流体力学

合集下载

流体力学

流体力学

绪 论在学习流体力学这门课程之前,本绪论将主要回答以下几个问题:什么是流体力学?它的主要研究内容是什么?为什么要学习流体力学?流体力学的发展历史、研究方法,以及怎样学好流体力学?使同学们对流体力学有一个大致的了解,帮助学生在以后的学习中掌握流体力学的主要脉络和学习方法。

一、流体力学的概念及其研究内容流体力学(fluid mechanics)是力学的一个独立分支。

它是研究流体的平衡和流体的机械运动规律及其在工程实际中应用的一门学科。

流体力学的研究对象是流体,包括液体和气体。

在力学研究中,根据研究对象的不同,一般可分为:以受力后不变形的绝对刚体为研究对象的理论力学;以受力后产生微小变形的固体为研究对象的固体力学;以受力后产生较大变形的流体为研究对象的流体力学。

流体是气体和液体的总称。

在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学与人类日常生活和生产事业密切相关。

它是一门应用较广的科学,航空航天、水运工程、流体机械、给水排水、水利工程、化学工程、气象预报以及环境保护等学科均以流体力学为其重要的理论基础。

20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。

20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。

航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相联的。

这些学科是流体力学中最活跃、最富有成果的领域。

石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。

渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。

燃烧离不开气体,燃烧过程中涉及到许多有化学反应和热能变化的流体力学问题是物理―化学流体动力学的内容之一。

爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。

沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。

工程流体力学课件-第一章

工程流体力学课件-第一章

二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。

4工程流体力学 第四章流体动力学基础

4工程流体力学 第四章流体动力学基础
因为 F 沿 y 轴正向,所以 Fy 取正值
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS

p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:

(完整版)流体力学重点概念总结

(完整版)流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。

它的大小与作用面积成比例。

剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。

单位:kg/m3 。

重度:指单位体积流体的重量。

单位: N/m3 。

流体的密度、重度均随压力和温度而变化。

流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。

静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。

流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。

流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。

任何一种流体都具有粘滞性。

牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。

τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。

动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。

2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。

静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。

流体力学

流体力学

第十一讲流体力学我们通常所说的流体包括了气体和液体。

流体具有形状和大小可以改变的特征,这一点和弹性体是类似的,然而,流体仅仅具备何种压缩弹性,例如,用力推动活塞可以压缩密闭气缸中的气体,在撤消外力后,气体将恢复原状,将活塞推出;但流体不具备抵抗形状改变的弹性,在力的作用下,流体因流动而发生形状的改变,,撤消外力后,流体并不恢复原来的形状,流体的这种性质称为流动性。

流体力学的任务在于研究流体流动的规律以及它与固体之间的相互作用。

一、理想流体无论是气体还是流体都是可以压缩的,只不过在通常的情况下,气体较容易被压缩,而液体难以被压缩。

但是,在一定的条件下,我们常常把流动着的流体看着是不可压缩的,这一点对于液体是比较好理解的,因为在对液体加压时,其何种的改变是极其微小的,是可以忽略的;我们之所以把流动着的气体也看作是不可压缩的,是因为气体的密度小,即使压力差不大,也能够迅速驱使密度较大处的气体流向密度较小的地方,使密度趋于均匀,这样使得流动的气体中各处的密度密度不随时间发生明显的变化,这样,气体的可压缩性便可以不必考虑。

不过,当气流的速度接近或超过声速时,因气体的运动造成的各处的密度不均匀的差别不及消失,这时气体的可压缩性会变得非常的明显,不能再看作是不可压缩的。

总之,在一定的问题中,若可不考虑气体的可压缩性,便可将它抽象为不可压缩的理想模型,反之,则需看作是可压缩的液体。

液体都的或多或少的粘性,在静止液体中,粘性无法表现,在流体流动时,,将明显地表现出粘性。

所谓粘性,就是当流体流动时,层与层之间有阻碍相对运动的内摩擦力,如河流中心的水流速度较快,由于粘性,靠近河岸的水几乎不动。

在研究流体时,若流体的流动性是主要的,粘性居于次要地位时,可认为流体完全没有粘性,这样的理想模型叫做非粘性流体,若粘性起着重要的作用,则需将流体看作粘性流体。

如果在流体的运动过程中,流体的可压缩性和粘性都处于极为次要的地位,就可以把流体看作是理想流体。

流体力学ppt

流体力学ppt

概念引入: 概念引入:
位置水头 :z 压强水头 :p/γ 测压管水头 :z+p/γ=C 同一容器内静止液体中, 同一容器内静止液体中, 测压管水头均相等。 测压管水头均相等。
三、压强的表示方法和度量单位
1、表示方法
(1)绝对压强Pj:以绝对真空为零点。 绝对压强P 以绝对真空为零点。 相对压强P 以大气压P 为零点。 (2)相对压强P: 以大气压Pa为零点。 工程中,通常采用相对压强, 可正可负。 工程中,通常采用相对压强,P可正可负。 绝对压强与相对压强的关系: 绝对压强与相对压强的关系:P=Pj–Pa P 为正值时: 称为正压(表压, P为正值时:Pj>Pa,称为正压(表压,即压力表 读数)。 读数)。 为负值时: 称为负压( P为负值时:Pj<Pa,称为负压(负压的绝对值称 真空度,即真空表读数)。 真空度,即真空表读数)。 真空度(只能是正值) 真空度(只能是正值):Pk=Pa-Pj=-P
§1-1 流体的主要力学性质 -
一、惯性
定义:惯性是物体维持原有运动状态的性质。 定义:惯性是物体维持原有运动状态的性质。 质量:表征惯性的物理量。 质量:表征惯性的物理量。 流体的质量:常以密度来反映。 流体的质量:常以密度来反映。 密度:对于均质流体, 密度:对于均质流体,单位体积的质量称为密度 ρ = m /V ,即: 重度:对于均质流体, 重度:对于均质流体,单位体积的流体所受的重 力称为流体的重力密度,简称重度。 力称为流体的重力密度,简称重度。 即:
h= p
γ
一标准大气压: 一标准大气压: 三种压强换算关系: 三种压强换算关系: 压强换算关系
101325 N / m 2 h= = 10.33m 3 9807 N / m

流体力学主要内容

流体力学主要内容

第一章连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续体来考虑。

表面力:作用在流体表面上的力;质量力:作用在所取流体体积内每个质点上的力;单位2/m s牛顿内摩擦定律:dudyτμ=μ动力粘度系数,υ运动粘度系数:μυρ=; 无粘性流体:指无粘性,0μ=的流体;不可压缩流体:指流体的每个质点在运动全过程中,密度不变化的流体。

常温常压下气体状态方程:pRT ρ=第二章静止流体的应力特征1.应力方向沿作用面的内法线方向;2.静压强的大小与作用面方位无关。

等压面:流体中压强相等的空间点构成的面(平面或曲面)称为等压面。

重力作用下流体静压强分布o p p gh ρ=+推论:静压强的大小与液体的体积无关两点的压强差等于两点之间单位面积垂直液柱的重量在平衡状态下,液体内任意一点压强的变化等值地传递到其他各点。

压强的度量:绝对压强:流体实有的全部压强相对压强:绝对压强与当地大气压的差值真空度:指绝对压强不足当地大气压的差值,即相对压强的负值v a abs p p p =-;p z c gρ+=,c 为测压管水头(总势能),其中z 为位置水头;pgρ压强水头; 作用在平面上的静水压力 图算法:p bs =(矩形板)b 为受压面宽度,s 为压强分布图的面积总压力的作用线通过压强分布图的形心 解析法:c p gh A ρ=(任意形状平面板)c h :受压面形心的淹没深度A :受压面面积作用在曲面上的静水压力x c x z p gh A p gvρρ==压力体:实压力体,虚压力体,混合压力体第三章描述流体运动的方法:拉格朗日法和欧拉法 拉格朗日法:以个别质点为观察对象,再将每个质点的运动情况汇总起来描述整个流体运动; 欧拉法:以流体运动的空间点作为观察对象,观察不同时刻各空间点上流体质点的运动,再将每个质点的运动情况汇总起来描述整个流体运动。

x x x x x x y z y y y y y x y z z z z zz x y z u u u ua u u u t x y z u u u u a u u u t x y z u u u u a u u u t x y z ∂∂∂∂=+++∂∂∂∂∂∂∂∂=+++∂∂∂∂∂∂∂∂=+++∂∂∂∂流动的分类恒定流和非恒定流:以时间为标准,若各空间点上的运动参数(速度,压强,密度等)都不随时间变化,这样的流动是恒定流,反之则为非恒定流。

流体力学全部总结

流体力学全部总结

(二)图解法
适用范围:规则受压平面上的静水总压力及其作用点的求解 原理:静水总压力大小等于压强分布图的体积,其作用 线通过压强分布图的形心,该作用线与受压面的交点便 是总压力的作用点(压心D)。
液体作用在曲面上的总压力
一、曲面上的总压力 • 水平分力Px
Px dPx hdAz hc Az pc AZ
z1
p1 g

u12 2g
z2
p2 g

u2 2 2g
上式被称为理想流体元流伯诺里方程 ,该式由瑞士物理学家 D.Bernoulli于1738年首先推出,称伯诺里方程 。
应用条件:恒定流 不可压缩流体 质量力仅重力 微小流束(元流)
三、理想流体元流伯诺里方程的物理意义与几何意义
几何意义
p x p y p z pn
X
流体平衡微分方程 (欧拉平衡方程)
1 p x 1 p y 1 p z
Y Z
0 0 0
物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量
力分量彼此相等。压强沿轴向的变化率( p , p , p )等于该轴向单位体积上的 x y z 质量力的分量(X, Y, Z)。
u x x

u y y

u z z
0
适用范围:理想流体恒定流的不可压缩流体流动。
二、恒定总流连续性方程
取一段总流,过流断面面积为A1和A2;总流中 任取元流,过流断面面积分别为dA1和dA2,流速为 恒定流时流管形状与位置不随时间改变; u1和u2
考虑到: 不可能有流体经流管侧面流进或流出; 流体是连续介质,元流内部不存在空隙;
第三节 连续性方程

工程流体力学

工程流体力学

§1.1 流体的定义
一、流体特征(续)
液体与气体的区别 液体的流动性小于气体; 液体具有一定的体积,并取容器的形状; 气体充满任何容器,而无一定体积。
流体的定义
流体是一种受任何微小的剪切力作用时,都 会产生连续变形的物质。 流动性是流体的主要特征。
§1.2 连续介质假说
微观:流体是由大量作无规则热运动的分子所组成, 分子间存有空隙,在空间上是不连续的。
在通常情况下,一个很小的体积内流体的分子数量极多;
例如,在标准状态下,1mm3体积内含有2.69×1016个气体分 子,分子之间在10-6s内碰撞1020次。
宏观:流体力学研究流体的宏观机械运动,研究的是 流体的宏观特性,即大量分子的平均统计特性。 结论:不考虑流体分子间的间隙,把流体视为由无 数连续分布的流体微团组成的连续介质。
1686年牛顿(Newton,I.)发表了名著《自然哲学的数学原理》 对普通流体的黏性性状作了描述,即现代表达为黏性切应力 与速度梯度成正比—牛顿内摩擦定律。为了纪念牛顿,将黏 性切应力与速度梯度成正比的流体称为牛顿流体。 18世纪~ 19世纪,流体力学得到了较大的发展,成为独立的一门学科。 古典流体力学的奠基人是瑞士数学家伯努利(Bernoulli,D.) 和他的亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了 著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分 方程,以后纳维(Navier,C .-L.-M.-H.)和斯托克斯(Stokes, G.G.)建立了黏性流体运动微分方程。拉格朗(Lagrange)、 拉普拉斯(Laplace)和高斯(Gosse)等人,将欧拉和伯努利所 开创的新兴的流体动力学推向完美的分析高度。但当时由于 理论的假设与实际不尽相符或数学上的求解困难,有很多疑 不能从理论上给予解决。

流体力学

流体力学

流体力学(简介)流体力学是在人类与自然界相处和生产实践中逐步发展起来的。

对流体力学学科的形成做出卓越贡献的是古希腊哲学家阿基米德(《论浮体》,公元前250年)建立了包括浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

流体力学原理主要指计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难等。

一、发展简史各物理量关系构成牛顿内摩擦定律,τ=μ*du/dy动压和总压。

显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。

飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。

据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。

在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。

在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。

图为验证伯努利方程的空气动力实验。

补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1)p+ρgh+(1/2)*ρv^2=常量(2)均为伯努利方程其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静压强。

伯努利方程揭示流体在重力场中流动时的能量守恒。

由伯努利方程可以看出,流速高处压力低,流速低处压力高。

后人在此基础上又导出适用于可压缩流体的N-S方程。

N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。

它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。

例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-&Ntilde;p+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。

流体力学

流体力学
假设
• 从微观上讲,流体是由大量的彼此之间有一定间 隙的单个分子所组成,而且分子总是处于随机运 动状态。 • 从宏观上讲,流体视为由无数流体质点(或微团) 组成的连续介质。 – 所谓质点,是指由大量分子构成的微团,其尺 寸远小于设备尺寸,但却远大于分子自由程。
– 这些质点在流体内部紧紧相连,彼此间没有间 隙,即流体充满所占空间,称为连续介质。
③判断安装是否合适:若
H g实
H 低于 g允
,则说明安装
合适,不会发生汽蚀现象,否则,需调整安装高度。
④欲提高泵的允许安装高度,必须设法减小吸入管路的
阻力。泵在安装时,应选用较大的吸入管路,管路尽 可能地短,减少吸入管路的弯头、阀门等管件,而将 调节阀安装在排出管线上。
4.1.4离心泵的类型与选用
• 注意:
• 对于静止流体,由于各流层间没有相对运动,粘滞性不 显示。 • 流体粘滞性的大小通常用动力粘滞性系数μ和运动粘滞 性系数ν来反映,它们是与流体种类有关的系数,粘滞 性大的流体,μ和ν的值也大,它们之间存在一定的比例 关系。 μ = νρ • 流体的粘滞性还与流体的温度和所受压力有关,受温度 影响大,受压力影响小。实验证明,水的粘滞性随温度 的增高而减小,而空气的粘滞性却随温度的增高而增大。
• (3)恒定流 流体运动时,流体中任一位置的压强、 流速等运动要素不随时间变化,这种流体运动称 为恒定流,如图1.11(a)所示。 • (4)非恒定流 流体运动时,流体中任一位置的运 动要素如压强、流速等随时间变化而变化,这种 流体运动称为非恒定流,如图1.11(b)所示。
四、流体的输送机械
常用的流体输送机械
2.汽蚀余量:
汽蚀余量NPSH :
泵入口处的动压头与静压头之和与以液柱高度表示的被输送液体在 操作温度下的饱和蒸汽压之差。

大学物理D-02流体力学

大学物理D-02流体力学

大学物理

S

v
S
n
Q v S 常量
大学物理
一般形式
Q

S
v dS
vS v S
☆ 物理本质:同一流管在相同时间内流过任一截 面的体积流量都相同。因而截面大处流速小截面小 处流速大。 ☆当有多条支流时 S3 S1 v3 1 1= 2 2 3 3 v2 ☆适用范围:理想流体和 v1 S2 不可压缩的粘致流体。
从功能原理得
2
它表明在同一管道中任何一点处,流体每单位体 积的动能和势能以及该处压强之和是个常量。在 工程上,上式常写成 p v2 h 常量 g 2 g
大学物理
p v2 、 、h g 2 g
三项都相当于长度,分别叫做压力头、速度头、水头。 所以伯努利方程表明在同一管道的任一处,压力头、 速度头、水头之和是一常量,对作稳定流动的理想 流体,用这个方程对确定流体内部压力和流速有很 大的实际意义,在水利、造船、航空等工程部门有 广泛的应用。
Q =S1 v1= S2 v2
Q S1 S 2 2 gh 2 S12 - S 2
大学物理
3.皮托(pitot)管原理
动画
是一种用来测量流体速度的装置
图2-10所示是一根两端开口弯 成直角的玻璃管,这是一种最 简单的测量流速的比较古老的 仪器,称为皮托管。1773年, 皮托就是利用这种简单的办法 测出法国塞纳河的流速。
p1 - p2 g (h2 - h1 )
大学物理

管涌
大学物理
体位对血压的影响
大学物理
2.等高线中流速与压强的关系-文特利流量计原理
1 1 2 2 P v1 P2 v2 1 2 2

工程流体第一章

工程流体第一章
11
考核方法、学习要求、答疑 考核方法、学习要求、
考核方法: 1. 平时考勤、作业成绩占20%; 考核方法: 平时考勤、作业成绩占20% 2. 期末考试占80%。 期末考试占80% 学习要求: 学习要求: 1. 重点掌握 : 基础流体力学的基本概念 、 基本 重点掌握:基础流体力学的基本概念、 方程、 方程、基本应用 2. 按时 、 独立 、 认真完成作业 。 作业要求画图 , 按时、 独立、 认真完成作业。 作业要求画图, 代入数据。 代入数据。 答疑:1. 随时、随地欢迎同学们交流; 答疑: 随时、随地欢迎同学们交流; 2.主楼F613热工教研室; 主楼F613热工教研室 热工教研室; 3.Tel:61772472(O) Tel:61772472(O) 12 4.Email:lwy@ Email:lwy@.
7
4、我国水利事业的历史: 我国水利事业的历史:
4000多年前的 大禹治水”的故事——顺水之性,治 顺水之性, 4000多年前的 “大禹治水”的故事 顺水之性 水须引导和疏通 秦朝在公元前256 前210年修建了我国历史上的三大 秦朝在公元前256—前210年修建了我国历史上的三大 256 水利工程(都江堰、郑国渠、灵渠) 水利工程(都江堰、郑国渠、灵渠)-明渠水流和堰流 古代的计时工具“铜壶滴漏” 古代的计时工具“铜壶滴漏”——孔口出流 孔口出流 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等 清朝雍正年间,何梦瑶在《算迪》 于过水断面面积乘以断面平均流速的计算方法。 于过水断面面积乘以断面平均流速的计算方法。 隋朝(公元587 610年 587—610 隋朝(公元587 610年)完成的南北大运河 隋朝工匠李春在冀中蛟河修建(公元605—617 隋朝工匠李春在冀中蛟河修建(公元605 617年)的 605 617年 赵州石拱桥——拱背的4个小拱,既减压主拱的负载, 拱背的4 赵州石拱桥 拱背的 个小拱,既减压主拱的负载, 又可宣泄洪水。 又可宣泄洪水。 8

什么是流体力学

什么是流体力学

什么是流体力学
流体力学是力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态以及流体和固体界壁间有相对运动时的相互作用和流动规律。

流体力学可以按照研究对象的运动方式分为流体静力学和流体动力学,前者研究处于静止状态的流体,后者研究力对于流体运动的影响。

流体力学按照应用范围,分为:水力学及空气力学等等。

流体力学是连续介质力学的一们分支,是以宏观的角度来考虑系统特性,而不是微观的考虑系统中每一个粒子的特性。

大学物理C第一章流体力学SUN

大学物理C第一章流体力学SUN
外力对流体做功
W = p1 ∆ s1 ∆ l1 − p 2 ∆ s 2 ∆ l 2 = p1 ∆ V1 − p 2 ∆ V 2
Principle work-energy
W = ∆E
1 1 2 p1∆V1 − p2 ∆V2 = ( ρυ2 + ρ gh2 )∆V2 − ( ρυ12 + ρ gh1 )∆V1 2 2
理想流体的伯努利方程
伯努利:瑞士物理学家、数学家、 伯努利:瑞士物理学家、数学家、医学 年生于荷兰, 家。1700年生于荷兰,是著名的伯努利 年生于荷兰 家族中最杰出的一位,他是数学家J.伯努 家族中最杰出的一位,他是数学家 伯努 利的次子。 利的次子。 25岁时应聘为圣彼得堡科学学院的数学 岁时应聘为圣彼得堡科学学院的数学 院士, 岁回到瑞士 曾解剖学教授、 岁回到瑞士, 院士,33岁回到瑞士,曾解剖学教授、 动力学教授、物理学教授。 动力学教授、物理学教授。他的贡献涉 及医学、力学、数学、流体力学。 及医学、力学、数学、流体力学。
p A − p B = ρ gh
υ
B
=
2 gh
如何测量气体的流速? 如何测量气体的流速?
当测气体的流速时,比 当测气体的流速时, 多管如图(b)放置. (b)放置 多管如图(b)放置.由于 形管中注有密度为ρ U形管中注有密度为ρ΄ 的液体, 的液体, 此时有 PA=ρ΄g h,则 PB=ρ g h,则B处气体 的流速为
B
C O
A
υB =
2 ρ ′g h
ρ
() b
h
范丘里流量计
测量时如图放置。 测量时如图放置。 在A﹑B两点处取截面 SA﹑SB,应用伯努利方程
h
1 1 2 p A + ρυ A = pB + ρυ B 2 2 2

流体力学第一章

流体力学第一章

不可压缩流体——液体——β值: 每增加1个大气压,水体积压缩为1/20000,所以, 一般不考虑水体的压缩。 若E=∞,ρ=const 实际液体:惯性、重力……,水流运动复杂; 理想液体:实际液体的简化——即ρ=const,不膨 胀,无粘性,无表面张力。 气体——可压缩流体。
求。 牛顿三定律(惯性定律、F=ma、作用力与反作用力) 质量守恒定律 能量守恒及其转化规律 动量守恒定律
水力学
(1)质量守恒定律
dm 0 dt
(2)机械能转化与守恒定律:动能+压能+位能+能量损失 =常数
(3)牛顿第二运动定律
F ma
(4)动量定律
d (mu ) F dt
二、连续介质模型 实质——分子间有间隙,分子随机运动导 致物理量不连续。
1.2.2 表面力
1、表面力:又称面积力(Surface Force) ,是毗邻流体 或其它物体作用在隔离体表面上的直接施加的接触力。它的大 小与作用面面积成正比。 按作用方向可分为: 压力:垂直于作用面。
切力:平行于作用面。
2 或 Pa N/m 2、应力:单位面积上的表面力,单位: 压强 p lim P A0 A T
后续课程:水文学、土力学、工程地质等;并直
接服务于工程应用。 • 其他:a.素质教育——“力学文化”、“水文化” ;
b .注册工程师考试必考科目;
c .研究生入学考试必考或选考科目之一。
本课程的基本要求 • 具有较为完整的理论基础,包括: (1)掌握流体力学的基本概念; (2)熟练掌握分析流体力学的总流分析方法,熟悉量 纲分析与实验相结合的方法,了解求解简单平面势流的方 法; (3)掌握流体运动能量转化和水头损失的规律,对传 统阻力有一定了解。

一、流体力学

一、流体力学

• 分类:按运动方式分为流体静力学和流体 分类:按运动方式分为流体静力学 流体静力学和 动力学。 动力学。
2
流体力学概论
• 应用:在水利工程学、空气动力学、气象学、气 应用:在水利工程学、空气动力学、气象学、 体和液体输运、 体和液体输运、动物血液循环和植物液汁输运等 领域有运用。 领域有运用。
高尔夫球表面为什么有很多小凹坑? 高尔夫球表面为什么有很多小凹坑?
v1
1 2
v2
3
v3
8
1.2
理想流体的定常流动 流管——流线围成的管子 流线围成的管子. 流管 流线围成的管子
一般流线分布随时间改变. 一般流线分布随时间改变
二、定常流动
空间各点流速不随时间变化称定常流动. 空间各点流速不随时间变化称定常流动
定常流动流体能 加速流动吗? 加速流动吗?
v = v ( x, y, z)
1 2 1 2 P + ρvA = P + ρvB A B 2 2 SAvA = SBvB
A B h1 h H1
∵P −P = (ρ银 −ρ流)gh B A
2(ρ银 −ρ流)gh ∴vA = ρ流[1−(SA / SB)2]
所以流量为
Q= SAvA = SBvB = SASB
2(ρ银 −ρ流)gh 2 2 ρ流(SB −SA)
阻力系数约为0.8 阻力系数约为
阻力系数仅为0.137 阻力系数仅为
3
流体力学概论
• 应用: 应用:
植物水分运输动力? 植物水分运输动力? 人体血液循环图 毛细作用 渗透压 水分中的负压强
4
1.1
流体静力学
1、静止流体内应力的特点 压强 、
静止流体内部应力的特点: 静止流体内部应力的特点: a、 ∆ ⊥∆ ,无切向应力。(表现为流动性) F S b、同一点不同方位的截面的应力大小相等。 由上述第二个特点可引入:压强P 由上述第二个特点可引入:压强

1流体力学基本知识

1流体力学基本知识
G Mg γ = = = ρ⋅g V V
(kg/m3)
密度: 单位体积的质量称为流体的密度
(N/m3)
容重: 单位体积的重量称为流体的密度
二、流体的流动性和粘滞性
流体在运动状态时,由于流体各层的流速不同,就会在流层 粘滞性: 间产生阻滞相对运动和剪切变形的内摩擦力,称为粘滞力也 称粘滞性。
u ν0 = y h
作业:
1、名词解释: 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 2、写出流体的柏努利方程,并解释各部分意义。 写出流体的柏努利方程,并解释各部分意义。 3、如图判断压力的大小 4、判断图 中,A—A(a、b、c 、d),B—B,E—E是否为等压面,并说 判断图2中 是否为等压面, 明理由。 明理由。 5、如图3,液体1和液体3的密度相等,ρ1g=ρ3g=8.14 kN/m3,液体2的 如图3 液体1和液体3的密度相等, 1g=ρ = =ρ3g kN/m3,液体2 2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。( 。(1 ρ2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。(1)当 pB=68950Pa时,pA等于多少?(2)当pA=137900Pa时,且大气压力计 pB=68950Pa时 pA等于多少 等于多少? pA=137900Pa时 的读数为95976Pa时 点的表压力为多少? 的读数为95976Pa时,求B点的表压力为多少?
qv = ∫∫ v cos(v , x)dA
A
有效截面: 有效截面:
qv = ∫∫ vdA
A
3.平均流速: 3.平均流速:流经有效截 平均流速 面的体积流量除以有效截 面积而得到的商

流体力学简介

流体力学简介

连续性方程(推导略):
v S 恒量
即,不可压缩流体作稳定流动时, 同一流管中横截面小处流速大, 横截面大处流速小.
S1v1 S 2v2
三、伯努利(D.Bernoulli)方程
伯努利方程是流体动力学的基本定律,它说明了 理想流体在管道中作稳定流动时,流体中某点的压 强p、流速v和高度h三个量之间的关系. 下面用功能原理导出伯努利方程。
p v2 h 常量 g 2 g
p v2 、 、h 三项都相当于长度,分别叫做压力 g 2 g
头、速度头水头。
所以伯努利方程表明在同一管道的任一处,压力头、 速度头、水头之和是一常量,对作稳定流动的理想 流体,用这个方程对确定流体内部压力和流速有很 大的实际意义,在水利、造船、航空等工程部门有 广泛的应用。 根据伯努利方程,在等 高(水平)流管中,有
Q Svb S 2 gh
例题2 测流量的文丘里流 量计如图所示.若已知截 面S1和S2的大小以及流体 密度ρ,由两根竖直向上 的玻璃管内流体的高度差 h,即可求出流量Q. 解:设管道中为理想流体作定常流动,由伯努利方程,
1 1 2 2 得 v1 p1 v2 P2 2 2 因p1-p2=ρgh,又根据连续性方程,有
a1 b1
因为时间t极短,所以 a1b1和a2b2是两段极短的 位移,在每段极短的位 移中,压强p、截面积S 和流速v都可看作不变。
p1 S1
v1 a2 h1 b2
v2 h2 p S 2 2
a1 b 1 设p1、S1、v1和p2、S2、v2分 别是a1b1与a2b2处流体的压强、 p1 S1 截面积和流速,则后方流体 的作用力是p1S1,位移是v1 t,所作的正功是 h1
定常流动:在某些情况下,尽管流体内各处的流速不同 ,而各处的流速却不随时间而变化,这种流动称为定常 流动(稳定流动、稳流).

流体力学(流体运动学)

流体力学(流体运动学)

§3 -2
流场的基本概念
恒定流与非恒定流 迹线和流线 一维、二维、 一维、二维、三维流动 流管、 流管、流束及总流 过流断面、 过流断面、流量和平均流速 均匀流和非均匀流
§3-2
流场的基本概念
一、恒定流与非恒定流(定常流与非定常流) 恒定流与非恒定流(定常流与非定常流)
恒定流动是指流场中流动参数不随时间变化而改变的流动。 它满足下列条件:
(3) (4)
将(3)、(4)式代入(1)式得 A′( x)e t + A( x)e t = A( x)e t + t
A′( x)e t = t
A′( x) = te − t

dA( x) = te − t dt
(分部积分公式:∫ uv ′dx = uv − ∫ vu ′dx )
用分部积分得
A( x ) = −(te − t − ∫ e − t dt ) = −te − t − e − t + A
迹线是流体质点在一段时间过程中运动的轨迹线。 迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线 是一族曲线。 如图所示AB曲线是质点M的迹线,在这一迹线上取微元长度ds 表示该质点M在dt时间内的微小位移,则其速度为
ds u= dt
z u c ds
速度的分量为
dx ux = dt
dy uy = dt
第三章
流体运动学
流体运动的描述方法 流场的基本概念 流体微团的运动 连续性方程
引言
静止(包括相对静止) 静止(包括相对静止)是流体的一种特殊的 存在形态,运动(或流动) 存在形态,运动(或流动)才是流体更普遍的存 在形态,也更能反映流体的本质特征。 在形态,也更能反映流体的本质特征。因此相对 流体静力学而言, 流体静力学而言,研究流体的运动规律及其特征 具有更加深刻的意义。这也为流体动力学——研 具有更加深刻的意义。这也为流体动力学 研 究在外力作用下流体的运动规律, 究在外力作用下流体的运动规律,打下了理论的 基础。 基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解: T A dv
Dd
dn
A d L 0 .11 0 .1 9 4 0 6 .0m 5 2 3
L
dv v0 10 5 13s 0 1 dn (D d)/2(0 .1 2 0 .11 )/2 96
T 0 .0 5 0 .1 5 3 1 3 0 2 .5 N 6
注意:面积、速度梯度的取法
τ
拟塑性流体
o
dv/dz
膨胀型流体——τ的增长率随dv/dz的增大而增加(淀粉
糊、挟沙水流)
τ 膨胀型流体
o
dv/dzτ塑性源自体拟塑性流体牛顿流体
τ0
膨胀型流体
o
dv/dz
例:汽缸内壁的直径D=12cm,活塞的直径d=11.96cm, 活塞长度L=14cm,活塞往复运动的速度为1m/s,润滑油 的μ =0.1Pa·s。求作用在活塞上的粘性力。
学成为一门独立学科的基础阶段 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个
方向发展——欧拉、伯努利 第四阶段(19世纪末以来)流体力学飞跃发展
第一阶段(16世纪以前):流体力学形成的萌芽阶段 公元前2286年-公元前2278年
大禹治水——疏壅导滞(洪水归于河) 公元前300多年
李冰 都江堰——深淘滩,低作堰 公元584年-公元610年
c.牛顿流体与非牛顿流体 • 牛顿流体——服从牛顿内摩擦定律的流体(水、大
部分轻油、气体等)
τ
牛顿流体
o
dv/dz
• 非牛顿流体
塑性流体——克服初始应力τ0后,τ才与速度梯度成正
比(牙膏、新拌水泥砂浆、中等浓度的悬浮液等)
τ
塑性流体
τ0
o
dv/dz
拟塑性流体——τ的增长率随dv/dz的增大而降低(高 分子溶液、纸浆、血液等)
ΔFn ΔF
ΔA ΔFτ
切线方向:
流体相对运动时因粘
切向应力——剪切力 lim F
A0 A
性而产生的内摩擦力
表面力具有传递性
流体的主要物理性质
惯性、粘性、压缩(膨胀)性
1.惯性 密度
lim m
V0 V
m V
常见的密度(在一个标准大气压下):
4℃时的水 100k0g/m3 20℃时的空气 1.2kg/m3
容重(重度) g
比重
v 1
2.粘性:在外力作用下,流体微元间出现相对运动时,
随之产生阻抗相对运动的内摩擦力
微观机制:分子间吸引力、分子不规则运动的动量交换
牛顿内摩擦定律: F A dv dz
F A dv
dz
切应力:
F dv
A dz
z z dz
x
v v+dv v
y
a.速度梯度 dv 的物理意义 dz
方程
第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方向 发展——欧拉(理论)、伯努利(实验)
工程技术快速发展,提出很多经验公式 1769年 谢才——谢才公式(计算流速、流量) 1895年 曼宁——曼宁公式(计算谢才系数) 1732年 比托——比托管(测流速) 1797年 文丘里——文丘里管(测流量)
例:旋转圆筒粘度计,外筒固定,内筒转速n=10r/min。内外 筒间充入实验液体。内筒r1=1.93cm,外筒 r2=2cm,内筒高 h=7cm,转轴上扭距M=0.0045N·m。求该实验液体的粘度。
解: du r1 0
dy
r2 r1
2n
60
n
r1
h
r2
M Ar1 2r1hr10.0045
(v+dv)dt
dvdt
d tgd dvdt
dz
dz dθ vdt
dv d
dz dt
——角变形速度(剪切变形速度)
流体与固体在摩擦规律上完全不同
正比于dv/dz
正比于正压力,与速度无关
b.动力粘度(系数)μ:与流体性质有关 Pa·S
运动粘度(系数):
m2/s
f(T,p) f(T)
微观机制: 液体 吸引力 T↑ μ↓ 气体 热运动 T↑ μ↑
作用在流体上的力
1.质量力:作用在所研究的流体质量中心,与质量成正比
重力 惯性力
单位质量力
flm i0m m F XiY jZk
重力
Zmgg m
2.表面力:外界对所研究流体表面的作用力,作用在外
表面,与表面积大小成正比
应力
lim F
A0 A
内法线方向: 法向应力——压强
p limFn A0 A
流体力学与相关的邻近学科相互渗透,形成很多新 分支和交叉学科
流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充 理论研究方法
力学模型→物理基本定律→求解数学方程→分析和 揭示本质和规律 实验方法
相似理论→模型实验装置 数值方法
计算机数值方法是现代分析手段中发展最快的方法 之一
隋朝 南北大运河、船闸应用 埃及、巴比伦、罗马、希腊、印度等地水利、造船、 航海产业发展 系统研究 古希腊哲学家阿基米德《论浮体》(公元前250年)奠 定了流体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学成 为一门独立学科的基础阶段
1586年 斯蒂芬——水静力学原理 1650年 帕斯卡——“帕斯卡原理” 1612年 伽利略——物体沉浮的基本原理 1686年 牛顿——牛顿内摩擦定律 1738年 伯努利——理想流体的运动方程即伯努利方程 1775年 欧拉——理想流体的运动方程即欧拉运动微分
绪论
流体力学是研究流体机械运动规律及其 应用的科学,是力学的一个重要分支。
流体力学研究的对象——液体和气体。
流体力学发展简史 流体力学的研究方法 作用在流体上的力 流体的主要物理性质 流体力学的模型
流体力学发展简史
第一阶段(16世纪以前):流体力学形成的萌芽阶段 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力
得 0.95P2as
注意:1.面积A的取法; 2.单位统一
3.压缩(膨胀)性
a.压缩系数β 在一定温度下,密度的变化率与压强的变化成正比
d dp
E 1
d / dV / V
dp
dp
——体积模量(弹性模量)
b.膨胀系数α
在一定压强下,体积的变化率与温度的变化成正比
理论 1823年纳维,1845年斯托克斯分别提出粘性流体运
动方程组(N-S方程)
第四阶段(19世纪末以来)流体力学飞跃发展 理论分析与试验研究相结合 量纲分析和相似性原理起重要作用
1883年 雷诺——雷诺实验(判断流态) 1903年 普朗特——边界层概念(绕流运动) 1933-1934年 尼古拉兹——尼古拉兹实验(确定阻力 系数) ……
相关文档
最新文档