压气机的性能
压气机性能实验报告
![压气机性能实验报告](https://img.taocdn.com/s3/m/4cf39de2f61fb7360b4c6549.png)
天津市高等教育自学考试模具设计与制造专业热工基础与应用综合实验报告(一)压气机性能实验主考院校:专业名称:专业代码:学生姓名:准考证号:一、活塞式压气机概述1.活塞式压气机结构及工作原理(1)活塞式压气机结构压气机在现代工业以及现代人的生活中被越来越多的广泛应用,不论是汽车上的涡轮增压系统还是航空航天发动机中的涡喷应用,随着技术的不断革新,其结构、性能也在不断的优化、提高。
本实验旨在通过对简单形式的压气机,进行结构、工作原理以及性能的实验,以达到验证并深刻理解、掌握热工学课程中所学得的知识并应用于实际生产实践中。
本次实验所用压气机为“活塞式压气机”,现就其结构及特点作简要说明。
活塞式压气机是通用的机械设备之一,是一种将机械能转化为气体势能的机械。
图1.1 活塞式压气机机构简图图1-2 三维仿真示意图(2)活塞式压气机工作原理:电机通过皮带带动曲柄转动,由连杆推动活塞作往复移动,压缩汽缸内的空气达到需要的压力。
曲柄旋转一周,活塞往复移动一次,压气机的工作过程分为吸气、压缩、排气三步。
具体为:在气缸内作往复运动的活塞向右移动时,气缸内活塞左腔的压力低于大气压力pa ,吸气阀开启,外界空气吸入缸内,这个过程称为压缩过程。
当缸内压力高于输出空气管道内压力p后,排气阀打开。
压缩空气送至输气管内,这个过程称为排气过程。
这种结构的压缩机在排气过程结束时总有剩余容积存在。
在下一次吸气时,剩余容积内的压缩空气会膨胀,从而减少了吸人的空气量,降低了效率,增加了压缩功。
且由于剩余容积的存在,当压缩比增大时,温度急剧升高。
特别的是,单级活塞式空压机,常用于需要 0 . 3 — 0 . 7MPa 压力范围的系统。
压力超过 0 . 6MPa ,各项性能指标将急剧下降。
故当输出压力较高时,应采取分级压缩。
分级压缩可降低排气温度,节省压缩功,提高容积效率,增加压缩气体排气量。
活塞式空压机有多种结构形式。
按气缸的配置方式分有立式、卧式、角度式、对称平衡式和对置式几种。
压气机气动力学
![压气机气动力学](https://img.taocdn.com/s3/m/9f559f7fef06eff9aef8941ea76e58fafab0458d.png)
压气机气动力学压气机气动力学是研究压气机内部气流运动和压气机性能的学科。
它在航空航天、能源等领域具有重要的应用价值。
本文将从压气机气动力学的基本原理、气流运动分析、压气机性能评估和应用前景等方面进行介绍。
一、压气机气动力学的基本原理压气机是将气体通过旋转叶片等方式提高压力的机械设备。
其基本原理是利用叶轮的旋转运动将气体带入压气机内部,通过叶片的加速和扩张来增加气体的动能和压力。
在压气机内部,气体经过多级叶片的作用,逐渐增加压力,并最终排出。
压气机的性能主要取决于气流的流动特性和叶轮的几何形状。
二、气流运动分析压气机内部气流的运动是压气机气动力学的重要研究内容。
在压气机中,气体在叶轮的作用下发生加速和扩张,并在不同叶片间形成旋涡。
这些旋涡对气流的传输和能量转换起着关键作用。
研究气流的运动规律可以帮助我们深入了解压气机内部的气体流动过程,从而优化叶轮的设计和改进压气机的性能。
三、压气机性能评估压气机的性能评估是压气机气动力学研究的重要内容。
性能评估主要包括压气机的压力比、效率和流量等指标。
压力比是指压气机出口气体压力与进口气体压力的比值,是衡量压气机增压能力的重要指标。
效率是指压气机的能量转化效率,即输入功率与输出功率之比。
流量是指单位时间内通过压气机的气体质量或体积。
通过对这些指标的评估,可以判断压气机的性能优劣,为压气机的设计和应用提供参考。
压气机气动力学的研究不仅在航空航天领域有着广泛应用,也在能源领域具有重要作用。
在航空航天领域,压气机被广泛应用于飞机发动机和航空发动机。
不仅可以提供足够的推力,还可以改善发动机的燃烧效率和热效率。
在能源领域,压气机被广泛应用于燃气轮机和蒸汽轮机等发电设备中,可以提高能源利用效率,减少能源消耗和环境污染。
压气机气动力学是研究压气机内部气流运动和压气机性能的重要学科。
通过对气流运动规律的分析和压气机性能的评估,可以优化压气机的设计和改进压气机的性能。
压气机气动力学的研究在航空航天、能源等领域具有广泛的应用前景,对于提高能源利用效率、减少能源消耗和环境污染具有重要意义。
压气机的原理和特性
![压气机的原理和特性](https://img.taocdn.com/s3/m/a48c3e080b4e767f5acfceda.png)
15
主要气动参数
进出气角β1和β2 进口冲角
进出气角:气流进、出口相对流速与叶栅前、 进口冲角:叶栅的入口安装角与气流进气 后额线的夹角。 角之差。
i =β1j-β1
出口落后角 δ=β1j-β1 气流转折角 Δβ=β2-β1
气流转折角:气流出气角与进气角之差。
出口落后角:叶栅的出口安装角与气流出气角之差。
压气机的流量特性线:
通过实验测定并作出的压气机流量特性曲线。
压气机的特性线组:
不同转速下的压气机特性线绘在一起,所得到的曲线 组,称为压气机的特性线组。
2.单级轴流式压气机的特性线
25
特点
①每一转速下的压比均有一最大值 (最大压比点:左、右两支); ②压气机的喘振 ——转速不变,流量降低到一定值 后,压气机内的气流轴向脉动引起 的整台机器的剧烈振动。 喘振边界点:压比不稳定无法 绘出时对应的流量点。 喘振边界线:各转速下喘振工 况点的连线。
入口安装角和出口安装角 :叶型中弧线在前缘点和后 14 缘点的切线与叶栅前、后额线的夹角。
叶栅的几何参数
叶栅前后额线
叶型安装角γp 栅距t 入口安装角β1j 出口安装角β2j
叶栅前后额线:叶型前、后缘点的连线。
栅距t :两个相邻叶型上同位点在圆周方向上的距离。 叶型安装角γp :外弦线与圆周方向的夹角。
2.压气机的喘振
37
压气机喘振的特征
压气机的流量时增时减; 压力忽高忽低; 整个机组剧烈振动并伴随特有轰鸣声。
压气机喘振的原因
内因(根本原因和必要条件)—— 压气机失速; 外因—— 压气机下游存在容积较大的管网部件。
涡轮增压器压气机性能分析
![涡轮增压器压气机性能分析](https://img.taocdn.com/s3/m/d49d452cccbff121dd368341.png)
也就无法具体地分析 流道 内部 的缺陷。但是采用 计算 流体力 学 ( F 就 能 避 免 以 上 缺 点 , 而 为 C D) 从 性能优化提供指导。 本文采用计算流体力学方法 ( F ) C D 对某一款 涡轮增压器的压气机 叶轮及蜗壳进行联合性能计 算, 这样能更加准确地反映 出压气机 叶轮 和蜗壳
位 。可 以推 测 , 向二 次 流 动 是 由于 动 叶 顶 部 间 周
一
隙流驱动的, 且随着压比升高 , 动叶顶部间隙内的 顶部间隙流强度增强 , 驱动力加 大; 而且 ,0 9 %叶 高处二次流动强度达到一定 值时 , 导致其它 叶高
处分 离 区产 生 , 随 着 二 次 流 强 度 的增 强 分 离 区 并 也 随之加 大 , 终导 致 压气 机 进入 失 速 区 , 而发 最 进
速 ( 3 7 / i) 的 3个 不 同工 况 点 进 行 研 1 02 4 rm n 下
从 图 3可 以看 出 , 图上 半 部 分 为 流 量 - 率 该 效 曲线 , 半部 分 为流量 . 比曲线 。低 转速 时 , 比 下 压 压
究, 其中这 3个工况点分别代表 了压气机 叶轮在 堵 塞工 况点 、 效率最 高 工 况 点和 喘 振工 况 点 , 图 如
【 关键词 】 涡轮增压器 压气机 计算流体力学 10 . 5 . 0 1 1 .4 o:0 3 6 / .s .0 74 4 2 1 . 1 0 s 5
0 引言
随着 我 国排 放 法 规 要 求 越 来 越 严 格 , 气 涡 废 轮增压 器 由于在 节 能 、 高 功 率 以及 环 保 等 方 面 提 的优势 , 发动 机上 的运 用 越来 越 广 泛 , 且发 展 在 并 速度 也越来 越快 。然 而 一 台 涡轮 增压 器 性 能 的好
压气机性能试验报告_第9组
![压气机性能试验报告_第9组](https://img.taocdn.com/s3/m/5da90849be1e650e52ea99b1.png)
北京航空航天大学能源与动力工程学院专业综合实验报告班级学号姓名评分实验名称压气机性能实验实验日期一、实验目的1)掌握轴流压气机内流动、加功增压原理和特性;2)熟悉压气机气动参数测量和计算方法。
二、实验内容1、性能测试中的气动参数测量与速度三角形一台压气机在设计完成后,组装到核心机之前一定要经过部件试验的验证。
达到设计指标的才能进行组装。
这部分试验内容称之为压气机的性能测试。
其中最主要的性能参数集中反映在流量、压比和效率这几个参数上。
为了能够绘制速度三角形,本次试验要求在设计和近失速这两个特征状态下,测量如下气动参数:流量管静压、转子进出口外壁静压、静子出口外壁静压、转子进出口和静子出口平均半径处的总压、转子出口平均半径处的气流偏角以及其它必要的辅助参数。
2、额定折合转速下压气机特性曲线压气机的性能用特性曲线来表示。
对于高速压气机,通常的特性曲线图为流量-总压比图和流量-效率图。
但对于低速压气机,其横坐标则常用流量系数来表示,而压比可用压升或压升系数来表示。
试验时首先要在流量全开的情况下将转速开至待测转速。
待转速稳定后逐渐减小排气阀关度,通过减小排气面积来提高反压,从而得到同一转速下不同流量点的特性。
当流量减小到一定值时就会发生失速或喘振,此时应退出失速或喘振状态。
将同一转速下的这些测点连接起来就成为一条特性线。
如需完整的特性图,还应返回大流量状态,然后开至其它转速,重复这个过程。
图2.1为某低速压气机额定转速下的特性曲线示意图。
0.200.250.300.350.400.450.500.550.600.650.70∆p/.5ρum2ca/um0.200.250.300.350.400.450.500.550.600.650.701.0101.0121.0141.016πca/um0.750.800.850.90η图 2.1 压气机特性曲线三、实验装置如图2.2所示,实验台为一排动叶和一排静叶组成的单级轴流压气机,可增加叶片排数,扩展为双级相同级或三级相同级。
轴流式压气机性能预测方法的研究
![轴流式压气机性能预测方法的研究](https://img.taocdn.com/s3/m/4cafa8bbaff8941ea76e58fafab069dc502247ba.png)
轴流式压气机性能预测方法的研究轴流式压气机是现代航空发动机中最重要的组成部分之一,因为它的性能直接关系到整个发动机的效率和可靠性。
因此,如何预测轴流式压气机的性能成为了研究的重点问题之一。
一、轴流式压气机的原理和工作过程轴流式压气机的作用是将空气压缩并向后送到燃烧室中与燃料混合,在燃料燃烧后,把燃烧产生的高温高压气体排出,推动涡轮转子运转,从而推动飞机或直升机等航空器飞行。
轴流式压气机由多级叶片和转子组成,每级叶片和转子的形状和角度都不同。
空气经一级叶片进入转子,转子带动空气向前流动,并在转子的弯曲处受到离心力的作用而产生压力,压缩后的高压空气再经过下一级叶片和转子组成的高压气室进行二次压缩,最终向燃烧室中送入。
二、轴流式压气机性能预测的方法1.理论分析法理论分析法是最基本、最简便、准确度最高的轴流式压气机性能预测方法之一,它可以根据轴流式压气机的物理和气体动力学原理,通过计算机数学模型分析轴流式压气机的流动状态和性能参数。
其中包括轴流式压气机的空气动力设计、气动布局和气动特性的计算等。
2.实验测试法实验测试法是通过设计实验设备和测试方法来获取轴流式压气机性能参数的方法。
例如,使用实验台对轴流式压气机进行动态测试,在测试中通过操纵转子转速,通过测量进出口气压、温度、流速以及转速、功率等参数来获取轴流式压气机的性能数据。
虽然实验测试法在实际操作中较为复杂,对于模拟轴流式压气机的实际工作状态和获取真实数据具有不可替代的作用。
同时,数值仿真模拟经常需要简化或者把参数视为平均数,无法考虑部分离散变化,实验测试方法能够真实地反映压气机实际工作过程中的参数变化,能更准确的模拟实际情况。
3.数值模拟法数值模拟法是使用计算机软件模拟轴流式压气机流动状态、压力等参数的变化。
数值模拟法可以提供轴流式压气机流动状态的详细信息,例如流场状态、叶片间间隔、叶片载荷等。
相对于实验测试法而言,数值模拟法具有计算成本低、模拟速度快、数据采集不受时间、环境等因素影响等优点。
压气机级的基本参数沿
![压气机级的基本参数沿](https://img.taocdn.com/s3/m/b91046b2ed3a87c24028915f804d2b160b4e8605.png)
压气机级的基本参数沿用途及原理压气机是一种将气体压缩的机械设备,广泛应用于工业、航空、航天等领域。
它的基本原理是通过旋转的叶轮将气体加速,并在静止的固体叶片上产生压力,从而实现气体的压缩。
在压缩过程中,气体温度会升高,因此需要冷却系统来保持温度稳定。
压气机级的基本参数1. 压比(Pressure Ratio)压比是指出口静态压力与入口静态压力之比。
它是衡量单级压缩能力的重要参数,通常用来描述整个压缩系统的性能。
在设计和选择压气机时,需要考虑所需的最终输出压力和入口条件。
2. 流量(Flow Rate)流量是指单位时间内通过一个给定面积的气体质量或体积。
在设计和选择压气机时,需要考虑所需流量和入口条件。
3. 效率(Efficiency)效率是指输出功率与输入功率之比。
对于一个给定的流量和压比,效率越高意味着更少的能量浪费和更低的运行成本。
因此,在设计和选择压气机时,需要考虑效率和所需输出功率。
4. 转速(Rotational Speed)转速是指压气机旋转的速度。
它是衡量压气机性能的重要参数之一,通常用来描述单级压缩能力。
在设计和选择压气机时,需要考虑所需流量、压比和效率,并根据这些要求来确定适当的转速。
5. 噪声(Noise)噪声是指由于空气动力学效应、振动和流体噪声等因素产生的声音。
在选择和使用压气机时,需要考虑噪声水平,并采取相应的措施来减少噪声对环境和工作人员造成的影响。
6. 重量(Weight)重量是指整个压气机系统的重量。
在设计和选择压气机时,需要考虑所需流量、压比、效率以及其他因素,并根据这些要求来确定适当的重量。
7. 尺寸(Size)尺寸是指整个压气机系统的大小。
在设计和选择压气机时,需要考虑所需流量、压比、效率以及其他因素,并根据这些要求来确定适当的尺寸。
8. 可靠性(Reliability)可靠性是指压气机系统的稳定性和可靠性。
在选择和使用压气机时,需要考虑其可靠性,并采取相应的措施来确保系统的稳定性和可靠性。
压气机特性(精)
![压气机特性(精)](https://img.taocdn.com/s3/m/cdf1c6300066f5335a81214d.png)
qma A1V1a 1 f ( qv )
* k f1 ( qv , n) * k f 2 ( qv , n)
整理测取数据(P75)
– 容积流量 – 增压比 – 效率
一定进气条件的特性
– 等转速线 – 等效率线 – 稳定边界线
3、通用特性线
相似理论
相似准则
– 几何相似 – 运动相似
对应点速度方向相同,大小成比例
– 动力相似
轴向Ma相等 切向Mu相等
k f1 ( M a , M u )
*
k f 2 ( M a , M u )
*
由:
qma p1 n
T1*
*
KA1q (1 ) f1 ( M a )
n f 2 (M u , M a ) * k 1 T1 2 T1 (1 Ma ) 2 u Dn n Mu C a 6 0 kRT T1 1
所以:
k f1 (
*
qma p1 qma p1
* T 1 *
,
n
* T 1
)
k f 2 (
*
* T 1 *
,
n T 1
*
)
通用特性
通用特性图
相似流量为横坐标 增压比为纵坐标 相似转速为参变量 三种线
– 等相似转速线 – 等效率线 – 不稳定边界线
稳定工作范围 高效率区
四、压气机特性
1、特性的意义
– 压气机在设计状态下具有符合设计要求的增 压比和较高的效率。一台设计完成的压气机 不可能总在某一特定条件(设计状态)下工 作。 – 当工作条件偏离设计状态时,压气机的增压 比、效率会发生变化。 – 在非设计条件下工作时压气机性能参数(增 压比、效率)的变化为特性。
航空发动机设计手册第8册—压气机
![航空发动机设计手册第8册—压气机](https://img.taocdn.com/s3/m/244dc4a2162ded630b1c59eef8c75fbfc77d9485.png)
航空发动机设计手册第8册—压气机航空发动机作为飞机的心脏,其设计和性能直接影响飞机的安全和效率。
在航空发动机设计手册的第8册中,压气机是其中一个关键的部分,其设计和性能对发动机整体性能起着至关重要的作用。
在本文中,我们将深入探讨压气机的设计原理、工作特性以及对整体发动机性能的影响。
1. 压气机的基本原理压气机是航空发动机中的一个关键部件,其主要作用是将气体压缩,提高进气气流的压力和温度。
压气机通常由多级叶片和转子组成,通过叶轮的旋转将气体压缩,使其达到所需的进气压力。
压气机的设计需要考虑叶轮的叶片角度、叶片数目、叶片材料等因素,以实现高效、稳定的压缩过程。
2. 压气机的工作特性压气机在工作过程中会产生压力脉动和振动问题,这对发动机的可靠性和性能造成一定的影响。
在设计压气机时,需要考虑叶轮和转子的结构强度、动力平衡等问题,以减小振动和噪音,提高压气机的工作稳定性和可靠性。
压气机的流场特性对压气机的压缩效率和性能影响巨大,需要通过流场仿真和试验验证来优化设计。
3. 压气机对整体发动机性能的影响压气机的设计和性能直接影响整体发动机的性能和效率。
压气机的压缩效率、气动性能和工作稳定性会影响发动机的燃烧过程、推力输出和燃油消耗,直接关系到飞机的飞行性能和经济性。
在设计压气机时,需要综合考虑压气机与其他部件的协调配合,以实现最佳的整体性能和效率。
总结回顾通过对航空发动机设计手册第8册—压气机的深入探讨,我们对压气机的设计原理、工作特性以及对整体发动机性能的影响有了更深入的了解。
压气机作为航空发动机中的关键部件,在提高发动机性能和效率方面发挥着重要作用。
在今后的发动机设计和优化过程中,需要继续关注压气机的设计和性能问题,以实现更高水平的发动机性能和效率。
个人观点和理解作为发动机设计师,我深知压气机在航空发动机中的重要性。
压气机的设计和性能直接关系到整体发动机的性能和效率,对整个飞机的飞行性能和经济性影响巨大。
工程热力学燃气轮机循环中压气机的性能参数计算
![工程热力学燃气轮机循环中压气机的性能参数计算](https://img.taocdn.com/s3/m/695e3c74e55c3b3567ec102de2bd960590c6d921.png)
工程热力学燃气轮机循环中压气机的性能参
数计算
燃气轮机作为一种广泛使用的发电设备,通过燃烧燃气产生高温高压气体来驱动涡轮,并最终将动能转化为机械能。
其中,压气机作为燃气轮机的核心部件之一,负责将空气压缩到高压以供进一步燃烧,并直接影响燃气轮机的性能。
为了准确计算压气机的性能参数,我们首先需要确定以下几个关键参数:
1. 引入一些基本假设:
a) 压气机为等熵压缩过程,即输入质量流率不变且没有传热和传质;
b) 空气为理想气体,遵循理想气体状态方程;
c) 假设进口空气温度、进口静压和进口静温已知;
d) 忽略机械损失和内部流动效应。
2. 确定压气机的输入参数:
a) 进口空气温度 T_1;
b) 进口静压 P_1;
c) 进口静温 T_1.
3. 根据等墒压缩过程,利用理想气体状态方程可以得到压气机的输出参数:
a) 压气机出口压力 P_2;
b) 压气机出口温度 T_2.
4. 利用能量平衡方程来计算压气机的压缩功;
a) 由于忽略了机械损失和内部流动效应,压气机的压缩功可以近似为输入总焓减去输出总焓。
5. 计算压气机的绝热效率:
a) 利用绝热效率的定义,即实际压缩功与等熵压缩功之比,可以得到压气机的绝热效率。
综上所述,通过以上步骤,可以得到燃气轮机循环中以压气机为核心部件的性能参数计算。
需要注意的是,实际工程中可能还需要考虑其他因素对性能参数的影响,并进行相应修正。
本文以工程热力学燃气轮机循环中压气机的性能参数计算为标题,按照合同的格式进行撰写。
以上就是对于该题目的详细讨论与计算过程,希望对你有所帮助。
压气机变工况及特性曲线
![压气机变工况及特性曲线](https://img.taocdn.com/s3/m/017baf8ca0116c175f0e48a7.png)
轴流压气机的通用特性曲线
压气机的通用特性曲线的一些特征(1) 1. 压气机的工作特性可以概括地用 压比、相似时转速和相似 流量和效率这四个参数来表示; 2. 在表征压气机工作特性的压比 、相似转速、相似流量这 三个参数中,只要其中任意两个参数已经确定,那么,另 外一个参数也就相应确定了。这就是说,决定压气机运行 工况和工作 特性的独立参数变量只有两个。通常,人们 习惯于选用相 似转速和压比 这对参数,作为确定压气机 运行工况的独立参变量; 3. 压气机的 相似转速=常数 时,随着相似流量(又称为通流 能力)的增大,压气机的压比将逐渐下降。反之,当相似 流量减小时,压比将趋于升高。 通常,随着压气机相似转速的增高,反映压气机的压比 与相似流量之间的变化关系,就会变得更加陡峭。因而, 可以粗略地认为:压气机的相似流量主要与压气机 相似转 速的高低有关。
当压气机的转速一定时也就是工作叶轮的圆周速度恒定不变时压气机的压比就取决于气流流过动叶栅时相对速度在周向分量的变化值说明轴流式压气机级的流量特性用图多级轴流式压气机的特性线多级轴流式压气机的特性线与单级压气机的特性线的区别同一转速情况下当多级压气机的流量增大时其压比和效率的下降度要比单级压气机者厉害得多也就是说特性线的变化趋势十分陡峭这个特点在高转速工况下更为明显那时的特性线已几乎成为一条垂直于横坐标的直线
大气温度Ta 的变化,对于压气机特性线的影响
在压气机的转速 n 和容积流量恒定不变的前提下,在压气机通流部分中, 气流的速度三角形可以认为是变化不大的。假如忽略大气温度的变化对气流 马赫数的影响,那么可以近似地认为:由外界加给每千克空气的绝热压缩功 ⊿h 将恒定不变。但是,根据热力学的原理得知: ⊿h=(k/(k-1)R Ta〔(P2/P1)(k-1)/k - 1〕 由此可见,在 ⊿h≈常数 的前提下,当大气温度 升高时,压气机的压比 就会 下降;反之,当 Ta 降低时,压比 就会增高。 此外,当转速 n 和容积流量恒定不变时,随着大气温度 Ta 的改变,压气机的 效率也是会发生某些变化的。例如,当 Ta 增高时,由于声速 a=(kRTa)1/2 增大, 就会使得流经压气机的气流馬赫数减少, 气动阻力就减弱,因而压气机的效率 就会增高;反之,当大气温度 Ta 降低時,声速 a 减少,而气流馬赫数就会升高, 效率就会下降。 从上述讨论中可以看出:当大气温度改变時,相对于同一轉速 和容积流量来 说,压气机的压比和效率都会有变化.因此,大氣温度 对压气机的特性线是有影 响的。也就是说,在不同的进气温度 Ta 下所测得的压气机特性线是各不相同 的。似转速 有关,而 且当相似转速恒定不变时,随着压气机出口管网阻力 特性的变化,其压比的变化范围是可以相当大。 4)在压气机的通用特性曲线上,也同样有一条极 为重要的喘振边界,绝对不容许压气机进入到喘振边 界线的左侧的工况。 5)在每一条等相似转速线上,压气机都有一个最 佳效率 的运行点,当流经压气机的相似流量 偏离了 该运行点所对应的相似流量时,压气机的效率 就会降 低下来。 掌握了有关压气机通用特性曲线的上述特点,对于 今后进一步分析整台燃气轮机的变工况特性,会有很 大帮助。在研究整台燃气轮机的变工况特性时,将会 看到,压气机的通用特性曲线是极为有用和必需的
高压比吸附式压气机级气动性能设计与分析
![高压比吸附式压气机级气动性能设计与分析](https://img.taocdn.com/s3/m/ce69f45dcf84b9d528ea7a82.png)
2翻译部分高压比吸附式压气机级气动性能设计与分析摘要在轴流压气机中,可以通过附面层抽吸的方法来对叶片和端壁附面层区域的逆压梯度进行控制从而提高压比。
这个概念已经在一个最高速度为1500英尺每秒,总压比为3.5的独特的吸附式压气机的设计与分析中被验证。
吸气级是将轴对称的通流程序与一个具有反设计能力的准三维叶片程序搭配而设计的,完成之后用三维NS方程进行了计算验证。
为了满足一个4%的入口质量流量的总吸要求在转子和静子吸力面安装了沿着翼展方向的槽,3%的额外抽吸也将需要在轮毂和缸盖的激波位置附近完成。
除了在端壁区域,设计的三维粘性的评价结果与准三维设计意图高度一致。
三维粘性分析预测的质量平均在转子等熵效率为93%、总压比为3.7和在总压比为3.4、等熵效率为86%的级中。
2.1专业符号H——滞止焓 r——半径方向U——附面层边缘速度 H——运动状态参数kM——马赫数 x——轴向方向P——压力δ*——位移厚度U——叶片速度 e——动量厚度m’——弧长ρ——密度r——半径方向η——等熵效率u——附面层边缘速度ω——损失系数2.2脚注O——停滞,总量 isen——等熵1,2——叶片入口,出口 suct——吸入e——附面层 v——粘性2.3介绍Kerrebrock解决了热力学对发动机性能的影响,他和其他人讨论了吸气时压气机的相关概念,并且描述了一个实验,此实验研究了附面层吸除对于跨声速压气机吸力面的影响。
在Kerrebrock等人1996年的在一个系列的涵盖了最高速度从700至1500英尺/秒,压比从1.5到3的吸附式压气机的设计中呈现出了新的结果,设计研究清楚地表明,级做功的增加,可以实现压气机吸气的愿望。
这些努力仅仅代表了在回答是否抽吸会导致改善发动机性能整体问题过程的第一步。
最后的答案取决于吸入对发动机的重量和燃油消耗的影响。
这些反过来又依赖于整合吸气级进入发动机的细节。
特别是,对循环效率的净效应取决于有多少的放气流的能量可以回收,并且放气流在发动机系统的利用,例如冷却。
高空低雷诺数对压气机性能的影响
![高空低雷诺数对压气机性能的影响](https://img.taocdn.com/s3/m/b8f94108a66e58fafab069dc5022aaea998f4146.png)
高空低雷诺数对压气机性能的影响引言:压气机是航空发动机三大核心部件之一,技术含量高,难度大,常成为阻碍研制成功的关键;压气机的作用是将来自涡轮的能量传递给外界的空气,提高压力后送到燃烧室参与燃烧。
因为外界空气的单位体积的含氧量太低,远小于燃烧室内的燃油充分燃烧所需的含氧量,如果外界空气不经过压缩,那么发动机的热力循环效率就太低了。
在航空涡轮发动机上使用的压气机按其结构和工作原理可以分为两大类,一类是离心式压气机,一类是轴流式压气机。
离心式压气机的外形就像是一个钝角的扁圆锥体由于其迎风面积过大,现在已经不再主流航空涡喷涡扇发动机使用了,仅在涡轴发动机中有些运用。
轴流压气机具有体积小,流量大,效率高的优点,成为现代航空发动机的首选。
压气机的主要性能参数包括效率,增压比和喘振裕度。
雷诺数Re是衡量流体粘性对航空发动机增压及涡轮部件性能影响的重要准则之一。
通常,当发动机进口雷诺数大于某一临界值时,增压部件的工作性能不受影响;而当雷诺数低于该值时,雷诺数对风扇/压气机的负面影响将逐渐显现出来,并使发动机的工作环境不断恶化,这也就是所谓的低雷诺数效应。
高空无人侦察机和无人作战飞机的出现与广泛应用【1】,引起了航空武器装备的又一次革命。
就动力而言。
这类飞行器与常规载人飞行器的显著区别之一是:在高空巡航状态下,其压气机和涡轮的工作雷诺数可降至410量级。
高空、低速、小尺寸所带来的低雷诺数效应。
使其发动机核心部件的性能急剧下降,导致发动机推力下降、耗油率增大,进而影响飞行器巡航留空时间、有效载荷等指标。
随着雷诺数因高度的增加而降低, 压气机稳定性下降, 使得喘振和旋转失速对高空低雷诺数下工作的航空发动机的危害尤为突出高空、低速、低雷诺数对发动机部件的性能及稳定性有极大影响。
在高空, 由于空气密度小、运动黏性系数大, 造成低雷诺数条件, 导致磨擦阻力增大、气流损失增大, 从而影响风扇/ 压气机性能。
雷诺数低于临界值造成附面层转捩推迟, 而层流附面层比湍流附面层更容易分离, 也影响了风扇/ 压气机稳定性能美国“全球鹰”无人机动力AE3007H在19800 m高空巡航时,低压涡轮部件效率下降6%,同样PW545发动机高空效率也降低,这些都与核心部件的工作雷诺数降低相关。
发动机原理(第二章压气机特性)
![发动机原理(第二章压气机特性)](https://img.taocdn.com/s3/m/c1f6c6e80975f46527d3e16d.png)
2、压气机特性实验和通用特性 、
实验设备及实验过程( 实验设备及实验过程(P74) ) 相似理论和相似准则
– 几何相似 – 运动相似
对应点速度方向相同, 对应点速度方向相同,大小成比例
*
通用特性
π k = f1 ( ηk = f 2 (
*
qma T1* p1
*
,
n T1* n T1
*
)
– 动力相似 轴向M 轴向 a相等 切向M 切向 u相等
主要参数 – 增压比: 增压比: – – – – 流量: 流量: 转速: 转速: 多变压缩功: 多变压缩功: 绝热效率: 绝热效率:
* πk =
* p2 * p1
qma (kg / s) n(rpm) Wk = CpT1*[(π k )
γ −1 * γ
* − 1] / ηk
ηk = Wkad / Wk
节
主要参数(增压比、效率、压缩功等) 主要参数(增压比、效率、压缩功等) 压气机通用特性
– 三种线 等相似转速、等效率、稳定工作边界 三种线(等相似转速 等效率、稳定工作边界) 等相似转速、 – 特性线变化原因 – 喘振及主要防喘措施
qma T1* p1
*
,
)
通用特性图
相似流量为横坐标 增压比为纵坐标 相似转速为参变量 三种线
– 等相似转速线 – 等效率线 – 喘振边界线
稳定工作范围
– 边界线右下方
高效率区
– 等效率线中心
如果设计点在P点 如果设计点在 点
–相似流量变化 相似流量变化 工作点 → A 工作点 → B –相似转速变化 相似转速变化 工作点 → C 工作点 → D
通过调节静子叶片角度,使动叶进口气流的绝 通过调节静子叶片角度, 对速度向转动方向偏斜, 对速度向转动方向偏斜,相对速度的方向与设 计状态相接近,进气攻角恢复到“ 计状态相接近,进气攻角恢复到“零”,消除 了叶背分离, 了叶背分离,因此防止了喘振发生
压气机气动力学
![压气机气动力学](https://img.taocdn.com/s3/m/138661be9f3143323968011ca300a6c30d22f111.png)
压气机气动力学压气机气动力学是研究压气机内部气流运动和压气机性能的学科。
它在航空航天、能源和工业领域发挥着重要的作用。
本文将从压气机的工作原理、气动力学特性和性能优化等方面进行阐述。
一、压气机的工作原理压气机是一种能够将气体压缩的设备,它通过旋转的叶片将气体加速并增加其压力。
压气机主要由进气口、压气机转子、压气机壳体和出气口等组成。
当气体从进气口进入压气机时,受到叶片的作用,气体被加速并压缩,然后通过出气口排出。
二、压气机的气动力学特性1. 进气过程中的压气机性能:进气过程中,气体受到叶片的作用,产生了旋转的气流。
进气过程中,压气机的性能主要取决于进气速度、进气流量和进气温度等因素。
2. 压气机转子的气动力学特性:压气机转子是压气机的核心部件,它通过旋转的叶片将气体加速并增加其压力。
压气机转子的气动力学特性主要包括叶片气动力、叶片间的气动相互作用和转子的流动特性等。
3. 压气机壳体的气动力学特性:压气机壳体起到了支撑和导向气流的作用。
壳体的设计对于提高压气机的性能至关重要。
压气机壳体的气动力学特性主要包括气流的流动特性、壳体的阻力和壳体的泄漏等。
三、压气机性能的优化为了提高压气机的性能,需要进行压气机性能的优化设计。
压气机性能的优化可以通过以下几个方面来实现:1. 叶片的设计优化:叶片是压气机转子的关键部件,其设计对于提高压气机的性能至关重要。
通过优化叶片的几何形状和叶片的材料选择,可以提高叶片的气动性能,从而提高压气机的效率。
2. 压气机壳体的设计优化:压气机壳体的设计对于减小壳体的阻力和泄漏非常重要。
通过合理的壳体形状设计和壳体的气动特性优化,可以减小壳体的阻力和泄漏,提高压气机的效率。
3. 气流的调控和控制:通过调控和控制压气机内部气流的分布和流动状态,可以实现气流的均匀分布和流动的优化,提高压气机的效率。
4. 运行参数的优化:通过优化压气机的运行参数,如进气速度、进气温度和出口压力等,可以提高压气机的性能。
多级压气机设计与性能评估
![多级压气机设计与性能评估](https://img.taocdn.com/s3/m/38b7dc0fb80d6c85ec3a87c24028915f804d84b4.png)
多级压气机设计与性能评估压缩机作为工业领域中重要的能量转换设备,在实际应用中扮演着至关重要的角色。
多级压气机是一种常见的压缩机类型,其设计与性能评估是提高其工作效率和可靠性的关键因素。
本文将探讨多级压气机的设计原理、性能评估方法以及优化技术。
1. 多级压气机的设计原理多级压气机通过将多个压缩级连续排列,从而实现对气体的逐级压缩。
每个压缩级由叶轮和定子组成,通过相互作用将气体逐级压缩。
在设计过程中,需要考虑叶轮的几何形状、叶片数量、进气口和出气口的位置等参数,以及叶轮和定子之间的最佳间隙,以确保压缩机的工作效率和性能。
2. 多级压气机性能评估方法多级压气机的性能评估是判断其工作效率和性能优劣的重要指标。
常用的性能评估方法包括压缩机总压比、绝热效率、等熵效率等。
压缩机总压比是指压缩机出口气体总压力与入口气体总压力之比,绝热效率是指在绝热条件下气体的压缩效果,等熵效率则考虑了气体在压缩过程中的热交换效果。
通过对这些指标的评估,可以全面了解多级压气机的性能表现。
3. 多级压气机性能优化技术为了提高多级压气机的效率和性能,可以采用一系列的优化技术。
首先,通过改变叶轮的几何形状和叶片数量,可以提高叶轮的流体动力学性能,减小能量损失。
其次,通过优化叶轮和定子之间的间隙,减小泄漏流量,提高压缩机的密封性能。
此外,还可以通过采用先进的材料和涂层技术,减小叶轮的摩擦和磨损,延长压缩机的使用寿命。
这些优化技术的应用可以有效提升多级压气机的效率和可靠性。
4. 多级压气机的实际应用多级压气机广泛应用于石油化工、能源、航空航天等领域。
在石油化工行业中,多级压气机用于气体增压、工艺气体循环等工艺过程中。
在能源领域,多级压气机是发电厂中关键设备之一,用于压缩空气、循环气体等。
在航空航天领域,多级压气机则被广泛应用于飞机发动机、火箭发动机等。
综上所述,多级压气机作为重要的压缩机类型,其设计与性能评估对于提高工作效率和可靠性至关重要。
高压比吸附式压气机级气动性能设计与解析
![高压比吸附式压气机级气动性能设计与解析](https://img.taocdn.com/s3/m/21d1aa5df61fb7360b4c65ba.png)
2翻译部分高压比吸附式压气机级气动性能设计与分析摘要在轴流压气机中,可以通过附面层抽吸的方法来对叶片和端壁附面层区域的逆压梯度进行控制从而提高压比。
这个概念已经在一个最高速度为1500英尺每秒,总压比为3.5的独特的吸附式压气机的设计与分析中被验证。
吸气级是将轴对称的通流程序与一个具有反设计能力的准三维叶片程序搭配而设计的,完成之后用三维NS方程进行了计算验证。
为了满足一个4%的入口质量流量的总吸要求在转子和静子吸力面安装了沿着翼展方向的槽,3%的额外抽吸也将需要在轮毂和缸盖的激波位置附近完成。
除了在端壁区域,设计的三维粘性的评价结果与准三维设计意图高度一致。
三维粘性分析预测的质量平均在转子等熵效率为93%、总压比为3.7和在总压比为3.4、等熵效率为86%的级中。
2.1专业符号H——滞止焓 r——半径方向U——附面层边缘速度 H——运动状态参数kM——马赫数 x——轴向方向P——压力δ*——位移厚度U——叶片速度 e——动量厚度m’——弧长ρ——密度r——半径方向η——等熵效率u——附面层边缘速度ω——损失系数2.2脚注O——停滞,总量 isen——等熵1,2——叶片入口,出口 suct——吸入e——附面层 v——粘性2.3介绍Kerrebrock解决了热力学对发动机性能的影响,他和其他人讨论了吸气时压气机的相关概念,并且描述了一个实验,此实验研究了附面层吸除对于跨声速压气机吸力面的影响。
在Kerrebrock等人1996年的在一个系列的涵盖了最高速度从700至1500英尺/秒,压比从1.5到3的吸附式压气机的设计中呈现出了新的结果,设计研究清楚地表明,级做功的增加,可以实现压气机吸气的愿望。
这些努力仅仅代表了在回答是否抽吸会导致改善发动机性能整体问题过程的第一步。
最后的答案取决于吸入对发动机的重量和燃油消耗的影响。
这些反过来又依赖于整合吸气级进入发动机的细节。
特别是,对循环效率的净效应取决于有多少的放气流的能量可以回收,并且放气流在发动机系统的利用,例如冷却。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压气机的性能
压气机在工程上应用广泛,种类繁多但其工作原理都是消耗机械能(或电能)而获得压缩气体,压气机的压缩指数和容积效率等是衡量其性能优劣的重要参数,本实验是利用微机对压气机的有关参数进行实时动态采集,经计算处理,得到展开的和封闭的示功图,从而获得其平均压缩指数n、容积效率,指示功、指示功率P等性能参数。
一、实验目的
1.掌握用微机检测指示功,指示功率,压缩指数和容积效率等基本操作测试方法;
2.掌握用面积仪测量不同示功图的面积,并计算指示功,指示功率,压缩指数和容积效率。
3.对微机采集数据和数据处理的全过程和方法有所了解。
二、实验装置及测量系统
本实验装置主要由压气机和与其配套的电动机以及测试系统所组成,测试系统包括压力传感器,动态应变仪,放大器,A/D板,微机,绘图仪及打印机,详见图2-1所示。
压气机的型号:Z——0.03/7
气缸直径:D=50mm,活塞行程:L=20mm
连杆长度:H=70mm,转速:n=1400转/分
为获得反映压气机性能的示功图,在压气机气缸上安装了一个应变式压力传感器,供实验时输出气缸内的瞬态压力信号,该信号经桥式整流以后送至动态应变仪放大;对应着活塞上止点的位置,在飞轮外侧粘贴着一块磁条,从电磁传感器上取得活塞上止点的脉冲信号,作为控制采集压力的起止信号,以达到压力和曲柄转角信号的同步,这二路信号经放大器分别放大后送入A/D板转换为数值量,然后送到计算机,经计算机处理便得到了压气机工作过程中的有关数据及展开示功图和封闭的示功图,详见图2-2和图2-3。
三、实验原理
1.指示功和指示功率
指示功——压气机进行一个工作过程、压气机所消耗的功,显然其值就是P—V图上工作过程线cdijc 所包围的面积,即
式中S——测面仪测定的P—V图上工作过程线所围的面积(mm2)
K1——单位长度代表的容积(mm3/mm);即
L——活塞行程(mm);
——活塞行程的线段长度(mm);
——单位长度代表的压力(at/mm);
——压气机排气工作时的表压力(at);
——表压力在纵坐标上对应的高度(mm);
P——指示功率,即:单位时间内压气机所消耗的功,可用下式表示:
式中N——转速(转/分)。
2.平均多变压缩指数
压气机的实际压缩过程介于定温压缩与定熵压缩之间,即多变指数n的范围为,因为多变过程的技术功是过程功的n倍,所以n等于P—V图上压缩过程线与坐标轴围成的面积同压缩过程线与横坐标轴围成的面积之比,即:
3.容积效率()
由容积效率的定义得:
在(P—V)示功图上,有效吸气过程线段长度与活塞行程线段长度之比等于容积效率即:
四、实验步骤
1.微机检测操作
按图2-1连接所用测试仪器设备及电源。
(1)接通计算机电源,把软件插入计算机。
(2)在键盘上输入压气机软件名,并按回车键。
(3)根据计算机显示进行人机对话操作。
(4)将指示功,指示功率,多变指数,容积效率等参数记下。
(5)用打印机打出示功图供人工计算。
2.人工手算操作(参看面积仪的使用)
(1)用测面仪测定示功图的面积cdijc和线段gb与fe的长度。
人功计算指示功、指示功率。
(2)分别测量压缩过程线与坐标轴包围的面积cdabc及压缩过程线与纵坐标轴包围的面积cdefc求出多变指数n。
(3)用尺子量出反映有效吸气线段hb的长度和反映活塞行程线段gb的长度,求出容积效率。
五、实验报告内容
1、测量并计算出指示功和指示功率。
2、求出平均多变压缩指数。
3、求出容积效率。
4、分析压气机增压比的改变对容积效率有何影响。
六、思考题
1、活塞式压气机工作时,其压缩指数变化范围是多少?什么情况下耗功最省?
2、试由所测示功图分析该压气机工作是否正常?
面积仪的使用
面积仪是一种测量平面封闭图形面积的工具,我们根据经过计算机处理得到的活塞式压气机的封闭示功图,再利用面积仪计算压气机的指示功,平均压缩指数和平均膨胀指数。
极式面积仪的结构如附图2-3所示。
它由描臂、极臂2和滑架3等部件组成。
极臂一端有重块4,下部有极针5(用于固定测面仪的位置),另一端用活动铰支点6与滑架连接。
描臂的一端有描针7。
测量示功图面积时,描针要沿示功图曲线顺时针方向移动。
滑架可在描臂上移动,用于调节描臂长度,使其与待测面积的比例尺相适应。
滑架上有测轮8,记录轮9和游标10。
测轮和记录轮之间用蜗轮蜗杆传动。
当描针沿被测面积的边线移动时,测轮随之滚动的弧长和被测面积的大小成正比。
因此,当描针沿被测面积移动一圈后,就可以直接从测轮的计量机构上读出所测面积的数值。
面积仪读数:测轮转一周记录轮转一格。
测轮分为10大格,每大格又分为10小格。
游标上亦有10格,这10格的总长度与测轮的9小格长度相等。
利用这套计量机构可读出四位数字。
三者的读数关系如下:
游标上一格相当于10mm2
测轮上一小格相当于100mm2
测轮上一大格相当于1000mm2
记录轮上一大格相当于10000mm2
面积仪的使用方法
1.将待测示功图用胶纸固定在平整的绘图板上。
2.根据图形大小,移动滑架调节描臂长度,以选取适当的比例(对示功图通常取1:1,此时描臂长34cm)。
3.把极针固定在适当位置,装好面积仪。
先用描针粗略地沿所测面积的边缘移动一周,以检查比例是否合适,测轮转动是否灵活。
4.在所测示功图边缘上任选一点作为起点,将描针移至起点,将面积仪上的游标、测轮、记录轮都调整至“0”处,再将描针准确地按图形边缘顺时针方向移动一周,回到起点,此时面积仪上显示的读数乘上面积常数;(我们一般取的比例为1:1,此时面积常数为1)就可得到示功图的面积。
为了使读数准确,通常应测2~3次,取其平均值。
5.面积仪是比较精密的仪器,使用时应轻拿轻放、切不可碰撞。