2018年中考数学试题分类汇编解析(21)全等三角形

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学试题分类汇编:考点21 全等三角形

一.选择题(共9小题)

1.(2018•安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()

A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD

【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.

【解答】解:∵AB=AC,∠A为公共角,

A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;

B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;

C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;

D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.

故选:D.

2.(2018•黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()

A.甲和乙B.乙和丙C.甲和丙D.只有丙

【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.

【解答】解:乙和△ABC全等;理由如下:

在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,

所以乙和△ABC全等;

在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,

所以丙和△ABC全等;

不能判定甲与△ABC全等;

故选:B.

3.(2018•河北)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()

A.作∠APB的平分线PC交AB于点C

B.过点P作PC⊥AB于点C且AC=BC

C.取AB中点C,连接PC

D.过点P作PC⊥AB,垂足为C

【分析】利用判断三角形全等的方法判断即可得出结论.

【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;

C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;

D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,

B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.

4.(2018•南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF ⊥AD.若CE=a,BF=b,EF=c,则AD的长为()

A.a+c B.b+c C.a﹣b+c D.a+b﹣c

【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;

【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,

∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,

∴∠A=∠C,∵AB=CD,

∴△ABF≌△CDE,

∴AF=CE=a,BF=DE=b,

∵EF=c,

∴AD=AF+DF=a+(b﹣c)=a+b﹣c,

故选:D.

5.(2018•临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()

A.B.2 C.2 D.

【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.

【解答】解:∵BE⊥CE,AD⊥CE,

∴∠E=∠ADC=90°,

∴∠EBC+∠BCE=90°.

∵∠BCE+∠ACD=90°,

∴∠EBC=∠DCA.

在△CEB和△ADC中,

∴△CEB≌△ADC(AAS),

∴BE=DC=1,CE=AD=3.

∴DE=EC﹣CD=3﹣1=2

故选:B.

6.(2018•台湾)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()

A.115 B.120 C.125 D.130

【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.

【解答】解:∵正三角形ACD,

∴AC=AD,∠ACD=∠ADC=∠CAD=60°,

∵AB=DE,BC=AE,

∴△ABC≌△AED,

∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,

∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,

∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,

故选:C.

7.(2018•成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()

A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC

【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.

【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC ≌△DCB,故本选项错误;

B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;

C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;

D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;

故选:C.

8.(2018•黑龙江)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()

A.15 B.12.5 C.14.5 D.17

【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到

相关文档
最新文档