最新人教版七年级下册数学《平方根》第3课时参考教案

合集下载

七年级数学下册(人教版)6.1.3平方根(第三课时)优秀教学案例

七年级数学下册(人教版)6.1.3平方根(第三课时)优秀教学案例
(二)过程与方法
在过程与方法方面,我制定了以下目标:
1.通过观察、分析和归纳,让学生自主发现平方根的性质,培养学生的观察能力和思维能力。
2.通过示例和练习,让学生掌握平方根的求法,提高学生的解决问题的能力。
3.培养学生与他人合作、交流的习惯,学会倾听他人的观点,培养团队精神。
4.培养学生自我反思的习惯,对学习过程进行总结和反思,提高学生的记忆和理解能力。
(三)小组合作
小组合作是一种有效的教学策略,能够培养学生的合作意识和团队精神。在教学过程中,我会组织学生进行小组讨论和合作,共同解决问题。例如,在讲解平方根的求法时,我会让学生分组进行练习,互相讨论和交流,共同解决问题。通过小组合作,学生能够相互学习,相互帮助,提高他们的合作能力和解决问题的能力。
(四)反思与评价
4.反思与评价:引导学生进行反思和评价,帮助他们巩固知识,提高记忆和理不断提高自己的学习水平。
5.总结归纳:引导学生回顾和总结所学知识,巩固所学知识,提高记忆和理解能力。通过总结归纳,学生能够对平方根的知识有一个全面、准确的理解,更好地应用于实际问题中。
(五)作业小结
在作业小结环节,我会布置一些与本节课内容相关的作业,让学生在课后进行练习和巩固。同时,我还会提醒学生在做作业时要注意的问题,如审题、检查等,帮助学生养成良好的学习习惯。在作业小结环节,学生能够通过自主学习来进一步提高对平方根的理解和应用能力。
五、案例亮点
1.情景创设:通过引入实际问题和生活实例,激发学生的学习兴趣,使学生能够主动参与到课堂学习中。这种教学方法不仅能够提高学生的学习积极性,还能够帮助学生更好地理解和应用平方根的知识。
(二)问题导向
问题导向的教学策略能够激发学生的思考,培养他们的解决问题的能力。在教学过程中,我会提出一系列问题,引导学生思考和探索平方根的性质和求法。例如,在讲解平方根的性质时,我会提问:“平方根的性质有哪些?它们是如何推导出来的?”引导学生观察和分析,激发他们的思考。通过问题导向,学生能够主动参与学习,提高他们的思维能力和解决问题的能力。

人教版数学七年级下册6.1.3《平方根》教案3

人教版数学七年级下册6.1.3《平方根》教案3

人教版数学七年级下册6.1.3《平方根》教案3一. 教材分析平方根是数学中的一个基本概念,它是指一个数乘以自身得到另一个数时,这个数就是原数的平方根。

平方根的引入可以帮助学生更好地理解有理数、无理数等概念,并且在实际问题中具有广泛的应用。

二. 学情分析学生在学习平方根之前,已经学习了有理数的乘法、平方等知识,对于乘法运算已经有了一定的理解。

但是,平方根的概念较为抽象,需要学生进行一定的思考和理解。

因此,在教学过程中,需要引导学生通过实际例子来理解平方根的概念,并通过练习来巩固所学知识。

三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。

2.能够应用平方根的概念解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:平方根的概念和求一个数的平方根的方法。

2.难点:理解平方根的概念,能够应用平方根解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、小组讨论法等教学方法,引导学生通过实际例子来理解平方根的概念,并通过练习来巩固所学知识。

六. 教学准备1.PPT课件2.教学视频或案例七. 教学过程1.导入(5分钟)通过一个实际例子来引入平方根的概念,例如:一个正方形的边长为4,求这个正方形的面积。

引导学生思考,如何求解这个问题。

2.呈现(15分钟)讲解平方根的概念,通过PPT课件或者板书,给出平方根的定义和性质。

同时,给出求一个数的平方根的方法。

让学生理解并掌握平方根的概念。

3.操练(10分钟)通过一些练习题,让学生运用平方根的概念来求解问题。

给予学生解答的指导,并纠正一些常见的错误。

4.巩固(10分钟)让学生通过一些实际问题,应用平方根的概念来解决问题。

让学生感受到平方根在实际问题中的应用价值。

5.拓展(10分钟)引导学生思考平方根的应用场景,例如:在物理学中,平方根的概念可以应用于振动频率的计算;在经济学中,平方根的概念可以应用于需求曲线的计算等。

让学生了解平方根在实际问题中的应用。

新人教版七年级下册数学平方根教案

新人教版七年级下册数学平方根教案

课题6.1平方根(第1课时)【教学目标】1. 通过实际生活中的例子理解算术平方根的概念;2. 会求非负数的算术平方根并会用符号表示. 【教学重点】算术平方根的概念和求法【教学难点】算术平方根的求法课题6.1平方根(第2课时)【教学目标】1.了解无限不循环小数的特点;会用算术平方根的知识解决实际问题;......2.通过探究的大小, 培养学生的估算意识, 了解两个方向无限逼近的数学思想.课题6.1平方根(第3课时)【教学目标】1.了解平方根的概念, 会用根号表示正数的平方根;2.了解开平方与平方互为逆运算, 会用平方运算求某些非负数的平方根【教学重点】了解开方和乘方互为逆运算, 弄懂平方根与算术平方根的区别和联系.【教学难点】平方根与算术平方根的区别和联系.课题6.2 立方根【教学目标】1.了解立方根的概念和表示方法;2.会求一个数的立方根;3.通过探讨一个数的立方根与它的相反数的立方根的关系, 可以将求负数的立方根转化为求正数的立方根的问题, 培养学生的转化思想. 【教学重点】立方根的概念和求法【教学难点】立方根的求法。

课题6.3实数(第1课时)【教学目标】1.了解无理数和实数的概念以与实数的分类;2.知道实数与数轴上的点具有一一对应的关系.【教学重点】了解无理数和实数的概念【教学难点】对无理数的认识课题6.3实数(第2课时)【教学目标】1.掌握实数的相反数和绝对值;2.掌握实数的运算律和运算性质.3.通过建立有理数的一些概念和运算在实数范围里也成立的意识, 让学生了解在这种数的扩充中所体现的一致性, 让学生充分感受数的不断发展。

【教学重点】认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充【教学难点】认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。

(人教版)七年级下册数学配套教案:6.1 第3课时《 平方根》

(人教版)七年级下册数学配套教案:6.1 第3课时《 平方根》

(人教版)七年级下册数学配套教案:6.1 第3课时《平方根》一. 教材分析《平方根》是人教版七年级下册数学的一个重要内容,主要让学生了解平方根的概念,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。

本节课的内容是在学生已经掌握了有理数乘方的基础上进行的,为后面学习立方根和算术平方根等概念打下基础。

二. 学情分析学生在进入七年级下册之前,已经学习了有理数的乘方,对数的运算有一定的了解。

但他们对平方根的概念和求法还不够熟悉,需要通过本节课的学习来掌握。

同时,学生需要培养解决实际问题的能力,将平方根的知识应用到生活中。

三. 教学目标1.知识与技能:使学生了解平方根的概念,掌握求一个数的平方根的方法。

2.过程与方法:培养学生运用平方根解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索的精神。

四. 教学重难点1.重点:平方根的概念,求一个数的平方根的方法。

2.难点:平方根在实际生活中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,用实际案例让学生理解平方根的应用,以小组合作的形式培养学生的团队协作能力。

六. 教学准备1.准备相关案例和图片,用于教学呈现。

2.准备练习题,用于巩固所学知识。

3.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的图片,如篮球、正方形等,提问:“这些物体有什么共同特点?”引导学生思考,引出平方根的概念。

2.呈现(10分钟)讲解平方根的定义,用PPT展示求一个数的平方根的方法。

通过具体案例,让学生了解如何求一个数的平方根,并掌握求解方法。

3.操练(10分钟)让学生独立完成练习题,检验他们对平方根概念和求法的掌握程度。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)利用PPT展示一些实际问题,让学生运用平方根的知识解决。

引导学生将所学知识运用到实际生活中,巩固他们对平方根的理解。

人教版数学七年级下册6.1平方根(第3课时)教学设计

人教版数学七年级下册6.1平方根(第3课时)教学设计
2.请学生运用平方根知识,解决以下生活中的实际问题:
(1)计算一个面积为64平方米的正方形的边长。
(2)已知一个长方体的长、宽、高分别为2米、1米、0.5米,求它的对角线长。
3.请学生撰写一篇关于平方根在生活中的应用的短文,要求至少包含两个实例,字数不限。
4.鼓励学有余力的学生,研究平方根的估算方法,如牛顿迭代法,并尝试编写一个计算平方根的程序或公式。
2.学生回答后,教师指出,要解决这个问题,我们需要学习一个新的数学概念——平方根。由此引出本节课的主题:平方根。
(二)讲授新知
1.教师首先介绍平方根的定义:如果一个数a的平方等于b,那么a是b的平方根。强调平方根有两个,且互为相反数。
2.通过具体例子(如4的平方根是2和-2)来说明平方根的概念,并解释负数没有平方根的原因。
3.教师巡回指导,参与各小组的讨论,解答学生的疑问,引导学生深入思考。
(四)课堂练习
1.教师设计具有梯度性的练习题,让学生独立完成,巩固所学知识。
(1)求下列数的平方根:9、16、25、0、-1。
(2)判断下列各数是否有平方根,如果有,求出它的平方根:2、3、-4、5。
(3)求解实际问题时,列出算式并计算平方根,如:一个正方形的对角线长为10厘米,求正方形的边长。
(1)通过具体的例子,让学生体会负数没有平方根的原因。
(2)针对实际问题,引导学生列出算式,并指导他们如何进行计算。
(3)教授平方根的估算和近似值求解方法,如牛顿迭代法等,提高学生的数学素养。
6.设计分层练习,针对不同水平的学生提供不同难度的题目,使每位学生都能得到有效的训练。
7.课后作业布置注重实践性,让学生运用平方根知识解决生活中的实际问题,提高学生的实际应用能力。

人教版七年级下册《6.1.3平方根(3)》教案

人教版七年级下册《6.1.3平方根(3)》教案

课题 6.1.3平方根(3)备课时间序号授课时间主备人授课班级七年级课标要求教学目标知识与技能:了解平方根的概念,掌握平方根的特征,明确平方根和算术平方根之间的联系和区别过程与方法:能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系,会求某些非负数的平方根情感态度价值观:培养学生的探究能力和归纳、解决问题的能力教学重点平方根的概念和特征教学难点平方根和算术平方根之间的联系和区别教学方法启发式、讲授式教学过程设计师生活动设计意图一、创设情境:如果一个数的平方等于9,这个数是多少?二、参与实践:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果,那么x 叫做a的平方根.例如:3和-3是9的平方根,简记是9的平方根通过学生熟悉的事物,直观形象地给出了生活中的平行线和相交线,激发了学生的学习兴趣。

教师放手让学生思考问题问题,培养了学生的动脑思考问题能力2x a=3±三、评价反馈通过具体问题,强化学生对概念及性质的理解,并培养学生的说理习惯,发展符号感,逐步培养学生用几何语言交流的能力。

如果知道一个数的算术平方根就可以立即写出它的负的平方根,为什么?你能总结一下平方根与算术平方根的概念的区别与联系吗?归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

平方根与算术平方根的联系与区别:联系(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种。

(2)存在条件相同:平方根和算术平方根都具有非负性(3)0的平方根和算术平方根都是0。

区别(1)定义不同:“如果一个数X的平方等于a,那么这个数X叫做a的平方根”,“如果一个正数x的平方等于a,即x2 =a,那么这个正数x叫做a 的算术平方根”。

(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个。

七年级数学下册6.1平方根第3课时教案新版新人教版

七年级数学下册6.1平方根第3课时教案新版新人教版

6.1 平方根(第3课时)教学内容一、情境导入思考:如果一个数的平方等于9,这个数是多少?讨论:这样的数有两个,它们是3和—3.注意(—3)2 = 9中括号的作用.二、新课教学1.平方根的概念如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果x2 = a,那么x叫做a的平方根. 求一个数的平方根的运算,叫做开平方•例如:_ 3的平方等于9, 9的平方根是_3,所以平方与开平方互为逆运算.2.观察下图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质•根据这个关系说出1, 4, 9的平方根.学生根据图中的关系回答.例4求下列各数的平方根.9(1) 100 (2) ( 3) 0.2516(注意书写格式)3.按照平方根的概念,请同学们思考并讨论下列问题:(1)正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?(2)一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用a表示;正数A的负的平方根可用-.a表示.归纳:平方根和算术平方根两者既有区别又有联系•区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根三、小结1. 什么叫做一个数的平方根?2.正数、0、负数的平方根有什么规律?3.怎样求出一个数的平方根?数a 的平方怎样表示?四、作业教材P47、P48 习题 6.1 第4、8、9、10、11、12 题.教学反思:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

人教版七年级数学下册教案 6-1 平方根(第3课时)

人教版七年级数学下册教案 6-1 平方根(第3课时)

6.1 平方根第3课时一、教学目标【知识与技能】1.了解平方根的概念,掌握平方根的特征.2.能正确区分平方根与算术平方根的意义.3.能利用开平方与平方互为逆运算的关系,求某些非负数的平方根.【过程与方法】类比算术平方根概念探究平方根,利用平方与开平方互逆揭示开平方运算的本质,经历观察、思考、交流、总结归纳出平方根的特征.【情感态度与价值观】使学生深入体验平方与开平方的互逆关系,培养学生逆向思维解决问题的习惯.二、课型新授课三、课时第3课时共3课时四、教学重难点【教学重点】理解平方根概念,会用符号表示一个正数的平方根.【教学难点】理解平方根的意义.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)1.什么叫做算术平方根?如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根.2.判断下列各数有没有算术平方根,如果有,请求出它们的算术平方根.100; 1;36121; 0; -0.0025; (-3)2; -25.3.填空:(1)3²=_______, (-3)²=_______; (2)(23)2=________,=(−23)2=________; (3)0.8²=_______,(-0.8)²=_______.反过来,如果已知一个数的平方,怎样求这个数? (二)探索新知1.出示课件5-9,探究平方根的概念及性质教师问:要做一张边长是3分米的方桌面,它的面积是多少?学生答:它的面积是9平方分米.教师问:这个问题实际上就是求:32=? 这是已知底数和指数,求幂的运算.这是什么运算?学生答:这是乘方运算.教师问:反过来,要做一张面积是9平方分米的方桌面,它的边长是多少分米?学生答:它的边长是3分米.教师问:实际上就是要求出一个数,使它的平方等于9, 即:( )2=9,应该填什么呢?学生答:显然,括号里应是±3. 教师问:桌子的边长为何是3分米?学生答:-3不符题意. ∴方桌面的边长应是3分米. 教师问:你还能得到什么问题呢?学生问:如果一个数的平方等于9,这个数是多少? 教师答:由于(±3)2=9 ,所以这个数是3或-3. 教师问:想一想:3和-3有什么特征? 学生答:3和-3互为相反数,只有符号不同. 教师问:3和-3互为相反数,会不会是巧合呢? 学生答:猜想不一定是巧合,需要实例吧! 做一做,想一想:(1) 4的平方等于16,那么16的算术平方根就是_____. (2)25的平方等于425,那么425的算术平方根就是____.(3) 展厅地面为正方形,其面积是49 m 2,则其边长为___m. 教师依次展示学生的答案:学生1答:(1)16的算术平方根就是4. 学生2答:(2)425的算术平方根就是25. 学生3答:(3)其边长为7m.教师总结如下:答案如下:(1)4;(2)25;(3)7.教师问:平方等于16, 425,49的数还有吗?学生答:还有-4,-25,-7.教师问:填一填,想一想: 写出左圈和右圈中的“?”表示的数:学生答:如下图所示:总结点拨:(出示课件10)根据上述问题,即要找出一个数,使它的平方等于给定的数.我们抽象出下述概念: 定义:如果有一个数x ,使得x ²=a ,那么我们把x 叫作a 的一个平方根,也叫作二次方根.例如: (±1)2=1,1的平方根为±1.平方根的性质:如果x 是正数a 的一个平方根,那么a 的平方根有且只有两个:x 与-x.即平方根互为相反数.教师问:121的平方根是什么?(出示课件11) 学生答:121的平方根是±11. 教师问:0的平方根是什么? 学生答:0的平方根是0. 教师问:1649的平方根是什么? 学生答:1649的平方根是±47.教师问:-9有没有平方根?为什么?学生答:没有,因为一个数的平方不可能是负数.教师问:通过这些题目的解答,你能发现什么?(出示课件12)学生答:有些数有两个平方根,有些数有一个平方根,有些数没有平方根. 教师问:正数有几个平方根? 学生答:正数有2个平方根. 教师问:0有几个平方根?学生答:0有1个平方根.教师问:有没有一个数的平方是负数? 学生答:没有一个数的平方是负数. 教师问:负数有几个平方根呢? 学生答:负数没有平方根. 教师问:为何负数没有平方根呢?学生答:因为任何实数的平方都为非负数,所以负数没有平方根,也没有算术平方根. 总结点拨:(出示课件13) 平方根的性质:1.正数有两个平方根,两个平方根互为相反数.2.0的平方根还是0.3.负数没有平方根. 考点1:求平方根 求下列各数的平方根:(1)100; (2) 916 ; (3)0.25.(出示课件14)师生共同讨论解答如下: 教师依次展示学生解答过程:学生1解:(1) ∵(±10)2=100,∴100的平方根是±10; 学生2解:(2) ∵(±34 )2=916 , ∴916 的平方根是±34; 学生3解:(3) ∵(±0.5)2=0.25,∴0.25的平方根是±0.5. 方法总结:正确理解平方根的概念,明确是求哪一个数的平方根. 出示课件15,学生自主练习后口答,教师订正. 2.出示课件16-17,探究平方根的读法和表示 教师问:非负数a 的平方根表示为什么呢? 学生答:非负数a 的平方根表示为±√a . 教师问:±√a 的各部分表示什么意思呢?师生一起解答:一个正数a 的正平方根,用“√a ”表示,(读作“根号a”).又叫a 的算术平方根.a 的负平方根,用“-√a ”表 示a 的算术平方根的相反数,(读作“负根号a”). 合起来,一个正数a 的平方根就用“ ±√a ”表示,(读作“正、负根号a”)如下图所示:出示课件17,学生自主练习后口答,教师订正. 考点2:利用平方根的表示求平方根 分别求下列各数的平方根:(1)36;(2)259 ;(3)1.21 (出示课件18)学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程:学生1解:(1)由于(±6)²=36,因此36的平方根是6与-6. 即±√36=±6.学生2解:(2)由于(±53)²=259,因此259的平方根是53与-53.即±√259=±53.学生3解:(3)由于(±1.1)²=1.21, 因此1.21的平方根是1.1与-1.1. 即±√1.21=±1.1.出示课件20,学生自主练习后口答,教师订正. 3.出示课件21-24,探究平方与开方的关系 教师出示问题:请完成下面的题目:学生答:答案如下图所示:教师问:上面的运算是平方运算,什么是平方运算呢?学生答:已知一个数,求它的平方的运算,叫作平方运算.教师问:反之,已知一个数的平方,求这个数的运算是什么?师生一起解答:求一个数的平方根的运算叫作开平方.教师问:开平方与平方是什么关系?学生答:互为逆运算.教师总结点拨:(出示课件23)已知底数和指数求幂已知幂和指数求底数教生一起完成下面的题目:总结点拨:(出示课件25)平方根与算术平方根的联系与区别:考点3:开平方的有关计算 求下列各式的值:(出示课件26) (1)√36;(2)-√0.81;(3)±√499 学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程: 学生1解:(1)√36=6; 学生2解:(2)-√0.81=−0.9; 学生3解:(3)±√499=±73.出示课件27,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧. (三)课堂练习(出示课件28-33) 练习课件第28-33页题目,约用时20分钟. (四)课堂小结(出示课件34)(五)课前预习预习下节课(6.2第1课时)的相关内容.知道立方根、三次方根、开立方的定义及利用计算器求立方根的步骤. 七、课后作业教材第46-47页练习第1,2,3,4题. 八、板书设计6.1.平方根第3课时1、平方根定义2、归纳正数有两个平方根,0的平方根是0;负数没有平方根3、考点讲解考点1 考点2 考点3九、教学反思成功之处:本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.整节课以“问题情境—合作探究—分析计算—总结升华”为主线,使学生亲身体验根据平方根计算和算术平方根计算的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.不足之处:在教学过程中,对于平方根的作用、算术平方根深入讨论,有些学生只是知道要取算术平方根,对于其中的原因根本没有明白,部分学生对于平方根的理解还不够深刻.补救措施:适当增加学生熟悉的实例,通过对比,使学生明白为什么要取算术平方根,并能更进一步理解平方根的含义,掌握根据平方根和算术平方根的异同.。

人教版七年级数学下册 教学设计6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册 教学设计6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册教学设计6.1 第3课时《算术平方根和平方根》一. 教材分析本节课的教学内容是算术平方根和平方根。

这是人教版七年级数学下册第六章第一节的一部分,主要介绍了平方根和算术平方根的概念、性质和运算。

这一部分内容是学生学习平方根和算术平方根的基础,对于后续学习二次根式、勾股定理等知识具有重要意义。

教材通过例题和练习题,帮助学生掌握平方根和算术平方根的求法,提高学生的运算能力。

二. 学情分析学生在之前的学习中已经掌握了有理数的乘方、平方根的概念,为本节课的学习奠定了基础。

然而,对于算术平方根的概念和求法,部分学生可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际需求进行有针对性的教学。

三. 教学目标1.理解平方根和算术平方根的概念,掌握它们的性质和运算方法。

2.能够运用平方根和算术平方根解决实际问题,提高运算能力。

3.培养学生的逻辑思维能力和团队合作精神。

四. 教学重难点1.平方根和算术平方根的概念及其区别。

2.平方根和算术平方根的求法。

3.运用平方根和算术平方根解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入平方根和算术平方根的概念,激发学生的学习兴趣。

2.小组讨论法:让学生在小组内讨论平方根和算术平方根的性质和运算方法,培养学生的团队合作精神。

3.案例教学法:通过例题和练习题,让学生巩固所学知识,提高运算能力。

4.启发式教学法:引导学生思考问题,培养学生的逻辑思维能力。

六. 教学准备1.教学课件:制作课件,展示平方根和算术平方根的概念、性质和运算方法。

2.练习题:准备一些有关平方根和算术平方根的练习题,用于巩固所学知识。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用生活实例,如正方形的面积公式,引入平方根的概念。

引导学生思考:什么是平方根?如何求一个数的平方根?2.呈现(10分钟)介绍平方根的性质和运算方法,引导学生总结平方根的定义和求法。

人教版七年级数学下册 教案6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册 教案6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册教案6.1 第3课时《算术平方根和平方根》一. 教材分析《算术平方根和平方根》是人教版七年级数学下册第六章第一节的内容。

本节课主要介绍了平方根和算术平方根的概念,以及它们的性质和运算。

通过学习本节课,学生能够理解平方根和算术平方根的概念,掌握它们的性质和运算,并为后续学习二次根式打下基础。

二. 学情分析学生在之前的学习中已经掌握了有理数的乘方,对数的认识,以及一些基本的代数运算。

但是,对于平方根和算术平方根的概念和性质可能还比较陌生。

因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握这些概念和性质。

三. 教学目标1.理解平方根和算术平方根的概念。

2.掌握平方根和算术平方根的性质和运算。

3.能够运用平方根和算术平方根解决实际问题。

四. 教学重难点1.平方根和算术平方根的概念。

2.平方根和算术平方根的性质和运算。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过具体例子和实际操作,引导学生主动探索、积极思考,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.教学PPT。

2.练习题。

3.教学道具(如平方根和算术平方根的模型)。

七. 教学过程1.导入(5分钟)利用生活实例或数学故事,引出平方根和算术平方根的概念。

例如,讲解勾股定理时,提到直角三角形的两条直角边的平方和等于斜边的平方,从而引出平方根和算术平方根的概念。

2.呈现(10分钟)通过PPT展示平方根和算术平方根的定义,以及它们的性质和运算。

让学生观察和思考,引导他们发现其中的规律。

3.操练(10分钟)让学生分组进行讨论,运用平方根和算术平方根的性质和运算,解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

题目难度可以适当调整,以保证大部分学生能够成功。

教师选取部分学生的作业进行点评,指出其中的错误和不足。

5.拓展(10分钟)引导学生运用平方根和算术平方根解决更复杂的问题,如二次方程的求解、实际生活中的测量等。

人教版数学七年级下册 6.1.3平方根教案(表格式)

人教版数学七年级下册 6.1.3平方根教案(表格式)

第3课时平方根9,那么-3叫做9的什么根呢?探究点1平方根的概念和计算(1)填表:(2)如果我们把上述填表的x的值分别叫做1,16,36,49,4的25平方根,你能类比算术平方根的概念,给出平方根的概念吗?答:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果x2=a,那么x叫做a的平方根.例如,±3是9的平方根.(3)我们把求一个数a的平方根的运算,叫做开平方.观察下图,你发现了什么?答:平方与开平方互为逆运算.探究点3平方根与算术平方根的关系问题1我们已经学过一个正数的算术平方根的表示方法,你能表示一个正数的平方根吗?答:我们知道,正数a 的算术平方根可以用a 表示;正数a 的负的平方根,可以用符号“-√a ”表示,故正数a 的平方根可以用符号“±√a ”表示,读作“正、负根号a ”.例如,±√9=±3,±√25=±5.问题2符号√a 只有当a ≥0时有意义,a <0时无意义,你知道为什么吗?答:因为在我们所认识的数中任何一个数的平方都不会是负数,所以负数不能开平方,即当a <0时,a 无意义.问题3说一说算术平方根与平方根之间的区别与联系.例1(教材P46例5)求下列各式的值: (1)√36;(2)-√0.81;(3) ±√499.解:(1)因为62=36,所以√36=6; (2)因为0.92=0.81,所以-√0.81=-0.9; (3)因为(73)2=499,所以±√499= ±73.问题4知道一个数的算术平方根,就可以立即写出它的负的平方根.为什么?答:因为一个数的负的平方根等于它的算术平方根的相反数. 【对应训练】1.下列计算错误的是( A )A.√4 = ±2B.√(−3)2 = 3C.±√16 = ±4D.-√25 = -5 2~3.教材P47练习第3~4题.例2求下列各式中x 的值:已知一个数的平方根,求原数的方法:需要根据题目的叙述进行判断,当题目中有类似“A 和B 是一个正数的两个平方根”或“一个正数的平方根分别是A 和B ”这样的描述时,则根据平方根的性质知A +B =0,直接列出方程求未知数,再进一步求得原数;当题目中有类似“A 和B 是一个正数的平方根”这样的描述时,则除了A +B =0,还需考虑A =B 的情况,需分别列方程求出未知数.例1若2m -4与3m -1是一个正数的两个平方根,则这个正数为( B ) A.1 B.4 C.±1 D.±4解析:由题意可知2m -4+3m -1=0,所以m =1,所以2m -4=-2,所以这个正数为4.故选B.例2已知a-1和5-2a 都是m 的平方根,求a 与m 的值. 解:根据题意,分以下两种情况:①当a -1与5-2a 是同一个平方根时,a -1=5-2a ,解得a =2.此时m =(2-1)2=1; ②当a -1与5-2a 是两个平方根时,a -1+5-2a =0,解得a =4.此时m =(4-1)2=9. 综上所述,a =2,m =1或a =4,m =9.例1已知5x -1的平方根是±3,4x +2y +1的平方根是±1,求4x -2y 的算术平方根. 解:因为5x -1的平方根是±3,4x +2y +1的平方根是±1, 所以5x -1=9,4x +2y +1=1,所以x =2,y =-4. 所以4x -2y =16,所以4x -2y 的算术平方根为4.例2已知a ,b ,c 满足b =-√(a −3)2+4,c 的平方根等于它本身.求a +√b −c 的平方根. 解:因为-(a -3)2≥0,所以a =3.【作业布置】1.教材P47习题6.1第3,4,7,8,9,10题.2.相应课时训练.教学步骤师生活动 板书设计6.1平方根 第3课时平方根1.平方根的概念.2.求一个正数的平方根的运算——开平方.3.平方根的性质及其应用:正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.平方根与算术平方根的区别与联系.教学反思本节课借助算术平方根的知识得出平方根的知识,渗透“类比思想”,通过大量实例让学生体会平方根的概念及其性质,渗透“具体—抽象—具体”的研究思路.结合学过的运算理解“开平方”的新运算,使学生的学习形成迁移.借助例题和课堂练习巩固新知,提高学生的学习能力.把a = 3代入b = √−(a−3)2+ 4,得b = 4.因为c的平方根等于它本身,所以c = 0.所以a + √b−c=3+√4−0=5,所以a+√b−c的平方根为±√5.增乘开方法增乘开方法是由我国古代数学家贾宪在十一世纪中叶所提出来的.那么古人又是如何求一个数的算术平方根的呢?下面以求55 225的算术平方根为例进行说明.1.由于55 225是一个五位数,因此我们估算商(即算术平方根)应当是一个三位数,并且由于万位上的数是5,所以估计商的百位数是2.2.令借为1,法的值则为借乘商(1×2),如图①.3.更新实,使之为原实减去商乘法(5-2×2=1),则新实为1,如图②.4.更新法为商乘借加到旧法上(2+2×1=4),如图③.5.将法后移一位,借后移两位,如图④.然后重复上面1~5的步骤:1.估算商的十位为3(3×4000=12000<15225).2.更新法为原法加上十位商乘借(4000+3×100=4300),如图⑤.3.更新实,使之为原实减去十位商乘法(15225-3×4300=2325),则新实为2325,如图⑥.4.更新法为十位商乘借加到旧法上(43+3×1=46).5.将法后移一位,借后移两位,如图⑦.再重复上面的1~3的步骤,得到图⑧,此时更新后的实为0(2325-465×5=0).由此我们得出,55 225的算术平方根为235.。

部编人教版七年级数学下册《平方根(3)》教案

部编人教版七年级数学下册《平方根(3)》教案

6.1平方根第三课时一、教学目标1.核心素养通过学习平方根,初步形成基本的数学抽象和运算能力.2.学习目标(1)6.1.3.1了解平方根的概念,以及运用开方与平方之间的互逆关系求平方根.(2)6.1.3.2掌握平方根的性质,明确平方根和算术平方根之间的联系和区别.3.学习重点平方根的概念和以及运用开平方的互逆关系求平方根.4.学习难点平方根和算术平方根的联系与区别.二、教学设计(一)课前设计1.预习任务阅读教材6444P P -任务1思考:什么叫一个数的平方根?如何用符号表示? 什么叫开平方?任务2平方根的性质是什么?平方根和算术平方根之间有什么联系和区别?预习自测(1)一般的,如果一个数x 的_____等于a ,即a x =2,那么这个数x 就叫做a 的_______或________.(知识点:平方根的定义) 【解析】考查平方根定义:平方;平方根;a ±(2)求一个数a 的平方根的运算,叫做__ _;平方与开平方互为 ____运算.(知识点:平方根的定义)【解析】考查定义,开平方;逆(3)正数a 的算术平方根用“_______”表示,正数a 的负的平方根用“______”表示;正数的平方根有_____个,它们互为______;0的平方根是_____;负数____平方根;非负数的平方根记为______,读作“_______”.(知识点:平方根的定义) 【解析】。

;正负根号;没有;;相反数;;;a a 02a -a ± (二)课堂设计1.知识回顾(1)算术平方根:一般地,如果一个正数x 的平方为a ,即2x a =,那么正数x 叫做a 的算术平方根.(2)正数a 的算术平方根记为a ”或“二次根号a ”,其中a 叫做被开方数,记作a x =.规定:0的算术平方根是0,记作错误!未找到引用源。

.(3)算术平方根的双重非负性:只有非负数才有算术平方根,算术平方根是非负数.2.问题探究探究点一:具体到抽象,认识平方根●活动一 具体到抽象,探得概念平方根的概念:一般的,如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根,表示为:a x ±=(0≥a ).如:932=,()93-2=,我们就说3和-3都是9的平方根,也可以说9的平方根是3±. 422=,()422=-,±2叫做4的平方根.100102=,()100102=-,±10叫做100的平方根.169132=,()169132=-,±13叫做169的平方根.●活动二 互逆运算,揭示本质求一个数的平方根的运算,叫做开平方. 开平方和平方是一种互逆运算.a x =2 −−−→←互逆运算 a x ±=↓ ↓平方运算 开平方运算例题:求下列各数的平方根.(1)16 (2)169 (3)0.25 (知识点:平方根的定义)解析:(1)∵()1642=±, (2)∵169432=⎪⎭⎫ ⎝⎛±, ∴16的平方根是±4 , ∴169的平方根是±43, 即±16= ±4. 即43169±=±. (3)∵()0.250.52=±,∴0.25的平方根是±0.5 ,即±0.25= ±0.5.方法总结:根据开平方和平方互为逆运算的关系,可以求一个非负数的平方根.探究点二 对比学习,辨识平方根●活动一 总结性质,辨识两根通过我们前面的学习,我们可以作如下总结:正数的平方根:一个正数a 有两个平方根,它们互为相反数,其中正的平方根就是这个数的算术平方根.0的平方根:0只有一个平方根,它是0本身.负数没有平方根. 所以有:正数a 的算术平方根用“a ”表示,正数a 的负的平方根用“a -”表示; 正数的平方根记为a ±,读作“正、负根号a ”.例题:求下列各式的值.(1)36 (2)-0.81 (3)949±解析:(1)因为3662=,所以636=. (2)因为0.810.92=,所以9.00.81-=-.(3)因为949372=⎪⎭⎫ ⎝⎛,所以37949±=±. 方法总结:在计算时一定要认清是求平方根还是算术平方根.综上,我们归纳一下平方根和算术平方根的联系与区别:联系:具有包含关系:平方根包含算术平方根,而算术平方根是平方根的一种.存在条件相同:平方根和算术平方根都是只有非负数才有.0的平方根和算术平方根都是0. 区别:定义不同:“如果一个数的平方等于a ,这个数就叫做a 的平方根” ; “非负数a 的非负平方根叫a 的算术平方根”.个数不同:一个正数有2个平方根,而一个正数的算术平方根只有1个.表示法不同:正数a 的平方根表示为a ±,正数的算术平方根表示为a . 所以如果已知一个数的其中一个平方根,那它的另一个平方根也能被很快写出.3.课堂总结【知识梳理】(1)平方根的概念:一般的,如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根,表示为:a x ±=.(2)开平方运算和平方运算互为逆运算,常用开平方来求一个数的平方根.(3)平方根的性质:一个正数a 有两个平方根,它们互为相反数,其中正的平方根就是这个数的算术平方根. 0的平方根:0只有一个平方根,它是0本身.负数没有平方根.如果给出其中的一个平方根,另一个平方根即可知.(4)平方根的表示方法:a ±(0≥a )(不能丢符号)【重难点突破】(1)从具体到抽象,得出平方根的概念,然后运用开平方求一个数的平方根,在这个过程中,充分体会开平方和平方的互逆关系,加深对概念的理解.(2)充分解析平方根概念,得出其性质;后将平方根与算术平方根进行比较,找到区别与联系,加深对两根的理解.4.随堂检测(1)9的平方根是( )A .3 B.-3 C.±3 D. ±3 (知识点:平方根的定义) 【解析】:39±=±,所以选C(2)下列说法中不正确的是( ) A.5-是5的平方根 B. 5 是5的平方根C.5的平方根是5.D.5的算术平方根是5. (知识点:平方根的定义,算术平方根的定义)【解析】:C 故选的算术平方根是的平方根,都是和,所以的平方根是.5555-555±(3)若一个数的平方根等于它的算术平方根,则这个数是______.(知识点:平方根的定义,算术平方根的定义)【解析】:0;0的平方根等于它的算术平方根.(4)16的平方根是_________.(知识点:平方根的定义,算术平方根的定义) 【解析】:216±=±(5)若一个正数的平方根是12+x 和4-x ,则x 是______.(知识点:平方根的定义)【解析:1x x -41x 2=∴=+∴相反数正数的两个平方根互为。

七年级数学下册 6.1 平方根(第3课时)教案 (新版)新人教版 (2)

七年级数学下册 6.1 平方根(第3课时)教案 (新版)新人教版 (2)
6.1 平方根(第 3 课时)
课题
备课日期
年月 日
课型
新授
理解平方根的概念,知道开平方是平方逆运算.
知识与技 会用符号表示平方根,并会求平方数的平方根

知道平方根的特性,会判别一个式子有无意义.

类比算术平方根概念探究平方根,利用平方与开平方互逆揭示
开平方运算的本质, 过程与方
经历观察、思考、交流、总结归纳出平方根的特征. 法 学
的本质
求一个数的平方根的运算,叫做开平方.
使学生在复
平方与开平方这两种运算互为逆运算.
习已经学过
的知识的基 这样又认识了一种新的运算——开方(求一个数方根的运算叫做
础上初步认 开方),到此,基本运算一共有六种:加、减、乘、除、乘方、开方.
识平方根概 正数的算术平方根可以用表示,正数的负的平方根,就可以用符
念,学习新知 号“-”表示,正数的平方根,用符号“±”表示,读作“正、负根
号”.
识,形成正迁
结合上表可以看出正数,0,负数的平方根各有什么特点?
移,这样正符
一个正数有两个平方根,它们互为相反数;
合学生的认
0 的平方根是 0;
知规律.
负数没有平方根.
使学生在六
于是,当≥0 时有意义,<0 时,无意义.
使学生深入体验平方与开平方的互逆关系,培养学生逆向思维

解决问题的习惯.
情感态度
与价值观

教学重点 教学难点 教学方法 教学用具
理解平方根概念,会用符号表示一个正数的平方根. 理解平方根的意义.
多媒体
课时安排
板书设计: 一、平方根定义 例题
符号表示 负数没有平方根

人教版数学七年级下册6-1 平方根 第3课时 教案

人教版数学七年级下册6-1  平方根  第3课时  教案

6.1 平方根第3课时教学设计课题 6.1 平方根第32课时单元第六单元学科初中数学年级七下学习目标1.了解平方根、开平方的概念;明确算术平方根与平方根的区别和联系.2.能用符号正确地表示一个数的平方根,理解开方运算和乘方运算之间的互逆关系;3.通过探索平方根与算术平方根的区别与联系,学会利用算术平方根解决平方根的问题;4.通过对平方根的学习,培养学生从多方面、多角度分析解决问题的思想意识,养成全面分析问题的习惯.重点平方根的概念及性质难点平方根和算术平方根的联系与区别.教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】1.什么是算术平方根?一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.2.填一填(1) 3的平方等于9,那么9的算术平方根就是_____(2) 25的平方等于425,那么425的算术平方根就是____(3) 展厅地面为正方形,其面积49 m2,则边长为___m追问:问题:平方等于9,425,49的数还有吗?学生思考并回答计算并思考.先复习旧知,再通过巩固旧知,引出新知,为接下来的学习埋下伏笔.讲授新课【合作探究】如果一个数的平方等于9,这个数是多少?答:3或-3;由于(-3)²=9,那么这个数也可以是-3 学生思考,回答问题.让学生初步感受平方等于9的数有两个,为引出平方根的概念进行铺垫.想一想: 3和-3有什么特征?学生可能很快回答出这个数可以是3,教师提示学生注意本题中没有限制所求的数是正数. 根据上面的研究过程填表:预设答案: 追问:如果我们把214675±±±±±、、、、分别叫做4116364925、、、、的平方根,你能类比算术平方根的概念给出平方根的概念吗? 【知识归纳】一般地,如果一个数的平方等于a ,那么这个数叫做 a 的平方根或二次方根.这就是说,如果 x 2=a ,那么x 叫做a 的平方根.例如,49的平方根为7和-7,49的平方根为7和-7.平方根的表示方法、读法:【小试牛刀】判断下列说法是否正确.(1)49的平方根是7;( ) (2)2是4的平方根;( ) (3)-5是25的平方根;( )学生尝试填空,并回答老师的提问学生说一说学生自主解答学生在填空的过程中感受一个正数的平方根有两个,进而对平方根有一定的感性认识,为归纳平方根的概念作铺垫.在此基础上,引导学生用文字语言仿照算术平方根的概念得到平方根的概念,使学生的学习形成正迁移.巩固平方根的概念,体会平方根的表示法和读法.通过此环节,巩固平方根的概念(4)64的平方根是±8;()(5)-16的平方根是-4.()答案:×,√,√,√,×【合作探究】已知一个数,求它的平方的运算,叫做平方运算.反之,已知一个数的平方,求这个数的运算叫什么?求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.追问:平方与开平方有什么关系?预设答案:平方运算与开平方运算互为逆运算. 【合作探究】下列各数有平方根吗?(1)0;(2)16; 25(3)0.000196;(4)-81.答案:有,有,有,无想一想:正数的平方根有什么特点?0 的平方根是多少?负数有平方根吗?【总结归纳】平方根的性质:1.正数有两个平方根,它们互为相反数.2. 0 的平方根还是0.3. 负数没有平方根.追问:符号a只有符合a≥0时有意义,a<0时无意义,你知道为什么吗?学生思考,并回答学生小组讨论,思考完成问题.通过合作探究环节,体会什么是开方运算,以及平方与开平方运算的关系.通过讨论,使学生对平方根有比较全面的认识,并体会分类思想.想一想:你能总结一下平方根与算术平方根的区别与联系吗?联系:(1)包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)只有非负数才有平方根和算术平方根.(3)0的平方根是0,算术平方根也是0.区别:(1)个数不同:一个正数有两个平方根,但只有一个算术平方根.(2)表示法不同:平方根表示为a±,而算术平方根表示为a. 学生自由说一说,教师总结归纳平方根与算术平方根的概念容易混淆,通过此问加深学生对它们区别与联系的理解.【典型例题】例1 求下列各数的平方根:(1) 100 ;(2)(3) 0.25解:(1)∵(±10)2 = 100,∴100的平方根是±10解:(2)∵∴的平方根是解:(3)∵(0.5)2 = 0.25,∴0.25的平方根是0.5.例2 求下列各式的值:(1) ;(2) ;(3) . 解:(1) ∵62=36,∴.解:(2) ∵0.92=0.81 ,∴.解:(3) ∵,∴. 思考并积极回答.例1强化学生对平方根概念的认识,注意一个正数的平方根有两个.对平方根表示方法的辨析,强化对平方根概念的理解教师板书一道例题书写过程,其余题目可由学生代表板书完成.【课堂练习】1.下列个数有平方根吗?如果有,写出它的平方根,如果没有,说明理由.(1)64;(2)16;4(3)0;(4)223⎛⎫- ⎪⎝⎭;(5)1625-.答案:(1)有平方根,±8;(2)有平方根,±2 5;(3)有平方根,0;(4)有平方根,±2 3;(5)没有平方根,负数没有平方根.2.求下列各数的算术平方根和平方根.(1)(-11)2;(2) ;解:(1)(-11)2 =121,它的算术平方根是11,平方根是±11.(2) =4 ,它的算术平方根是2,平方根是±2.3.如果一个数的两个平方根时a+3,2a-15,那么这个数是多少?解:因为一个数正数的两个平方根互为相反数,所以(a+3)+(2a-15)=0,解得a=4,当a=4,a+3=7,2a-15=-7.即这个数是7,-7. 学生自主练习通过课堂练习巩固新知,加深对平方根的概念及性质的理解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所通过小结让学生讲的内容进一步熟悉巩固本节课所学的知识.板书 1.平方根(1)定义(2)性质:①正数有两个平方根,两个平方根互为相反数.②0的平方根还是0.③负数没有平方根.(3)开平方及相关运算2.例题讲解。

人教版数学七年级下册第18课时《6.1平方根(第3课时)》教案

人教版数学七年级下册第18课时《6.1平方根(第3课时)》教案

人教版数学七年级下册第18课时《6.1平方根(第3课时)》教案一. 教材分析《6.1平方根(第3课时)》是人教版数学七年级下册的一节重要课程。

本节课主要内容是让学生掌握平方根的概念,会求一个数的平方根,以及了解平方根的性质。

通过本节课的学习,学生能够进一步理解平方根的概念,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了有理数、实数等基础知识,对数的运算和性质有一定的了解。

但部分学生对平方根的概念和性质可能理解不深,求平方根的方法也需要进一步巩固。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行讲解和辅导。

三. 教学目标1.让学生掌握平方根的概念,会求一个数的平方根。

2.使学生了解平方根的性质,能够运用平方根解决实际问题。

3.培养学生的逻辑思维能力,提高学生解决问题的能力。

四. 教学重难点1.平方根的概念和性质。

2.求一个数的平方根的方法。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生理解平方根的概念和性质。

2.互动教学法:教师与学生互动,让学生在探讨中掌握求平方根的方法。

3.练习法:通过大量练习,巩固学生对平方根知识的掌握。

六. 教学准备1.教学课件:制作课件,展示平方根的概念和性质。

2.练习题:准备一些有关平方根的练习题,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)教师通过一个生活实例引入本节课的主题,如:“一块正方形的面积是25平方米,求这块正方形的边长。

”让学生思考,引出平方根的概念。

2.呈现(10分钟)教师讲解平方根的概念和性质,让学生了解平方根的定义,以及如何求一个数的平方根。

3.操练(10分钟)教师提出一些有关平方根的问题,让学生独立解答。

如:“求16、25、9的平方根。

”教师巡回指导,帮助学生解决问题。

4.巩固(10分钟)教师学生进行小组讨论,分享求平方根的方法和心得。

然后,全班交流,总结平方根的性质。

5.拓展(10分钟)教师提出一些拓展问题,如:“一个数的平方根有两个,分别是正数和负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1平方根第3课时
一、教学目标
1.经历平方根概念的形成过程,了解平方根的概念,会求某些正数(完全平方数)
的平方根.
2.经历有关平方根结论的归纳过程,知道正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.
二、重点和难点
1.重点:平方根的概念.
2.难点:归纳有关平方根的结论.
三、合作探究
(一)基本训练,巩固旧知
1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作.
2.填空:
(1)面积为16=;
(2)面积为15的正方形,≈(利用计算器求值,精确到0.01).
3.填空:
(1)因为1.72=2.89,所以2.89的算术平方根等于,=;
(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈. (二)什么是平方根呢?大家先来思考这么一个问题.
(三)如果一个正数的平方等于9,这个正数是多少?
如果一个数的平方等于9,这个数是多少?
和算术平方根的概念类似,(指准32=9)我们把3叫做9的平方根,(指准(-3)2=9)把-3也叫做9的平方根,也就是3和-3是9的平方根(板书:3和-3是9的平方根).
我们再来看几个例子.
(师出示下表)
同学们大概已经明白了平方根的意思.平方根的概念与算术平方根的概念是类似的,谁会用一句话概括什么是平方根?
平方根:如果一个数的平方等于a,那么这个数叫做a的平方根.
大家把平方根概念默读两遍.(学生默读)
平方根概念与算术平方根概念只有一点点区别,哪一点点区别?
四、精讲精练
例1、求下面各数的平方根:
(1)100;(2)0.25;(3)0;(4)-4;
(1)因为(±10)2=100,所以100的平方根是+10和-10
(2)(±0.5)2=0.25,所以0.25的平方根是+0.5和-0.5
(3)0的平方是0,所以0的平方根是0
0的平方是0正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于-4.这说明什么?
从这个例题你能得出什么结论?(稍停片刻)正数有几个平方根?0有几个平方根?负数有几个平方根?
小组讨论:
正数有平方根(板书:正数有两个平方根).
平方根有什么关系?
0的平方根有个,平方根是.负数平方根
大家把平方根的这三条结论读两遍.
精练
1.填空:
(1)因为()2=49,所以49的平方根是;
(2)因为()2=0,所以0的平方根是;
(3)因为()2=1.96,所以1.96的平方根是;
2.填空:
(1)121的平方根是,121的算术平方根是;
(2)0.36的平方根是,0.36的算术平方根是;
(3) 的平方根是8和-8,的算术平方根是8;
(4) 的平方根是3
5

3
5
-,的算术平方根是
3
5
.
3.判断题:对的画“√”,错的画“×”.
(1)0的平方根是0 ()
(2)-25的平方根是-5;()
(3)-5的平方是25;()
(4)5是25的一个平方根;()
(5)25的平方根是5;()
(6)25的算术平方根是5;()
(7) 25的平方根是±5;()
(8)2
(5)
-的算术平方根是-5. ()
五、课堂小结:如果一个数的平方等于a,那么这个数叫做a的平方根.
六、作业P47 3 P48 8。

相关文档
最新文档