 2 )[(x1 X 2)4x 1X 2]或 AB(若A 点为交点,另一点不在圆锥曲线上,上式仍然成立。
)(4)两条直线的位置关系① l 1 l 2 k 1 k 2 =-1 ② h 〃l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式(三种形式)2 2x y —1(m 0,n 0 且 m n) m n距离式方程:.(x c)2y 2 , (x c)2 y 22a参数方程:x a cos , y bsin (2)、双曲线的方程的形式有两种2 2标准方程:——1(m n 0)m n①倾斜角与斜率k tan , [0,)②点到直线的距离Ax o By 。
C .■ A 2 B 2③夹角公式:tan 1 k 2k 1④两直线距离公式I CT -C S I标准方程:参数方程:u 二atane , y = b⑶、三种圆锥曲线的通径⑹、记住焦半径公式:(1)椭圆焦点在x 轴上时为a ex o ;焦点在y 轴上时为a ey 0 ,可简记为“左加右减,上加下减”。
(2)双曲线焦点在x 轴上时为e|X o | a(3)抛物线焦点在x 轴上时为|X i | $焦点在y 轴上时为|%|(6)、椭圆和双曲线的基本量三角形 二、方法储备 1点差法(中点弦问题)2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立, 消去一个未知数,得到一个二次方程,使用判 别式 0,以及根与系数的关系,代入弦长公式,设曲线上的两点 A(x ,, y 1), B(x 2, y 2), 将这两点代入曲线方程得到 ①②两个式子,然后01 -②,整体消元•母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点椭圆:空;双曲线: a 竺;抛物线:2pa⑷、 圆锥曲线的定义 ⑸、 焦点三角形面积公式:P 在椭圆上时,S F 1PF 2P 在双曲线上时,S F 1PF 2(其中F 1PF 2,cos 卅护b 2cot —2,P F 1?P F 2|P F1设A X i , y i 、B X 2, y2 ,yi 为椭圆专+詈二L ab的弦AB 中点则有x 1 x 2 x 1X 2Vi T =1;两式相减得y 1 y 2 屮 y_K AB =,若有两个字F共线解决之。
2020高考数学必胜秘诀(八)圆锥曲线
2020高考数学必胜秘诀(八)圆锥曲线――概念、方法、题型、易误点及应试技巧总结八、圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视〝括号〞内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的〝绝对值〞与2a <|F 1F 2|不可忽视。
假设2a =|F 1F 2|,那么轨迹是以F 1,F 2为端点的两条射线,假设2a ﹥|F 1F 2|,那么轨迹不存在。
假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。
如〔1〕定点)0,3(),0,3(21F F -,在满足以下条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF 〔答:C 〕;〔2〕方程8=表示的曲线是_____〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且〝点点距为分子、点线距为分母〞,其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如点)0,22(Q 及抛物线42x y =上一动点P 〔x ,y 〕,那么y+|PQ|的最小值是_____〔答:2〕2.圆锥曲线的标准方程〔标准方程是指中心〔顶点〕在原点,坐标轴为对称轴时的标准位置的方程〕:〔1〕椭圆:焦点在x 轴上时12222=+by a x 〔0a b >>〕⇔{cos sin x a y b ϕϕ==〔参数方程,其中ϕ为参数〕,焦点在y 轴上时2222bx a y +=1〔0a b >>〕。
2020高考数学必胜秘诀(八)圆锥曲线
焦点在y 轴上的椭圆,那么 m 的取值范畴是—〔答:(°(谆〕2020高考数学必胜秘诀(八)圆锥曲线――概念、方法、题型、易误点及应试技巧总结八、圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视”括号〃内的限制条件 :椭圆中,与两个定点F ,, F 2的距离的和等于常数 2a ,■ ■ ■J"J- -1-■ ■ ■." ~—- -^-1" ■- ■■■且此常数2a 一定要大于 RF 2,当常数等于FT ?时,轨迹是线段卩汗2,当常数小于FT ?时,无轨迹; 双曲线中,与两定点F 1, F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2I ,定义中的”绝对值'’与2a v |F 1F 2 |不可忽视。
假设2a = |F 1F 2|,那么轨迹是以 F 1, F 2为端点的两条射线, 假设2a > |F 1F 2|,那么轨迹不存在。
假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。
女口〔 1〕定点F 1( 3,0)也(3,0),在满 足以下 条件的平 面上动点P 的轨迹中 是椭圆的是A . PF j |PF 242 2B • |PF ^ |PF 2| 6C • PF 1PF 2 10 D • PF 1 PF 2 12 〔答:C 〕;_匚2〕.方程J (x 6)2 y 2 J (x 6)2 y 2 8表示的曲线是 _________________〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且”点点距为分子、点线距为分母",其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的 2关系,要善于 运用第二定义对它们进行相互转化。
如点Q(2.. 2,0)及抛物线y — 上一动点P 〔x,y 〕,那4么y+|PQ|的最小值是 ______ 〔答:2〕2.圆锥曲线的标准方程 〔标准方程是指中心〔顶点〕在原点,坐标轴为对称轴时的标准位置的方程〕1 I I 12 2 2 2(3, 3)U ( -,2)〕;〔2〕假设x, y R ,且3x 2y 6,那么x y 的最大值是 _____________________ , x y 的最小值是—〔答:后2〕、x 2y 2y 2x 2〔2丨双曲线:焦点在x 轴上:—J=1,焦点在 y 轴上: 土—= 1〔 a 0,b 0〕。
圆锥曲线压轴大题之方法总结(学生版)
圆锥曲线大题常用方法总结一、齐次化构造【例1】(2022届海南高三下检测)已知椭圆()01:2222>>b a by a x E =+的左、右焦点分别为21F F 、,点()1,0-M 是椭圆的一个顶点,21MF F ∆是等腰直角三角形.(1)求椭圆E 的方程;(2)过点M 分别作直线MB MA ,交椭圆于B A 、两点,设两直线的斜率分别为21k k ,,且421=+k k ,求证:直线AB 过定点.【例2】(2024河南一模)已知椭圆()01:2222>>b a by a x E =+的左右焦点分别为21F F 、,其长轴长为6,离心率为e 且31>e ,点D 为E 上一动点,21F DF ∆的面积的最大值为22,过()0,3-P 的直线21l l 、分别与椭圆E 交于B A 、两点(异于点P ),与直线8=x 交于N M 、两点,且N M 、两点的纵坐标之和为11.过坐标原点O 作直线AB 的垂线,垂足为H .(Ⅰ)求椭圆E 的方程;(Ⅱ)问:平面内是否存在定点Q ,使得HQ 为定值?若存在,请求出Q 点坐标;若不存在,请说明理由.【例3】(2022抚顺一模)已知椭圆()01:2222>>b a by a x C =+,若下列四点_____中恰有三点在椭圆C 上.①()()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-23,1,23,1,1,0,1,14321P P P P ;②()()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--222,22,2,1,0,2,24321P P P P .(1)从①②中任选一个条件补充在上面的问题中,并求出椭圆C 的标准方程;(2)在(1)的条件下,设直线l 不经过点2P 且与椭圆C 相交于B A 、两点,直线A P 2与直线B P 2的斜率之和为1-,过坐标原点O 作AB OD ⊥,垂足为D (若直线l 过原点O ,则垂足D 视作与原点O 重合),证明:存在定点Q ,使得DQ 为定值.【例4】(2023隆回一模)已知椭圆()01:2222>>b a by a x C =+的一个焦点与抛物线x y 42=的焦点相同,21F F 、为椭圆的左、右焦点,M 为椭圆上任意一点,21F MF ∆面积的最大值为1.(1)求椭圆C 的标准方程;(2)设不过原点的直线:m kx y +=与椭圆C 交于B A 、两点①若直线2AF 与2BF 的斜率分别为21,k k ,且021=+k k ,求证:直线过定点,并求出该定点的坐标;②若直线l 的斜率是直线OB OA 、斜率的等比中项,求OAB ∆面积的取值范围.【例5】(2022北京朝阳一模)已知双曲线()0,01:2222>>b a by a x C =-的离心率为3,右准线方程为33=x (Ⅰ)求双曲线C 的方程;(Ⅱ)设直线l 是圆222=+y x O :上动点()00,y x P ()000≠y x 处的切线,l 与双曲线C 交于不同的两点B A 、,证明AOB ∠的大小为定值.【例6】(2023岳麓区三模)已知椭圆()01:2222>>b a b y a x C =+过点⎪⎭⎫ ⎝⎛231,A ,其长轴长为4.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线l 分别与椭圆C 交于F E 、两点,若直线AF AE 、的斜率分别为21k k ,,且221=⋅k k .求证:直线l 恒过定点.【例7】(2022长沙模拟)已知椭圆()01:2222>>b a by a x E =+的左顶点为A ,离心率为33=e ,点B 为椭圆E 上一动点,ABO ∆的面积的最大值为26.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线l 分别与椭圆E 交于N M 、两点(异于点A ),以MN 为直径的圆恒过点A .求证:直线l 恒过定点.【例8】(2022⋅新高考全国Ⅰ)已知点()12,A 在双曲线()111:2222>a a y a x C =--上,直线l 与C 交于Q P 、两点,直线AQ AP 、的斜率之和0(Ⅰ)求直线l 的斜率;(Ⅱ)若22tan =∠P AQ ,求P AQ ∆的面积.二、定比点差法【例1】(2023徐州一模)已知椭圆()01:2222>>b a by a x C =+的短轴长为22,离心率为22.(1)求椭圆C 的方程;(2)过点()1,4P 的动直线l 与椭圆C 相交于不同的B A 、两点,在线段AB 上取点Q ,满足PB AQ QB AP ⋅=⋅,证明:点Q 总在某定直线上.【例2】(2020•武昌区一模拟)已知椭圆()01:2222>>b a by a x M =+经过点()2,0-A ,离心率为33.(1)求椭圆M 的方程;(2)经过点()1,0E 且斜率存在的直线l 交椭圆于N Q 、两点,点B 与点Q 关于坐标原点对称.连接AB ,AN .是否存在实数λ,使得对任意直线l ,都有AB AN k k λ=成立?若存在,求出λ的值;若不存在,请说明理由.【例3】(2022昌平一模)已知椭圆()01:2222>>b a by a x E =+的左右焦点分别为21F F 、,点P 为E 上一动点且满足421=+PF PF ,离心率为e ,且21=e .(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线21,PF PF 交椭圆于B A 、两点,A F PF 111λ=,B F PF 222λ=,证明:21λλ+为定值.三、同构转化法【例1】(2019•新课标Ⅲ)已知曲线2:2x y C =,D 为直线21-=y 上的动点,过D 作C 的两条切线,切点分别为B A 、.(1)证明:直线AB 过定点.(2)若以⎪⎭⎫ ⎝⎛250、E 为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.【例2】(2020•浙江)已知抛物线y x C =21:,圆()14:222=-+y x C 的圆心为点M .(Ⅰ)求点M 到抛物线1C 的准线的距离;(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于B A 、两点,若过P M 、两点的直线l 垂直于AB ,求直线l 的方程.【例3】(2018•浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线x y C 4:2=上存在不同的两点B A 、满足PB P A 、的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆()014:22<x y x C =+上的动点,求P AB ∆面积的取值范围.【例4】(2022慈溪市一模)已知抛物线2:ax y C =(a 是常数)过点()2,2-P ,动点⎪⎭⎫ ⎝⎛-21,t D ,过D 作C 的两条切线,切点分别为B A 、.(1)求抛物线C 的焦点坐标和准线方程;(2)当1=t 时,求直线AB 的方程;(3)证明:直线AB 过定点.【例5】(2022荔湾区模拟)已知直线03=+-y x 与圆04:22=+-+m y y x C 相交,截得的弦长为2.(1)求圆C 的方程.(2)过原点O 作圆C 的两条切线,与抛物线2x y =相交于N M 、两点(异于原点).证明:以MN 为直径的圆与圆C 相交.(3)若抛物线2x y =上任意三个不同的点R Q P 、、,满足直线PQ 和PR 都与圆C 相切,判断直线QR 与圆C 的位置关系,并加以证明.【例6】(2019天心区一模)已知椭圆()01:22221>>b a by a x C =+的两个焦点21F F 、,动点P 在椭圆上,且使得o PF F 9021=∠的点P 恰有两个,动点P 到焦点1F 的距离的最大值为22+.(1)求椭圆1C 的方程;(2)如图,以椭圆1C 的长轴为直径作圆2C ,过直线22-=x 上的动点T 作圆2C 的两条切线,设切点分别为B A 、,若直线AB 与椭圆1C 交于不同的两点D C 、,求CDAB 的取值范围.【例7】(2021大同三模)已知抛物线x y 22=的焦点为F ,点P 为抛物线上的动点,点()2,4M 为平面上的定点,点C B 、是y 轴上不同的两点.(1)求PM PF +的最小值,并求此时P 点的坐标;(2)若圆()1122=+-y x 是PBC ∆的内切圆,求PBC ∆的面积的最小值.四、非对称性韦达定理【对称韦达】已知椭圆()01:2222>>b a by a x E =+的左、右顶点分别为B A 、,长轴长为4,离心率为21=e .过右焦点F 的直线l 交椭圆E 于D C ,两点(均不与B A 、重合),记直线BD AC 、的斜率分别为21k k ,.(Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在常数λ,当直线l 变动时,总有21k k λ=成立?若存在,求出λ的值;若不存在,说明理由.【例1】已知椭圆()01:2222>>b a by a x E =+的左、右顶点分别为B A 、,焦距为2,直线l 与椭圆交于C ,D 两点(均异于椭圆的左、右顶点).当直线l 过椭圆的右焦点F 且垂直于x 轴时,四边形ACBD 的面积为6.(1)求椭圆的标准方程;(2)设直线BD AC 、的斜率分别为21k k ,.①123k k =,求证:直线l 过定点;②若直线l 过椭圆的右焦点F ,试判断21k k 是否为定值,并说明理由.【例2】如图,已知椭圆()01:2222>>b a b y a x C =+过点⎪⎭⎫ ⎝⎛23,1,离心率为21,B A 、分别是椭圆C 的左,右顶点,过右焦点F 且斜率为()0>k k 的直线l 与椭圆相交于N M 、两点.(1)求椭圆C 的标准方程;(2)记BFN AFM ∆∆、的面积分别为21,S S ,若,5611=S S 求k 的值;(3)记直线BN AM ,的斜率分别为21k k ,,求12k k 的值.【例3】已知椭圆()01:2222>>b a by a x E =+的左、右焦点分别为()()0,10,121F F 、-,左、右顶点分别为B A 、,()y x P ,为椭圆E 上一点,且()()4112222=++++-y x y x .(1)求椭圆E 的方程;(2)过1F 的直线与椭圆E 交于D C 、两点(其中点C 位于x 轴上方),记直线BD AC 、的斜率分别为21k k ,,求211k k +的最小值.【例4】已知双曲线()0,01:2222>>b a by a x C =-的虚轴长为4,直线2x ﹣y =0为双曲线C 的一条渐近线.(1)求双曲线C 的标准方程;(2)记双曲线C 的左、右顶点分别为A ,B ,斜率为正的直线l 过点T (2,0),交双曲线C 于点M ,N (点M 在第一象限),直线MA 交y 轴于点P ,直线NB 交y 轴于点Q ,记△PAT 面积为1S ,△QBT 面积为2S ,求证:21S S 为定值.【例5】已知双曲线()0,01:2222>>b a by a x C =-,焦点到渐近线2x ﹣y =0的距离为2.(1)求双曲线C 的标准方程;(2)记双曲线C 的左、右顶点分别为A ,B ,直线l 交双曲线C 于点M ,N (点M 在第一象限),记直线MA 斜率为1k ,直线NB 斜率为2k ,过原点O 作直线l 的垂线,垂足为H ,当12k k 为定值31-时,问是否存在定点G ,使得GH 为定值,若存在,求此定点G .若不存在,请说明理由.【例6】如图,O 为坐标原点,椭圆()01:2222>>b a b y a x C =+的焦距等于其长半轴长,M ,N 为椭圆C 的上、下顶点,且32=MN (1)求椭圆C 的方程;(2)过点()1,0P作直线l 交椭圆C 于异于M ,N 的A ,B 两点,直线AM ,BN 交于点T .求证:点T 的纵坐标为定值3.。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳
【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。
中的2-----4类;分门别类按套路求解;1.考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————;2.圆锥曲线题,直线代入圆锥曲线的“:---------------------------------------------------; ——————————————————————————————————————;3.圆锥曲线题-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————;4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2)中点弦长问题:(2法)首选方法:“点差法”椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:抛物线:形式二:____________;“点”_______________________;_________________;“差”__________________________________;“设而不求法”______________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)-------------------;(公式二)--------------------------------;法二次选:中点公式;→(2)焦点弦长问题:(2(公式一)左焦点弦长:--------------------------------;图示:__________________;右焦点弦长:--------------------------------;图示:__________________;公式一适用于:__________________________;(公式二)--------------------------------;其中:________________;适用于:__________________________; ________;公式一:__________________;图示:_____________________;公式一适用于:__________________________;焦点弦公式二:____________________;公式2适用于:__________________________;→ STEP2:除了这三种特殊弦长以外,其余弦长求解都用【弦长公式】(保底方法);【弦长公式】3类型:【类1】___________;___________;_______________;适用于:__________________________;【类2】___________;____________;_______________;适用于:__________________________;【类3】___________;____________;_______________;适用于:__________________________;5.【2次选-------------------------;--------------------------;--------------------------;---------;6. 2种特殊的垂直问题:(1【2法】:法一:“圆的直径式方程”____________________________________;法二:向量垂直法:____________________;____________________________________; (2)“原点张角垂直问题”首选方法:向量垂直法+韦达定理【最快!】图示:_____________________;套路:___________________;_______________________________;7.“结论法+代入法最快!”【2题型】(1)结论一:【原点对称】_______________________________;结论二:【任意点对称】_______________________________;(2【x 轴对称】_______________________________;结论二:【y轴对称】_______________________________;结论三【x=a对称】------------------------------------------;结论四【y=b对称】:______________________;结论5【y=x对称】:__________________________;结论6【y=-x对称】:_______________________________;结论7【y=x+c对称】:___________________;结论8【y=-x+c对称】:_____________________;结论9【任意直线Ax+By+C=0对称】:_______________________________;8.【大纲内2题型】(1)题:【3套路8结论】(1)“点线距等于半径”________________________;(2)斜率乘积等于-1;______________;(3)勾股定理:__________________;结论:(1)【切线长公式】_______________________;(2)【圆心在原点时】_______________________;(3)【切点弦直线方程】_______________________;(4)_______________________;(5)_______________________;(6)_______________________;(7)________________________;(2【导数法】(2形式)【形式一】________;____________________;【形式二】_________;__________________________;9.圆锥曲线题题型六:固定套路:_________+___________+_____________+___________+__________ ___+___________+_____________;【相关结论】:【两焦半径】左焦半径_____________;右焦半径_____________;特别的,通径:______________;半通径:______________;【三边长】_____________;_____________;_____________;【周长】_____________;【两焦半径乘积】_____________;【焦点三角形面积】_____________;_____________;作用:_____________;_____________;【余弦定理式】_____________;_____________;_____________;【正弦定理式】________;【求解离心率】__________;_________;________;__________;_____;【焦点三角形中内心公式】_____________________;10.“向量法最快”!平解几中,向量问题均采用“坐标运算”最佳!】首先:坐标化→→【平面向量10公式】【向量平行】_____________________;【向量垂直】_____________________;【向量夹角公式】_____________________;【加减式】_____________________;【数乘式】_____________________;【向量数量积公式】_____________________;【向量模的公式】_____________________;【量模转化公式】_____________________;【向量平方差公式】_____________________;【向量完全平方公式】_____________________;11.【2类】(1】→→“成锐角时《=》向量数量积>0;”“成钝角时《=》向量数量积<0;”“成直角时《=》向量数量积=0;”(2)【2法】(1)向量数量积公式_____________________;(2)两直线夹角公式_____________________;12.圆锥曲线题题型9_____________________;_____________________;_____________________;【凡与垂直相关的斜率问题】首选:斜率乘积等于-1。
2020新高考数学二轮冲刺圆锥曲线全归纳(压轴题全解析)
MA MB
AB
0
ቤተ መጻሕፍቲ ባይዱ
,即
( x,4
2
y)
( x,2)
0
,即
y
1
x2
2
。
4
【例 3】已知抛物线 C : y2 2x 的焦点为 F ,平行于 x 轴的两条直线 l1,l2 分别交 C 于 A,B 两点,
交 C 的准线于 P,Q 两点. (I)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR FQ ; (II)若 PQF 的面积是 ABF 的面积的两倍,求 AB 中点的轨迹方程.
5 轨迹 C 的方程.
解 析 设 M 的 坐 标 为 (x, y) , P 的 坐 标 为 (x0 , y0 ) , 因 为 M 为 PD 上 一 点 , 且
|MD|=
4 5
|PD|,所以
x
y
x0
4 5
y0
x0 y0
x 5 4
y
,又
P (x0 ,
y0 )
若 C 为双曲线,则直线 l 与双曲线的渐近线平行;若 C 为抛物线,则直线 l 与抛物线
A圆
B 椭圆
C 线段
D 一段抛物线
解析
设点
M
(x0
,
y0
),
P(x,
【高中数学】圆锥曲线大题十个大招
yP yQ kxP
3(1 k ) kxQ
3(1 k ) = k(xP xQ ) 2 3k =
12k 3(1 3k 2 )
xP
xQ
9k 2 18k 3 3(1 3k 2 )
9k 2 18k 3 = 3(1 3k 2 )
36k 3(1 3k 2 )
kPQ
yP xP
yQ xQ
1 3
(1) 2 (2)
1
2
32k 2 3(1 2k 2 )
32
3(
1 k2
2)
k2
3 , 4 2
32
3(
1 k2
2)
16 . 3
4
1
2
16 3
.解得
1 3
3.
又 0 1, 1 1. 3
又当直线 GH 斜率不存在,方程为 x 0, FG 1 FH , 1 . 1 1,即所求的取值范围是[1 ,1)
x2
解:设双曲线方程为
a2
y2 b2
1,
Q(x0, y0)。
FQ (x0 c, y0 ) ,
S△OFQ=
1 2
|
OF
||
y0
|
2
6
,∴
y0
46 c
。
OF FQ (c,0)(x0
c, y0 ) =c(x0-c)= (
解:设直线
AB
的方程为
y
x
b
,由
y y
x2 xb
3
x2
x
b
3
0
x1
x2
1,进而可求出
AB
的中点 M ( 1 , 1 b) ,又由 M ( 1 , 1 b) 在直线 x y 0 上可求出 b 1,∴ x2 x 2 0 ,由弦
《圆锥曲线解题十招全归纳》
《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。
AB =221k k =+d =21k +=k =053x =。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
高考数学压轴题圆锥曲线解题技巧
高考数学压轴题圆锥曲线解题技巧一、常规七大题型: (1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
高考数学压轴题解题技巧和方法
GAGGAGAGGAFFFFAFAF圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB中点为M(x 0,y 0)则有02020=-k b y ax (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。
典型例题设P(x,y)为椭圆xayb22221+=上任一点,F c1(,)-,F c 20(,)为焦点,∠=PF F12α,∠=PF F21β。
GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
高考数学压轴题——圆锥曲线大题十个大招含答案全解析
终结圆锥曲线大题十个大招招式一:弦的垂直平分线问题 (25)招式二:动弦过定点的问题 (26)招式四:共线向量问题 (28)招式五:面积问题 (35)招式六:弦或弦长为定值、最值问题 (38)招式七:直线问题 (43)招式八:轨迹问题 (47)招式九:对称问题 (54)招式十、存在性问题 (57)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
例题分析1:已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-⨯-=.招式二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
圆锥曲线大题解题技巧
圆锥曲线大题解题技巧圆锥曲线是数学中一个重要的几何分支,它包括椭圆、双曲线和抛物线等曲线。
在解决圆锥曲线相关的大题时,掌握一些解题技巧是非常有帮助的。
以下是一些常见的解题技巧:1. 熟悉基本定义和性质:-掌握圆锥曲线的标准方程形式,了解它们的焦点、准线、偏心率等基本性质。
-理解直线与圆锥曲线的位置关系,包括相切、相交和相离。
2. 利用坐标法:-将圆锥曲线问题转化为代数问题,通过建立坐标系,将曲线方程转化为标准形式。
-利用坐标法求解直线与圆锥曲线的交点、弦长、面积等。
3.应用韦达定理:-韦达定理在解决圆锥曲线问题时非常有用,特别是在求解直线与圆锥曲线的交点问题时。
-利用韦达定理可以快速找到交点的坐标。
4. 利用参数方程:-对于某些复杂的圆锥曲线问题,可以尝试使用参数方程来简化问题。
-参数方程可以帮助我们更好地理解曲线的形状和性质。
5. 利用极坐标:-在处理与极点和极线相关的问题时,极坐标方法可以提供简洁的解决方案。
-极坐标方法特别适用于求解与焦点、准线相关的问题。
6. 利用图形工具:-利用几何画板等图形工具可以帮助我们直观地理解圆锥曲线的性质和问题。
-图形工具可以帮助我们验证答案的正确性。
7. 注意特殊情况:-在解决圆锥曲线问题时,要注意特殊点的存在,如顶点、焦点、准线等。
-特殊点的性质往往在解题中起到关键作用。
8. 练习和总结:-定期练习圆锥曲线相关的题目,总结解题方法和技巧。
-学习并掌握常见的解题模式和思路。
通过以上技巧的运用,可以大大提高解决圆锥曲线大题的效率和准确性。
重要的是要理解每个技巧背后的数学原理,这样才能在遇到不同问题时灵活运用。
高考压轴题圆锥曲线综合 终结圆锥曲线大题十个大招0
2) 4
消
y
整理得
(1
4k12
)
x2
16k2
x
16k12
4
0
2和x1
是方程的两个根,
2 x1
16k12 4 1 4k12
则
x1
2 8k12 1 4k12
,
y1
4k1 1 4k12
,即点
M
的坐标为
(
2 8k12 1 4k12
,
1
4k1 4k12
)
,
同理,设直线
A2N
的斜率为
k2,则得点
y k(x
由
y
2
x
1)
消
y
整理,得 k 2 x2
(2k 2
1)x
k2
0
①
由直线和抛物线交于两点,得 (2k 2 1)2 4k 4 4k 2 1 0
即0 k2 1
②
4
由韦达定理,得:
x1
x2
2k 2 k2
1
,
x1x2
1 。则线段
AB
的中点为 (
2k 2 2k
1
2
,
1) 2k
。
线段的垂直平分线方程为:
AB
的方程为
y
x
b
,由
y y
x2 xb
3
x2
x
b
3
0
x1
x2
1,进而可求出
AB
的中点 M ( 1 , 1 b) ,又由 M ( 1 , 1 b) 在直线 x y 0 上可求出 b 1,∴ x2 x 2 0 ,由弦
22
22
长公式可求出 AB 112 12 4 (2) 3 2 .