二次函数一般式与顶点坐标公式练习

合集下载

顶点式专题训练(含答案解析)

顶点式专题训练(含答案解析)

顶点式专题训练(含答案解析)一、填空题(本大题共3小题,共9.0分)x2−x+3用配方法化成y=a(x−ℎ)2+k的形式是______ ;该二次函数图象的顶点坐标是1.把二次函数y=−14______ .2.将二次函数y=x2−2x化为顶点式的形式为:______ .3.把二次函数y=x2−2x−1配方成顶点式为______ .二、解答题(本大题共12小题,共96.0分)4.已知二次函数y=−2x2+8x−6,完成下列各题:(1)将函数关系式用配方法化为y=a(x+ℎ)2+k的形式,并写出它的顶点坐标、对称轴;(2)它的图象与x轴交于A,B两点,顶点为C,求S△ABC.5.已知二次函数y=−2x2+8x−4,完成下列各题:(1)将函数关系式用配方法化为y=a(x+ℎ)2+k形式,并写出它的顶点坐标、对称轴.(2)若它的图象与x轴交于A、B两点,顶点为C,求△ABC的面积.6.已知二次函数y=x2−6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.7.已知二次函数y=x2+2x−3.(1)将y=x2+2x−3用配方法化成y=a(x−ℎ)2+k的形式;(2)求该二次函数的图象的顶点坐标.8.用配方法将二次函数化成y=a(x−ℎ)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x−12②y=−0.5x2−3x+3.9.已知二次函数y=x2−6x+5.(1)将y=x2−6x+5化成y=a(x−ℎ)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当y>0时,求x的范围.10.已知二次函数y=2x2−8x+6.(1)把它化成y=a(x−ℎ)2+k的形式为:______ .(2)直接写出抛物线的顶点坐标:______ ;对称轴:______ .(3)求该抛物线于坐标轴的交点坐标.11.(1)解方程:12x(x−1)−(x−1)=0.(2)已知抛物线y=−2x2+8x−6,请用配方法把它化成y=a(x−ℎ)2+k的形式,并指出此抛物线的顶点坐标和对称轴.12.已知二次函数y=−12x2+x+32.(1)用配方法将此二次函数化为顶点式;(2)求出它的顶点坐标和对称轴方程.13.用配方法把二次函数y=x2−3x−4化成y=a(x−ℎ)2+k的形式,并写出该函数图象的开口方向、对称轴和顶点坐标.14.用配方法把函数y=−3x2−6x+10化成y=a(x−ℎ)2+k的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.15.已知二次函数y=x2−4x+3.(1)将函数化成y=(x−ℎ)2+k的形式;(2)写出该函数图象的顶点坐标和对称轴.答案和解析【答案】(x+2)2+4;(−2,4)1. y=−142. y=(x−1)2−13. y=(x−1)2−24. 解:(1)y=−2x2+8x−6=−2(x2−4x+3)=−2(x2−4x+4−4+3.=−2(x−2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2.(2)令−2(x−2)2+2=0解得:x1=3,x2=1.∴A(3,0),B(1,0)∴AB=3−1=2.∴C(2,2),×2×2=2.∴S△ABC=125. 解:(1)y=−2x2+8x−4=−2(x2−4x)−4=−2(x2−4x+4−4)−4=−2(x−2)2+4.所以,抛物线的顶点坐标为(2,4),对称轴为直线x=2.(2)令y=0得−2(x−2)2+4=0,(x−2)2=2,所以x−2=±√2,所以x1=2+√2,x2=2−√2.所以与x轴的交点坐标为A(2+√2,0),B(2−√2,0).×[(2+√2)−(2−√2)]×4=4√2.∴S△ABC=126. 解:(1)y=x2−6x+8=x2−6x+9−1=(x−3)2−1;(2)开口向上,对称轴是x=3,顶点坐标是(3,−1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.7. 解:(1)y=x2+2x−3=x2+2x+1−1−3 =(x+1)2−4.(2)∵y=(x+1)2−4,∴该二次函数图象的顶点坐标是(−1,−4).8. 解:①y=2x2+6x−12=2(x+32)2−332,则该抛物线的顶点坐标是(−32,−332),对称轴是x=−32;②y=−0.5x2−3x+3=−12(x+3)2+152,则该抛物线的顶点坐标是(−3,152),对称轴是x=−3.9. 解:(1)y=x2−6x+5=x2−6x+9−4=(x−3)2−4;(2)∵y=(x−3)2−4,∴该二次函数图象的对称轴是直线x=3,顶点坐标是(3,−4);(3)x2−6x+5=0,x1=1,x2=5,当x<1或x>5时,y>0.10. y=2(x−2)2−2;(2,−2);x=211. 解:(1)12x(x−1)−(x−1)=0,分解因式得:(x−1)(12x−1)=0,可化为:x−1=0或12x−1=0,解得:x1=1,x2=2;(2)∵y=−2x2+8x−6=−2(x2−4x+4)+8−6=−2(x−2)2+2,∴此抛物线的顶点坐标是(2,2),对称轴为直线x=2.12. 解:(1)二次函数y=−12x2+x+32=−12(x−1)2+2;(2)∵二次函数y=−12(x−1)2+2,∴二次函数的顶点坐标为(1,2),抛物线的对称轴为x=1.13. 解:y=x2−3x−4=(x−32)2−254,则函数图象的开口方向向上,对称轴是x=32,顶点坐标(32,−254).14. 解:∵y=−3x2−6x+10=−3(x+1)2+13,∴开口向下,对称轴x=−1,顶点坐标(−1,13),最大值13.15. 解:(1)y=x2−4x+4−4+3=(x−2)2−1;(2)图象的顶点坐标是(2,−1),对称轴是:x=2.【解析】1. 解:y=−14x2−x+3=−14(x2+4x)+3=−14(x+2)2+4,∴顶点(−2,4).(x+2)2+4,(−2,4).故答案为:y=−14利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标.此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式.2. 解:y=x2−2x=x2−2x+1−1=(x−1)2−1,故答案为y=(x−1)2−1.利用配方法把二次函数的一般形式配成二次函数的顶点式.本题考查的是二次函数的三种形式,题目中给出的是一般形式,利用配方法可以化成顶点式.3. 解:y=x2−2x−1=(x2−2x+1)−1−1=(x−1)2−2,故选答案为y=(x−1)2−2.由于二次项系数为1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).4. (1)利用配方法整理成顶点式,然后写出顶点坐标和对称轴即可;(2)令y=0解关于x的一元二次方程,即可得到与x轴的交点坐标,然后利用三角形的面积公式计算即可;本题考查了二次函数的三种形式,二次函数的性质,二次函数图象与x轴的交点问题,熟练掌握配方法的操作整理成顶点式形式求出顶点坐标和对称轴更加简便.5. (1)利用配方法即可解决问题;(2)求出A、B、C三点坐标即可解决问题;本题考查抛物线与x轴的交点,二次函数的性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6. (1)利用配方法将解析式化成顶点式;(2)根据二次函数的性质解答;(3)根据抛物线的开口方向、对称轴以及二次函数的性质解答.本题考查的是二次函数的三种形式、配方法的应用以及二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键.7. 本题考查了二次函数的性质以及二次函数的三种形式.二次函数的解析式有三种形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数);②顶点式:y=a(x−ℎ)2+k;③交点式(与x轴):y=a(x−x1)(x−x2).(1)利用配方法先加上一次项系数的一半的平方来凑完全平方式,再把一般式转化为顶点式即可;(2)根据顶点坐标的求法,得出顶点坐标即可;8. ①②利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标和对称轴.此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式和对称轴公式.9. (1)利用配方法把一般式化为顶点式;(2)根据二次函数的性质解答;(3)求出x2−6x+5=0的解,解答即可.本题考查的是二次函数的三种形式、二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键.10. 解:(1)y=2x2−8x+6=2(x2−4x+4)−8+6=2(x−2)2−2;(3)∵y=2x2−8x+6,∴当y=0时,2x2−8x+6=0,解得x1=1,x2=3,∴抛物线与x轴的交点坐标为(1,0),(3,0);当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6).故答案为y=2(x−2)2−2;(2,−2),x=2.(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数的性质,利用二次函数的顶点式即可求出抛物线的顶点坐标与对称轴;(3)把y=0代入y=2x2−8x+6,解方程求出x的值,从而得到抛物线与x轴的交点坐标;把x=0代入y=2x2−8x+6,求出y的值,从而得到抛物线与y轴的交点坐标.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).同时考查了二次函数的性质以及抛物线与坐标轴交点坐标的求法.11. (1)先将把方程左边化为两个一次因式积的形式,然后根据两数相乘积为0,两因式至少有一个为0转化为两个一元一次方程,求出方程的解即可得到原方程的解;(2)先利用配方法提出二次项系数,加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式,再根据二次函数的性质即可写出抛物线的对称轴和顶点坐标.本题考查了二次函数解析式的三种形式,二次函数的性质及解一元二次方程−因式分解法,难度适中.12. (1)利用配方法将二次函数的一般式变形为顶点式,此题得解;(2)根据二次函数的顶点式,结合二次函数的性质即可得出顶点坐标以及对称轴.本题考查了二次函数的三种形式以及二次函数的性质,利用配方法将二次函数的一般式变形为顶点式是解题的关键.13. 运用配方法把二次函数的一般式化为顶点式,根据二次函数的性质解答即可.本题考查的是二次函数的三种形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键,14. (1)这个函数的二次项系数是−3,配方法变形成y=(x+ℎ)2+k的形式,配方的方法是把二次项,一次项先分为一组,提出二次项系数−3,加上一次项系数的一半,就可以变形成顶点式的形式.(2)二次函数的一般形式中的顶点式是:y=a(x−ℎ)2+k(a≠0,且a,h,k是常数),它的对称轴是x=ℎ,顶点坐标是(ℎ,k).本题主要是对抛物线一般形式中对称轴,顶点坐标的考查,是中考中经常出现的问题.15. (1)把一般式利用配方法化为顶点式即可;(2)利用顶点式求得顶点坐标和对称轴即可.此题考查二次函数的解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).。

二次函数顶点式练习题和答案

二次函数顶点式练习题和答案

二次函数顶点式练习题和答案一、学习目标:1、能够熟练利用配方法、公式法求出二次函数的顶点坐标和对称轴。

2、会画二次函数的大致图像3、进一步体会数形结合思想在解题中的应用二、例题分析例1、已知二次函数y=ax+bx+c的图象如图,则下列结论中正确的是A.a>0B.当x>1时,y随x的增大而增大C.c<0 D.3是方程ax+bx+c=0的一个根例2、某商店经营一种水产品,成本为每千克40元,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请回答下列问题:当销售单价为每千克55元时,计算销售量和月利润.设销售单价为每千克x元,月销售利润为y元,求y 与x的函数关系式.销售单价定为多少元时,获得的利润最多?三、巩固训练1、抛物线y=2x2-6x-1的顶点坐标为_______,对称轴为________.2、如果y=xm2?m22是关于x的二次函数,则m=A.-1 B. C.-1或 D.m不存在 13.y=x2-7x-5与y 轴的交点坐标为A.- B. C. D.x图1 、下列关于抛物线y=x2+2x+1的说法中,正确的是5、二次函数y=ax2-bx+c的图象如图1所示,则a,b,c?与零的大小关系为a___0,b___0,c___0.6、若抛物线y=x2+2mx+2m-1的图象的最低点的纵坐标为零,则m=_____.7.已知二次函数y=ax2-4x-13a有最小值-17,则a=______.8、二次函数y=x2+2的图象开口_______,对称轴是______,顶点坐标是___.A.开口向下 B.对称轴是直线x=1 C.与x轴有两个交点 D.顶点坐标是9、如图2,用长60?米的篱笆,靠墙围成一个长方形场地,在表示场地面积时,图可以设_______为x米,也可以选择______为x米,相应地面积S的解析式为_____或______.10、使函数y=x2-3x+2的值为零的x的值为_______. 11.函数y=2-3x2的图象,开口方向是____,?对称轴是_____,?顶点坐标是_______.12.无论m为任何实数,总在抛物线y=x2+2mx+m上的点是_____13、抛物线的图象如图3所示,根据图象可知,抛物线的解析式可能是..A、y=x2-x-B、y=?C、y=?121x??12121x?x?1D、y=?x2?x?222图314、已知二次函数y=ax+bx+c的图象如图4所示,给出以下结论:①abc?0②当x?1时,函数有最大值。

【教育资料】二次函数顶点坐标公式学习专用

【教育资料】二次函数顶点坐标公式学习专用

二次函数顶点坐标公式
一般地,自变量x和因变量y之间存在如下关系:(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。

顶点坐标(-b/2a,(4ac-b^2)/4a)
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).
(3)交点式(与x轴):y=a(x-x1)(x-x2)
(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x
轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:
(1)任何一个二次函数通过配方都可以化为顶点式y=
a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y =ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在
原点.
(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=
ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).。

广东省广州市 人教版 九年级上 数学 二次函数一般式化顶点式题目方法及练习题

广东省广州市 人教版 九年级上 数学 二次函数一般式化顶点式题目方法及练习题

二次函数一般式2y ax bx c =++化成()2y a x h k =-+的形式一.基础知识:1.(1)完全平方公式:222a ab b ±+=()2a ±——(2)()226_____x x x ++=+ (3)()223______x x x -+=-(4)()222____x x x ++=+ (5)()224____x x x -+=-二、基础知识练习1.类型一:1,a b ==偶数例1.用配方法将抛物线261y x x =-+-化成顶点式,并写出开口方向、顶点坐标、对称轴。

举一反三:用配方法将抛物线281y x x =-+化成()2y a x h k =-+的形式,并写出开口方向、顶点坐标、对称轴。

类型二:1,a b ==奇数例2.求抛物线21y x x =++的顶点坐标。

举一反三:求抛物线232y x x =-+的顶点坐标。

类型三:1a ≠例3.求二次函数221210y x x =-+-的最大值举一反三:求二次函数23123y x x =--的最小值。

例4.求抛物线21232y x x =--+的顶点坐标。

举一反三:求抛物线23+12y x x =-+的顶点坐标。

三、过关练习:1.求抛物线243y x x =--的顶点坐标2.将抛物线22y x x =-化成()2y a x h k =-+的形式为( )A.()211y x =-+ B. ()211y x =-- C. ()214y x =++ D.()214y x =--3.已知抛物线228y x x =+。

(1)化成顶点式为_________ (2)顶点坐标为_________ (3)当x ________时,y 的最_______值__________;(4)当x________时,y 随x 的增大而增大。

4.二次函数2112y x x =---的图像可由抛物线212y x =-怎样平移得到?5.抛物线222y x x =-++。

二次函数练习题及解析4

二次函数练习题及解析4
考点:二次函数的性质;二次函数的三种形式。
专题:配方法。
分析:(1)这个函数的二次项系数是﹣3,配方法变形成y=(x+h)2+k的形式,配方的方法是把二次项,一次项先分为一组,提出二次项系数﹣3,加上一次项系数的一半,就可以变形成顶点式的形式.
(2)二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).
(2)画出这个函数的大致图象,指出函数值不小于0时x的取值范围.
21、小明在学习二次函数时,总结了如下规律:
(1)请帮助小明补全此表①y轴②(h,k)③直线x= ;
(2)根据此表判断,如何将抛物线y=﹣2x2经过适当的平移得到抛物线y=﹣2x2+4x+1.
22、通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.
∵﹣2(x﹣15)2≤0,
∴当x=15时,盈利最大,最大盈利为1250元.
点评:此题主要考查了一元二次方程的实际应用和二次函数实际中的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.最后要注意判断所求的解是否符合题意,舍去不合题意的解.
3、用配方法把函数y=﹣3x2﹣6x+10化成y=a(x﹣h)2+k的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.
(5)若自变量x满足:﹣3≤x≤1,则对应的函数值中,最大值为:0.
24、已知一次函数y1=2x,二次函数y2=x2+1.
(1)根据表中给出的x的值,计算对应的函数值y1、y2,并填写在表格中:
(2)观察第(1)问表中的有关的数据,猜一猜:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1与y2有何大小关系?并证明你的结论.

二次函数的一般式化为顶点式

二次函数的一般式化为顶点式

2020年3月26日星期四
5
将抛物线 y 3x2向左平移2个单位
再向下平移5个单位就得到 y 3 x 22 5 的图 象,将 y 3 x 22 5 化为一般式为
y 3x2 12x 7 ,那么如何将抛物线 y 3x2的图 像移动,得到的 y 3x2 12x 7 图像呢?
2020年3月26日星期四
2020年3月26日星期四
13
y=ax2+bx+c =a(x2+ b x)+c
a
=
a[x2+
b
a x+
( b )2]-
2a
( b )2a +c
2a
=a(x+ b )2+ 4ac b2
2a
4a
14
求下列二次函数图像的开口、顶点、对称轴
①y=2x2-5x+3②y=- 1 x2+4x-9 ③y=(x-3)(x+2)
y 3 x 22 5 的图象?
2020年3月26日星期四
4
3.y 3 x 22 5 的顶点坐标是(-2,-5),
对称轴是直线 x=-2 . 4.在上述移动中图象的开口方向、形状、 顶点坐标、对称轴,哪些有变化?哪些没 有变化?
有变化的:抛物线的顶点坐标、对称轴, 没有变化的:抛物线的开口方向、形状
像的特征吗?
2020年3月26日星期四
7
如何画出 y -2x2 8x-7 的图象呢?
我们知道,像y=a(x+h)2+k这样的函数, 容易确定相应抛物线的顶点为(-h,k), 二次 函数y -2x2 8x-7 也能化成这样的形式 吗?
2020年3月26日星期四

《公式法求顶点坐标》学生用

《公式法求顶点坐标》学生用
当 x 2时, y最大值=0
( 4)
1 2 y x 4x 3 2
4 0.5 3 (4) y小 5 4 0.5
2
解: a = 0.5 > 0抛物线开口向上
4 x对 4 2 0 .5
顶点坐标:(4 , - 5)
对称轴: x 对 4
当 x 4时, y最小值= -5
4 3 0 2 1 y小 43 3
《公式法求顶点坐标》步骤:
1、从二次函数一般式中找出a b c的值; 2、把a b c的值代入顶点坐标公式;
1 1 顶点坐标为 , 3 3
1 1 当x 时,y最小值=3 3
1 对称轴x 3
x对
b 2a
对称轴x 1
当x 1时,y最大值= 1
( 3)
y 2 x 8x 8
2
2
解: a = -2 < 0抛物线开口向下
4 ( 2) ( 8) 8 8 x对 2 y大 0 2 (2) 4 ( 2)
顶点坐标为 2, 0
对称轴x 2
4ac b y大(小) 4a
2
3、按题的要求写出结果。 注意:a>0有小值;a<0有大值。
( 2)
y x 2x
2
解: a = -1 < 0抛物线开口向下
2 x对 1 2 (1)
4 ( 1 ) 0 ( 2) y大 1 4 ( 1 )
2
顶点坐标为 1,1
注意:一般式化成顶点式的步骤。 二次函数的一般式:y=ax2 +bx+c化成顶点式:y=a(x-h)2 +k
三、用配方法:求二次函数y=-2x2-4x+1 的对称轴、顶点坐标、大(小)值.

二次函数典型例题及练习题

二次函数典型例题及练习题

二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限考点3.二次函数的平移例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移 2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了 下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 5.函数Y=X 2+2X-3(-2≦X ≦2)的最大值和最小值分别是_______. 6.已知二次函数y=-x 2+bx-8的最大值为8,则b 的值为_______. 7、已知函数y=21x 2-x-12,当函数y 随x 的增大而减小时,x 的取值范围是_______ 专题二:二次函数表达式的确定考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )图22- 1- 012 yx13x =ABC D图1菜园墙A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )2 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.练习:已知抛物线y=12x 2+x-52. (1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.考点3.抛物线的交点个数与一元二次方程的根的情况例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k的取值范围是________. 2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .图2图13.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( ) A.a>0,△>0; B.a>0, △<0; C.a<0, △<0; D.a<0, △<05. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题: (1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 专题四 二次函数的应用例4 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:x (元) 15 20 30…y (件) 25 20 10…若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?练习:1、如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是【 】A .1<x<5-B .x>5C .x<1-且x>5D .1<x -或x>5x y33 2 2 1 14 1- 1- 2-O 图3x y3-2、教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是 m 。

二次函数知识点总结及练习

二次函数知识点总结及练习

二次函数知识点总结及练习知识点1:二次函数的概念(1)一般地,形如 (a,b,c 是常数, )的函数,叫做二次函数。

注意:①a ②最高次数为 ③代数式一定是 (2)二次函数的一般形式是 (a,b,c 是常数, ) 是二次项系数, 是一次项系数, 是常数项.练习:1.已知函数35)1(12-+-=+x x m y m 是二次函数,求m 的值。

2.若函数y=(m 2+2m-7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

知识点2:二次函数的图像和性质(1)y=ax 2的图像和性质:练习:1. y=-2x 2的对称轴是 ,顶点坐标是 ;当 时,y 的值随x 值的增大而减小 2.当m= 时,抛物线mm x m y +-=2)1(开口向下,对称轴为 ,当x<0时,y 随x 的增大而 ;当x>0时,y 随x 的增大而 .3.已知点(x 1,y 1),(x 2,y 2)在二次函数y=-2x 2图象上,当x 1>x 2>0时,则y 1与y 2的大小关系是 .4.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=5x 2的图象上,则则y 1与y 2,y 3的大小关系是 . (2)y=ax 2+c 的图像和性质:1.二次函数y=-2x 2+6图象的对称轴是 ,顶点坐标是 ,当 时,y 随x 的增大而增大. 2.已知y=ax 2+c 的图象上有A(-3,y 1),B(1,y 2),C(2,y 3)三点,且y 2<y 3<y 1,则a 的取值范围是 . 3.将二次函数y=2x 2-1的图象沿y 轴向上平移2个单位长度,所得图象对应的函数表达式为 .4.已知抛物线y=(m-1)x 2+m 2-2m-2的开口方向向下,且经过点(0,1). (1)求m 的值;(2)求此抛物线的顶点坐标及对称轴; (3)当x 为何值时,y 随x 的增大而增大?(3)y=a(x-h)2+k 的图像和性质:1.抛物线y=-12(x +4)2的顶点坐标为 ,当x >-4时,y 随x 的增大而 .2.抛物线y=-2(x-1)2-3的开口方向是 ,其顶点坐标是 ,对称轴是直线 ,当 时,函数值y 随自变量x 的值的增大而减小.3.若抛物线y=(x-m)2+(m +1)的顶点在第一象限,则m 的取值范围为 .4.已知A(1,y 1)、B(-12,y 2)、C(-2,y 3)在函数y=a(x +1)2+k(a>0)的图象上,则y 1、y 2、y 3的大小关系是 .(4)二次函数c bx ax y ++=2(a ≠0)的图像和性质练习:1.抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 , 函数值得最大值是 。

二次函数常用公式、结论及训练

二次函数常用公式、结论及训练

初中函数问题涉及到的常用公式或结论及其训练一、 常用公式或结论(1)横线段的长 = x 大-x 小 =x 右-x 左 =横标之差的绝对值(用于情况不明)。

纵线段的长 = y 大-y 小=y 上-y 下 = 纵标之差的绝对值(用于情况不明)。

(2)点轴距离:点P (x 0 ,y 0)到X 轴的距离为0y ,到Y 轴的距离为o x 。

(3)两点间的距离公式:若A (x 1,y 1),B(x 2,y 2), 则 AB=221212()()x x y y -+- (4)点到直线的距离:点P (x 0 ,y 0)到直线Ax+By+C=0 (其中常数A,B,C 最好化为整系数,也方便计算)的距离为:0022Ax By Cd A B++=+(5)中点坐标公式:若A(x 1,y 1),B (x 2,y 2),则线段AB 的中点坐标为(1212,22x x y y ++)(6)直线的斜率公式:若A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),则直线AB 的斜率为:1212=AB y y k x x --,(x 1≠x 2) (7)两直线平行的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2①若l 1//l 2,则k 1=k 2;②若k 1=k 2,且b 1 ≠b 2,则 l 1//l 2。

(8)两直线垂直的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2 ①若l 1┴l 2,则k 1•k 2 =-1;②若k 1•k 2 =-1,则l 1┴l 2(9)直线与抛物线(或双曲线)截得的弦长公式:【初高中数学重要衔接内容之一,设而不求的思想】直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )截得的弦长公式是:AB=2121x x k -∙+=2122124)(1x x x x k -+∙+证明如下:设直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )交于A (x 1, y 1), B (x 2, y 2)两点,由两点间的距离公式可得:AB=221221)()(y y x x -+-,因为A (x 1, y 1),B (x 2, y 2)两点是直线y=kx+n 与抛物线抛物线y=ax 2+bx+c (或双曲线y=m/x )的交点,所以 A (x 1, y 1),B (x 2, y 2)两点也在直线y=kx+n 上,∴y 1=kx 1+n, y 2=kx 2+n, ∴y 1-y 2=(kx 1+n )—(kx 2+n )=kx 1-kx 2=k (x 1-x 2), ∴AB=2212221)()(x x k x x -+-=2212))(1(x x k -+=2121x x k -∙+=2122124)(1x x x x k -+∙+而x 1, x 2显然是直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )组成方程组后,消去y (用代入法)所得到的那个一元二次方程的两根,从而运用韦达定理x 1+x 2 , x 1∙x 2可轻松求出,进而直线与抛物线(或双曲线)截得的弦长就很容易计算或表示出来。

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好)知识点一:二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

【例1】 已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。

然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习(极好)知识点一:二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

【例1】 已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。

然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

二次函数顶点式【学案】 (1)

二次函数顶点式【学案】 (1)

教学过程一预习复习一、创设情境,引入新课在前几节课,我们学习了二次函数y=a(x-h)2+k(a≠0)的图象及性质,而我们第4节的课题是:y= ax2+bx+c(a≠0),(北师大版九年级数学下册),它们之间又是什么关系?你能解决下列问题吗?1.你能把y=a(x-h)2+k(a≠0)化成y= ax2+bx+c(a≠0)的形式吗?(去括号,合并同类项)反之你能把y= ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式吗?2.一元二次方程ax2+bx+c=0(a≠0)的求根公式是什么?是如何得到的?(复习配方法)二、知识讲解考点1一般结论:关于y轴对称,开口方向不变(二次项系数不变),只是顶点改变为关于y 轴对称即可;关于x轴对称,开口方向相反(二次项系数改变为原二次项系数的相反数),顶点改变为关于x轴对称.2.将y=-x2+2x+5先向下平移1个单位长度,再向左平移4个单位长度,平移后的解析式是什么?∵y=-x2+2x+5=-(x2-2x+1-1)+5=-(x-1)2+6∴该抛物线的顶点坐标为(1,6)∴把点(1,6)先向下平移1个单位,再向左平移4个单位长度后得到点(-3,5),又由于是平行移动,所以二次项系数不变,即a=-1,故所得抛物线的解析式为y=-(x+3)2+5;亦即新抛物线的解析式为:y=-(x-1+4)2+6-1=-(x+3)2+5.考点2一般地,把y=a(x-h)2+k的图象先向下平移k1个单位,再向左平移h1个单位,得到新抛物线的解析式为:y=a(x-h+h1)2+(k-k1);把y=a(x-h)2+k的图象先向上平移k1个单位,再向右平移h1个单位,得到新抛物线的解析式为:y=a(x-h-h1)2+(k+k1),即如果是上移k1个单位,则给顶点纵坐标加k1,如果是下移k1个单位,则给顶点纵坐标减k1,如果是左移h1个单位,则给顶点横坐标加h1个单位,如果是右移h1个单位,则给顶点横坐标减h1个单位.三例题精析【例题1】【题干】(2011•桂林)在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2 B.y=﹣(x﹣1)2+4C.y=﹣(x﹣1)2+2 D.y=﹣(x+1)2+4【答案】B.【解析】先将原抛物线化为一般形式,易得出与y轴交点,绕与y轴交点旋转180°,那么根据中心对称的性质,可得旋转后的抛物线的顶点坐标,即可求得解析式.解:由原抛物线解析式可变为:y=(x+1)2+2,∴顶点坐标为(﹣1,2),与y轴交点的坐标为(0,3),又由抛物线绕着它与y轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称,∴新的抛物线的顶点坐标为(1,4),∴新的抛物线解析式为:y=﹣(x﹣1)2+4.【题干】、抛物线y=(x+2)2-3对称轴是()A.x=-3 B.x=3 C.x=2 D.x=-2【答案】D【解析】本题主要考查了二次函数求抛物线的顶点坐标、对称轴的方法.直接利用二次函数的顶点式求得.解:根据抛物线的顶点式可知,顶点横坐标x=2,所以对称轴是x=-2.故选D.【题干】.抛物线的对称轴是()A.直线B.直线C.直线D.直线【答案】A【解析】考点:二次函数的性质.专题:计算题.分析:二次函数的顶点式y=(x-h)+k,对称轴为x=h.解答:解:抛物线y=(x-1)+3的对称轴是直线x=1.故选A.点评:本题考查了二次函数的性质,二次函数的顶点式y=(x-h)+k中,对称轴为x=h.三、课堂运用【基础】1、抛物线y=(x+2)2-3对称轴是()A x=-3B x=3C x=2D x=-22、二次函数的最小值是().A.2 B.1 C.-3D.3、与抛物线关于x轴对称的图象表示为()A.B.C.D.[巩固]1、与抛物线关于y轴对称的图象表示的函数关系式是()A.B.C.D.2、抛物线y=-2x2+4x+3的顶点坐标是()A.(-1,-5) B.(1,-5) C.(-1,-4) D.(-2,-7)3、抛物线的顶点坐标为_______________________.[拔高]1、已知二次函数,当x=_________时,函数达到最小值2、当_____________时,二次函数有最小值.3、二次函数y=2x2-x-3的开口方向_____,对称轴_______,顶点坐标________.四、课程小结本节课我们学习了哪些内容?你掌握了哪些知识?本节课我们学习了二次函数顶点式,一般结论:关于y轴对称,开口方向不变(二次项系数不变),只是顶点改变为关于y轴对称即可;关于x轴对称,开口方向相反(二次项系数改变为原二次项系数的相反数),顶点改变为关于x轴对称.2.将y=-x2+2x+5先向下平移1个单位长度,再向左平移4个单位长度,平移后的解析式是什么?∵y=-x2+2x+5=-(x2-2x+1-1)+5=-(x-1)2+6∴该抛物线的顶点坐标为(1,6)∴把点(1,6)先向下平移1个单位,再向左平移4个单位长度后得到点(-3,5),又由于是平行移动,所以二次项系数不变,即a=-1,故所得抛物线的解析式为y=-(x+3)2+5;亦即新抛物线的解析式为:y=-(x-1+4)2+6-1=-(x+3)2+5.一般地,把y=a(x-h)2+k的图象先向下平移k1个单位,再向左平移h1个单位,得到新抛物线的解析式为:y=a(x-h+h1)2+(k-k1);把y=a(x-h)2+k的图象先向上平移k1个单位,再向右平移h1个单位,得到新抛物线的解析式为:y=a(x-h-h1)2+(k+k1),即如果是上移k1个单位,则给顶点纵坐标加k1,如果是下移k1个单位,则给顶点纵坐标减k1,如果是左移h1个单位,则给顶点横坐标加h1个单位,如果是右移h1个单位,则给顶点横坐标减h1个单位.课后作业【基础】1、用配方法把二次函数y=2x2+2x-5化成y=a(x-h)2+k的形式为___________.2、已知函数y=ax2+bx+c,当x=3时,函数的最大值为4,当x=0时,y=-14,则函数关系式____.3、两个数的和为4,这两个数的积最大可以达到_______.【巩固】1、已知m,n是正整数,代数式x2+mx+(10+n)是一个完全平方式,则n的最小值是_________ ,此时m的值是_________ .2、一个完全平方式为a2+■+9b2,但有一项不慎被污染了,这一项应是_________ .3、若是一个完全平方式,则k= _________ .【拔高】1、若x2+2kx+是一个关于x的完全平方式,则常数k= _________ .2、若x4+y4+m是一个完全平方式,则整式m为_________ .3、抛物线,关于x轴对称的图象的关系式是_______________.4、已知4y2+my+9是完全平方式,则代数式m2+2m+1的值为_________ .。

二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题与对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展,2008年XX 市中考题,12) 下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。

○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。

○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。

○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。

○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。

○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。

○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。

○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。

○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。

○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。

点拨:本题主要考查二次函数图象与其性质,一元二次方程根与系数的关系,与二次函数和一元二次方程二者之间的联系。

人教版九年级上册《二次函数顶点式和一般式》同步练习

人教版九年级上册《二次函数顶点式和一般式》同步练习

二次函数顶点式和一般式课前检测:在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )函数y=a (x -h )2+k (顶点式)的图像和性质1. 抛物线y=(x+1)2+2的顶点坐标是_________,对称轴是________2. 将抛物线y= -(x -2)2向右平移2个单位,再向下平移1个单位,得到的解析式是________3.抛物线()3-1212+-=x y ,开口向 ,对称轴 ,顶点坐标是 ,当x _____时,y 随x 的增大而增大;当x _____时,y 随x 的增大而减小;当x _____时,函数y 有_____值,这个值是_______。

4.已知A(−1,y1),B(2,y2)是抛物线y=−(x+2)2+1上的两点,则y1,y2的大小关系( )A. y1>y2B. y1≥y2C. y1<y2D. y1≤y25.对于抛物线()31212++-=x y ,下列结论:①抛物线的开口向下 ②对称轴为直线x =1 ③顶点坐标为(—1,3) ④x >1时,y 随x 的增大而减小,其中正确的个数为( ) A 、 1个 B 、2个 C 、 3个 D 、 4个根据顶点、对称轴求抛物线解析式1.把抛物线y=-2(x -1)2向上平移k 个单位使所得的抛物线经过点(-2,-10).求k 的值.2.抛物线的顶点为(1,2),且形状与y=x2相同,开口向上,求抛物线的解析式。

3.抛物线的顶点为(2,-3),且经过(1,-1),求抛物线的解析式。

4.已知二次函数y=x2+bx+c的图象向左平移2个单位,再向上平移3个单位,得到二次函数y=(x-1)2+2.(1)求b,c的值;(2)当1≤x≤4时,求二次函数y=x2+bx+c的最大值和最小值.5.已知二次函数y=(x+m)2+k的顶点为(1,−4)(1)求二次函数的解析式及图象与x轴交于A. B两点的坐标。

(2)将二次函数的图象沿x轴翻折,得到一个新的抛物线,求新抛物线的解析式。

一般式化顶点式20道题大数

一般式化顶点式20道题大数

一般式化顶点式20道题大数1.将二次函数262y x x =+-化成()2y x h k =-+的形式应为( )A .()237y x =++B .()2311y x =-+C .()2311y x =+-D .()224y x =++2.二次函数y =x 2-2x +3图象的顶点坐标是( )A .(-1,2)B .(-1,6)C .(-2,3)D .(1,2) 3.把二次函数y =x 2+2x -2配方成顶点式为( )A .y =(x -1)2+2B .y =(x -1)2+1C .y =(x +1)2-3D .y =(x +2)2-1 4.把二次函数243y x x =--化成()2y a x h k =-+的形式,正确的是( )A .()221y x =--B .()221y x =-+C .()227y x =--D .()221y x =++ 5.将函数y 12=x 2﹣x 化为y =a (x ﹣m )2+k 的形式,得( )A .y 12=(x ﹣1)212- B .y 12=(x 14-)2132+C .y 12=(x ﹣1)212+D .y 12=(x 14-)2132-6.将二次函数262y x x =+-化成()2y x h k =-+的形式应为( )A .()237y x =++B .()311y x =-+C .()2311y x =+-D .()224y x =++7.已知二次函数223y x x =-+-,用配方法化为()2y a x h k =-+的形式,结果是( )A .()212y x =---B .()212y x =--+C .()214y x =--+D .()214y x =-+-8.函数y =12x 2+2x +1写成y =a (x ﹣h )2+k 的形式是( )A .y =12(x ﹣2)2+1 B .y =12(x ﹣1)2+12C .y =12(x ﹣1)2﹣3D .y =12(x +2)2﹣19.将二次函数y =x 2﹣2x ﹣2化成y =a (x ﹣h )2+k 的形式为( )A .y =(x ﹣2)2﹣2B .y =(x ﹣1)2﹣3C .y =(x ﹣1)2﹣2D .y =(x ﹣2)2﹣3 10.将函数221y x x =--配方后得到的结果是( )A .()211y x =--B .()212y x =--C .()211y x =---D .()212y x =-+ 11.把二次函数223y x x =-+化为顶点式,结果正确的是( )A .2(1)4y x =-+B .2y (x 1)4=+-C .2(1)2y x =++D .2(1)2y x =-+12.求二次函数223y x x =--图象的顶点坐标和对称轴.13.对于抛物线243y x x =++.(1)求抛物线与坐标轴的交点坐标;(2)求抛物线的顶点坐标;14.已知二次函数223y x x =--.(1)将223y x x =--化成2()y a x h k =-+的形式;(2)写出该二次函数图象的顶点坐标.15.已知抛物线2441y x x =--.(1)求它的对称轴和顶点坐标;(2)写出一种将它平移成抛物线24y x =的方法.16.求抛物线2231y x x =-+的顶点和对称轴.17.利用配方法把二次函数y =﹣x 2+4x +1化成y =a (x ﹣h )2+k 的形式.18.已知二次函数y =﹣x 2+2x+3.(1)写出这个二次函数的开口方向、对称轴、顶点坐标和最大值;(2)求出这个抛物线与坐标轴的交点坐标.19.已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.20.在平面直角坐标系中,已知一个二次函数的图象经过()1,1、()0,4-、()2,4三点. (1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标.参考答案:1.C【解析】【分析】利用配方法把二次函数的一般式化为顶点式,判断即可.【详解】解:y=x2+6x-2=x2+6x+9-9-2=(x+3)2-11,故选:C.【点睛】本题考查的是二次函数的三种形式,掌握利用配方法把二次函数的一般式化为顶点式的一般步骤是解题的关键.2.D【解析】【分析】将二次函数配方成顶点式后即可确定其顶点坐标.【详解】解:把y=x2-2x+3化为顶点式为y=(x-1)2+2,所以二次函数y=x2-2x+3的图象顶点坐标为(1,2).故选:D.【点睛】本题考查了二次函数的性质,化成顶点解析式确定二次函数的顶点坐标是解决二次函数的有关题目的关键.3.C【解析】【分析】根据配方法的步骤完成即可.【详解】222y x x x x x22(2+1)12(+1)3【点睛】本题考查了二次函数的图象与性质、配方法的应用,关键是配方.4.C【解析】【分析】利用配方法把原式化为24443,y x x再写成顶点式即可得到答案.【详解】解:243y x x=--24443x x227,x故选C【点睛】本题考查的是把抛物线的一般式化为顶点式,掌握“利用配方的方法把一般式化为顶点式”是解本题的关键.5.A【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:y=12x2-x=12(x2-2x+1)-12=12(x-1)2-12,故选:A.【点睛】本题考查了二次函数的解析式的顶点式.熟练掌握配方法是解题的关键.6.C【解析】【分析】运用配方法把一般式化为顶点式即可.解:y =x 2+6x -2=x 2+6x +9-9-2=(x +3)2-11,故选:C .【点睛】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键. 7.A【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:y =-x 2+2x -3=-(x 2-2x +1)+1-3=-(x -1)2-2,故选:A .【点睛】本题考查了二次函数解析式的三种形式:(1)一般式:y =ax 2+bx +c (a ≠0,a 、b 、c 为常数);(2)顶点式:y =a (x -h )2+k ;(3)交点式(与x 轴):y =a (x -x 1)(x -x 2).8.D【解析】【分析】把函数解析式配方即可.【详解】 配方得:221121(2)122y x x x =++=+- 故选:D .【点睛】本题考查了用配方法把二次函数的一般式化为顶点式,这是二次函数学习中常用到的变形,务必掌握.9.B【解析】【分析】利用配方法整理即可得解.【详解】解:y =x 2-2x -2=x 2-2x +1-3=(x -1)2-3,所以,y =(x -1)2-3.故选:B .【点睛】此题考查了配方法,熟练掌握因式分解的方法是解本题的关键.10.B【解析】【分析】根据配方法把二次函数的一般式化为顶点式即可.【详解】解:y =x 2-2x -1=x 2-2x +1-1-1=(x -1)2-2,故选:B .【点睛】本题考查了二次函数的三种形式,掌握用配方法把一般式化为顶点式是解题的关键. 11.D【解析】【分析】根据式子的特点,利用完全平方公式变形即可.【详解】解:22223212(1)2y x x x x x =-+=-++=-+,故选:D .【点睛】此题主要考查了化二次函数一般式为顶点式,正确应用完全平方公式是解题关键. 12.顶点坐标为:(1,-4),对称轴为x =1.【解析】【分析】把二次函数一般式化为顶点式,即可得到顶点坐标与对称轴.【详解】解:∵223y x x =--,把二次函数化为顶点式为:22214(1)4y x x x =-+-=--;∵顶点坐标为:(1,-4),∵对称轴为x =1.【点睛】本题考查了二次函数的性质,解题的关键是熟练把二次函数的一般式化为顶点式. 13.(1)与x 轴交点的坐标为:()1,0,()3,0,与y 轴交点的坐标为()0,3;(2)()2,1-【解析】【分析】(1)令0y =,得出关于x 的一元二次方程,解方程,求出x 的值即为抛物线与x 轴的交点坐标;(2)将解析式由一般式转化成顶点式,从而得出抛物线的顶点坐标.【详解】(1)令0y =,则2430x x -+=,解得11x =,23x =,所以该抛物线与x 轴交点的坐标为:()1,0,3,0,令0x =,则3y =,所以该抛物线与y 轴交点的坐标为()0,3.(2)由抛物线2243(2)1y x x x =-+=--则该抛物线的顶点坐标是()2,1-.【点睛】本题考查二次函数的基本定义,掌握二次函数的性质是解题的关键.14.(1)2(1)4y x =--,(2)(14),-,【解析】【分析】(1)利用配方法化成顶点式即可;(2)根据顶点式写出顶点坐标即可.【详解】解:(1)223y x x =--,2214y x x =-+-,2(1)4y x =--;(2)∵二次函数顶点式为2(1)4y x =--,∵二次函数图象的顶点坐标为(14),-.【点睛】本题考查了用配方法把二次函数解析式化为顶点式,解题关键是熟练运用配方法进行转化,明确顶点式的意义.15.(1)对称轴为12x = ,顶点坐标为1,22⎛⎫- ⎪⎝⎭;(2)先向左平移12 个单位,再向上平移2个单位(答案不唯一).【解析】【分析】(1)利用配方法将抛物线 解析式化为顶点式,即可求解;(2)将抛物线2441y x x =--先向左平移12 个单位,再向上平移2个单位,即可求解【详解】 解:(1)∵221441422⎛⎫=--=-- ⎪⎝⎭y x x x ∵抛物线的对称轴为12x = ,顶点坐标为1,22⎛⎫- ⎪⎝⎭; (2)可将抛物线2441y x x =--先向左平移12 个单位,再向上平移2个单位,可得到抛物线24y x =.【点睛】本题主要考查了二次函数的对称轴,顶点坐标,以及抛物线的平移,熟练掌握二次函数的解析式是解题的关键.16.顶点坐标为31,48⎛⎫- ⎪⎝⎭,对称轴是34x =. 【解析】【分析】将抛物线解析式配方为顶点式,可求顶点坐标和对称轴.【详解】解:∵2231231248y x x x ⎛⎫=-+=-- ⎪⎝⎭, ∵抛物线2231y x x =-+的顶点坐标为3148⎛⎫- ⎪⎝⎭,,对称轴是34x =. 【点睛】本题考查了二次函数的三种形式的转化,二次函数的性质,是基础题,熟练掌握配方法是以及二次函数的性质是解题的关键.17.2(2)5y x =--+【解析】【分析】根据常数项是一次项系数一半的平方,利用配方法把二次函数241y x x =--+配成2(44)14y x x =--+++的形式,整理之后就可以化成2()y a x h k =-+的形式.【详解】解:241y x x =--+2=(44)14x x ++-+-()225x =--+ 所以把二次函数241y x x =--+化成2()y a x h k =-+的形式为:2(2)5y x =--+.【点睛】本题考查的是二次函数的一般式转化成顶点式,属于概念题型.解题的关键在于熟练掌握配方法的运用以及熟记顶点式的函数表达式.18.(1)见解析;(2) 与x 轴的交点坐标是(﹣1,0),(3,0),与y 轴的交点坐标是(0,3).【解析】【分析】(1)根据二次项系数确定开口方向,根据顶点坐标公式确定顶点坐标和对称轴. (2)当y =0时,﹣x 2+2x +3=0,解方程可求得与x 轴的交点为(﹣1,0),(3,0);当x =0时,y =3,即求得与y 轴的交点坐标为(0,3).【详解】解:∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4∵开口方向向下,对称轴x =1,顶点坐标是(1,4)当x =1时,y 有最大值是4;(2)∵当y =0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3当x =0时,y =3∵抛物线与x 轴的交点坐标是(﹣1,0),(3,0),与y 轴的交点坐标是(0,3).故答案为(1)见解析;(2) 与x 轴的交点坐标是(﹣1,0),(3,0),与y 轴的交点坐标是(0,3).【点睛】本题考查二次函数的性质,解题的关键是利用解析式求坐标轴的交点以及顶点坐标公式. 19.(1)2(x 2)1--;(2)见解析.【解析】【分析】(1)利用配方法把二次函数解析式化成顶点式即可;(2)利用描点法画出二次函数图象即可.【详解】解:()21y x 4x 3=-+=222x 4x 223-+-+=2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0, ∴其图象为:故答案为(1)2(x 2)1--;(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键. 20.(1)y=-x 2+6x -4;(2)x=3;(3,5).【解析】【分析】(1)设该二次函数的解析式为()2y ax bx c a 0=++≠,利用待定系数法求a ,b ,c 的值,得到二次函数的解析式即可;(2)利用配方法将二次函数的解析式变成顶点式,即可求出对称轴和顶点坐标.【详解】解:(1)设该二次函数的解析式为()2y ax bx c a 0=++≠由这个二次函数过()0,4-,可知:c 4=-,再由二次函数的图象经过()1,1、()2,4,得:{a b 414a 2b 44+-=+-=解这个方程组,得{a 1b 6=-=,所以,所求的二次函数的解析式为2y x 6x 4=-+-.(2)二次函数的解析式为2y x 6x 4=-+-=()235x --+ . ∴该抛物线的对称轴是:直线x 3=该图象的顶点坐标是:()3,5.故答案为(1)y=-x 2+6x -4;(2)x=3;(3,5).【点睛】本题考查了用待定系数法求函数解析式的方法,关键是利用待定系数法求a,b,c的值和对称轴和顶点公式求法解答.。

初中数学--二次函数一般式和顶点式--练习题含答案

初中数学--二次函数一般式和顶点式--练习题含答案

数学试卷一、填空题(共50小题;共250分)1.请写出一个开口向下,并且过坐标原点的抛物线的表达式,y=.2.写出一个开口向下,顶点在第一象限的二次函数的表达式.3.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为.4.抛物线的顶点在原点,且过点(3,−27),则这条抛物线的解析式为.5.二次函数y=−x2−2x+1化成y=a(x−ℎ)2+k的形式是.6.已知一抛物线与抛物线y=−1x2+3形状相同,开口方向相反,顶点坐标是3(−5,0).根据以上特点,试写出该抛物线的表达式为.7.如图,已知二次函数y=x2+bx+c的图象经过点(−1,0),(1,−2),当y随x的增大而增大时,x的取值范围是.8.若把函数y=x2+6x+5化为y=(x−m)2+k的形式,其中m,k为常数,则k−m=.9.已知抛物线与x轴交点的横坐标分别为3,1;与y轴交点的纵坐标为6,则二次函数的关系式是.10.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线对应的函数表达式:.11.若二次函数的图象开口向下,且经过(2,−3)点.符合条件的一个二次函数的解析式为.12.若把二次函数y=x2+6x+2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k=.13.将二次函数y=x2−2x−5化为y=a(x−ℎ)2+k的形式为y=.14.抛物线的顶点坐标为(1,−2),且过点(2,3),则函数的关系式:.15.如果二次函数y=x2+bx+c配方后为y=(x−2)2+1,那么c的值为.16.若抛物线y=ax2经过点(−3,4),则这函数的解析式是.17.如图,在平面直角坐标系xOy中,点O是边长为2的正方形ABCD的中心.写出一个函数y=x2+c,使它的图象与正方形ABCD有公共点,这个函数的表达式为.18.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式.19.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为(表示为y= a(x+m)2+k的形式).20.把二次函数y=x2−12x化为形如y=a(x−ℎ)2+k的形式:.21.二次函数y=x2+bx+c的图象经过点(2,11)和点(−1,−7),则它的解析式为.22.将二次函数y=x2−2x化为顶点式的形式为:.23.形状与y=−1x2+3的图象形状相同,但开口方向不同,顶点坐标是(4,5)2的抛物线的解析式.24.用配方法将二次函数y=4x2−24x+26写y=a(x−ℎ)2+k的形式是.25.将二次函数y=x2−4x+5化成y=(x−ℎ)2+k的形式,则y=.26.用配方法将y=1x2−2x+1写成y=a(x−ℎ)2+k的形式,结果3为.27.若把函数y=x2−2x−3化为y=(x−m)2+k的形式,其中m,k为常数,则m+k=.28.将y=2x2−12x−12变为y=a(x−m)2+n的形式,则m⋅n=.29.若抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),对称轴为直线x=1,则该抛物线对应的函数表达式为.30.将函数y=x2−2x+3写成y=a(x−ℎ)2+k的形式为.31.请写出一个图象的对称轴是直线x=1,且经过(0,1)点的二次函数的表达式:.32.将抛物线y=x2−6x+5化为y=a(x−ℎ)2+k的形式为.33.将函数y=x2−2x+4化为y=a(x−ℎ)2+k的形式为.34.已知二次函数y=x2+bx+c的图象经过点A(−1,0),B(1,−2),该图象与x轴的另一交点为C,则AC的长为.35.把二次函数的表达式y=x2−4x+6化为y=a(x−ℎ)2+k的形式,那么ℎ+k=.36.抛物线y=−x2+bx+c的图象如图所示,则此抛物线的解析式为.37.已知二次函数y=x2+bx+c,当x=2时,y=0;当x=−1时,y=3,则这个二次函数的解析式为.38.把二次函数y=−1x2+3x+3化成y=a(x+m)2+k的形式4为.39.二次函数的图象的顶点坐标是(−2,3),它与y轴的交点坐标是(0,−3).40.将y=(2x−1)(x+2)+1化成y=a(x−ℎ)2+k的形式为.41.二次函数y=x2−2x+6化为y=(x−m)2+k的形式,则m+k=.42.将二次函数y=x2−4x+9化成y=a(x−ℎ)2+k的形式.43.一个二次函数,当自变量x=0时,函数值y=−1,当x=−2与1时,2 y=0,则这个二次函数的解析式是.44.将二次函数y=x2−4x+5化为y=(x−ℎ)2+k的形式,那么ℎ+k=.45.已知二次函数y=−x2+2x−3,用配方法化为y=a(x−ℎ)2+k的形式为.46.若将二次函数y=x2−2x+3配方为y=a(x−ℎ)2+k的形式,则y=.47.若把二次函数y=x2−2x+3化为y=(x−m)2+k的形式,其中m,k为常数,则m+k=.48.抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(−1,−6)两点,则a+c=.49.把y=−1x2+6x−17配方成y=a(x+ℎ)2+k的形式是.250.设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线对称轴的距离等于1,则抛物线对应的函数表达式为.答案第一部分1.−x2+2x(答案不唯一)2.y=−3(x−2)2+3(不唯一)3.y=−x2+4x−3【解析】设抛物线的解析式为y=a(x−2)2+1,将B(1,0)代入y=a(x−2)2+1得,a=−1,函数解析式为y=−(x−2)2+1,展开得y=−x2+4x−3.4.y=−3x25.y=−(x+1)2+26.y=1(x+5)237.x≥12【解析】解析:依题意,有解得{b=−1,c=−2,∴y=x2−x−2,对称轴为x=12,时,y随x的增大而增大.∴当x≥128.−19.y=2x2−8x+610.y=x2−4x+3(答案不唯一)11.y=−x2−2x+5(答案不唯一)【解析】由题意得,二次函数的图象开口向下,且经过(2,−3)点,y=−x2−2x+5符合要求.但答案不唯一.12.−1013.(x−1)2−614.y=5(x−1)2−215.516.y=49x217.答案不惟一,如y=x2.(说明:写成y=x2+c的形式时,c的取值范围是−2≤c≤1)18.y=(x−1)(x−3),y=−(x−1)(x−3),y=15(x+1)(x−5),y=−15(x+1)(x−5)写出其中一个即可19.y=−(x−1)2+1(答案不唯一)20.y=(x−6)2−3621.y=x2+5x−322.y=(x−1)2−123.y=12(x−4)2+524.y=4(x−3)2−1025.(x−2)2+126.y=13(x−3)2−227.−328.−90【解析】y=2x2−12x−12=2(x2−6x+9)−30=2(x−3)2−30.所以m=3,n=−30.29.y=−x2+2x+330.y=(x−1)2+231.y=x2−2x+1(答案不唯一)32.y=(x−3)2−433.y=(x−1)2+334.3【解析】提示:解析式为y=x2−x−2.35.436.y=−x2+2x+337.y=x2−2x38.y=−14(x−6)2+1239.y=−32(x+2)2+340. y =2(x +34)2−17841. 642. y =(x −2)2+543. y =x 2+32x −1 44. 345. y =−(x −1)2−246. (x −1)2+247. 3【解析】y =x 2−2x +3=(x −1)2+2,∴m =1,k =2.∴m +k =3.48. −249. y =−12(x −6)2+1 50. y =18x 2−14x +2 或 y =−18x 2+34x +2 【解析】∵A (0,2),B (4,3),C 三点在抛物线上,∴c =2,16a +4b +2=3,又 ∵ 点 C 在直线 x =2 上,且点 C 到抛物线对称轴的距离等于 1, ∴ 对称轴为直线 x =1 或 x =3,当对称轴为直线 x =1 时,{−b 2a =1,16a +4b +2=3. 解得 {a =18,b =−14. ∴y =18x 2−14x +2, 当对称轴为直线 x =3 时,{−b 2a =3,16a +4b +2=3. 解得 {a =−18,b =34. ∴y =−18x 2+34x +2.。

新人教版九年级数学上册22.1.4二次函数y=ax2+bx+c的图象和性质练习

新人教版九年级数学上册22.1.4二次函数y=ax2+bx+c的图象和性质练习

新人教版九年级数学上册22.1.4二次函数y=ax2+bx+c 的图象和性质练习预习要点:1.一般地,二次函数y=ax 2+bx+c 可以通过化成y=a (x-h )2+k 的形式,即y=a(x+b 2a )2+4ac-b 24a .因此,抛物线y=ax 2+bx+c 的对称轴是,顶点是.2.从二次函数y=ax 2+bx+c 的图象可以看出: (1)如果a >0,当x <- b2a时,y 随x 的增大而,当x >-b2a时,y 随x 的增大而;(2)如果a <0,当x <- b2a时,y 随x 的增大而,当x >-b2a时,y 随x 的增大而.3.求二次函数的解析式y=ax 2+bx+c,需求出的值.由已知条件(如二次函数图象上三个点的坐标)列出关于的方程组,求出的值,就可以写出二次函数的解析式.4.(2016•益阳)关于抛物线y=x 2−2x+1,下列说法错误的是( ) A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线x=1D .当x >1时,y 随x 的增大而减小5.(2016•怀化)二次函数y=x 2+2x −3的开口方向、顶点坐标分别是( ) A .开口向上,顶点坐标为(−1,−4) B .开口向下,顶点坐标为(1,4) C .开口向上,顶点坐标为(1,4) D .开口向下,顶点坐标为(−1,−4)6.(2016•广州)对于二次函数y=−14 x 2+x −4,下列说法正确的是( )A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值−3C.图象的顶点坐标为(−2,−7)D.图象与x轴有两个交点7.(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=−1,x2=3;③3a+c>0④当y>0时,x的取值范围是−1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个8.已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是()A.y=2x2+x+2 B.y=x2+3x+2 C.y=x2−2x+3 D.y=x2−3x+29.已知二次函数的图象如图所示,则这个二次函数的表达式为()A.y=x2−2x+3 B.y=x2−2x−3 C.y=x2+2x−3 D.y=x2+2x+3 10.(2016•枣庄模拟)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(−3,0),对称轴为x=−1.给出四个结论:①b2>4ac;②2a+b=0;③a−b+c=0;④5a<b.其中正确结论是.11.若二次函数y=ax2+bx+c的图象经过原点,则c的值为.12.抛物线y=−x2+3x−3与y轴的交点坐标为.13.若函数y=2x2−4x+m有最小值是3,则m= .14.抛物线y=ax2+bx+c(a≠0)如图,回答:(1)这个二次函数的表达式是;(2)当x= 时,y=3;(3)根据图象回答:当时,y>0.15.已知抛物线y=ax2+bx+c的形状与抛物线y=x2的形状相同,最高点坐标为(2,−3),则抛物线的解析式是.同步小题12道一.选择题1.二次函数y=−x2−2x+5的顶点坐标、对称轴分别是()A.(1,6),x=1 B.(−1,6),x=1C.(−1,6),x=−1 D.(1,6),x=−12.一次函数y=ax+b(ab≠0)的图象不经过第二象限,则抛物线y=ax2+bx的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限3.抛物线y=x2−8x+m的顶点在x轴上,则m等于()A.−16 B.−4 C.8 D.164.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是()A.a>0,c>0 B.a<0,c>0 C.a>0,c<0 D.a<0,c<05.已知函数y=x2+3x+a−2的图象过原点,则a的值为()A.2 B.−2 C.−3 D.06.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=2(x+1)2+8 B.y=18(x+1)2−8 C.y=29(x−1)2+8 D.y=2(x−1)2−8二.填空题7.抛物线y=2x2−6x−1的对称轴为.8.(2016春•重庆校级月考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①abc>0;②a>b;③a−b+c>0;④4ac−8a>b2,其中正确的是(填序号)9.抛物线y=ax2+bx+c开口向上,对称轴是直线x=1,A(−2,y1),B(0,y2),C(2,y3)在该抛物线上,则y1,y2,y3大小的关系是.10.已知二次函数y=ax2+bx+c的图象经过A(−1,−1)、B(0,2)、C(1,3);则二次函数的解析式.三.解答题11.已知抛物线的解析式为y=x2−2x−3,请确定该抛物线的开口方向,对称轴和顶点坐标.【分析】用配方法将抛物线的一般式转化为顶点式,直接写出开口方向,顶点坐标和对称轴.12.二次函数y=ax 2+bx+c 的图象如图所示,以下结论,正确的有哪些?并说明理由.(1)3a+b >0;(2)0<b <a+1;(3)b+2a >0;(4)−14 <a <−18 . 答案: 预习要点:1.配方 x=- b 2a (- b 2a ,4ac-b 24a )2.(1)减小 增大(2)增大 减小3.a ,b ,c a ,b ,c a ,b ,c4.【分析】根据抛物线的解析式画出抛物线的图象,根据二次函数的性质结合二次函数的图象,逐项分析四个选项,即可得出结论.【解答】解:画出抛物线y=x 2−2x+1的图象,如图所示.A 、∵a=1,∴抛物线开口向上,A 正确;B 、∵令x 2−2x+1=0,△=(−2)2−4×1×1=0,∴该抛物线与x 轴有两个重合的交点,B 正确;C 、∵−b 2a =−−22×1 =1,∴该抛物线对称轴是直线x=1,C 正确;D 、∵抛物线开口向上,且抛物线的对称轴为x=1,∴当x >1时,y 随x 的增大而增大,D 不正确. 故选D5.【分析】根据a >0确定出二次函数开口向上,再将函数解析式整理成顶点式形式,然后写出顶点坐标.【解答】解:∵二次函数y=x 2+2x −3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x 2+2x −3=(x+1)2−4,∴顶点坐标为(−1,−4).故选A .6.【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=−14 x 2+x −4可化为y=−14 (x −2)2−3,又∵a=−14 <0∴当x=2时,二次函数y=−14 x 2+x −4的最大值为−3. 故选B7.【分析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=−2a ,然后根据x=−1时函数值为负数可得到3a+c <0,则可对③进行判断;根据抛物线在x 轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断. 【解答】解:∵抛物线与x 轴有2个交点,∴b 2−4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(−1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=−1,x 2=3,所以②正确;∵x=−b2a =1,即b=−2a ,而x=−1时,y <0,即a −b+c <0,∴a+2a+c <0,所以③错误;∵抛物线与x 轴的两点坐标为(−1,0),(3,0),∴当−1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选B8.【分析】本题已知了抛物线上三点的坐标,可直接用待定系数法求解.【解答】解:设这个二次函数的解析式是y=ax 2+bx+c ,把(1,0)、(2,0)和(0,2)代入得:⎩⎪⎨⎪⎧ a +b +c =0 4a +2b +c =0 c =2 ,解之得⎩⎪⎨⎪⎧ a =1b =−3c =2 ;所以该函数的解析式是y=x 2−3x+2. 故选D9.【分析】根据题意,把抛物线经过的三点代入函数的表达式,列出方程组,解出各系数则可.【解答】解:根据题意,图象与y 轴交于负半轴,故c 为负数,又四个选项中,B 、C 的c 为−3,符合题意,故设二次函数的表达式为y=ax 2+bx+c ,抛物线过(−1,0),(0,−3),(3,0),所以⎩⎪⎨⎪⎧a −b +c =0c =−3 9a +3b +c =0,解得a=1,b=−2,c=−3,这个二次函数的表达式为y=x 2−2x −3. 故选B10.【解答】解:①∵图象与x轴有交点,对称轴为x=−b2a=−1,与y轴的交点在y轴的正半轴上,又∵二次函数的图象是抛物线,∴与x轴有两个交点,∴b2−4ac>0,即b2>4ac,故①正确;②∵抛物线的开口向下,∴a<0,∵与y轴的交点在y轴的正半轴上,∴c>0,∵对称轴为x=−b2a=−1,∴2a=b,∴2a+b=4a,a≠0,故②错误;③∵x=−1时y有最大值,由图象可知y≠0,故③错误;④把x=1,x=−3代入解析式得a+b+c=0,9a−3b+c=0,两边相加整理得5a−b=−c<0,即5a<b,故④正确.答案:①④11.【解答】解:把(0,0)代入得c=0.答案:0.12.【分析】把x=0代入抛物线y=−x2+3x−3,即得抛物线y=−x2+3x−3与y轴的交点.【解答】解:∵当x=0时,抛物线y=−x2+3x−3与y轴相交,∴把x=0代入y=−x2+3x−3,求得y=−3,∴抛物线y=−x2+3x−3与y轴的交点坐标为(0,−3).答案:(0,−3).13.【分析】首先用配方法将一般式化为顶点式,顶点纵坐标即为最小值,列方程求解.【解答】解:∵y=2x2−4x+m=2(x−1)2+m−2,∴m−2=3,解得m=5,答案:5.14.【分析】(1)已知顶点坐标和函数图象经过原点,故设抛物线解析式为y=a(x−1)2−1(a≠0),然后把原点坐标代入来求a的值;(2)把y=3代入(1)中函数关系进行解答相应的x的值;(3)根据图示直接填空.【解答】解:(1)如图,抛物线的顶点坐标是(1,−1).故设抛物线解析式为y=a(x−1)2−1(a≠0),又∵抛物线经过点(0,0),∴0=a(0−1)2−1,解得,a=1.故抛物线的解析式为:y=(x−1)2−1.故填:y=(x−1)2−1;(2)由(1)知,y=(x−1)2−1,当y=3时,3=(x−1)2−1,解得,x=3或x=−1.故填:3或−1;(3)根据图示知,当x<0或x >2时,y>0.故填:x<0或x>2.15.【分析】根据y=ax2+bx+c的形状与y=x2形状相同,且有最高点,可确定函数图象开口向下,且a=−1,由顶点坐标写出其顶点式,再整理成一般式即可.【解答】解:∵y=ax2+bx+c的形状与y=x2形状相同,且有最高点(2,−3),∴抛物线的解析式是y=−(x−2)2−3=−x2+4x−7,答案:y=−x2+4x−7.同步小题12道1.【分析】将二次函数的一般式配方为顶点式,可求顶点坐标及对称轴.【解答】解:∵y=−x2−2x+5=−(x+1)2+6,∴抛物线的顶点坐标为(−1,6),对称轴为x=−1.故选C2.【解答】解:∵一次函数y=ax+b (ab≠0)的图象不经过第二象限,∴a >0,b <0,∴抛物线y=ax 2+bx 的顶点(−b 2a ,−b 24a ),−b 2a >0,−b 24a<0,∴抛物线y=ax 2+bx 的顶点(−b 2a ,−b 24a )在第四象限. 故选D3.【分析】顶点在x 轴上,所以顶点的纵坐标是0.根据顶点公式即可求得m 的值. 【解答】解:抛物线的顶点纵坐标是:4m −644 ,则得到:4m −644 =0,解得m=16. 故选D4.【分析】首先根据开口方向确定a 的符号,再依据与y 轴的交点的纵坐标即可判断c 的正负,由此解决问题.【解答】解:∵图象开口方向向上,∴a >0;∵图象与Y 轴交点在y 轴的负半轴上,∴c <0;∴a >0,c <0.故选:C5.【分析】直接把原点坐标代入二次函数解析式得到关于a 的方程,然后解方程即可. 【解答】解:把(0,0)代入y=x 2+3x+a −2得a −2=0,解得a=2.故选A .6.【分析】顶点式:y=a (x −h )2+k (a ,h ,k 是常数,a≠0),其中(h ,k )为顶点坐标. 【解答】解:由图知道,抛物线的顶点坐标是(1,−8)故二次函数的解析式为y=2(x −1)2−8.故选D7.【分析】利用公式:y=ax 2+bx+c 的顶点坐标公式为(−b 2a ,4ac −b 24a),列出方程求解则可.【解答】解:根据题意得:−b 2a =−−62×2 =32 ,4ac −b 24a =4×2×(−1)−(−6)24×2 =−112 ,则顶点坐标是(32 ,−112 ). 答案:(32 ,−112 )8.【解答】解:∵抛物线的开口朝下,∴a <0;∵抛物线与y 轴交点在y 的正半轴,∴c >0;∵抛物线的对称轴x=−b 2a 在−1到0之间,即−1<−b2a <0,∴0>b >2a ,即②不成立;∵c >0,0>b >a ,∴abc >0,即①成立;∵当x=−1时,抛物线上的点在x 轴上方,∴有a −b+c >0,即③成立;由图可知,抛物线顶点(−b 2a ,4ac −b 24a )的纵坐标大于2,∴4ac −b 24a >2,∵a <0,∴4ac −b 2<8a ,∴4ac −8a <b 2,④不成立.答案:①③.9.【分析】根据抛物线的性质,抛物线上的点离对称轴越远,对应的函数值就越大,由x 取−2、0、2时,x 取−2时所对应的点离对称轴最远,x 取0与2时所对应的点离对称轴一样近,即可得到答案.【解答】解:∵抛物线y=ax 2+bx+c 开口向上,对称轴是直线x=1,∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x 取−2时所对应的点离对称轴最远,x 取0与2时所对应的点离对称轴一样近,∴y 1>y 2=y 3.故答案是:y 1>y 2=y 3.10.【分析】根据点A ,B ,C 在二次函数y=ax 2+bx+c 的图象上,点的坐标满足方程的关系,将A (−1,−1)、B (0,2)、C (1,3)代入y=ax 2+bx+c 得a=−1,b=2,c=2.从而得出二次函数的解析式为y=−x 2+2x+2.【解答】解:设二次函数的解析式为y=ax 2+bx+c ,∵点A ,B ,C 在二次函数y=ax 2+bx+c 的图象上,∴将A (−1,−1)、B (0,2)、C (1,3)代入二次函数的解析式为y=ax 2+bx+c ,得⎩⎪⎨⎪⎧ a −b +c =−1c =2 a +b +c =3 ,解得,a=−1,b=2,c=2.∴二次函数的解析式为y=−x 2+2x+2. 答案:y=−x 2+2x+2. 11.【分析】用配方法将抛物线的一般式转化为顶点式,直接写出开口方向,顶点坐标和对称轴.解:∵y=x 2−2x −3,∴y=(x −1)2−4,∵a=1>0,∴该抛物线的开口方向上,∴对称轴和顶点坐标分别为:x=1,(1,−4)12.【分析】根据图象与坐标轴交点即可确定对称轴的位置以及解析式,进而分别得出答案. 解:(1)当图象经过(−1,0),(4,0)时,抛物线对称轴为:直线x=32 ,∵图象经过−1与−2之间,∴−b 2a <32 ,∴−b >3a ,∴3a+b <0,故此选项错误;(2)当x=−1时,a −b+c >0,∵图象经过(0,1),∴c=1,∴a −b+1>0,∴a+1>b ,∵对称轴在x 轴正半轴,∴a ,b 异号,∵图象开口向下,∴a <0,∴b >0,∴0<b <a+1,此选项正确;(3)∵图象经过−1与−2之间,以及(4,0)点,∴−b 2a >1,∴−b <2a ,∴2a+b >0,故此选项正确;(4)当图象过点(−1,0),(4,0)时,设解析式为:y=ax 2+bx+1,则⎩⎨⎧ a −b +1=016a +4b +1=0,解得:⎩⎨⎧ a =−14b =34,当图象过点(−2,0),(4,0)时,设解析式为:y=ax 2+bx+1,则⎩⎨⎧ 4a −2b +1=0 16a +4b +1=0,解得:⎩⎨⎧ a =−18 b =14,∴−14 <a <−18 ,故此选项正确.。

新人教版九年级上二次函数知识点总结与练习

新人教版九年级上二次函数知识点总结与练习

新人教版九年级上二次函数知识点总结与练习新人教版九年级上二次函数知识点总结与练知识点一:二次函数的定义一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中a是二次项系数,b是一次项系数,c是常数项。

知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶点1.二次函数y=a(x-h)2+k的图象与性质1)二次函数基本形式y=ax2的图象与性质:a的绝对值越大,抛物线的开口越小。

2)y=ax2+c的图象与性质:上加下减。

3)y=a(x-h)2的图象与性质:左加右减。

4)二次函数y=a(x-h)2+k的图象与性质。

3.二次函数y=ax2+bx+c的图像与性质1)当a>0时,抛物线开口向上,对称轴为x=-b/2a,顶点坐标为(-b/2a,c-b2/4a)。

当x -b/2a时,y随x的增大而增大;当x=-b/2a时,y有最小值c-b2/4a。

2)当a -b/2a时,y随x的增大而减小;当x=-b/2a时,y 有最大值c-b2/4a。

知识点三:二次函数常见方法指导1)二次函数y=ax2+bx+c图象的画法①画精确图五点绘图法(列表-描点-连线)利用配方法将二次函数y=ax2+bx+c化为顶点式y=a(x-h)2+k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图。

②画草图抓住以下几点:开口方向,对称轴,与y轴的交点,顶点。

2)二次函数图象的平移平移步骤:①将抛物线解析式转化成顶点式y=a(x-h)2+k,确定其顶点坐标(h,k);②可以由抛物线a(x-h)2经过适当的平移得到具体平移方法如下:1.平移规律可以概括成“左加右减,上加下减”。

2.求二次函数解析式时,可以选择一般式、顶点式或交点式,根据已知条件选择合适的式子。

3.求抛物线顶点和对称轴的方法有公式法、配方法和对称性法。

4.在抛物线y=ax2+bx+c中,a决定开口方向和大小,b和a共同决定对称轴位置,c决定与y轴的交点位置。

二次函数一般式与顶点坐标公式练习

二次函数一般式与顶点坐标公式练习

已知函数()412-+=xy.(1)该抛物线经过怎样的平移能经过原点.(2)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0.1、二次函数khx ay+-=2)(的图像和2axy=的图像之间的关系。

2.二次函数y=a(x-h)2+k的性质:问题一:将一般式转化为顶点式试将下列函数转化为顶点式,并说出其对称轴,顶点坐标。

(1)262y x x=--(2)2124y x x=--+(3)2961 y x x=-+问题二:顶点坐标公式将2y ax bx c =++转化为顶点式:利用顶点坐标公式填写下列表格:问题三:y=a (x-2)(x+3)与x 轴的交点坐标是,二次函数图象的顶点坐标,对称轴,开口方向。

例1当x=时,二次函数y=x 2+2x-2有最小值. 例2、若抛物线y=-x 2+4x+k 的最大值为3,则k= 试一试:1、函数21262y x x =+-的顶点坐标为,当x=时,y 取最值为.与坐标轴的交点坐标,分析增减性,用5点作图法完成作图。

2、当x 为实数时,代数式x 2-2x-3的最小值是,此时x=.3、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标五、课后练习:1、抛物线y=2x 2-4x+3的顶点坐标是2、二次函数y=x 2+2x-3的图象的对称轴是直线3、抛物线y=-3x 2+1的顶点坐标是4、二次函数y=-(x+1)2-2的图象开口向,对称轴为,顶点坐标为6、抛物线y=-2x 2-4x+1的顶点关于x 轴对称的点的坐标为7、二次函数y=ax 2-2x+1的图象经过点(1,2),则其图象的开口方向8、函数y=-x 2+2x-3的对称轴是,有最值,且最值为 9、已知二次函数y=-x 2+2x+c 2的对称轴和x 轴相交于点(m ,0),则m 的值为10、抛物线y=2x 2-bx+3的对称轴是直线x=1,则b 的值为 11、二次函数y=x 2-2x+3的最小值是12、二次函数y=mx 2-4x+1有最小值-3,则m 等于 13、将抛物线y=x 2-2向左平移3个单位,所得抛物线的函数表达式为14、在平面直角坐标系中,将二次函数y=(x-2)2+2的图象向左平移2个单位,所得图象对应的函数解析式为15、将抛物线y=x 2+x 向下平移2个单位,所得抛物线的表达式是16、把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x 2-2x+3,则b 的值为17、已知二次函数y=x 2+2mx+2,当x >2时,y 的值随x 值的增大而增大,则实数m 的取值范围是. 8、二次函数c bx x y++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知函数
()4
12-
+
=x
y.
(1)该抛物线经过怎样的平移能经过原点.
(2)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0.
1、二次函数
k
h
x a
y+
-
=2)
(
的图像和
2
ax
y=
的图
像之间的关系。

2.二次函数y=a(x-h)2+k的性质:
问题一:将一般式转化为顶点式
试将下列函数转化为顶点式,并说出其对称轴,顶点坐标。

(1)
262
y x x
=--
(2)
2
1
2
4
y x x
=--+
(3)
2
961y x x =-+
问题二:顶点坐标公式

2
y ax bx c =++转化为顶点式:
2222
22
22222424y ax bx c
b c a x x a a b b b c a x a a a a b ac b a x a a =++⎛
⎫=++ ⎪

⎭⎡⎤⎛⎫⎛⎫=+⋅+-+⎢⎥
⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-⎛
⎫=++
⎪⎝

22,24,24y ax bx c b
x a
b a
c b a a =++=-⎛⎫
-- ⎪
⎝⎭
因此,二次函数的图像是
一条抛物线,它的对称轴是直线顶点是
利用顶点坐标公式填写下列表格:
问题三: y=a (x-2)(x+3)与x 轴的交点坐标是 ,
二次函数图象的顶点坐标 ,对称轴 ,开口方向 。

例1当x= 时,二次函数y=x 2
+2x-2有最小值.
例2、若抛物线y=-x 2
+4x+k 的最大值为3,则k=
试一试:
1、函数2
1
262y x x =+-的顶点坐标为 ,当x=
时,y 取最 值为 .与坐标轴的交点坐标,分析增减性,用5点作图法完成作图。

2、当x 为实数时,代数式x 2
-2x-3的最小值是 ,此时x= .
3、求二次函数62
+--=x x y 的图象与x 轴和y 轴的交点坐标
五、课后练习:
1、抛物线y=2x2-4x+3的顶点坐标是
2、二次函数y=x2+2x-3的图象的对称轴是直线
3、抛物线y=-3x2+1的顶点坐标是
4、二次函数y=-(x+1)2-2的图象开口向,对称轴为,顶点坐标为
6、抛物线y=-2x2-4x+1的顶点关于x轴对称的点的坐标为
7、二次函数y=ax2-2x+1的图象经过点(1,2),则其图象的开口方向
8、函数y=-x2+2x-3的对称轴是,有最
值,且最值为
9、已知二次函数y=-x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为
10、抛物线y=2x2-bx+3的对称轴是直线x=1,则b的值为
11、二次函数y=x2-2x+3的最小值是
12、二次函数y=mx2-4x+1有最小值-3,则m等于
13、将抛物线y=x2-2向左平移3个单位,所得抛物线的函数表达式为
14、在平面直角坐标系中,将二次函数y=(x-2)2+2的图象向左平移2个单位,所得图象对应的函数解析式为
15、将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是
16、把抛物线y=x 2
+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x 2
-2x+3,则b 的值为
17、已知二次函数y=x 2
+2mx+2,当x >2时,y 的值随x 值的增大而增大,则实数m 的取值围是 .
8、二次函数c bx x y
++=2
的图象沿x 轴向左平移2个单位,
再沿y 轴向上平移3个单位,得到的图象的函数解析式为
122
+-=x x y ,则b 与c 分别等于( )。

相关文档
最新文档