二次函数与方程及不等式的关系(供参考)
.3 二次函数与一元二次方程、不等式
首页
探究一
探究二
探究三
探究四
思维辨析
随堂演练
解:(1)由题意知 a>0,且-1 和 2 是关于 x 的方程 ax2+bx+a2-1=0
的两个根,
> 0;
= -1 + 2,
-1
+
2
=
,
所以有
解得
= 1- 2.
2 -1
-1 × 2 =
得n的值;(2)由s≤12.6解出v的取值范围,从而得到行驶的最大速度.
40
1 600
6 < 100 + 400 < 8,
解:(1)由题意得
70 4 900
14 < 100 + 400 < 17,
5 < < 10,
解得 5
95 因为 n∈N,所以 n=6.
<
<
2
14 .
3
2
(2)由于刹车距离不超过 12.6 m,即 s≤12.6,所以 +
≤12.6,因
50
400
此 v2+24v-5 040≤0,解得-84≤v≤60.因为 v≥0,所以 0≤v≤60,即行
驶的最大速度为 60 km/h.
首页
探究一
探究二
探究三
探究四
思维辨析
随堂演练
反思感悟 用一元二次不等式解决实际问题的操作步骤
1.理解题意,搞清量与量之间的关系.
2.建立相应的不等关系,把实际问题抽象为数学中的一元二次不
一元二次函数、方程和不等式
二次函数与一元二次方程、不等式知识点总结与例题讲解
二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。
二次函数与一元二次方程、不等式
2.3 二次函数与一元二次方程、不等式(一)教材梳理填空(1)一元二次不等式:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax 2+bx +c >0或ax 2+bx +c <0,其中a ,b ,c 均为常数,a ≠0.(2)二次函数的零点:一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x 叫做二次函数y =ax 2+bx +c 的零点.(3)二次函数与一元二次方程、不等式的解的对应关系Δ>0 Δ=0 Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0 (a >0)的根 有两个不相等的实数根x 1,x 2(x 1<x 2) 有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x <x 1, 或x >x 2} ⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}∅∅(二)基本知能小试 1.判断正误(1)mx 2-5x <0是一元二次不等式.( )(2)若a >0,则一元二次不等式ax 2+1>0无解.( )(3)若一元二次方程ax 2+bx +c =0的两根为x 1,x 2(x 1<x 2),则一元二次不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2}.( )(4)不等式x 2-2x +3>0的解集为R.( ) 2.不等式2x 2-x -1>0的解集是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <1 B .{x |x >1} C .{x |x <1或x >2} D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1 3.不等式-2x 2+x +3<0的解集是( )A .{x |x <-1}B .⎩⎨⎧⎭⎬⎫x ⎪⎪ x >32C .⎩⎨⎧⎭⎬⎫x ⎪⎪ -1<x <32D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >32 4.若不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12,则a ,c 的值分别为________,________.题型一 一元二次不等式的解法[学透用活][典例1] 解下列不等式:(1)-2x 2+x -6<0; (2)-x 2+6x -9≥0; (3)x 2-2x -3>0; (4)-4x 2+4x -1>0.[对点练清]1.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}2.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-1或x ≥92B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤92C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-92或x ≥1D.⎩⎨⎧⎭⎬⎫x ⎪⎪-92≤x ≤1 3.解不等式:-2<x 2-3x ≤10.题型二 二次函数与一元二次方程、不等式间的关系[学透用活][典例2] 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.[对点练清]1.[变结论]本例中条件不变,求关于x 的不等式cx 2-bx +a >0的解集.2.[变条件]若将本例的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}”变为“关于x 的不等式ax 2+bx +c ≥0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤2”.求不等式cx 2+bx +a <0的解集.题型三一元二次不等式的实际应用[学透用活][典例3]某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.[对点练清]1.某商品在最近30天内的价格y1与时间t(单位:天)的关系式是y1=t+10(0<t≤30,t ∈N);销售量y2与时间t的关系式是y2=-t+35(0<t≤30,t∈N),则使这种商品日销售金额z不小于500元的t的范围为________.2.在一个限速40 km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m,乙车的刹车距离略超过10 m. 又知甲、乙两种车型的刹车距离S m与车速x km/h之间分别有如下关系:S甲=0.1x +0.01x2,S乙=0.05x+0.005x2.问超速行驶谁应负主要责任.[课堂一刻钟巩固训练]一、基础经典题1.下列不等式:①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( )A .5个B .4个C .3个D .2个2.不等式-x 2-5x +6≥0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}3.二次不等式ax 2+bx +c <0的解集是全体实数的条件是( )A.⎩⎪⎨⎪⎧ a >0,Δ>0B.⎩⎪⎨⎪⎧ a >0,Δ<0C.⎩⎪⎨⎪⎧a <0,Δ>0 D.⎩⎪⎨⎪⎧a <0,Δ<0 4.若a <0,则关于x 的不等式a (x +1)⎝⎛⎭⎫x +1a <0的解集为________. 5.若关于x 的不等式(k -1)x 2+(k -1)x -1<0恒成立,则实数k 的取值范围是________. 二、创新应用题6.解关于x 的不等式x 2-3ax -18a 2>0.[课下双层级演练过关]A 级——学考水平达标练1.设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( )A .{x |2≤x ≤3}B .{x |x ≤2或x ≥3}C .{x |x ≥3}D .{x |0<x ≤2或x ≥3} 2.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1.其中解集为R 的是( )A .①B .②C .③D .④3.若0<t <1,则不等式(x -t )⎝⎛⎭⎫x -1t <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1t <x <t B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >1t 或x <t C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1t 或x >t D.⎩⎨⎧⎭⎬⎫x ⎪⎪t <x <1t 4.一元二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3}D .{x |-3<x <2}5.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台 6.要使17-6x -x 2有意义,则x 的解集为________.7.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________. 8.若关于x 的不等式ax 2-6x +a 2<0的非空解集为{x |1<x <m },则m =________. 9.解下列不等式:(1)2x 2+7x +3>0;(2)-4x 2+18x -814≥0; (3)-2x 2+3x -2<0; (4)-12x 2+3x -5>0.10.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?B级——高考水平高分练1.设x2-2x+a-8≤0对于任意x∈{x|1≤x≤3}恒成立,则a的取值范围是________.2.对于实数x,当且仅当n≤x<n+1(n∈N*)时,[x]=n,则关于x的不等式4[x]2-36[x]+45<0的解集为________.3.解关于x的不等式x2-(a+a2)x+a3>0.4.某小商品在2018年的价格为8元/件,年销量是a件.现经销商计划在2019年将该商品的价格下调至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下调后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k.该商品的成本价为3元/件.(1)写出该商品价格下调后,经销商的年收益y与实际价格x的关系式;(2)设k=2a,当实际价格最低定为多少时,仍然可以保证经销商2019年的收益比2018年至少增长20%?5.某热带风暴中心B 位于海港城市A 东偏南30°的方向,与A 市相距400 km.该热带风暴中心B 以40 km/h 的速度向正北方向移动,影响范围的半径是350 km.问:从此时起,经多少时间后A 市将受热带风暴影响,大约受影响多长时间?习题课(提升关键能力) 一元二次函数、方程和不等式高频考点一|比较大小[例1] (1)已知a, b 满足等式x =a 2+b 2+20, y =4(2b -a ), 则x, y 满足的大小关系是( )A .x ≤yB .x ≥yC .x <yD .x >y (2)对于a >0,b >0,下列不等式中不正确的是( ) A.ab 2<1a +1b B .ab ≤a 2+b 22 C .ab ≤⎝⎛⎭⎫a +b 22D.⎝⎛⎭⎫a +b 22≤a 2+b22(3)若角α,β满足-π2<α<π2,-π2<β<π2,则2α+β的取值范围是( )A .-π<2α+β<0B .-π<2α+β<πC .-3π2<2α+β<π2D .-3π2<2α+β<3π2[集训冲关]1.若a >b ,x >y ,下列不等式正确的是( )A .a +x <b +yB .ax >byC .|a |x ≥|a |yD .(a -b )x <(a -b )y 2.已知a +b <0,且a >0,则( )A .a 2<-ab <b 2B .b 2<-ab <a 2C .a 2<b 2<-abD .-ab <b 2<a 23.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是( ) A .a 2+b 2 B .2ab C .2ab D .a +b4.已知a <b <c ,试比较a 2b +b 2c +c 2a 与ab 2+bc 2+ca 2的大小.高频考点二|基本不等式及应用[例2] (1)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8(2)已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b =________. (3)某商品进货价每件50元,据市场调查,当销售价格(每件x 元)为50<x ≤80时,每天售出的件数为P =105(x -40)2,若要使每天获得的利润最多,销售价格每件应定为多少元?[集训冲关]1.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.3222.设a >0,若对于任意的正数m ,n ,都有m +n =8,则满足1a ≤1m +4n +1的a 的取值范围是________.3.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位 m/s)、平均车长l (单位:m)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为____辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时. 4.若正实数x ,y 满足2x +y +6=xy ,求2x +y 的最小值.高频考点三|一元二次不等式及其应用[例3] (1)解关于x 的不等式x 2+(1-a )x -a <0.(2)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎝⎛⎭⎫5x +1-3x 元. ①要使生产该产品2小时获得的利润不低于 3 000元,求x 的取值范围;②要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.[集训冲关]1.若不等式-x 2+mx -1>0有解,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2D .1<m <32.关于x 的不等式x 2-ax -6a 2>0(a <0)的解集为{x |x <x 1或x >x 2},且x 2-x 1=52, 则a 的值为( )A .- 5B .-32C .- 2D .-523.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?高频考点四|一元二次函数、方程和不等式[例4] 若不等式x 2+ax +3-a >0对于满足-2≤x ≤2的一切实数x 恒成立,求实数a 的取值范围.[集训冲关]1.若关于x 的方程8x 2-(m -1)x +m -7=0的两根均大于1,则m 的取值范围是________.2.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .一、选择题1.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B2.设集合A ={x |x 2-x -2<0},集合B ={x |1<x <3},则A ∪B =( ) A .{x |-1<x <3} B .{x |-1<x <1} C .{x |1<x <2} D .{x |2<x <3}3.设m >1,P =m +4m -1,Q =5,则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P ≥QD .P ≤Q4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <-14,则a +b 等于( ) A .-18 B .8 C .-13 D .15.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( ) A .a ≤2 B .a ≥2 C .a ≥3D .a ≤36.《几何原本》第二卷中的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的定理都能够通过图形实现证明,并称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB .设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b 2≥ab (a >0,b >0) B .a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0) 7.对任意实数x ,不等式(a -2)x 2+2(a -2)x -4<0恒成立,则a 的取值范围是( ) A .{a |-2<a ≤2} B .{a |-2≤a ≤2} C .{a |a <-2或a >2}D .{a |a ≤-2或a >2}8.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定二、填空题 9.若a <b <0,则1a -b与1a 的大小关系为________. 10.已知x +mx -2(x >2)的最小值为6,则正数m 的值为________.11.关于x 的不等式ax -b >0的解集是{x |x >1},则关于x 的不等式(ax +b )(x -2)>0的解集是________.12.若m 2x -1mx +1<0(m ≠0)对一切x ≥4恒成立,则实数m 的取值范围是________.三、解答题13. 当x >3时,求2x 2x -3的取值范围.14.解关于x 的不等式56x 2+ax -a 2<0.15.已知a >0,b >0,1a +1b =1,求1a -1+9b -1的最小值.16. 国际上钻石的重量计量单位为克拉.已知某种钻石的价值(美元)与其重量(克拉)的平方成正比,且一颗重为3克拉的该钻石的价值为54 000美元.(1)写出钻石的价值y 关于钻石重量x 的关系式;(2)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m 克拉和n 克拉, 试证明:当m =n 时,价值损失的百分率最大.(注:价值损失的百分率=原有价值-现有价值原有价值×100%;在切割过程中的重量损耗忽略不计)。
二次函数与一元二次方程、不等式知识点总结与例题讲解
二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。
二次函数与一元二次方程、不等式
3.恒成立问题的转化:a>f(x)恒成立⇒a>f(x)max;a≤f(x)恒成立⇒a≤f(x)min.
4.能成立问题的转化:a>f(x)能成立⇒a>f(x)min;a≤f(x)能成立⇒a≤f(x)max
值范围是
.
(2)已知函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上是单调递减的,则实数a的
取值范围是(
)
A.[-3,0)
B.(-∞,-3]
C.[-2,0]
D.[-3,0]
答案 (1)[4,+∞)
(2)D
解析 (1)f(x)=-x2+2ax+3对称轴方程为x=a,
f(x)在区间(-∞,4)上单调递增,所以a≥4.故a的取值范围为[4,+∞).
【考点自诊】
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
2
(1)二次函数 y=ax +bx+c(x∈R),当
x=- 时,y
2
4 - 2
取得最小值为
.
4
( × )
(2)一元二次函数 y=ax2+bx+c(x∈R)的函数值恒为负的充要条件是
< 0,
2 -4 < 0.
x≥0,则3x≥2x≥1,∴f(3x)≥f(2x);若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x),
即f(bx)≤f(cx).故选A.
考向2 二次函数的最值问题
【例3】 (1)已知函数f(x)=(x+2 013)(x+2 015)(x+2 017)(x+2 019),x∈R,则
二次函数与二元一次方程、不等式的解的对应关系
二次函数与二元一次方程、不等式的解的对应关系二次函数与二元一次方程、不等式的解的对应关系在数学领域中,二次函数与二元一次方程、不等式的解之间存在着密切的对应关系。
本文将从简单到复杂的角度,全面评估这一主题,并据此撰写一篇有价值的文章,以便读者更深入地理解这一关系。
一、二次函数的基本形式我们首先来了解二次函数的基本形式。
二次函数通常具有以下标准形式:f(x) = ax^2 + bx + c。
其中,a、b、c分别代表二次项系数、一次项系数和常数项。
1. 二次函数图像的特点二次函数的图像是一个抛物线,其开口方向由二次项系数a的正负决定。
当a > 0时,图像开口向上;当a < 0时,图像开口向下。
二次函数的顶点坐标为:(-b/2a, f(-b/2a))。
2. 二次函数的零点二次函数的零点即为方程f(x) = 0的解,也就是函数图像与x轴的交点。
要求出二次函数的零点,可以使用求根公式或配方法,进而得到对应的解。
二、二元一次方程、不等式的基本形式接下来,我们将了解二元一次方程和不等式的基本形式,以及它们与二次函数解之间的联系。
1. 二元一次方程的一般形式二元一次方程一般可表示为:ax + by = c。
在解二元一次方程时,通常采用代入、相消、加减消元法等方法,最终得到方程的解。
2. 二元一次不等式的一般形式二元一次不等式的一般形式为:ax + by > c或ax + by < c。
解二元一次不等式时,同样可以通过代入法等方式,最终得到不等式的解集合。
三、二次函数与二元一次方程、不等式解的对应关系了解了二次函数和二元一次方程、不等式的基本形式后,接下来我们来探讨它们之间的对应关系。
1. 二次函数的解与二元一次方程的关系对于二次函数f(x) = ax^2 + bx + c,其解即为方程f(x) = 0的解。
而方程f(x) = 0可以化为ax^2 + bx + c = 0的形式,与一元二次方程的形式一致。
二次函数与二次方程二次不等式的关系
二次函数与二次方程、二次不等式的关系一、知识要点知识点1、二次函数与一元二次方程、二次不等式有着十分紧密的联系;当二次函数y=ax2+bx+c(a丰0)的函数值y=0时,就是一元二次方程,当沪0时,就是二次不等式。
知识点2、二次函数的图象与 x轴交点的横坐标就是一元二次方程的根,图像的交点个数与一元二次方程的根的个数是完全相同的,这是数和形有机结合的重要体现。
研究二次函2 . . 2数y=ax + bx + c图象与x轴交点问题从而就转化为研究一元二次方程ax + bx + c=0的根的变式训练:1、函数y=ax2— bx + c的图象过(一1, 0),贝U b c c a a b的值是___________________ 2、已知二次函数 y=x2 + mx + m— 2 •求证:无论 m取何实数,抛物线总与 x轴有两个交点.3 .已知二次函数 y=x2— 2kx + k2 + k— 2 •(1)当实数k为何值时,图象经过原点?(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?5 .已知抛物线 y=mx2 +( 3 — 2m) x + m — 2 ( m^O)与x轴有两个不同的交点.(1 )求m的取值范围;(2)判断点P (1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点 Q及P点关于抛物线的对称轴对称的点P'的坐标,并过P'、Q、P三点,画岀抛物线草图.2例2、(本题满分12分)二次函数y ax bx 6(a 0)的图像交y轴于C点,交x轴于A,B△ =b2— 4ac △ > 0 △ =0△ < 0二次函数y=ax2+bx+c(a > 0)的图像一元二次方程ax2+bx+c=0(a > 0)的根无实数根一元二次不等式ax2+bx+c> 0(a > 0)的解集x < x1或x > x2(% < x2)x为全体实数一元二次不等ax2+bx+c< 0(a > 0)的解集x1<x < x2(x1< x2)无解无解问题,这样图像问题就可以转化成方程问题,应用根的判别式、韦达定理、求根公式等解题。
二次函数、二次方程及二次不等式的关系
高考要求三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法重难点归纳1二次函数的基本性质2二次方程f(x)=ax2+bx+c=0的实根分布及条件(1)方程f(x)=0的两根中一根比r大,另一根比r小⇔a·f(r)<0;(2)二次方程f(x)=0的两根都大于r⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆)(,2,042rfarabacb(3)二次方程f(x)=0在区间(p,q)内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042pfaqfaqabpacb(4)二次方程f(x)=0在区间(p,q)内只有一根⇔f(p)·f(q)<0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立(5)方程f(x)=0两根的一根大于p,另一根小于q(p<q)⇔⎩⎨⎧>⋅<⋅)()(qfapfa3分式不等式转化策略:分式转化为整式,且分母是否为0典型题例示范讲解考题欣赏1:(2007年湖北文)设二次函数2()f x x ax a=++,方程()0f x x-=的两根1x和2x满足1201x x<<<.(I)求实数a的取值范围;(II)试比较(0)(1)(0)f f f-与116的大小.并说明理由.剖析:本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算能力.解法1:(Ⅰ)令2()()(1)g x f x x x a x a=-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,.(II )2(0)(1)(0)(0)(1)2f f f g g a -==,令2()2h a a =.当0a >时,()h a 单调增加,∴当03a <<-时,20()(32(32(17h a h <<-=-=-121617122=<+,即1(0)(1)(0)16f f f -<. 解法2:(I )同解法1.(II )2(0)(1)(0)(0)(1)2f f f g g a -==,由(I )知03a <<-,1170-<<∴又10+>,于是22112(321)1616a a -=-11)016=-+< 即212016a -<,故1(0)(1)(0)16f f f -<. 解法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a 的取值范围是(03-,.(II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<.考题欣赏2已知关于x 的二次方程x 2+2mx +2m +1=0(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围(2)若方程两根均在区间(0,1)内,求m 的范围 命题意图 本题重点考查方程的根的分布问题 知识依托 解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义 错解分析用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点 技巧与方法 设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制 解 (1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组 ⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m或112m ∴-<≤-(这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过) 巩固练习 1 若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( ) A (-∞,2] B [-2,2] C (-2,2] D (-∞,-2) 2 设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( ) A 正数 B 负数 C 非负数 D 正数、负数和零都有可能 3 已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________ 4 二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________5 已知实数t 满足关系式33log log ay a t a a = (a >0且a ≠1) (1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值6如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.7. 若不等式kx 2-2x+1-k<0对满足22≤≤-k 的所有k 都成立,求x 的取值范围.点评:用换元、分离变量的方法在不等式的求解过程中比较常出现,也是解决含参数问题的重要方法8 一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?。
二次函数与一元二次方程、不等式
§2.3 二次函数与一元二次方程、不等式 二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.知识点一 二次函数与一元二次方程、不等式的解的对应关系 判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0(a >0)的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集 {x |x <x 1,或x >x 2}xx ≠-b 2a Rax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2}∅ ∅思考 一元二次不等式与一元二次函数有什么关系?答案 一元二次不等式ax 2+bx +c >0(a >0)的解集就是一元二次函数y =ax 2+bx +c (a >0)的图象在x 轴上方的点的横坐标x 的集合;ax 2+bx +c <0(a >0)的解集就是一元二次函数y =ax 2+bx +c (a >0)的图象在x 轴下方的点的横坐标x 的集合. 知识点二 简单的分式不等式的解法 分式不等式的解法:思考 x -3x +2>0与(x -3)(x +2)>0等价吗?x -3x +2≥0与(x -3)(x +2)≥0等价吗? 答案x -3x +2>0与(x -3)(x +2)>0等价;x -3x +2≥0与(x -3)(x +2)≥0不等价,前者的解集中没有-2,后者的解集中有-2. 知识点三 一元二次不等式恒成立问题 1.转化为一元二次不等式解集为R 的情况,即ax 2+bx +c >0(a ≠0)恒成立⇔a >0,Δ<0;ax2+bx +c <0(a ≠0)恒成立⇔a <0,Δ<0.2.分离参数,将恒成立问题转化为求最值问题.1.不等式2x 2-x -1>0的解集是________. 答案xx <-12或x >1解析 ∵2x 2-x -1=(2x +1)(x -1),∴由2x 2-x -1>0得(2x +1)(x -1)>0, 解得x <-12或x >1, ∴不等式的解集为xx <-12或x >1. 2.若不等式ax 2+bx +c >0的解集为{x |-2<x <3},则方程ax 2+bx +c =0的两根分别为________. 答案 -2,3解析 不等式ax 2+bx +c >0的解集为{x |-2<x <3},所以方程ax 2+bx +c =0的两根分别-2,3. 3.不等式x -2x -1<0的解集为________. 答案 {x |1<x <2}解析 原不等式⇔(x -1)(x -2)<0,∴1<x <2. 4.不等式1x ≤1的解集为________. 答案 {x |x ≥1或x <0}解析 ∵1x ≤1,∴x -1x ≥0,∴x (x -1)≥0,x ≠0, ∴x ≥1或x <0.5.若方程x 2+ax +1=0的解集是∅,则实数a 的取值范围是________. 答案 -2<a <2解析 由题意可得a 2-4<0,所以-2<a <2.6.对∀x ∈R ,不等式x 2+2x +m >0恒成立,则实数m 的取值范围是________. 答案 m >1解析 由题意可得22-4m <0,所以m >1.一、一元二次不等式的解法 例1 解下列不等式: (1)-2x 2+x -6<0; (2)-x 2+6x -9≥0; (3)x 2-2x -3>0.解 (1)原不等式可化为2x 2-x +6>0.因为方程2x 2-x +6=0的判别式Δ=(-1)2-4×2×6<0,所以函数y =2x 2-x +6的图象开口向上,与x 轴无交点(如图所示).观察图象可得,原不等式的解集为R .(2)原不等式可化为x 2-6x +9≤0,即(x -3)2≤0,函数y =(x -3)2的图象如图所示,根据图象可得,原不等式的解集为{x |x =3}. (3)方程x 2-2x -3=0的两根是x 1=-1,x 2=3.函数y =x 2-2x -3的图象是开口向上的抛物线,与x 轴有两个交点(-1,0)和(3,0),如图所示.观察图象可得不等式的解集为{x |x <-1或x >3}.反思感悟 解一元二次不等式的一般步骤(1)将一元二次不等式化为一端为0的形式(习惯上二次项系数大于0). (2)求出相应一元二次方程的根,或判断出方程没有实根. (3)画出相应二次函数示意草图,方程有根的将根标在图中.(4)观察图象中位于x 轴上方或下方的部分,对比不等式中不等号的方向,写出解集. 跟踪训练1 解下列不等式: (1)x 2-5x -6>0; (2)(2-x )(x +3)<0.解 (1)方程x 2-5x -6=0的两根为x 1=-1,x 2=6.结合二次函数y =x 2-5x -6的图象知,原不等式的解集为{x |x <-1或x >6}. (2)原不等式可化为(x -2)(x +3)>0.方程(x -2)(x +3)=0的两根为x 1=2,x 2=-3.结合二次函数y =(x -2)(x +3)的图象知,原不等式的解集为{x |x <-3或x >2}. 二、含参数的一元二次不等式的解法例2 解关于x 的不等式ax 2-2≥2x -ax (x ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1; 当2a <-1,即-2<a <0,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为xx ≥2a 或x ≤-1;当-a <0时,不等式的解集为x2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为x-1≤x ≤2a . 反思感悟 解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算.跟踪训练2 解关于x 的不等式x 2-(3a -1)x +(2a 2-2)>0. 解 原不等式可化为[x -(a +1)][x -2(a -1)]>0,讨论a +1与2(a -1)的大小.(1)当a +1>2(a -1),即a <3时,不等式的解为x >a +1或x <2(a -1). (2)当a +1=2(a -1),即a =3时,不等式的解为x ≠4.(3)当a +1<2(a -1),即a >3时,不等式的解为x >2(a -1)或x <a +1. 综上,当a <3时,不等式的解集为{x |x >a +1或x <2(a -1)},当a =3时,不等式的解集为{x |x ≠4},当a >3时,不等式的解集为{x |x >2(a -1)或x <a +1}. 三、二次函数与一元二次方程、不等式间的关系及应用例3 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.解 由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系(韦达定理)可知b a =-5,ca =6. 由a <0知c <0,bc =-56, 故不等式cx 2+bx +a <0,即x 2+b c x +ac >0,即x 2-56x +16>0, 解得x <13或x >12,所以不等式cx 2+bx +a <0的解集为xx <13或x >12.延伸探究1.若本例中条件不变,求关于x 的不等式cx 2-bx +a >0的解集. 解 由根与系数的关系知ba =-5,c a =6且a <0.∴c <0,bc =-56,故不等式cx 2-bx +a >0, 即x 2-b c x +ac <0,即x 2+56x +16<0. 解得-12<x <-13,故原不等式的解集为x-12<x <-13.2.若将本例中的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}”变为“关于x 的不等式ax 2+bx +c ≥0的解集是x-13≤x ≤2”.求不等式cx 2+bx +a <0的解集.解 方法一 由ax 2+bx +c ≥0的解集为x-13≤x ≤2知a <0.又-13×2=ca <0,则c >0.又-13,2为方程ax 2+bx +c =0的两个根, ∴-b a =53,∴b a =-53.又ca =-23,∴b =-53a ,c =-23a ,∴不等式cx 2+bx +a <0变为 -23a x 2+-53a x +a <0,即2ax 2+5ax -3a >0. 又∵a <0,∴2x 2+5x -3<0,故所求不等式的解集为x-3<x <12.方法二 由已知得a <0 且 -13+2=-b a ,-13×2=ca 知c >0,设方程cx 2+bx +a =0的两根分别为x 1,x 2, 则x 1+x 2=-b c ,x 1·x 2=ac , 其中a c =1-13×2=-32, -bc =-ba c a = -13+2-13×2=-52, ∴x 1=1-13=-3,x 2=12. ∴不等式cx 2+bx +a <0(c >0)的解集为x-3<x <12.反思感悟 已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循(1)根据解集来判断二次项系数的符号.(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式. (3)约去 a ,将不等式化为具体的一元二次不等式求解.跟踪训练3 已知关于x 的不等式x 2+ax +b <0的解集为{x |1<x <2},求关于x 的不等式bx 2+ax +1>0的解集.解 ∵x 2+ax +b <0的解集为{x |1<x <2},∴方程x 2+ax +b =0的两根为1,2.由根与系数的关系得-a =1+2,b =1×2,得a =-3,b =2, 代入所求不等式,得2x 2-3x +1>0. 解得x <12或x >1. ∴bx 2+ax +1>0的解集为xx <12或x >1. 四、简单的分式不等式的解法 例4 解下列不等式: (1)x +12x -1<0; (2)1-x3x +5≥0; (3)x -1x +2>1. 解 (1)原不等式可化为(x +1)(2x -1)<0,∴-1<x <12, 故原不等式的解集为x-1<x <12. (2)原不等式可化为x -13x +5≤0, ∴(x -1)(3x +5)≤0,3x +5≠0,∴-53≤x ≤1,x ≠-53,即-53<x ≤1. 故原不等式的解集为x-53<x ≤1. (3)原不等式可化为x -1x +2-1>0, ∴x -1-(x +2)x +2>0,-3x +2>0,则x <-2.故原不等式的解集为{x |x <-2}.反思感悟 分式不等式的解法(1)对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意等价变形,保证分母不为零.(2)对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转 化为不等号右边为零,然后再用上述方法求解. 跟踪训练4 解下列不等式: (1)x +1x -3≥0; (2)5x +1x +1<3. 解 (1)不等式x +1x -3≥0可转化成不等式组(x +1)(x -3)≥0,x ≠3.解这个不等式组,可得x ≤-1或x >3.即知原不等式的解集为{x |x ≤-1或x >3}. (2)不等式5x +1x +1<3可改写为5x +1x +1-3<0, 即2(x -1)x +1<0. 可将这个不等式转化成2(x -1)(x +1)<0, 解得-1<x <1.所以,原不等式的解集为{x |-1<x <1}. 五、不等式的恒成立问题例5 对∀x ∈R ,不等式mx 2-mx -1<0,求m 的取值范围. 解 若m =0,显然-1<0恒成立;若m ≠0,则m <0,Δ=m 2+4m <0⇒解得-4<m <0. 综上,m 的取值范围为{m |-4<m ≤0}. 延伸探究1.在本例中,是否存在m ∈R ,使得∀x ∈R ,不等式mx 2-mx -1>0,若存在,求m 的取值范围;若不存在,说明理由. 解 显然m =0时不等式不成立;由题意可得m >0,Δ=m 2+4m <0,解得m ∈∅,所以不存在m ∈R ,使得∀x ∈R ,不等式mx 2-mx -1>0.2.在本例中,把条件“∀x ∈R ”改为“x ∈{x |2≤x ≤3}”,其余不变,求m 的取值范围. 解 由不等式mx 2-mx -1<0得m (x 2-x )<1,因为x ∈{x |2≤x ≤3},所以x 2-x >0, 所以m (x 2-x )<1可化为m <1x 2-x,因为x 2-x =x -122-14≤6,所以1x 2-x≥16,所以m <16. 即m 的取值范围是mm <16.反思感悟 一元二次不等式恒成立问题的解法(1)转化为对应的二次函数图象与x 轴的交点问题,考虑两个方面:x 2的系数和对应方程的判别式的符号.(2)转化为二次函数的最值问题:分离参数后,求相应二次函数的最值,使参数大于(小于)这个最值.跟踪训练5 若关于x 的不等式(k -1)x 2+(k -1)x -1<0恒成立,则实数k 的取值范围是________. 答案 {k |-3<k ≤1}解析 当k =1时,-1<0恒成立;当k ≠1时,由题意得k -1<0,(k -1)2+4(k -1)<0,解得-3<k <1,因此实数k 的取值范围为{k |-3<k ≤1}.1.不等式3x 2-2x +1>0的解集为( )A.x-1<x <13 B.x13<x <1C .∅ D .R2.不等式3+5x -2x 2≤0的解集为( )A.xx >3或x <-12 C.xx ≥3或x ≤-12 B.x-12≤x ≤3 D .R3.已知集合U ={x |x 2>1},集合A ={x |x 2-4x +3<0},∁U A 等于( ) A .{x |1<x <3} B .{x |x <1或x ≥3} C .{x |x <-1或x ≥3}D .{x |x <-1或x >3}4.若0<m <1,则不等式(x -m )x -1m <0的解集为( )A. x 1m <x <m C. x x >m 或x <1mB. x x >1m 或x <m D.x m <x <1m 5.不等式1+x 1-x≥0的解集为( ) A .{x |-1<x ≤1} B .{x |-1≤x <1}C .{x |-1≤x ≤1}D .{x 1<x <1} 6.若集合A ={x |-1≤2x +1≤3},B = x x -2x ≤0,则A ∩B 等于( )A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x <2}D .{x |0≤x ≤1}7.已知方程ax 2+bx +2=0的两根为-12和2,则不等式ax 2+bx -1>0的解集为________.8.不等式x +1x ≥5的解集是________.9.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.【答案与解析】1、答案 D 解析 因为Δ=(-2)2-4×3×1=4-12=-8<0,所以不等式3x 2-2x +1>0的解集为R .2、答案 C解析 3+5x -2x 2≤0⇒2x 2-5x -3≥0⇒(x -3)(2x +1)≥0⇒x ≥3或x ≤-12.3、答案 C解析 ∵U ={x |x 2>1}={x |x >1或x <-1},A ={x |x 2-4x +3<0}={x |1<x <3},∴∁U A ={x |x <-1或x ≥3}.4、答案 D解析 ∵0<m <1,∴1m >1>m ,故原不等式的解集为x m <x <1m . 5、答案 B解析 原不等式⇔(x +1)(x -1)≤0,x -1≠0,∴-1≤x <1.6、答案 B解析 ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2}, ∴A ∩B ={x |0<x ≤1}.7、答案x 12<x <1 解析 ∵方程ax 2+bx +2=0的两根为-12和2,由根与系数的关系可得 -12+2=-b a ,-12×2=2a ,∴a =-2,b =3, ax 2+bx -1>0可变为-2x 2+3x -1>0,即2x 2-3x +1<0,解得12<x <1.8、答案x 0<x ≤14 解析 原不等式⇔x +1x -5≥0⇔4x -1x ≤0⇔ x (4x -1)≤0,x ≠0,解得0<x ≤14. 9、答案 a >4或a <-4解析 ∵x 2+ax +4<0的解集不是空集,即不等式x 2+ax +4<0有解,∴Δ=a 2-4×1×4>0,解得a >4或a <-4.1.知识清单:(1) 二次函数与一元二次方程、不等式的关系及应用.(2) 简单的分式不等式的解法.(3) 不等式的恒成立问题.2.方法归纳:数形结合、分类讨论、转化、恒等变形.3.常见误区:(1) 解含参数的二次不等式时找不到分类讨论的标准.(2) 解分式不等式要等价变形.。
6、二次函数与方程不等式的关系
第四讲二次函数的图像与性质(一)【知识梳理】1、二次函数与一元二次方程的关系遇到抛物线与x轴的交点存在某种关系时,可综合应用一元二次方程根的判别式,根与系数的关系及二次函数的性质进行解答。
2、二次函数与不等式的关系(1)a>0:大于0取两边,小于0取中间。
(2)a<0:大于0取中间,小于0取两边。
例1.已知二次函数y=ax2-2x-2的图象与x轴有两个交点,则a的取值范围是例2.函数的图象与x轴有且只有一个交点,那么a的取值和交点坐标分别是什么?例3.已知抛物线与x轴相交于A(x1,0) ,B(x2,0),且x1≠x2。
(1)求a的取值范围,并证明A,B两点都在原点左侧;(2)若抛物线与y轴相交于C,且OA+OB-OC=-2,求a的值。
例4.已知抛物线y=ax2+bx+c,其顶点在x轴上方,经过点(-4,5),它与y轴相交于点C(0,3),与x轴交于A,B两点,且方程ax2+bx+c=0的两根的平方和等于40.(1)求抛物线的解析式。
(2)抛物线上是否存在x轴上方的一点P,使S△PAB=2S△CAB?如果存在,请求出点P的坐标;如果不存在,请说明理由。
例5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2 +bx+c=0的两个根;(2)写出不等式ax 2 +bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax 2 +bx+c=k有两个不相等的实数根,求k的取值范围。
例6.已知函数y1=x2与函数y2的图象大致如图,若y1<y2,则自变量x的取值范围是().A.<x<2 B.x>2或x<C.-2<x<D.x<-2或x>变式练习:1.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图所示),由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3和x2=( )A.-1.3 B.-2.3 C.-0.3 D.-3.32.二次函数y=-x2+2x+k的部分图象如图所示,若关于x的一元二次方程-x2+2x+k=0的一个解为x1=3,则另一个解x2=____.(第1题) (第2题) (第3题)3.如图所示,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为( )A.-1≤x≤9 B.-1≤x<9 C.-1<x≤9 D.x≤-1或x≥94.抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是( ) A.x<2 B.x>-3 C.-3<x<1 D.x<-3或x>1(第4题) (第5题)5.二次函数y1=ax2+bx+c和一次函数y2=mx+n的图像如图,观察图像写出y2≥y1时,x的取值范围_______.6.已知抛物线y=ax2-2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是()A.第四象限B.第三象限C.第二象限D.第一象限7、y=ax2+bx+c中,a<0,抛物线与x轴有两个交点A(2,0)B(-1,0),则ax2+bx+c>0的解是____________; ax2+bx+c<0的解是____________8.如果抛物线y=x2-mx+5m2与x轴有交点,则m______课后练习1.如图,二次函数的图象经过原点,顶点的纵坐标为,若一元二次方程有实数根,则的取值范围是()A. B. C. D.则方程A. B.C. D.A. B.C. D.4.下列二次函数的图象与轴有两个交点的是()A. B.C. D.5.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.6.已知抛物线与x轴交于A,B两点。
二次函数与一元二次方程不等式的关系表格
二次函数、一元二次方程和不等式之间的关系可以通过表格的形式进行总结。下面是一个简单的表格:
概念
二次函数
一元二次方程
一元二次不等式
定义
y = ax^2 + bx + c
ax^2 + bx + c = 0
ax^2 + bx + c > 0 (a > 0)或ax^2 + bx + c < 0 (a < 0)
图像Байду номын сангаас
抛物线
交点或无实根
与x轴的交点或区间
根的性质
有时有两个实根,有时有一个实根,有时无实根
有时有两个实根,有时有一个实根,有时无实根
有时在区间内恒成立,有时不恒成立
判别式
Δ = b^2 - 4ac
Δ = b^2 - 4ac
Δ = b^2 - 4ac
根与系数的关系
x1 + x2 = -b/a, x1 * x2 = c/a (当有两个实根时)
x1 + x2 = -b/a, x1 * x2 = c/a (当有两个实根时)
无特定关系(但与方程的根有关)
最值问题
可能存在最小值或最大值,取决于a的正负和Δ的值
无特定最值问题(但与方程的解有关)
可能存在区间内的不等式恒成立问题,取决于a的正负和Δ的值
这个表格简要概述了二次函数、一元二次方程和不等式之间的关系。
考点08 二次函数与方程不等式之间的关系(解析版)
考点八二次函数与方程不等式之间的关系知识点拓展一、二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了一元二次方程ax 2+bx +c =0(a ≠0).2.ax 2+bx +c =0(a ≠0)的解是抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交点的横坐标.3.(1)b 2–4ac >0⇔方程有两个不相等的实数根,抛物线与x 轴有两个交点;(2)b 2–4ac =0⇔方程有两个相等的实数根,抛物线与x 轴有且只有一个交点;(3)b 2–4ac <0⇔方程没有实数根,抛物线与x 轴没有交点.考向一二次函数与一元二次方程、不等式的综合抛物线y =ax 2+bx +c (a ≠0)与x 轴的交点个数及相应的一元二次方程根的情况都由Δ=b 2–4ac 决定.1.当Δ>0,即抛物线与x 轴有两个交点时,方程ax 2+bx +c =0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x 轴有一个交点(即顶点)时,方程ax 2+bx +c =0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x 轴无交点时,方程ax 2+bx +c =0无实数根,此时抛物线在x 轴的上方(a >0时)或在x 轴的下方(a <0时).典例引领1.如图,在平面直角坐标系中,抛物线()22y x k =--+(k 是常数)与x 轴交于A 、B 两,其中点A 的坐标为()1,0,点P 在此抛物线上,其横坐标为()1m m >,过点P 作x 轴的垂线,垂足为Q ,(1)求此抛物线的解析式;(2)直接写出点B 的坐标;(3)当点P 在x 轴上方,且PQ AQ +的值随m 的增大而增大时,求m 的取值范围;(4)当抛物线上点A 与点P 之间的部分(包括点P )的最高点到y 轴的距离等于3PQ 时,直(1)若6AB =,5AC =,求(2)若2b a =-,3c =,(ⅰ)当0a >,请判断此时抛物线点的情况;(ⅱ)已知点(),P a y 和点(1)已知一次函数的图象过点(2)当03x ≤≤时,对于x 的每一个值,函数2y x b =-+(b 为常数)的值大于函数256y x x =-+的值,直接写出b 的取值范围.【答案】(1)26y x =-+(2)6b >【分析】(1)令0y =,则2560x x -+=,可求()30B ,,当0x =,则2566y x x =-+=,可求()06C ,,待定系数法求一次函数解析式即可;(2)由题意知,2y x b =-+的图象与直线BC 平行,如图,结合图象求解作答即可.【详解】(1)解:令0y =,则2560x x -+=,解得,2x =或3x =,∴()30B ,,当0x =,则2566y x x =-+=,即()06C ,,设一次函数解析式为y kx b =+,将()30B ,,()06C ,代入得,306k b b +=⎧⎨=⎩,解得,26k b =-⎧⎨=⎩,∴一次函数的解析式为26y x =-+;(2)解:由题意知,2y x b =-+的图象与直线BC 平行,如图,∵当03x ≤≤时,对于x 的每一个值,2625x x b x +>-+-,∴由图可知:6b >.【点睛】本题考查了二次函数与x 轴的交点坐标,一次函数解析式,一次函数图象的平移,二次函数与不等式.熟练掌握二次函数与x 轴的交点坐标,一次函数解析式,一次函数图象的平移,二次函数与不等式是解题的关键.变式拓展5.如图所示,二次函数2y ax bx c =++的图象经过()1,0-、()3,0、()03-,三点.(1)求二次函数的解析式;(2)方程2ax bx c m ++=有两个实数根,m 的取值范围为__________.(3)不等式23ax bx c x ++>-的解集为__________;【答案】(1)2=23y x x --(2)4m ≥-(3)0x <或3x >【分析】本题考查二次函数的图象与性质、待定系数法求函数解析式、二次函数图象与一次函数的交点问题,利用数形结合思想求解是解答的关键.(1)利用待定系数法,设二次函数的解析式为()()13y a x x =+-,进而代值求解a 值即可;(2)先求得二次函数的最小值,再结合图象,求得使直线y m =与二次函数图象有两个交点时的m 值的取值范围即可;(3)先判断出二次函数2y ax bx c =++的图象与直线3y x =-的交点坐标为()0.3-,()3,0,(1)求该抛物线的解析式;(2)若直线y=kx 23+(k≠0=10时,求k的值;(3)当﹣4<x≤m时,y有最大值1(1)求直线AB 的函数表达式及点(2)点P 是第四象限内二次函数图象上的一个动点,过点AB 交于点D ,设点【答案】(1)4y x =-(2)m 的值为2,3或∵2PD =,∴2542m m -+=解得∵01m <<∴5172m -=如图,当点P 在直线∵2PD =,∴2542m m -+=解得∴二次函数表达式为:232y x x =-+,令0y =,得:2320x x -+=,解得:1x =或2x =,∴二次函数图像与x 轴有两个公共点的坐标是:()1,0,()2,0,又 点A 坐标为()1,0,∴点B 坐标为()2,0.。
专题15二次函数及其应用(知识点总结例题讲解)-2021届中考数学一轮复习
1 2 中考数学 专题 15 二次函数及其应用(知识点总结+例题讲解)一、二次函数的概念:1.二次函数的概念:(1)一般地,如果 y=ax 2+bx+c(a ,b ,c 是常数,a≠0),那么 y 叫做 x 的二次函数; (2)抛物线 y=ax 2+bx+c(a ,b ,c 是常数,a≠0)叫做二次函数的一般式。
2.二次函数的解析式( 二次函数的解析式有三种形式): (1)一般式:y=ax 2+bx+c(a ,b ,c 是常数,a≠0) (2)顶点式:y=a(x-h)2+k(a ,h ,k 是常数,a≠0) (3)两根式(交点式):y=a(x-x 1)(x-x 2);①已知图像与 x 轴的交点坐标 x 1、x 2,通常选用交点式; 即对应二次方程 ax 2+bx+c=0 有实根 x 和 x 存在; ②如果没有交点,则不能这样表示。
3.用待定系数法求二次函数的解析式:(1)若已知抛物线上三点坐标,可设二次函数表达式为 y =ax 2+bx +c ; (2)若已知抛物线上顶点坐标或对称轴方程,则可设顶点式:y =a(x -h)2+k ,其中对称轴为 x =h ,顶点坐标为(h ,k);(3)若已知抛物线与 x 轴的交点坐标或交点的横坐标,则可采用两根式(交点式):y =a(x -x 1)(x -x 2),其中与 x 轴的交点坐标为(x 1,0),(x 2,0)。
【例题 1】已知二次函数的图象经过(2,10)、(0,12)和(1,9)三点,求二次函数的解析式.【答案】y=2x 2-5x+12【解析】设抛物线的解析式为 y=ax 2+bx+c ,把(2,10)、(0,12)、(1,9)分别代入求出 a ,b ,c 即可.解:设抛物线的解析式为 y=ax 2+bx+c ;⎨ ⎩ ⎧4a + 2b + c = 10 把(2,10)、(0,12)、(1,9)分别代入得⎪c = 12⎪a + b + c = 9 所以,二次函数的解析式为:y=2x 2-5x+12。
考点07 二次函数与一元二次方程和不等式的关系-解析版 2023-2024学年九年级数学考点归纳与解
考点07 二次函数与一元二次方程和不等式的关系1 抛物线与x 轴的交点情况的分析二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)1.抛物线与x 轴的交点的横坐标是一元二次方程ax 2+bx +c=0的解.2.若已知二次函数y =ax 2+bx +c 的函数值为s ,求自变量x 的值,就是解一元二次方程ax 2+bx +c=s .3.二次函数y =a x 2+bx +c 的图像与x 轴的两个交点的横坐标x 1、x 2,是对应一元二次方程a x 2+bx +c =0的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔Δ>0⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔Δ=0⇔抛物线与x 轴相切;③没有交点⇔Δ<0⇔抛物线与x 轴相离.二次函数y=ax 2+bx+c 的图象和x 轴交点的横坐标与一元二次方程ax 2+bx+c=0的根关系:抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点的个数一元二次方程ax 2+bx+c=0(a ≠0)的根的情况b 2-4ac >0有两个有两个不相等的实数根b 2-4ac =0有一个有两个相等的实数根b 2-4ac<0没有公共点没有实数根2 抛物线与y 轴的交点情况图像与y 轴的交点即是x =0的情况求y 的值,也就是c 的值。
3 已知函数值求自变量的值只需要将对应的函数值的值带入函数解析式即可求出自变量的值4 根据图像确定方程根的情况二次函数y=ax 2+bx+c 的图象和x 轴交点的横坐标即是一元二次方程ax 2+bx+c=0的根。
5 图像法确定一元二次方程的近似根图像与x轴的交点纵坐标为0,在这个点的左右的点的纵坐标的值必然是一正一负,根据条件,离这个交点的最近的左右两个点的横坐标即是对应的方程的近似值。
6 二次函数与不等式(组)1.涉及一元二次不等式的,可以利用二次函数图像图象求解2.两个函数的值的大小比较,上方图象的函数值大于下方图象的函数值.考点1抛物线与x轴的交点考点2 抛物线与y轴的交点情况考点3 已知函数值求自变量的值考点4 根据图像确定方程根的情况考点5 图像法确定一元二次方程的近似根考点6 二次函数与不等式(组)考点7 根据不等式确定自变量或函数值的范围考点8 求x轴与抛物线交点的截线长考点1抛物线与x轴的交点A .11x =,2x =C .11x =,2x =∴方程()200ax bx c a ++=≠的两根是11x =-,27x =.故答案为:B .【点睛】本题考查了二次函数的对称性及二次函数与一元二次方程的性质,结合图象掌握函数的性质是解题的关键.3.(2023秋·广东湛江·九年级校考期末)抛物线()()234y x x =-+与x 轴交点的坐标为( )A .()3,0-和()4,0-B .()0,3和()0,4-C .()0,3-和()0,4D .()3,0和()4,0-【答案】D【分析】通过解方程()()2340x x -+=即可得到抛物线()()234y x x =-+与x 轴交点的坐标.【详解】解:当0y =时,()()2340x x -+=,解得:13x =,24x =-,∴抛物线()()234y x x =-+与x 轴交点的坐标为()3,0,()4,0-,故选:D .【点睛】本题考查了抛物线与x 轴的交点,解题的关键是求抛物线与x 轴交点的坐标问题转化成解关于x 的一元二次方程.4.(2023春·浙江杭州·九年级校考阶段练习)已知关于x 的二次函数()()y x a x b x =---的与x 轴的交点坐标是(),0c 和(),0d ,其中a ,b ,c ,d 均为常数,则关于x 的二次函数()()y x c x d x =--+与x 轴的交点坐标是( )A .(),0a 和(),0b B .(),0a -和(),0b -C .(),0c 和(),0d D .(),0c -和(),0d -【答案】A【分析】将()()y x a x b x =---化为一般式,根据根与系数的关系可得1c d a b +-=+,cd ab =,将()()y x c x d x =--+化为一般式,可得121x x c d +=+-,12x x cd ⋅=,即可求解.【详解】解:∵二次函数()()()21y x a x b x x a b x ab =---=-+++的与x 轴的交点坐标是(),0c 和(),0d ,∴方程()()0x a x b x =---的两个根分别为c 、d ,∴1c d a b +=++,cd ab =,∴1c d a b+-=+∵()()()21y x c x d x x c d x cd =--+=-+-+,设方程()()0x a x b x =--+的两根为1x ,2x ,∴121x x c d +=+-,12x x cd ⋅=,∴1x ,2x 分别为a 、b ,∴该函数与x 轴的交点坐标(),0a 和(),0b ,故选:A .【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握二次函数与x 轴的交点横坐标即为对应方程的根,掌握一元二次方程根与系数的关系.考点2 抛物线与y 轴的交点情况在2=23y x x --中,当0y =时,解得:121,3x x =-=当0x =时,=3y -,即()()()1,03,00,3A B C --、、,∴4,3AB OC ==故ABC 的面积为:12436⨯⨯=考点3 已知函数值求自变量的值考点4 根据图像确定方程根的情况A.a<0B.【答案】B【分析】由图象可知,a<【详解】解:由图象可知,b<,∴0a>A.0C.240-<b ac【答案】B【分析】采用数形结合的方法解题,根据抛物线的开口方向,对称轴的位置判断关系与抛物线与x轴的交点情况结合起来分析问题.值为( )A .5B .2C .1D .1或5【答案】A【分析】根据二次函数与x 轴只有一个交点,则关于x 的一元二次方程()21410a x x --+=只有一个实数根,据此求解即可.【详解】解:∵关于x 的二次函数()2141y a x x =--+图象与x 轴只有一个交点,∴关于x 的一元二次方程()21410a x x --+=只有一个实数根,∴()()2Δ441010a a ⎧=---=⎪⎨-≠⎪⎩,解得5a =,故选A .【点睛】本题主要考查了抛物线与x 轴的交点问题,熟练掌握二次函数与一元二次方程之间的关系是解题的关键.考点5 图像法确定一元二次方程的近似根A .5m >【答案】A 【分析】利用函数图象,的解的情况.【详解】解:观察图象可得,【点睛】本题考查了二次函数与一元二次方程,解题的关键是由二次函数的图象与考点6 二次函数与不等式(组)b<A.a<0,0a b+>C.40【答案】D【分析】根据抛物线开口方向和抛物线的对称轴位置对次项系数a 共同决定对称轴的位置:当a 与b 同号时(即0)ab >,对称轴在y 轴左侧;当a 与b 异号时(即0)ab <,对称轴在y 轴右侧.(简称:左同右异);常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于()0,c .抛物线与x 轴交点个数由∆决定:240b ac ∆=->时,抛物线与x 轴有2个交点;240b ac ∆=-=时,抛物线与x 轴有1个交点;24<0b ac ∆=-时,抛物线与x 轴没有交点.22.(2023秋·全国·九年级专题练习)已知,抛物线2y ax bx c =++的图象如图所示,根据图象回答,当21ax bx c ++<时,x 的取值范围是( )A .13x -<<B .1x <-或3x >C .1x <-D .3x >【答案】A 【分析】由图象可得:当1y =时,=1x -或3x =,可得当21ax bx c ++<时,即图象在直线1y =的下方,从而可得x 的取值范围是13x -<<.【详解】解:由图象可得:当1y =时,=1x -或3x =,∴当21ax bx c ++<时,x 的取值范围是13x -<<;故选A【点睛】本题考查的是利用二次函数的图象解不等式,熟练的利用数形结合的方法解题是关键.23.(2023·全国·九年级专题练习)二次函数()20y ax bx c a =++≠的图像如图所示,则函数值0y >时,x 的取值范围是( )A .1x <-B .3x >C .13x -<<D .1x <-或3x >【答案】D 【分析】写出函数图象在x 轴上方部分的x 的取值范围即可.【详解】解:由图可知,当1x <-或3x >时,0y >.故选:D .【点睛】本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解是关键.24.(2022秋·浙江杭州·九年级校考期中)如图,抛物线214y x x =-+和直线22y x =,当12y y <时,x 的取值范围是( )A .02x <<B .0x <或2x >C .0x <或>4x D .04x <<【答案】B 【分析】先求出两图象的交点为()()0,0,2,4,可得当0x <或2x >时,抛物线的图象位于直线的下方,即可求解.【详解】解:联立得:224y x y x x=⎧⎨=-+⎩,解得:121202,04x x y y ==⎧⎧⎨⎨==⎩⎩,即两图象的交点为()()0,0,2,4,∴当0x <或2x >时,抛物线的图象位于直线的下方,∴当12y y <时,x 的取值范围是0x <或2x >.故选:B【点睛】此题考查求两个函数图象的交点坐标,根据函数图象确定自变量x 的取值范围,正确解出交点坐标及正确理解函数图象是解题的关键.考点7 根据不等式确定自变量或函数值的范围则t 的取值范围是( )A .2t >B .0t >C .02t <<D .2t <【答案】B【分析】将(),A t m 、()4,B t n +代入二次函数24y x x c =-+求解即可.【详解】将(),A t m 、()4,B t n +代入二次函数24y x x c =-+,∴24m t t c =-+,()()2444n t t c =+-++,∵m n <,∴()()224444t t c t t c -+<+-++,∴0t >.故选:B .【点睛】本题考查了二次函数与不等式.26.(2022春·九年级课时练习)在平面直角坐标系中,已知点A (4,2),B (4,4)抛物线L :y =﹣(x ﹣t )2+t (t ≥0),当L 与线段AB 有公共点时,t 的取值范围是( )A .3≤t ≤6B .3≤t ≤4或5≤t ≤6C .3≤t ≤4,t =6D .5≤t ≤6【答案】B【分析】根据题意知线段AB 平行于y 轴,先根据二次函数经过点A 与点B 构建方程,进而得出二次函数与线段交点解集即可.【详解】解:根据题意知:∵点()4,2A ,()4,4B ,故对于二次函数()()20y x t t t =--+≥与线段AB 有公共点时,即当x =4时,2y 4≤≤,即()2244t t --+≤≤,当()242t t --+=时,解得123,6t t ==,当()244t t --+=时,解得434,5t t ==,∴()2244t t --+≤≤的解集为34t ≤≤或56t ≤≤;方程在13x -<<的范围内有实数根,当2x =时,7y =∵抛物开口朝下,函数243y x x =-++在2x =时有最大值7,对称轴是2x =,()213,321--=-=,31>即在13x -<<的范围,当=1x -时的函数值最小∴当=1x -时,=2y -∴t 的取值范围是27t -<≤故选:D .【点睛】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.考点8 求x 轴与抛物线交点的截线长A.3B.−3故选B.【点睛】本题主要考查了二次函数的性质,一元二次方程根与系数的关系以及二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.。
(用)二次函数与一元二次方程、不等式的关系课件-新版.ppt
探究三:你的图象与x轴的交点坐标是什么?
根据 y x2 2x 3 图象回答下列问题.
• 当 x 取何值时,y<0?
y
• 当 x 取何值时,y>0?
• 能否用含有x的不等式来 描述两个问题?
§21.3 二次函数与一元 二次方程、不等式的关系
温故知新
?
(1)、一次函数y=-3x+6的图象与x轴的交 点为(2,0);与 y 轴的交点为 (0,6) 。 (2)、一元一次方程-3x+6=0的根为__X__=_2___
y
你能说说 (1)与 (2)之间 的联系吗?
6
o2 x
方法与规律: 一次函数y=kx+b的图象与
-4
-5
九、如何求当x为何值时,y>0,y=0,y<0
y
x1
x2 x
0
y
O
x1
x2 x
当x=x1或x=x2时,y=0 当x<x1或x>x2时,y<0 当x1<x<x2时,y>0
x轴的交点的横坐标就是一元一次方程
kx+b=0的根
探究
探究1、求二次函数图象y=x2-3x+2与x轴的交 点A、B的坐标。
y 解:∵A、B在轴上,
∴它们的纵坐标为0, ∴令y=0,则x2-3x+2=0
x1 OA
x2 B
解得:x1=1,x2=2;
∴A(1,0) , B(2,0)
你发现方程 x2-3x+2=0 的解x1、x2与A、B的 坐标有什么联系?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与方程及不等式的关系
6、如图,将二次函数y=x 2
-m(其中m >0)图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,形成新的图象记为y 1,另有一次函数y=x+b 的图象记为y 2,则以下说法:(1)当m=1,且y 1与y 2恰好有三个交点时,b 有唯一值为1;
(2)当b=2,且y 1与y 2恰有两个交点时,m>4或<0m<7
4
;
(3)当m=b 时,y 1与y 2至少有2个交点,且其中一个(0,m); (4)当m=-b 时,y 1与y 2一定有交点. 其中正确说法的序号为
9. (2014·浙江杭州江干一模,16,4分)如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B (4,2),一次函数y =kx -1的图象平分它的面积.若关于x 的函数y =mx 2-(3m +k )x +2m +k 的图象与坐标轴只有两个交点,则m 的值为________.
解析 过B 作BE ⊥AD 于E ,连结OB ,CE 交于点P ,∵P 为矩形OCBE 的对称中心,则过点P 的直线平分矩形OCBE 的面积.∵P 为OB 的中点,而B (4,2),∴P 点坐标为(2,1),∵P 点坐标为(2,1),点P 在直线y =kx -1上,∴2k -1=1,k =1.∵关于x 的函数y =mx 2-(3m +1)x +2m +1的图象与坐标轴只有两个交点,∴①当m =0时,y =-x +1,其图象与坐标轴有两个交点(0,1),(1,0);②当m ≠0时,函数y =mx 2-(3m +1)x +2m +1的图象为抛物线,且与y 轴总有一个交点(0,2m +1),若抛物线过原点时,2m +1=0,即m =-12,此时,Δ=(3m +1)2-4m (2m +1)=(m +1)2>0,故抛物线与x 轴有两个交点且过原点,符合题意.若抛物线不过原点,且与x 轴只有一个交点,也符合题意,此时Δ=(m +1)2=0,m =-1.综上所述,m 的值为:m =0或-1或-12. 答案 m =0或-1或-1
2
1.(原创题)函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( ) A .k <3 B .k <3且k ≠0 C .k ≤3且k ≠0
D .k ≤3
18.已知二次函数2y x bx =+的对称轴为直线1x =,若关于x 的一元二次方程
20x bx t +-=(t 为实数)在14x -<<时有解,则t 的取值范围是 .
18.如图,点A 在y 轴上,过点A 作x 轴的平行线交抛物线2(0)y ax a =>于点 B 、C ,过点B 作x 轴的垂线,垂足为D ,连接CD ,分别交抛物线和y 轴于 E 、F ,则EF FC
的值为 .
8.已知a b c >>,且0a b c ++=,则抛物线2y ax bx c =++与直线y bx =-的交点 个数为 个.
12.如图,A 点的坐标为(-4,0),直线3y x n =+与坐标轴交于点B ,C ,连接AC ,若∠ACB =90°,
则n 的值为( ) A .2- B .423-
C .433
-
D .453
-
10.如图,抛物线y=x 2+1与双曲线y=
的交点A 的横坐标是1,则关于x 的不等式+ x 2
+1<0
的解集是 ( ▲ )
A .x>1
B .x<-1
C .0<x<1
D .-1<x<0 【答案】D .
17.如图,已知函数3y x
=- 与()2
00y ax bx a b =+>>,的图象交于点P ,点P 的纵坐1,则关于x 的方程23
0ax bx x
++=的解为
标为
_____________.
2.(2015·湖南省益阳市,第8题5
分)若抛物线y =(x ﹣m )2+(m +1)的顶点在第一象限,则m 的取值范围为( )
A . m >1
B . m >0
C . m >﹣1
D . ﹣1<m <0
考点:
二次函数的性质.
3.(2015•江苏苏州,第8题3分)若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为
A .
B .
C .
D .
4.(2015•广东梅州,第10题4分)对于二次函数y =﹣x 2+2x .有下列四个结论:①它的对称轴是直线x =1;②设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x <2时,y >0.其中正确的结论的个数为
x k x
k 1 y
x
P
O
(第17题)
第18题
x
y
O A B
C
D E F A
B
C O x
y 3y x n
=+第12题
( )
A .
1
B .
2
C .
3
D .
4
10. (2015•浙江宁波,第11题4分)二次函数的图象在2<<3这一段位于轴的下方,在6<<7这一段位于轴的上方,则的值为【 】
A . 1
B . -1
C . 2
D . -2
15.(2015•山东威海,第25题12分)已知:抛物线l 1:y =﹣x 2+bx +3交x 轴于点A ,B ,(点A 在点B 的左侧),交y 轴于点C ,其对称轴为x =1,抛物线l 2经过点A ,与x 轴的另一个交点为E (5,0),交y 轴于点D (0,﹣).
(1)求抛物线l 2的函数表达式;
(2)P 为直线x =1上一动点,连接PA ,PC ,当PA =PC 时,求点P 的坐标;
(3)M 为抛物线l 2上一动点,过点M 作直线MN ∥y 轴,交抛物线l 1于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.
)0(4)4(2≠--=a x a y x x x x a。