专题07 求二次函数的最值(解析版)

专题07 求二次函数的最值(解析版)
专题07 求二次函数的最值(解析版)

第07讲求二次函数的最值

考纲要求:

1. 会用描点法画出二次函数的图像,理解二次函数的性质。

2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。

基础知识回顾:

二次函数的图象和性质

二次函数的图象和性质图象x

y

y=ax2+bx+c(a>0)

O

x

y

y=ax2+bx+c(a<0)

O

开口向上向下

对称

x=

2

b

a

-

顶点

坐标

2

4

,

24

b a

c b

a a

??

-

-

?

??

增减

当x>

2

b

a

-时,y随x的增大而

增大;当x<

2

b

a

-

时,y随x的

增大而减小.

当x>

2

b

a

-时,y随x的增大而减

小;当x<

2

b

a

-时,y随x的增大

而增大.

最值x=

2

b

a

-

y

最小

2

4

4

ac b

a

-

. x=

2

b

a

-

y

最大

2

4

4

ac b

a

-

.

应用举例:

招数一、利用二次函数的图像和性质,用最值的公式解决最值问题问题.【例1】二次函数y=﹣2x2﹣4x+5的最大值是________.

【答案】7

【解析】y=﹣2x2﹣4x+5=﹣2(x+1)2+7,

即二次函数y=﹣x2﹣4x+5的最大值是7,

故答案为:7.

【例2】已知二次函数y=x2-2x+2在m≤x≤m+1时有最小值m,则整数m的值是()A.1 B.2 C.1或2 D.±1或2

【答案】C

【解析】y=x2-2x+2=(x-1)2+1,分类讨论:

(1)若顶点横坐标在范围m≤x≤m+1右侧时,有m<1,此时y随x的增大而减小,

=m=(m+1)2-2(m+1)+2,

∴当x=m+1时,函数取得最小值,y

最小值

方程无解.

(2)若顶点横坐标在范围m≤x≤m+1内时,即有m≤1≤m+1,

解这个不等式,即 0≤m≤1.此时当x=1时,函数取得最小值,y

=1,

最小值

∴m=1.

(3)若顶点横坐标在范围m≤x≤m+1左侧时,即m>1时,y随x的增大而增大,

=m=m2-2m+2,解得m=2或1(舍弃)

∵当x=m时,函数取得最小值,y

最小值

∴m=1或2.

故选:C.

招数二、解决与二次函数的增减性有关的最之问题时,简便的方法是结合图象,利用数形结合的思想直观地得出结论,不限定自变量的取值范围求最值.

【例3】如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;

(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值.

【答案】(1)y=﹣x2+2x+3;(2)+.

【解析】(1)∵OB=OC,∴点B(3,0),

则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3)=ax2﹣2ax﹣3a,

故﹣3a=3,解得:a=﹣1,

故抛物线的表达式为:y=﹣x2+2x+3…①;

(2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,

故CD+AE最小时,周长最小,

取点C关于函数对称点C(2,3),则CD=C′D,

取点A′(﹣1,1),则A′D=AE,

故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,

四边形ACDE的周长的最小值=AC+DE+CD+AE=+A′D+DC′=+A′C′=+;

【例4】如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.

(1)求抛物线的解析式;

(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;

【答案】(1)y=﹣x2+2x+3;(2)E(,0).

【解析】(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、

(0,3),

将点B、C的坐标代入二次函数表达式得:,解得:,

故函数的表达式为:y=﹣x2+2x+3,

(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,则此时EC+ED为最小,

函数顶点坐标为(1,4),点C′(0,﹣3),

将CD的坐标代入一次函数表达式并解得:

直线CD的表达式为:y=7x﹣3,

当y=0时,x=,

故点E(,0).

招数三、二次函数的最值一定要结合实际问题中自变量的取值范围确定,即限定自变量的取值范围求最值.

【例5】当﹣2≤x≤1时,关于x的二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()

A.2 B.2或 C.2或或 D.2或或

【答案】B

【解析】当m<﹣2,x=﹣2时,y最大=﹣(﹣2﹣m)2+m2+1=4,解得m=﹣(舍),

当﹣2≤m≤1,x=m时,y最大=m2+1=4,解得m=﹣;

当m>1,x=1时,y最大=﹣(1﹣m)2+m2+1=4,

解得m=2,

综上所述:m的值为-或2,

故选:B .

招数四、由函数的最大值,确定的自变量的取值范围。

【例6】二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如下表:

x … ﹣2 ﹣1 0 1 2 … y =ax 2+bx +c

t m ﹣2

﹣2

n

且当x =﹣时,与其对应的函数值y >0.有下列结论:

①abc >0;②﹣2和3是关于x 的方程ax 2+bx +c =t 的两个根;③0<m +n <.

其中,正确结论的个数是( ) A .0 B .1

C .2

D .3

【答案】C

【解析】当x =0时,c =﹣2, 当x =1时,a +b ﹣2=﹣2,

∴a +b =0,∴y =ax 2﹣ax ﹣2,∴abc >0,①正确;

x =是对称轴,x =﹣2时y =t ,则x =3时,y =t , ∴﹣2和3是关于x 的方程ax 2+bx +c =t 的两个根,②正确;

m =a +a ﹣2,n =4a ﹣2a ﹣2, ∴m =n =2a ﹣2,∴m +n =4a ﹣4, ∵当x =﹣时,y >0,∴a >,∴m +n >,③错误;

故选:C . 方法、规律归纳:

一、二次函数最值的方法与技巧:

1、若自变量的取值范围是全体实数,则函数在顶点处取得最大值或最小值。

2、若自变量的取值范围是21x x x ≤≤,若-a b 2在自变量的取值范围内,则当x=-a

b 2时,

y=a b ac 442-是其中的一个最值。另一个最值在1x x =或2x x =处取得。若a

b 2-不在自变量的取

值范围内,则函数的最值即为函数在1x x =,2x x =时的函数值,且较大的为最大值,较小的为最小值,最大值和最小值是同时存在的。 二、解决最值应用题要注意两点

①设未知数,在 “当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要设为函数;

②求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在 自变量的取值范围内.

实战演练:

1.已知抛物线y =ax 2+4ax +4a +1(a ≠0)过点A (m ,3),B (n ,3)两点,若线段AB 的长不大于4,则代数式a 2+a +1的最小值是________.

【答案】根据题意得4a +1≥3,解不等式求得a ≥,把x =代入代数式即可求得. 【解析】∵抛物线y =ax 2+4ax +4a +1(a ≠0)过点A (m ,3),B (n ,3)两点, ∴

=﹣

=﹣2,

∵y =ax 2+4ax +4a +1=a(x+2)2+1,∴顶点坐标为(-2,1),∴a >0, ∵线段AB 的长不大于4, ∴4a +1≥3,∴a ≥

∴a 2+a +1的最小值为:()2++1=; 故答案为.

2.如图所示,点C 是线段AB 上的一个动点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是( )

A .当点C 是A

B 的中点时,S 最小 B .当点

C 是AB 的中点时,S 最大

C .当点C 为AB 的三等分点时,S 最小

D .当点C 为AB 的三等分点时,S 最大 【答案】A

【解析】设AC=x ,则CB=1-x , S=x 2+(1-x )2即S=2x 2-2x+1, 所以当x=

=时,S 最小.

此时,C 是AB 的中点. 故选:A .

3.抛物线2(y ax bx c a =++,b ,c 是常数),0a >,顶点坐标为1

(2

,)m ,给出下列结论:①若点1(,)n y 与3(22n -,2)y 在该抛物线上,当12

n <时,则12y y <;②关于x 的一元二次方程

210ax bx c m -+-+=无实数解,那么( )

A .①正确,②正确

B .①正确,②错误

C .①错误,②正确

D .①错

误,②错误 【答案】A

【解析】解:①顶点坐标为1

(2,)m ,12

n <,

∴点1(,)n y 关于抛物线的对称轴1

2

x =

的对称点为1(1,)n y -, ∴点1(1,)n y -与3

(22n -,2)y 在该抛物线上,

31(1)(2)022n n n ---=-<,3

122

n n ∴-<-,

0a >,∴当1

2

x >

时,y 随x 的增大而增大, 12y y ∴<,故此小题结论正确;

②把1(2,)m 代入2y ax bx c =++中,得1142

m a b c =++,

∴一元二次方程210ax bx c m -+-+=中,

△2221144444()4()4042

b a

c am a b ac a a b c a a b a =-+-=-+++-=+-<,

∴一元二次方程210ax bx c m -+-+=无实数解,故此小题正确;

故选:A .

4.抛物线与直线y=-x+5一个交点A(2,m),另一个交点B在x轴上,点P是线段AB上异于A、B的一个动点,过点P做x轴的垂线,交抛物线于点E;

(1)求抛物线的解析式;

(2)是否存在这样的点P,使线段PE长度最大?若存在求出最大值及此时点P的坐标,若不存在说明理由;

(3)求当ΔPAE为直角三角形时点P的坐标.

【答案】(1);(2) 当P时,PE长度的最大值为

(3).

【解析】

(1)由题意A(2,3) , B(5,0)

把A(2,3) 、B(5,0) 代入

得:b=6, c=-5

(2)设P的横坐标 m,

.

.

m=时,

当P 时,PE 长度的最大值为

时,直线AE 垂直于直线AB ,直线AE 的解析式为

联立方程

解得: (不合题意,舍去)

时,点P 的纵坐标与点A 的纵坐标相等,

解得

综上所述,ΔPAE 为直角三角形时点P 的坐标为

.

5.一次函数4y kx =+与二次函数2y ax c =+的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点 (1)求k ,a ,c 的值;

(2)过点(0A ,)(04)m m <<且垂直于y 轴的直线与二次函数2y ax c =+的图象相交于B ,C 两点,点O 为坐标原点,记22W OA BC =+,求W 关于m 的函数解析式,并求W 的最小值. 【答案】(1)2k =-,4c =,2a =-;(2)7 【解析】(1)由题意得,42k +=-,解得2k =-, 又二次函数顶点为(0,4),4c ∴=

把(1,2)代入二次函数表达式得2a c +=,解得2a =-

(2)由(1)得二次函数解析式为224y x =-+,令y m =,得2240x m +-=

∴42m x -=±

B ,

C 两点的坐标分别为1(x ,2)(m x ,)m ,则124||||22

m

x x -+= 222224428(1)72

m

W OA BC m m m m -∴=+=+?

=-+=-+ ∴当1m =时,W 取得最小值7.

6.如图,已知抛物线y =ax 2+bx +5经过A (﹣5,0),B (﹣4,﹣3)两点,与x 轴的另一个

交点为C,顶点为D,连结CD.

(1)求该抛物线的表达式;

(2)点P为该抛物线上一动点(与点B、C不重合),当点P在直线BC的下方运动时,求△PBC 的面积的最大值;

【答案】(1)y=x2+6x+5;(2).

【解析】(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5;

(2)①如图,过点P作y轴的平行线交BC于点G,

令y=0,则x=﹣1或﹣5,

即点C(﹣1,0);

将点B、C的坐标代入一次函数表达式并解得:

直线BC的表达式为:y=x+1,

设点G(t,t+1),则点P(t,t2+6t+5),

S△PBC=PG(x C﹣x B)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,

∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为.

7.如图,过抛物线上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣1,在AB上任取一点P,连结OP,作点C关于直线OP的对称点D,连结BD,则线段BD的最小值为______.

【答案】2

【解析】(1)把x=-1代入中,得y=3,

故A(-1,3),C(0,3),对称轴x=-,

∵A、B关于对称轴对称,

∴B(4,3),

如图1中,

由题意点D在以O为圆心OC为半径的圆上,

∴当O、D、B共线时,BD的最小值=OB-OD=-3=2.

故答案为:2

8.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.

(1)求抛物线及直线AC的函数关系式;

(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;

(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM 周长的最小值;若不存在,请说明理由.

【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣时,△APC的面积取最大值,最大值为

,此时点P的坐标为(﹣,);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最

小,△ANM周长的最小值为3.

【解析】(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:

,解得:,

∴抛物线的函数关系式为y=﹣x2﹣2x+3;

设直线AC的函数关系式为y=mx+n(m≠0),

将A(1,0),C(﹣2,3)代入y=mx+n,得:

,解得:,

∴直线AC的函数关系式为y=﹣x+1.

(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.

设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),

∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.

∵点C的坐标为(﹣2,3),

∴点Q的坐标为(﹣2,0),

∴AQ=1﹣(﹣2)=3,

∴S△APC=AQ?PF=﹣x2﹣x+3=﹣(x+)2+.

∵﹣<0,

∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).

(3)当x=0时,y=﹣x2﹣2x+3=3,

∴点N的坐标为(0,3).

∵y=﹣x2﹣2x+3=﹣(x+1)2+4,

∴抛物线的对称轴为直线x=﹣1.

∵点C的坐标为(﹣2,3),

∴点C,N关于抛物线的对称轴对称.

令直线AC与抛物线的对称轴的交点为点M,如图2所示.

∵点C,N关于抛物线的对称轴对称,

∴MN=CM,

∴AM+MN=AM+MC=AC,

∴此时△ANM周长取最小值.

当x=﹣1时,y=﹣x+1=2,

∴此时点M的坐标为(﹣1,2).

∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),

∴AC==3,AN==,

∴C △ANM=AM+MN+AN=AC+AN=3+.

∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.

9.我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x元/件(x≥6,且x是按0.5元的倍数上涨),当天销售利润为y元.

(1)求y与x的函数关系式(不要求写出自变量的取值范围);

(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;

(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.

【答案】(1)y=﹣10x2+210x﹣800;(2)8≤x≤13;(3)每件文具售价为9元时,最大利润为280元.

【解析】(1)y=(x﹣5)(100﹣×5)=﹣10x2+210x﹣800

故y与x的函数关系式为:y=﹣10x2+210x﹣800;

(2)要使当天利润不低于240元,则y≥240,

∴y=﹣10x2+210x﹣800=﹣10(x﹣10.5)2+302.5=240

解得,x1=8,x2=13

∵﹣10<0,抛物线的开口向下,∴当天销售单价所在的范围为8≤x≤13;

(3)∵每件文具利润不超过80%

∴,得x≤9

∴文具的销售单价为6≤x≤9,

由(1)得y=﹣10x2+210x﹣800=﹣10(x﹣10.5)2+302.5

∵对称轴为x=10.5

∴6≤x≤9在对称轴的左侧,且y随着x的增大而增大

∴当x=9时,取得最大值,此时y=﹣10(9﹣10.5)2+302.5=280

即每件文具售价为9元时,最大利润为280元.

10.为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根据场调查,在草莓上市销售的30天中,其销售价格m(元/公斤)与第x天之间满足m=

(x为正整数),销售量n(公斤)与第x天之间的函数关系如图所示:

如果李大爷的草莓在上市销售期间每天的维护费用为80元.

(1)求销售量n与第x天之间的函数关系式;

(2)求在草莓上市销售的30天中,每天的销售利润y与第x天之间的函数关系式;(日销售利润=日销售额﹣日维护费)

(3)求日销售利润y的最大值及相应的x.

【答案】(1)销售量n与第x天之间的函数关系式:n=;(2)销售利润y与第x天之间的函数关系式: y=;(3)草莓销售第13天时,日销售利润y最大,最大值是1313.2元.

【解析】解:(1)当1≤x≤10时,设n=kx+b,由图知可知

,解得

∴n=2x+10

同理得,当10<x≤30时,n=﹣1.4x+44

∴销售量n与第x天之间的函数关系式:n=;

(2)∵y=mn﹣80

∴y=

整理得,y=;

(3)当1≤x≤10时,

∵y=6x2+60x+70的对称轴x===﹣5

∴此时,在对称轴的右侧y随x的增大而增大

∴x=10时,y取最大值,则y10=1270

当10<x<15时

∵y=﹣4.2x2+111x+580的对称轴是x=﹣==≈13.2<13.5 ∴x在x=13时,y取得最大值,此时y=1313.2

当15≤x≤30时

∵y=1.4x2﹣149x+3220的对称轴为x==>30

∴此时,在对称轴的左侧y随x的增大而减小

∴x=15时,y取最大值,y的最大值是y15=1300

综上,草莓销售第13天时,日销售利润y最大,最大值是1313.2元.

中考专题二次函数的解析式

二次函数 的解析式 【重点难点提示】 重点:二次函数的解析式 难点:从实际问题中抽象出二次函数 考点:二次函数的解析式的求法是中考命题的重中之重,它可以填空题、选择题出现,更多的是通常以综合题的形式出现在中考试卷的压轴题中,占10~12分左右。 【经典范例引路】 例1 已知函数y=x 2+kx -3图象的顶点为C 并与x 轴相交于两点A 、B 且AB=4 (1)求实数k 的值;(2)若P 为上述抛物线上的一个动点(除点C 外),求使S △ABC =S △ABP 成立的点P 的坐标。 解 (1)设A(x 1,0)B(x 2,0) 则AB 2=|x 2-x 1|2=(x 1+x 2)2-4x 1x 2=k 2+12=16 ∴k=±2 (2)由y=x 2±2x -3= (x ±1)2-4得点C 1(1,-4),C 2(-1,-4) ∴S △ABC =21 ×4×4=8 设点P(x,4)在抛物线上,则有x 2±2x -3=4,即x 2±2x -7=0 得:x=-1±22或x=1±22 ∴P 点坐标为(-1+22,4)(-1-22,4)(1+22,4)(1-22,4) 例2 阅读下面的文字后,解答问题 有这样一道题目: 已知:二次函数y=ax 2+bx+c 的图象经过点A(0,a),B(1,-2)求证这个二次函数图象的对称轴是直线x=2,题目中的横线部分是被墨水污染了无法辨认的文字。 (1)根据现有信息,你能否求出题目中二次函数的解析式,若能,写出求解过程?若不能,说明理由 (2)请你根据已有信息,在原题中的横线上,填加一个适当的条件,把原题补充完整。 解 (1)能:根据题意有:?? ?++=-=c b a c a 2 又∵二次函数图象的对称轴为x=2 ∴-a b 2=2

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

(完整版)求二次函数的解析式--专题练习题-含答案

求二次函数的解析式 专题练习题 姓名: 班级: 1.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2,点A ,C 分别在 y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A ,B 和 D(4,-),求抛物线的解析式. 23 2.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,其中点 A(-1,0),点C(0,5),D(1,8)都在抛物线上,M 为抛物线的顶点. (1)求抛物线的函数解析式; (2)求直线CM 的解析式; (3)求△MCB 的面积. 3.已知一个二次函数,当x =1时,y 有最大值8,其图象的形状、开口方向与 抛物线y =-2x 2相同,则这个二次函数的解析式是( ) A .y =-2x 2-x +3 B .y =-2x 2+4 C .y =-2x 2+4x +8 D .y =-2x 2+4x +6 4.已知某二次函数的最大值为2,图象的顶点在直线y =x +1上,并且图象经 过点(2,1),求二次函数的解析式. 5.已知二次函数y =ax 2+bx +c 的x 与y 的部分对应值如下表: x … -4 -3 -2 -1 0 …

y …-5 0 3 4 3 … (1)求此二次函数的解析式; (2)画出此函数图象; (3)结合函数图象,当-4<x≤1时,写出y的取值范围. 6.已知一个二次函数的图象经过点A(-1,0),B(3,0)和C(0,-3)三点; (1)求此二次函数的解析式; (2)对于实数m,点M(m,-5)是否在这个二次函数的图象上?说明理由.7.已知抛物线在x轴上截得的线段长是4,对称轴是x=-1,且过点 (-2,-6),求该抛物线的解析式. 8.已知y=x2+bx+c的图象向右平移2个单位长度,再向下平移3个单位长度,得到的图象对应的函数解析式为y=x2-2x-3. (1)b=____,c=____; (2)求原函数图象的顶点坐标; (3)求两个图象顶点之间的距离. 9.如图,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式.

专题用待定系数法求二次函数的解析式

精心整理 精心整理 专题1-用待定系数法求二次函数的解析式 二次函数的解析式常见的三种表达形式: 一般式:y =ax 2+bx +c (a ≠0) 顶点式:y=a(x -h)2+k (a ≠0,(h ,k )是抛物线的顶点坐标) 交点式:y=a(x -x 1)(x -x 2)(a ≠0,x 1、x 2是抛物线与x 轴交点的横坐标) 例1.如果二次函数y =ax 2+bx +c 的图象的顶点坐标为(-2,4),且经过原点,求二次函数解析式. 求二次4例2x=-1x=-11. 2.3.4.二次函数y=ax 2+bx+c 的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。 5.已知二次函数的图象与x 轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式 6.抛物线的顶点为(-1,-8),它与x 轴的两个交点间的距离为4,求此抛物线的解析式。 7.二次函数的图象与x 轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式。 8.把二次函数25 3212++=x x y 的图象向右平移2个单位,再向上平移3个单位,求所得二次函数的

精心整理 精心整理 解析式。 9.二次函数y=ax 2+bx+c ,当x <6时y 随x 的增大而减小,x >6时y 随x 的增大而增大,其最小值为-12,其图象与x 轴的交点的横坐标是8,求此函数的解析式。 10.已知一个二次函数的图象过(1,5)、(1,1--)、(2,11)三点,求这个二次函数的解析式。 11.已知二次函数图象的顶点为(2,k ),在一次函数y=x+1上,并且点(1,1)在图像上,求此二次函数解析式 12.已知二次函数y=ax 2-2ax+c(a 不为0)的图像与x 轴交于A 、B 两点,A 左B 右,与y 轴正半轴交于点C ,AB=4,OA=OC,求二次函数的解析式 13. 2且x 114.3,0), (1Q 点坐15(1(2)

二次函数 用待定系数法求解二次函数解析式专题讲义

待定系数法求解析式

代入方程求得解析式 例题一 1.已知二次函数y=ax2+bx+c的图象经过点(-1,0),(0,-2),(1,-2),则这个二次函数的解析式为____________. 2.已知二次函数y=ax2+bx+c,当x=0时,y=1;当x=-1时,y=6;当x=1 时,y=0.求这个二次函数的解析式. 3.已知二次函数的图象经过(1,0),(2,0)和(0,2)三点,则该函数的解析式是() A.y=2x2+x+2 B.y=x2+3x+2 C.y=x2-2x+3D.y=x2-3x+2 4.如图,二次函数y=ax2+bx+c的图象经过A,B,C三点, 求出抛物线的解析式. 5.已知抛物线C 1 :y=ax2+bx+c经过点A(-1,0),B(3,0),C(0,-3). (1)求抛物线C 1 的解析式; (2)将抛物线C 1向左平移几个单位长度,可使所得的抛物线C 2 经过坐标原点,并写出 C 2 的解析式. 2、知识点二:利用“顶点式”求二次函数的解析式 顶点式y=a(x-h)2+k的求解方法: 若是已知条件是图像上的顶点(h,k)及另外一点(x,y),则设所求二次函数y=a(x-h)2+k,将已知条件(x,y)代入解析式,得到关于a的一元一次方程,解方程求出a的值,代入方程求得解析式 例题二 1.已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=2(x+1)2+8 B.y=18(x+1)2-8 C.y=(x-1)2+8 D.y=2(x-1)2-8 2.二次函数y=-x2+bx+c的图象的最高点是(-1,-3),则b,c的值分别是() A.b=2,c=4 B.b=2,c=-4 C.b=-2,c=4D.b=-2,c=-4 3.在直角坐标平面内,二次函数的图象顶点为A(1,-4),且过点B(3,0),求该二 次函数的解析式. 4.已知抛物线经过两点A(1,0),B(0,3),且对称轴是直线x=2,求其解析式. 5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过 A(-1,0),B(0,-3)两点,则这条抛物线的解析式为 3、知识点三:利用“交点式”求二次函数的解析式 交点式y=a(x-x 1)(x-x 2 )的求解方法: 若是已知条件是图像上抛物线与x轴的交点(x1,0)、(x2,0)及另外任意一点(x3,y3),则设所求二次函数y=a(x-x1)(x-x2),将已知条件(x3,y3)代入解析式,得到关于a的一元一次方程,解方程求出a的值,代入方程求得解析式 例题三 1.如图,抛物线的函数表达式是() A.y=x2-x+4 B.y=-x2-x+4 C.y=x2+x+4 D.y=-x2+x+4

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

求二次函数解析式的几种方法

沁乐教育 沁心学习乐在其中 2015年秋季九年级数学辅导资料 第二讲函数图像性质及应用 学校:姓名:

二次函数的图象与基本性质 (一)、知识点回顾 【知识点二:抛物线的图像与a 、b 、c 关系】 (1) a 决定抛物线的开口方向:a>0,开口向 ________ ;a<0,开口向 ________ (2) c 决定抛物线与 ________的位置:c>0,图像与y 轴的交点在___________; c=0,图像与y 轴的交点在___________;c<0,图像与y 轴的交点在___________; (3)a ,b 决定抛物线对称轴的位置,我们总结简称为:___________; (4)△=b 2 -4ac 决定抛物线与________交点情况: △=b 2 -4ac ?? ???<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000 【知识点三:二次函数的平移】

设0,0>>n m ,将二次函数2 ax y =向右平移m 个单位得到___________;向左平移m 个单位得到___________;向上平移n 个单位得到___________;向下平移n 个单位得到___________。简单总结为___________,___________。 (注意:要用以上方法对二次函数图象进行平移,要先化成顶点式再操作) 【知识点四:二次函数与一元二次方程的关系】 二次函数)0(2 ≠++=a c bx ax y ,当0=y 时,即变为一元二次方程 )0(02≠=++a c bx ax ,从图象上来说,二次函数)0(2≠++=a c bx ax y 的图象与x 轴的 交点的横坐标x 的值就是方程)0(02 ≠=++a c bx ax 的根。 【知识点五:二次函数解析式的求法】 (1) 知抛物线三点,可以选用一般式:c bx ax y ++=2 ,把三点代入表 达式列三元一次方程组求解; (2) 知抛物线顶点或对称轴、最大(小)值可选用顶点式: k h x a y +-=2)(;其中抛物线顶点是),(k h ; (3) 知抛物线与x 轴的交点坐标为)0,(),0,(21x x 可选用交点式: ) )((21x x x x a y --=,特别:此时抛物线的对称轴为直线 )(2 1 21x x x += (二)、感悟与实践 例1: (1)求二次函数y =x 2 -4x +1的顶点坐标和对称轴. (2)已知二次函数y =-2x 2 -8x -6,当___________时,y 随x 的增大而增大;当x =________时,y 有_________值是___________. 变式练习1-1:二次函数y =-x 2 +mx 中,当x =3时,函数值最大,求其最大值.

二次函数解析式的确定(10种)

二次函数解析式的确定2 〈一〉三点式。 1,已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点, 求抛物线的解析式。 2,已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。 〈二〉顶点式。 1,已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。 2,已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。 〈三〉交点式。 1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。 2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21 a(x-2a)(x-b)的解析式。 〈四〉定点式。 1,在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q , 直线2)2(+-=x a y 经过点Q,求抛物线的解析式。 2,抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。 3,抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。

〈五〉平移式。 1,把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。 2,抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式. 〈六〉距离式。 1,抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。 2,已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物 线的解析式。 〈七〉对称轴式。 1、抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2 倍,求抛物线的解析式。 2、已知抛物线y=-x 2+ax+4, 交x 轴于A,B (点A 在点B 左边)两点,交 y 轴于点C,且OB-OA=4 3OC ,求此抛物线的解析式。 〈八〉对称式。 1,平行四边形ABCD 对角线AC 在x 轴上,且A (-10,0),AC=16,D (2,6)。AD 交y 轴于E ,将 三角形ABC 沿x 轴折叠,点B 到B 1的位置,求经过A,B,E 三点的抛物线的解析式。 2,求与抛物线y=x 2+4x+3关于y 轴(或x 轴)对称的抛物线的解析式。

(完整版)二次函数的最值问题

典型中考题(有关二次函数的最值) 屠园实验周前猛 一、选择题 1.已知二次函数y=a(x-1)2+b有最小值–1,则a与b之间的大小关( ) A. ab D不能确定 答案:C 2.当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为() A、- 7 4 B、3或-3 C、2或-3D2或-3或- 7 4 答案:C ∵当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,∴二次函数在-2≤x≤l上可能的取值是x=-2或x=1或x=m. 当x=-2时,由y=-(x-m)2+m2+1解得m= - 7 4 , 2 765 y x 416 ?? =-++ ? ?? 此时,它 在-2≤x≤l的最大值是65 16 ,与题意不符. 当x=1时,由y=-(x-m)2+m2+1解得m=2 ,此时y=-(x-2)2+5 ,它在-2≤x≤l的最大值是4,与题意相符. 当x= m时,由4=-(x-m)2+m2+1解得m=3m=3y=-(x+3)2+4.它在-2≤x≤l的最大值是4,与题意相符;当3,y=-(x-3)2+4它在-2≤x≤l在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m的值为2或-3. 故选C. 3.已知0≤x≤1 2 ,那么函数y=-2x2+8x-6的最大值是() A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

二次函数解析式的求法专题

1 / 1 二次函数解析式的求法专题 一、一般式:(利用图像上的三点) 1、根据下列条件求关于x 的二次函数的解析式:(1)图象经过(0,1)(1,0)(3,0);(2)当x=1时,y=0;x=0时,y= -2,x=2 时,y=3 二、顶点式: 1、 对称轴是y 轴且过点A (1,3)、点B (-2,-6)的抛物线的解析式为 . 2、根据下列条件求关于x 的二次函数的解析式:(1)当x=3时,y 最小值=-1,且图象过(0,7);(2)图象过点(0,-2) (1,2)且对称轴为直线x=23 ;(3)抛物线顶点坐标为(-1,-2)且通过点(1,10) 2.1、已知二次函数的图象顶点是(-1,2),且经过(1,-3),求这个二次函数。 3、一个二次函数的图象顶点坐标为(2,1),形状与抛物线y= - 2x 2 相同,这个函数解析式为____________ 三、交点式: 1、 当二次函数图象与x 轴交点的横坐标分别是x 1= -3,x 2=1时,且与y 轴交点为(0,-2),求这个二次函数的解析式 1.1、已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。 2、抛物线与x 轴的交点横坐标为1和5,并且经过点(0,6),求这个二次函数的关系式。 四、用距离来表示: 1、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = ,c = . 五、平移型: 1、抛物线y=21 x 2向上平移2个单位长度后得到新抛物线的解析式为____________。 2、把抛物线y=3x 2先向左平移3个单位,再向上平移2个单位,所得抛物线的解析式是 3、抛物线23x y =的图象向右移动两个单位,再向下移动一个单位,这时抛物线的解析式为 _______ 4、把抛物线c bx x y ++=2的图像向右平移3个单位,在向下平移2个单位,所得图像的解析式是532+-=x x y , 则有( ) A .b =3,c =7 B .b =-9,c=-15 C .b =3,c =3 D .b=-9,c =21 5、将抛物线y=-2x 2+4x 向上平移3个单位,再向左平移2个单位得到抛物线的解析式为 . 6、把抛物线y= 12x 2 向左平移三个单位, 再向下平移两个单位所得的关系式为________. 六、定义型: 1、当_____=m 时,函数21(1)m y m x +=-是二次函数,它的开口_______。 2、当m=_________时,函数y = (m 2 -4))3(42-+--m x m m x + 3是二次函数,其解析式是__________________, 3、若抛物线2432(5)m m y x m --=+-的顶点在x 轴下方,则m 的值为 ( ) (A) m=5 (B)m=-1 (C) m=5或m=-1 (D) m=-5 七、对称型: 1、把函数y=-2x 2的图象沿x 轴对折,得到的图象的解析式为( )。 A 、y=-2x 2 B 、y=2x 2 C 、y=-2(x+1)2 D 、y=-2(x -1)2 2、抛物线2(2)y x =+关于x 轴对称的抛物线的解析式是_________________。

二次函数解析式专题训练

二次函数解析式专题训练 一、填空 (1)一般式:_______________ (a≠0) (2)顶点式:_______________ (a≠0) (3)交点式:_______________ (a≠0) (4)当已知抛物线上任意三点时,通常设为一般式 y=_______________ (a≠0)形式。 (5)当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式 y=_______________ (a≠0)形式。 (6)当已知抛物线与 x 轴的交点或交点横坐标时,通常设为两根式 y=a_______________ (a≠0)。 二、解答 根据下列条件求二次函数解析式 (1)已知一个二次函数的图象经过了点 A(0,-1),B(1,0),C(-1,2); (2)已知抛物线顶点 P(-1,-8),且过点 A(0,-6);

(3)二次函数图象经过点 A(-1,0),B(3,0),C(4,10); (4)已知二次函数的图象经过点(4,-3),并且当 x=3 时有最大值 4; (5)已知二次函数的图象经过一次函数 y=—x+3 的图象与 x 轴、轴的交点, y 且过(1, 2) (6)已知抛物线顶点(1,16),且抛物线与 x 轴的两交点间的距离为 8; (7)如图所示,、已知抛物线的对称轴是直线 x=3,它与 x 轴交于 A、 B 两点,与 y 轴交于 C 点,点 A、C

的坐标分别是(8,0)(0,4),求这个抛物线的解析式。 三、拓展升华 1、已知二次函数的图象经过(0,0),(1,2),(-1,-4)三点,那么这个二次函数的解析式是 _______________。 2、已知二次函数的图象顶点是(-1,2),且经过(1,-3),那么这个二次函数的解析式是_______________。 3、已知二次函数 y=x2+px+q 的图象的顶点是 (5,-2),那么这个二次函数解析式是_______________。 4、已知二次函数 y=ax2+bx+c 的图象过 A(0,-5),B(5,0)两点,它的对称轴为直线 x =2,那么这个二次函数的解析式是_______________。 5、已知二次函数图象与 x 轴交点(2,0)(-1,0)与 y 轴交点是(0,-1),那么这个二次函数的解析式是_______________。 6、已知抛物线 y= ax2+bx+c 与 x 轴交于 A、B 两点,它们的横坐标为-1 和 3,与 y 轴的交点 C 的纵坐标为 3,那么这个二次函数的解析式是_______________。 7、已知直线 y=x-3 与 x 轴交于点 A,与 y 轴交于点B,二次函数的图象经过 A、B 两点,且对称轴方程为 x=1,那么这个二次函数的解析式是_______________。

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题 1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性. 2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求 (1)函数在一2<x≤a的最小值; (2)函数在a≤x≤a+2的最小值. 4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值. 5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.

6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值. 7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值. 8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值. 9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.

求二次函数解析式的基本方法及练习题

求二次函数解析式的基本方法及练习题 二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。熟练地求出二次函数的解析式是解决二次函数问题的重要保证。 二次函数的解析式有三种基本形式: 1、一般式:y=ax 2+bx+c (a ≠0)。 2、顶点式:y =a(x -h )2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。 3、交点式:y=a(x-x 1)(x-x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。 求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式: 1、若给出抛物线上任意三点,通常可设一般式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x 轴的交点或对称轴或与x轴的交点距离,通常可设交点式。 探究问题,典例指津: 例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。 解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0) 依题意得:?????=++-=-=+-145c b a c c b a 解这个方程组得:?? ???-===432c b a ∴这个二次函数的解析式为y=2x2+3x-4。 例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。 分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h )2+k (a ≠0),其中点(h,k)为顶点。 解:依题意,设这个二次函数的解析式为y=a(x -4)2-1 (a ≠0) 又抛物线与y 轴交于点)3,0(。 ∴a(0-4)2-1=3 ∴a=4 1 ∴这个二次函数的解析式为y=41(x-4)2-1,即y =4 1x 2-2x+3。

求二次函数解析式的四种方法

求二次函数解析式的四种基本方法 二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。熟练地求出二次函数的解析式是解决二次函数问题的重要保证。 二次函数的解析式有三种基本形式: 1、一般式:y=ax 2+bx+c (a ≠0)。 2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。 3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。 4.对称点式: y=a(x -x 1)(x -x 2)+m (a ≠0) 求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式: 1、若给出抛物线上任意三点,通常可设一般式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。 4.若已知二次函数图象上的两个对称点(x 1、m)(x 2、m),则设成: y=a(x -x 1)(x -x 2)+m (a ≠0),再将另一个坐标代入式子中,求出a 的值,再化成一般形式即可。 探究问题,典例指津: 例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2 +bx+c (a ≠0)。 解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0) 依题意得:?????=++-=-=+-145c b a c c b a 解这个方程组得:?? ???-===432c b a ∴这个二次函数的解析式为y=2x 2 +3x -4。 例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。 分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点。 解:依题意,设这个二次函数的解析式为y=a(x -4)2 -1 (a ≠0) 又抛物线与y 轴交于点)3,0(。

求二次函数解析式分类练习题

求二次函数解析式分类练习题 类型一:已知顶点和另外一点用顶点式 例1、已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数关系式. 练习: 1.已知抛物线的顶点是(-1,-2),且过点(1,10),求其解析式 类型二:已知图像上任意三点(现一般有一点在y轴上)用一般式 例2、已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式. 练习: 1、已知抛物线过三点:(-1,2),(0,1),(2,-7).求解析式 类型三:已知图像与x轴两个交点坐标和另外一点坐标,用两根式 例3、已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式. 练习:已知抛物线过三点:(-1,0)、(1,0)、(0,3). (1).求这条抛物线所对应的二次函数的关系式;(2).写出它的开口方向、对称轴和顶点坐标;(3).这个函数有最大值还是最小值?这个值是多少? 巩固练习: 1、已知二次函数的图象过(3,0)、(2,-3)二点,且对称轴是x=1,求这个二次函数的关系式.

2、 已知二次函数的图象过(3,-2)、(2,-3)二点,且对称轴是x=1,求这个二次函数的关系式. 3、已知二次函数的图象与x 轴交于A ,B 两点,与y 轴交于点C 。若AC=20,BC=15, ∠ACB=90°,试确定这个二次函数的解析式 4、已知一个二次函数当x=8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式. 小测: 1、二次函数y=0.5x 2-x-3写成y=a(x-h)2+k 的形式后,h=___,k=___ 2、抛物线y=-x 2-2x +3的开口向 ,对称轴 ,顶点坐标 ;当x 时,y 最__值 = ,与x 轴交点 ,与y 轴交点 。 3、二次函数y=x 2-2x -k 的最小值为-5,则解析式为 。 4、已知抛物线y=x 2+4x+c 的的顶点在x 轴上,则c 的值为_________ 6、抛物线 的顶点是(-2,3),则m= ,n= ;当x 时,y 随x 的增大而增大。 7、已知二次函数 的最小值 为1,则m= 。 8、m 为 时,抛物线 的顶点在x 轴上。 9、已知一个二次函数的图象经过点(6,0), 且抛物线的顶点是(4,-8),求它的解析式。 10、已知抛物线与x 轴交点的横坐标为-2和1,且通过点(2,8). 1.已知抛物线y =ax 2经过点A (1,1).(1)求这个函数的解析式; 2.已知二次函数y =ax 2+bx +c 的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式. 3.抛物线y =ax 2+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式. 4. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 。 5.已知二次函数y =ax 2+bx +c ,当x =-1时有最小值-4,且图象在x 轴上截得线段长为 4,求函数解析式. 6.抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式. 7.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式. 8. 已知抛物线经过点(-1,1)和点(2,1)且与x 轴相切.(1)求二次函数的解析式。 n m x y ++=2)(2m x x y +-=624 22++=mx x y

《待定系数法求二次函数解析式》专题

《待定系数法求二次函数解析式》专题 班级姓名 【一般式】 例1 已知二次函数的图象经过A(-1,3)、B(1,3)、C(2,6);求它的解析式。 变式:已知一个二次函数,当x=-1时,y=3;当x=1时,y=3;当x=2时,y=6。求这个二次函数的解析式。 【顶点式】 例2 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。 变式1:已知二次函数的图象经过A(-1,0)、B(3,0),函数有最小值-8,求它的解析式。 变式2:已知抛物线对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。

变式3:已知抛物线的顶点是(2,-4),它与y 轴的一个交点的纵坐标为4,求函数的关系式。 变式4:一条抛物线y x mx n =++142经过点()032,与()432 ,。求这条抛物线的解析式。 【交点式】 例3 .已知二次函数的图象与x 轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式 想一想:还有其它方法吗? 变式1:已知二次函数的图象顶点坐标是(-1,9),与x 轴两交点间的距离是6.求它的解析式。 1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。

2.二次函数y= ax 2+bx+c ,x=-2时y=-6,x=2时y=10,x=3时y=24,求此函数的解析式。 3.已知抛物线的顶点(-1,-2)且图象经过(1,10),求此抛物线解析式。 4.二次函数y= ax 2+bx+c 的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。 5.已知二次函数的图象与x 轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式 6.抛物线的顶点为(-1,-8),它与x 轴的两个交点间的距离为4,求此抛物线的解析式。 7.二次函数的图象与x 轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式。 8.把二次函数253212++=x x y 的图象向右平移2个单位,再向上平移3个单位,求所得二次函数的解析式。

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

二次函数求解析式专题练习题

二次函数表达式的确定练习题 姓名__________ 1.已知二次函数y =ax 2+bx +c 的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式. 2.抛物线y =ax 2+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式. 3. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 . 4.抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式. 5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式. 6.已知二次函数y=ax 2 +bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式. 7.把抛物线y =(x -1)2沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式. 8.二次函数y =x 2-mx +m -2的图象的顶点到x 轴的距离为,16 25求二次函数解析式. 9.已知二次函数m x x y +-=62的最小值为1,求m 的值. 10.函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别为( ) A .4和-3 B .5和-3 C .5和-4 D .-1和4 11.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( ) 12.已知抛物线y=-x 2+mx+n 的顶点坐标是(-1,- 3 ),则m 和n 的值分别是( ) A.2,4 B.-2,-4 C.2,-4 D.-2,0 13.已知二次函数2 y ax bx c =++的图象经过原点和第一、二、三象限,则( ) (A )0,0,0a b c >>> (B )0,0,0a b c <<= (C )0,0,0a b c <<> (D )0,0,0a b c >>=

相关文档
最新文档