两条直线位置关系判断方法
平行线与垂直线的判断方法
平行线与垂直线的判断方法在几何中,平行线和垂直线是两个基本的概念。
正确判断平行线和垂直线的位置关系对于解决几何问题非常重要。
本文将介绍平行线和垂直线的定义,以及几种常见的方法来判断它们之间的关系。
一、平行线的定义平行线是指在同一个平面上,永远不会相交的直线。
两条平行线之间的距离保持相等,无论延长多远,它们也不会相交。
判断两条直线是否平行,我们可以使用以下方法:1.方法一:角度判断法角度判断法是用角度来判断两条直线是否平行。
如果两条直线有相同的斜率(斜率是指直线上一点的函数关系),那么它们是平行的。
例如,有两条直线y = 2x + 1和y = 2x + 3。
这两条直线的斜率都是2,因此它们是平行的。
2.方法二:距离判断法距离判断法是用两条平行线上的点的距离来判断它们是否平行。
如果两条平行线上的任意两点之间的距离相等,那么它们是平行的。
例如,有两条平行线l1和l2,它们上面分别有两个点A(x1, y1)和B(x2, y2),C(x3, y3)和D(x4, y4)。
如果AB的距离等于CD的距离,那么l1和l2是平行的。
二、垂直线的定义垂直线是指两条直线之间的夹角为90度。
两条垂直线相交时,互相垂直的两个角度之和为180度。
判断两条直线是否垂直,我们可以使用以下方法:1.方法一:斜率乘积法斜率乘积法是用两条直线的斜率之积来判断它们是否垂直。
如果两条直线的斜率之积为-1,那么它们是垂直的。
例如,有两条直线y = 2x + 1和y = -1/2x + 3/2。
这两条直线的斜率分别为2和-1/2,且它们的斜率之积为-1/2,因此它们是垂直的。
2.方法二:判断互为倒数另一种判断两条直线是否垂直的方法是通过判断它们的斜率是否互为倒数。
如果两条直线的斜率互为倒数,那么它们是垂直的。
例如,有两条直线y = 3x + 2和y = -1/3x + 1/3。
这两条直线的斜率分别为3和-1/3,它们互为倒数,因此它们是垂直的。
两条直线的位置关系(提高)__两条直线的位置关系(提高)知识讲解
两条直线的位置关系(提高)知识讲解撰稿:孙景艳审稿:吴婷婷【学习目标】1. 初步理解同一平面内的两直线的位置关系,初步认识相交线和平行线;2.了解对顶角、补角、余角,知道对顶角相等、等角的余角相等、等角的补角相等,并能解决一些实际问题;3. 理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;4. 理解点到直线的距离的概念,并会度量点到直线的距离.【要点梳理】要点一、同一平面内两条直线的位置关系同一平面内,两条直线的位置关系:相交和平行.要点诠释:(1)平行线:在同一平面内,不相交的两条直线叫做平行线.两直线平行,用符号“∥”表示. 如下图,两条直线互相平行,记作AB∥CD或a∥b.(2)互相重合的直线通常看做一条直线,两条线段或射线平行是指它们所在的直线平行.(3)相交线:若两条直线只有一个公共点,我们称这两条直线为相交线,这个公共点叫做交点.两条直线相交只有一个交点.要点二、对顶角、补角、余角1.余角与补角(1)定义:如果两个角的和是180°,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.类似地,如果两个角的和是90°,那么这两个角互为余角.简称互余,其中一个角叫做另一个角的余角.(2)性质:同角(等角)的余角相等.同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,而与它们的位置无关.(2)一个锐角的补角比它的余角大90°.2.对顶角(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.要点诠释:(1)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.(2)只有两条直线相交时,才能产生对顶角.两条直线相交时,除了产生对顶角外,还会产生邻补角,邻补角满足的条件:①有公共顶点;②有一条公共边,另一边互为反向延长线.(3)邻补角一定互为补角,但互为补角的角不一定是邻补角.(2)性质:对顶角相等.要点三、垂线1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.如下图.要点诠释:(1)记法:直线a 与b 垂直,记作:;a b ⊥ 直线AB 和CD 垂直于点O ,记作:AB⊥CD 于点O.(2) 垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:CD ⊥AB .90AOC ∠=°A A A AA A A A AA 判定性质2.垂线的画法:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).要点诠释:(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.3.垂线的性质:(1)平面内,过一点有且只有一条直线与已知直线垂直.(2)直线外一点与直线上各点连接的所有线段中,垂线段最短.简单说成:垂线段最短.要点诠释:(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.(2)性质(2)是“垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.4.点到直线的距离:定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.要点诠释:(1)点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.【典型例题】类型一、两条直线的位置关系1. 平面上有10条直线,其中4条直线交于一点,另有4条直线互相平行,这10条直线最多有几个交点?【答案与解析】解:如图,图中共有34个交点.【总结升华】10条直线中有八条直线的位置已经确定,要使10条直线的交点最多,就要使剩下的两条直线与前八条直线均相交.举一反三:【变式】不重合的两条直线的位置关系有 ( ).A .平行或垂直B .平行或相交C .不相交或相交D .平行、垂直或相交【答案】C 类型二、对顶角、补角、余角2.如图所示,已知直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE ,∠2:∠1=4:l ,求.AOF ∠【思路点拨】涉及有比值的题设条件,如a :b =m :n ,在解题时设,,这是a mx =b nx =常用的用方程思想解题的方法.【答案与解析】解:设∠1=x ,则∠2=4x .∵ OE 平分∠BOD ,∴ ∠BOD =2∠1=2x .∵ ∠2+∠BOD =180°,即4x+2x =180°,∴ x =30°.∵ ∠DOE+∠COE =180°,∴∠COE =150°.又∵ OF 平分∠COE ,∴ ∠COF =∠COE =75°.12∵ ∠AOC =∠BOD =60°,∴∠AOF=∠AOC+∠COF=60°+75°=135°.【总结升华】两条直线相交所成的四个角中,只要已知其中一个角,就可以求出另外三角.类型三、垂线3.下列语句:①两条直线相交,若其中一个交角是直角,那么这两条直线垂直.②一条直线的垂线有无数条.③空间内过一点有且只有一条直线与已知直线垂直;④两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直.其中正确的是__________.【思路点拨】解此题必须严格按照垂线的定义“两条直线相交成直角”及垂线的性质“过平面内任意一点,即过直线上或直线外任意一点,有且仅有一条直线与已知直线垂直”来作判断.【答案】①②【解析】①正确;②正确,过任意一点都可以作;对于③只有在“同一平面内”才成立,因为空间内,当这点在直线上时,过这点并非只有一条直线与已知直线垂直,故③错误;④错误,必须是两个邻角相等,如下图:【总结升华】“过一点有且只有一条直线与已知直线垂直”成立的前提是“在同一平面内”,若改为在“空间”,则过一点有无数条直线与已知直线垂直(以后学到).举一反三:【变式】在铁路旁有一城镇,现打算从城镇修一条和铁路垂直的道路,这种方案是唯一的,是因为()A.经过两点有且只有一条直线B.两点之问的所有连线中,线段最短C.在同一平面内,两直线同时垂直同一条直线,则这两直线也互相垂直.D.在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】D 提示:注意区分直线性质与垂线性质4. 如图,直线AB与CD相交于点O,OE⊥CD,OF⊥AB,∠DOF=65°,求∠BOE与∠AOC的度数.【答案与解析】解:∵OF⊥AB,OE⊥CD(已知)∴∠BOF=∠DOE=90°(垂直定义)∴∠BOD=∠BOF-∠DOF=90°-65°=25°∴∠BOE=∠DOE-∠BOD=90°-25°=65°.∴∠AOC=∠AOB-∠BOE-∠COE=180°-65°-90°=25°.【总结升华】利用垂直的定义,及同一条直线上的三点组成一个平角可以帮助我们求解图中某些角的大小.【高清课堂:相交线403101 例4变式(1)】举一反三:【变式】如图,若OM平分∠AOB,且OM ⊥ON,求证:ON平分∠BOC.【答案】证明:如图,∵OM平分∠AOB∴∠1=∠2又∵OM⊥ON∴∠3=90°-∠2由图可得:∠4=180°-2∠2-∠3=180°-2∠2-(90°-∠2)=90°-∠2∴∠3=∠4∴ ON平分∠BOC5.如图所示,一辆汽车在直线形公路AB上由A向B行驶,M、N分别是位于公路两侧的村庄.(1)设汽车行驶到公路AB上点P位置时,距离村庄M最近;行驶到点Q位置时,距离村庄N最近,请在图中的公路AB上分别画出点P和点Q的位置(保留作图痕迹).(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M、N两村庄都越来越近?在哪一段路上距离村庄N越来越近,而离村庄M越来越远?(分别用文字表述你的结论,不必说明)【答案与解析】解:(1)过点M作MP⊥AB,垂足为P,过点N作NQ⊥AB,垂足为Q,点P、Q就是要画的两点,如图所示.(2)当汽车从A向B行驶时,在AP这段路上,离两个村庄越来越近;在PQ这段路上,离村庄M越来越远,离村庄N越来越近.【总结升华】利用垂线段最短解决实际问题是常用的一种方法.举一反三:l l【变式】点P为直线外一点:点A、B、C为直线上三点,PA=4 cm,PB=5 cm,PCl=2 cm,则点P到直线的距离是().A.2 cm B.4 cm C.5 cm D.不超过2 cm【答案】D。
第讲两直线的位置关系
从而得两条直线的交点为(9,-4), 又当 x=9,y=-4 时,有 9(m-1)+(-4)(2m-1)=m-5, 即点(9,-4)在直线(m-1)x+(2m-1)y=m-5 上, 故直线(m-1)x+(2m-1)y=m-5 都通过定点(9,-4).
证法二:∵(m-1)x+(2m-1)y=m-5, ∴m(x+2y-1)-(x+y-5)=0. 则直线(m-1)x+(2m-1)y=m-5 都通过直线 x+2y-1=0 与 x+y-5=0 的交点. 由方程组xx+ +2y-y-51==00. , 解得 x=9,y=-4,即过点(9,-4). 所以直线(m-1)x+(2m-1)y=m-5 经过定点(9,-4).
(1)l1与l2相交;(2)l1⊥l2;(3)l1∥l2;(4)l1,l2重合. 解题思路:根据两直线的位置关系列式再求解.
解析:(1)由已知1×3≠m(m-2), 即m2-2m-3≠0,解得m≠-1且m≠3. 故当m≠-1且m≠3时,l1与l2相交. (2)当 1·(m-2)+m·3=0,即 m=12时,l1⊥l2. (3)当m-1 2=m3 且26m≠m3 ,即 m=-1 时,l1∥l2.
等于( D )
A.2
B.1
C.0
D.-1
4.(2010年上海)圆C:x2+y2-2x-4y+4=0的圆心到直线 3x+4y+4=0 的距离 d=__3__.
5.原点在直线l上的射影是P(-2,1),则l的斜率为__2_. 解析:kOP=-12=-12,则 kl=2.
考点1 两直线的平行与垂直关系
例1:已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0, 求m的值,使得:
证法三:∵(m-1)x+(2m-1)y=m-5, ∴m(x+2y-1)=x+y-5. 由 m 为任意实数,知关于 m 的一元一次方程 m(x+2y-1)= x+y-5 的解集为 R, ∴xx+ +2y-y-51==00. , 解得 x=9,y=-4. 所以直线(m-1)x+(2m-1)y=m-5 都通过定点(9,-4).
两条直线的位置关系知识点总结
两条直线的位置关系知识点总结在几何学中,直线是最基本的几何元素之一。
考虑两条直线之间的位置关系是几何学的一个基本问题。
在这篇文章中,我们将讨论两条直线的位置关系,并总结一些重要的知识点。
平行线当两条直线在同一平面内,且它们不相交(或在一个点相交)时,这两条直线被称为平行线。
我们常常使用符号“||”来表示平行线。
如果直线l和m平行,则我们可以表示它们为l || m。
平行线有一些重要的性质。
首先,平行线之间的距离始终相等。
其次,平行线之间的夹角始终相等。
因此,如果我们有两条平行线和一条横穿它们的第三条直线,则其中每一组相邻角度都相等。
这被称为平行线的交错内角定理。
垂直线另一种常见的直线位置关系是垂直线。
当两条直线在同一平面内且它们交叉成直角时,这两条直线被称为垂直线。
我们通常使用符号“⊥”来表示垂直。
垂直线也有一些重要的性质。
首先,当两条直线垂直相交时,它们之间的夹角恰好是90度。
其次,如果我们有一条直线和另一条线的垂线交叉,那么其中每一组相邻的角都是补角相等的。
这称为垂线的垂直角定理。
倾斜线倾斜线是指既不是平行线也不是垂直线的直线。
在考虑倾斜线的位置关系时,我们可能需要使用一些比较专业的术语。
首先,我们可以使用夹角的概念来描述两条倾斜线之间的位置关系。
如果两条倾斜线之间的夹角小于90度,则这两条线是锐角。
如果夹角等于90度,则这两条线是垂直线。
如果夹角大于90度,则这两条线是钝角。
其次,我们可以使用距离的概念来描述两条倾斜线之间的位置关系。
两条倾斜线之间的距离是它们之间最短的距离。
如果两条倾斜线从不相交,则它们的距离为零。
如果两条倾斜线相交,它们的距离将大于零。
总结在几何学中,考虑两条直线之间的位置关系是一个基本问题。
平行线的距离相等,夹角相等;而垂直线的夹角为90度,其相邻角度是补角相等的。
倾斜线的位置关系可以用夹角和距离来描述。
对于倾斜线,我们可以使用术语锐角、垂直线和钝角来描述它们之间的夹角。
高中数学必修二:两条直线的位置关系
高中数学必修二 第二节:两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( ) (5)两平行直线2x -y +1=0,4x -2y +1=0间的距离是0.( ) 答案:(1)× (2)× (3)√ (4)× (5)×2.若直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-43C .2D .3解析:选D 直线ax +2y -1=0的斜率k 1=-a 2,直线2x -3y -1=0的斜率k 2=23,因为两直线垂直,所以-a 2×23=-1,即a =3.3.(教材习题改编)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 的值为( ) A.2 B .2- 2 C.2-1D.2+1解析:选C 由题意知|a -2+3|2=1,∴|a +1|=2,又a >0,∴a =2-1.4.若直线2x -y =-10,y =x +1,y =ax -2交于一点,则a 的值为________.解析:由⎩⎪⎨⎪⎧ 2x -y =-10,y =x +1得⎩⎪⎨⎪⎧x =-9,y =-8.即直线2x -y =-10与y =x +1相交于点(-9,-8). 又因为直线2x -y =-10,y =x +1,y =ax -2交于一点, 所以-8=-9a -2,解得a =23.答案:235.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.答案:2考点一 两条直线的位置关系 (基础送分型考点——自主练透)[考什么·怎么考]1.已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解析:选A ∵l 1∥l 2,∴4-mm +2=-2(m ≠-2),解得m =-8(经检验,l 1与l 2不重合),∵l 2⊥l 3,∴2×1+1×n =0,解得n =-2,∴m +n =-10.2.已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2互相垂直,则实数a 的值为________.解析:l 1的斜率k 1=3a -01-(-2)=a .当a ≠0时,l 2的斜率k 2=-2a -(-1)a -0=1-2aa .因为l 1⊥l 2,所以k 1k 2=-1,即a ·1-2aa =-1,解得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴,A (-2,0),B (1,0),直线l 1为x 轴,显然l 1⊥l 2.综上可知,实数a 的值为1或0. 答案:1或03.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得⎩⎪⎨⎪⎧m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2.又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.[怎样快解·准解]1.解题要“前思后想”解决两直线平行与垂直的参数问题一定要“前思后想”2.方法要“因题而定”(1)已知两直线的斜率存在,判断两直线平行垂直的方法 ①两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; ②两直线垂直⇔两直线的斜率之积等于-1. (2)由一般式确定两直线位置关系的方法[注意] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题 (重点保分型考点——师生共研)1.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95 B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910,所以|PQ |的最小值为2910.2.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P 点坐标为________.解析:设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上, ∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②联立解得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. 答案:(1,-4)或⎝⎛⎭⎫277,-87[解题师说]距离问题的常见题型及解题策略(1)求两点间的距离.关键是确定两点的坐标,然后代入公式即可,一般用来判断三角形的形状等.(2)解决与点到直线的距离有关的问题.应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.(3)求两条平行线间的距离.要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.[冲关演练]1.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A.22B .1 C. 2D .2解析:选C 因为点P 是曲线y =x 2-ln x 上任意一点,所以当点P 处的切线和直线y =x -2平行时,点P 到直线y =x -2的距离最小.因为直线y =x -2的斜率等于1,曲线y =x 2-ln x 的导数y ′=2x -1x ,令y ′=1,可得x =1或x =-12(舍去),所以在曲线y =x 2-ln x 上与直线y =x -2平行的切线经过的切点坐标为(1,1),所以点P 到直线y =x -2的最小距离为2,故选C.2.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3 2B .2 2C .3 3D .4 2解析:选A 依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0.根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.考点三 对称问题 (题点多变型考点——追根溯源)[题点全练]角度(一) 点关于点的对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=0[题型技法] 若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.角度(二) 点关于线的对称2.在等腰直角三角形ABC 中,|AB |=|AC |=4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 的长度为( )A .2B .1 C.83D.43解析:选D 以AB 所在直线为x 轴,AC 所在直线为y 轴建立如图所示的坐标系,由题意可知B (4,0),C (0,4),A (0,0),则直线BC 的方程为x +y -4=0,设P (t,0)(0<t <4),由对称知识可得点P 关于BC 所在直线的对称点P 1的坐标为(4,4-t ),点P 关于y 轴的对称点P 2的坐标为(-t,0),根据反射定律可知P 1P 2所在直线就是光线RQ 所在直线.由P 1,P 2两点坐标可得P 1P 2所在直线的方程为y =4-t4+t·(x +t ),设△ABC 的重心为G ,易知G ⎝⎛⎭⎫43,43.因为重心G ⎝⎛⎭⎫43,43在光线RQ 上,所以有43=4-t 4+t ⎝⎛⎭⎫43+t ,即3t 2-4t =0.所以t =0或t =43,因为0<t <4,所以t =43,即|AP |=43,故选D.[题型技法] 若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).角度(三) 线关于点的对称3.已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A 对称的直线m 的方程为________________.解析:在直线l 上取两点B (1,1),C (10,7),B ,C 两点关于点A 的对称点为B ′(-3,-5),C ′(-12,-11),所以直线m 的方程为y +11-5+11=x +12-3+12,即2x -3y -9=0.答案:2x -3y -9=0[题型技法] 线关于点的对称的求解方法(1)在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;(2)求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.角度(四) 线关于线的对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________.解析:法一:联立⎩⎪⎨⎪⎧ 2x -y +3=0,x -y +2=0,得⎩⎪⎨⎪⎧x =-1,y =1.在直线2x -y +3=0上取一点(0,3),设其关于直线x -y +2=0的对称点为(a ,b ), 则⎩⎪⎨⎪⎧a 2-b +32+2=0,b -3a -0=-1,解得⎩⎪⎨⎪⎧a =1,b =2.故所求直线方程经过点(-1,1),(1,2),所以该直线方程为y -12-1=x +11+1,即x -2y +3=0.法二:设所求直线上任意一点P (x ,y ), 则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0. 答案:x -2y +3=0[题型技法] 线关于线的对称的求解方法(1)若直线与对称轴平行,则在直线上取一点,求出该点关于轴的对称点,然后用点斜式求解.(2)若直线与对称轴相交,则先求出交点,然后再取直线上一点,求该点关于轴的对称点,最后由两点式求解.[题“根”探求]1.“线关于点的对称”其实质就是“点关于点的对称”,只要在直线上取两个点,求出其对称点的坐标即可,可统称为“中心对称”.2.“线关于线的对称”其实质就是“点关于线的对称”,只要在直线上取两个点,求出其对称点的坐标即可,可统称为“轴对称”.3.解决对称问题的2个关键点(1)已知点与对称点的连线与对称轴垂直;(2)以已知点和对称点为端点的线段的中点在对称轴上.[冲关演练]1.(2018·湖北孝感五校联考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,y =2x ,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4). 2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.即M ′(1,0).又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=03.设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是________.解析:由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,所以直线PB 的方程为y -41-4=x -36-3,即x +y -7=0.答案:x +y -7=0(一)普通高中适用作业A 级——基础小题练熟练快1.过点(1,0)且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选C 因为直线x -2y -2=0的斜率为12,所以所求直线的斜率k =-2.所以所求直线的方程为y -0=-2(x -1), 即2x +y -2=0.2.(2018·北京顺义区检测)若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是( )A .(-6,-2)B .(-5,-3)C .(-∞,-6)D .(-2,+∞)解析:选A 解方程组⎩⎪⎨⎪⎧ y =-2x +3k +14,x -4y =-3k -2,得⎩⎪⎨⎪⎧x =k +6,y =k +2,因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,所以k +6>0且k +2<0,所以-6<k <-2.3.已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2)和B (a ,-1),且直线l 与l 1平行,则实数a 的值为( )A .0B .1C .6D .0或6解析:选C 由直线l 的倾斜角为3π4得l 的斜率为-1,因为直线l 与l 1平行,所以l 1的斜率为-1. 又直线l 1经过点A (3,2)和B (a ,-1),所以l 1的斜率为33-a ,故33-a=-1,解得a =6.4.若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故P (1,2)或(2,-1).5.(2018·西安一中检测)若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析:选B 由题知直线l 1过定点(4,0),则由条件可知,直线l 2所过定点关于(2,1)对称的点为(4,0),故可知直线l 2所过定点为(0,2),故选B.6.已知点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y -(2+5λ)=0(λ∈R),则点P 到直线l 的距离d 的最大值为( )A .2 3 B.10 C.14D .215解析:选B 由(1+3λ)x +(1+2λ)y -(2+5λ)=0,得(x +y -2)+λ(3x+2y -5)=0,此方程是过直线x +y -2=0和3x +2y -5=0交点的直线系方程.解方程组⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,可知两直线的交点为Q (1,1),故直线l 恒过定点Q (1,1),如图所示,可知d =|PH |≤|PQ |=10,即d 的最大值为10.7.直线x -2y +1=0关于直线x =1对称的直线方程是____________.解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=08.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________. 解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则|c +6|=⎪⎪⎪⎪c +32,解得c =-154,所以l 的方程为12x +8y -15=0.答案:12x +8y -15=09.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.答案:-13或-7910.(2018·湘中名校联考)已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.答案:x +2y -3=0B 级——中档题目练通抓牢1.已知A (1,2),B (3,1)两点到直线l 的距离分别是2,5-2,则满足条件的直线l 共有( )A .1条B .2条C .3条D .4条解析:选C 当A ,B 两点位于直线l 的同一侧时,一定存在这样的直线l ,且有两条.又|AB |=(3-1)2+(1-2)2=5,而点A 到直线l 与点B 到直线l 的距离之和为2+5-2=5,所以当A ,B 两点位于直线l 的两侧时,存在一条满足条件的直线.综上可知满足条件的直线共有3条.故选C.2.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则P 1P 2的中点P 到原点的距离的最小值是( )A.522B .5 2 C.1522D .15 2解析:选B 由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d =|-10|2=52,即P 到原点距离的最小值为5 2. 3.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎫0,10a ,则线段AB 的长为( ) A .11 B .10 C .9D .8解析:选B 依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎨⎧x -2y2=0,2x +y2=5,解得⎩⎪⎨⎪⎧x =4,y =2,所以A (4,8),B (-4,2),故|AB |=(4+4)2+(8-2)2=10. 4.(2018·湖南东部十校联考)经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________________.解析:法一:由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0,解得⎩⎨⎧x =-53,y =79,即交点为⎝⎛⎭⎫-53,79, ∵所求直线与直线3x +4y -7=0垂直, ∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝⎛⎭⎫x +53,即4x -3y +9=0.法二:由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0,可解得交点为⎝⎛⎭⎫-53,79, 代入4x -3y +m =0,得m =9, 故所求直线方程为4x -3y +9=0. 法三:由题意可设所求直线的方程为 (2x +3y +1)+λ(x -3y +4)=0, 即(2+λ)x +(3-3λ)y +1+4λ=0, ① 又因为所求直线与直线3x +4y -7=0垂直, 所以3(2+λ)+4(3-3λ)=0,所以λ=2,代入①式得所求直线方程为4x -3y +9=0. 答案:4x -3y +9=05.(2018·豫北重点中学联考)已知直线l 在两坐标轴上的截距相等,且点A (1,3)到直线l 的距离为2,则直线l 的方程为________________.解析:当直线过原点时,设直线方程为y =kx ,由点A (1,3)到直线l 的距离为2,得|k -3|1+k 2=2,解得k =-7或k =1,此时直线l 的方程为y =-7x 或y =x ;当直线不过原点时,设直线方程为x +y =a ,由点A (1,3)到直线l 的距离为2,得|4-a |2=2,解得a =2或a =6,此时直线l 的方程为x +y -2=0或x +y -6=0.综上所述,直线l 的方程为y =-7x 或y =x 或x +y -2=0或x +y -6=0. 答案:y =-7x 或y =x 或x +y -2=0或x +y -6=06.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)由已知可得l 2的斜率存在, ∴k 2=1-a .若k 2=0,则1-a =0,a =1. ∵l 1⊥l 2,直线l 1的斜率k 1必不存在,∴b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在.∵k 2=1-a ,k 1=ab ,l 1⊥l 2,∴k 1k 2=-1,即ab (1-a )=-1.① 又∵l 1过点(-3,-1), ∴-3a +b +4=0.②由①②联立,解得a =2,b =2. (2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab =1-a .③又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b =b .④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.7.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝⎛⎭⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.C 级——重难题目自主选做1.已知P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D 因为P (x 0,y 0)是直线l :Ax +By +C =0外一点, 设Ax 0+By 0+C =k ,k ≠0.若方程Ax +By +C +(Ax 0+By 0+C )=0, 则Ax +By +C +k =0.因为直线Ax +By +C +k =0和直线l 斜率相等, 但在y 轴上的截距不相等,故直线Ax +By +C +k =0和直线l 平行. 因为Ax 0+By 0+C =k ,而k ≠0, 所以Ax 0+By 0+C +k ≠0,所以直线Ax +By +C +k =0不过点P .2.设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( )A.22,12B.2,22C.2,12D.24,14解析:选A 由题意a ,b 是方程x 2+x +c =0的两个实根,所以ab =c ,a +b =-1.又直线x +y +a =0与x +y +b =0的距离d =|a -b |2,所以d 2=⎝ ⎛⎭⎪⎫|a -b |22=(a +b )2-4ab 2=(-1)2-4c 2=12-2c ,而0≤c ≤18,所以12-2×18≤12-2c ≤12-2×0,得14≤12-2c ≤12,所以12≤d ≤22,故选A. (二)重点高中适用作业A 级——保分题目巧做快做1.命题p :“a =-2”是命题q :“直线ax +3y -1=0与直线6x +4y -3=0垂直”成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 直线ax +3y -1=0与直线6x +4y -3=0垂直的充要条件是6a +12=0,即a =-2,故选A.2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( ) A.423B .4 2 C.823D .2 2解析:选C ∵l 1∥l 2,∴1a -2=a 3≠62a,解得a =-1, ∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =⎪⎪⎪⎪6-232=823.3.如果平面直角坐标系内的两点A (a -1,a +1),B (a ,a )关于直线l 对称,那么直线l 的方程为( )A .x -y +1=0B .x +y +1=0C .x -y -1=0D .x +y -1=0解析:选A 因为直线AB 的斜率为a +1-aa -1-a=-1,所以直线l 的斜率为1,设直线l的方程为y =x +b ,由题意知直线l 过点⎝⎛⎭⎫2a -12,2a +12,所以2a +12=2a -12+b ,解得b =1,所以直线l 的方程为y =x +1,即x -y +1=0.4.已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是( )A.⎝⎛⎭⎫12,12 B.⎝⎛⎭⎫22,22C.⎝⎛⎭⎫32,32D.⎝⎛⎭⎫52,52 解析:选A 因为定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,设直线AB 的方程为x +y +m =0,将A 点代入,解得m =-1,所以直线AB 的方程为x +y -1=0,它与x -y =0联立解得x =12,y =12,所以点B 的坐标是⎝⎛⎭⎫12,12.5.已知点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y -(2+5λ)=0(λ∈R),则点P 到直线l 的距离d 的最大值为( )A .2 3 B.10 C.14D .215解析:选B 由(1+3λ)x +(1+2λ)y -(2+5λ)=0,得(x +y -2)+λ(3x+2y -5)=0,此方程是过直线x +y -2=0和3x +2y -5=0交点的直线系方程.解方程组⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,可知两直线的交点为Q (1,1),故直线l 恒过定点Q (1,1),如图所示,可知d =|PH |≤|PQ |=10,即d 的最大值为10.6.若m >0,n >0,点(-m ,n )关于直线x +y -1=0的对称点在直线x -y +2=0上,那么1m +4n的最小值等于________.解析:设点(-m ,n )关于直线x +y -1=0的对称点为(a ,b ),则⎩⎪⎨⎪⎧b -n a +m =1,a -m 2+b +n 2-1=0,解得⎩⎪⎨⎪⎧a =1-n ,b =1+m .则(-m ,n )关于直线x +y -1=0的对称点为(1-n ,1+m ),则1-n -(1+m )+2=0,即m +n =2.于是1m +4n =12(m +n )⎝⎛⎭⎫1m +4n =12×⎝⎛⎭⎫5+n m +4m n ≥12×(5+2×2)=92,当且仅当m =23,n =43时等号成立. 答案:927.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 解析:因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34.则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形. 又k AD ·k AB =-1,即AD ⊥AB , 故四边形ABCD 为矩形. 故S =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25. 答案:258.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.解析:从特殊位置考虑.如图所示,∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4),∴kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,∴k FD >kA 1F ,即k FD ∈(4,+∞).答案:(4,+∞)9.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解:点C 到直线x +3y -5=0的距离 d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是 x +3y +m =0(m ≠-5),则点C 到直线x +3y +m =0的距离 d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是 x +3y +7=0.设与x +3y -5=0垂直的边所在直线的方程是 3x -y +n =0,则点C 到直线3x -y +n =0的距离 d =|-3+n |9+1=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 10.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO垂直的直线,如图.由l ⊥OP ,得k l ·k OP =-1, 因为k OP =-12,所以k l =-1k OP =2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.B 级——拔高题目稳做准做1.已知P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D 因为P (x 0,y 0)是直线l :Ax +By +C =0外一点, 设Ax 0+By 0+C =k ,k ≠0.若方程Ax +By +C +(Ax 0+By 0+C )=0, 则Ax +By +C +k =0.因为直线Ax +By +C +k =0和直线l 斜率相等, 但在y 轴上的截距不相等,故直线Ax +By +C +k =0和直线l 平行. 因为Ax 0+By 0+C =k ,而k ≠0, 所以Ax 0+By 0+C +k ≠0,所以直线Ax +By +C +k =0不过点P .2.设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx-sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:选C 由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin A a ,bx -sin B ·y +sinC =0的斜率k 2=b sin B,故k 1k 2=-sin A a ·b sin B =-1,则直线sin A ·x +ay -c =0与直线bx -sin B ·y +sin C =0垂直,故选C.3.设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( ) A.22,12 B.2,22 C.2,12 D.24,14解析:选A 由题意a ,b 是方程x 2+x +c =0的两个实根,所以ab =c ,a +b =-1.又直线x +y +a =0与x +y +b =0的距离d =|a -b |2,所以d 2=⎝ ⎛⎭⎪⎫|a -b |22=(a +b )2-4ab 2=(-1)2-4c 2=12-2c ,而0≤c ≤18,所以12-2×18≤12-2c ≤12-2×0,得14≤12-2c ≤12,所以12≤d ≤22,故选A. 4.(2018·豫北重点中学联考)已知直线l 在两坐标轴上的截距相等,且点A (1,3)到直线l 的距离为2,则直线l 的方程为________________. 解析:当直线过原点时,设直线方程为y =kx ,由点A (1,3)到直线l 的距离为2,得|k -3|1+k 2=2,解得k =-7或k =1,此时直线l 的方程为y =-7x 或y =x ;当直线不过原点时,设直线方程为x +y =a ,由点A (1,3)到直线l 的距离为2,得|4-a |2=2,解得a =2或a =6,此时直线l 的方程为x +y -2=0或x +y -6=0.综上所述,直线l 的方程为y =-7x 或y =x 或x +y -2=0或x +y -6=0.答案:y =-7x 或y =x 或x +y -2=0或x +y -6=05.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.解:(1)由已知可得l 2的斜率存在,∴k 2=1-a .若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,∴b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾), ∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在.∵k 2=1-a ,k 1=a b,l 1⊥l 2,∴k 1k 2=-1, 即a b(1-a )=-1.① 又∵l 1过点(-3,-1),∴-3a +b +4=0.②由①②联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即a b =1-a .③又∵坐标原点到这两条直线的距离相等,且l 1∥l 2,∴l 1,l 2在y 轴上的截距互为相反数,即4b =b .④联立③④,解得⎩⎪⎨⎪⎧ a =2,b =-2或⎩⎪⎨⎪⎧ a =23,b =2.∴a =2,b =-2或a =23,b =2. 6.一条光线经过点P (2,3)射在直线l :x +y +1=0上,反射后经过点Q (1,1),求:(1)入射光线所在直线的方程;(2)这条光线从P 到Q 所经路线的长度.解:(1)设点Q ′(x ′,y ′)为Q 关于直线l 的对称点,QQ ′交l 于M 点,∵k l =-1,∴k QQ ′=1,∴QQ ′所在直线的方程为y -1=1×(x -1),即x -y =0.由⎩⎪⎨⎪⎧ x +y +1=0,x -y =0,解得⎩⎨⎧ x =-12,y =-12,∴交点M ⎝⎛⎭⎫-12,-12,∴⎩⎨⎧ 1+x ′2=-12,1+y ′2=-12,解得⎩⎪⎨⎪⎧x ′=-2,y ′=-2,∴Q ′(-2,-2). 设入射光线与l 交于点N ,则P ,N ,Q ′三点共线,又P (2,3),Q ′(-2,-2),故入射光线所在直线的方程为y -(-2)3-(-2)=x -(-2)2-(-2),即5x -4y +2=0.(2)|PN |+|NQ |=|PN |+|NQ ′|=|PQ ′| =[2-(-2)]2+[3-(-2)]2=41,即这条光线从P 到Q 所经路线的长度为41.。
空间中直线与直线之间的位置关系
2.1.2空间中直线与直线之间的位置关系一、空间两直线的位置关系 1.异面直线(1)异面直线的定义:我们把不同在 的两条直线叫做异面直线. 即若a ,b 是异面直线,则不存在平面α,使a ⊂α且b ⊂α.(2)异面直线的画法:为了表示异面直线不共面的特点,通常用一个或两个平面衬托,如图:2.空间两直线的位置关系空间两条直线的位置关系有且只有三种:相交、平行和异面. (1) ——同一平面内,有且只有一个公共点; (2) ——同一平面内,没有公共点;学!科网 (3) ——不同在任何一个平面内,没有公共点. 3. 空间中两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线二、公理4与等角定理 1.公理4(1)自然语言:平行于同一条直线的两条直线互相 .(2)符号语言:a ,b ,c 是三条不同的直线, a ∥b ,b ∥c . (3)作用:判断或证明空间中两条直线平行. 公理4表述的性质也通常叫做空间平行线的传递性.用公理4证明空间两条直线,a c 平行的步骤(1)找到直线b ; (2)证明∥a b ,∥b c ; (3)得到∥a c .2.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角 . (2)符号语言:如图(1)(2)所示,在∠AOB 与∠A ′O ′B ′中,OA ∥O ′A ′,OB ∥O ′ B ′,则∠AOB =∠A ′O ′B ′或∠AOB +∠A ′O ′B ′=180°.图(1) 图(2)三、异面直线所成的角1.两条异面直线所成的角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的 叫做异面直线a 与b 所成的角(或夹角).(1)在定义中,空间一点O 是任取的,根据等角定理,可以判定a ′,b ′所成的角的大小与点O 的位置无关.为了简便,点O 常取在两条异面直线中的一条上.(2)研究异面直线所成的角,就是通过平移把异面直线转化为相交直线,即把求空间角问题转化为求平面角问题,这是研究空间图形的一种基本思路.2.异面直线所成的角的范围异面直线所成的角必须是锐角或直角,则这个角α的取值范围为 . 3.两条异面直线垂直的定义如果两条异面直线所成的角是 ,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .4.构造异面直线所成角的方法(1)过其中一条直线上的已知点(往往是特殊点)作另一条直线的平行线;(2)当异面直线依附于某几何体,且直接平移异面直线有困难时,可利用该几何体的特殊点,将两条异面直线分别平移相交于该点;(3)构造辅助平面、辅助几何体来平移直线.注意,若求得的角为钝角,则两异面直线所成的角应为其补角.学科*网5.求两条异面直线所成的角的步骤(1)平移:选择适当的点,平移异面直线中的一条或两条,使其成为相交直线; (2)证明:证明作出的角就是要求的角; (3)计算:求角度(常利用三角形的有关知识);(4)结论:若求出的角是锐角或直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角.K 知识参考答案:一、1.(1)任何一个平面内2.(1)相交直线 (2)平行直线 (3)异面直线 二、1.(1)平行 (2)a ∥c 2.(1)相等或互补 三、1.锐角(或直角) 2.090α<≤ 3.直角K—重点掌握公理4及等角定理,异面直线及其所成的角K—难点理解两异面直线所成角的定义,并会求两异面直线所成的角K—易错忽略异面直线所成的角的范围致误1.空间两直线的位置关系的判断空间两直线的位置关系有平行、相交、异面三种情形,因此对于空间两直线位置关系的判断,应由题意认真分析,进而确定它们的位置关系.【例1】如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM 与DD1是异面直线.其中正确的结论为A.③④B.①②C.①③D.②④【答案】A【解析】∵A、M、C、C1四点不共面,∴直线AM与CC1是异面直线,故①错误;同理,直线AM与BN也是异面直线,故②错误.同理,直线BN与MB1是异面直线,故③正确;同理,直线AM与DD1是异面直线,故④正确.故选A.【方法技巧】判定或证明两直线异面的常用方法:1.定义法:不同在任何一个平面内的两条直线.2.定理法:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.3.推论法:一条直线上两点与另一条与它异面的直线上两点所连成的两条直线为异面直线.4.反证法:证明立体几何问题的一种重要方法. 证明步骤有三步:第一步是提出与结论相反的假设;第二步是由此假设推出与已知条件或某一公理、定理或某一已被证明是正确的命题相矛盾的结果;第三步是推翻假设,从而原命题成立. 2.公理4的应用证明两条直线平行的方法: (1)平行线的定义;(2)利用平面几何的知识,如三角形与梯形的中位线、平行四边形的性质、平行线分线段成比例定理等; (3)利用公理4.【例2】如图,△ABC 的各边对应平行于111△A B C 的各边,点E ,F 分别在边AB ,AC 上,且1,3AE AB AF ==13AC ,试判断EF 与的位置关系,并说明理由.【解析】平行.理由如下: ∵11,33AE AB AF AC ==,∴∥EF BC . 又11∥B C BC ,∴11∥B C EF . 3.等角定理利用等角定理解题的关键是不要漏掉两个角互补的这种情况. 【例3】空间两个角α,β的两边分别对应平行,且α=60°,则β为 A .60° B .120° C .30°D .60°或120°【答案】D【解析】∵空间两个角α,β的两边对应平行,∴这两个角相等或互补,∵α=60°,∴β=60°或120°.故选D . 【名师点睛】根据公理4知道当空间两个角α与β的两边对应平行时,得到这两个角相等或互补,根据所给的角的度数,即可得到β的度数.【例4】如图所示,已知棱长为a 的正方体中,M ,N 分别是棱的中点.(1)求证:四边形是梯形; (2)求证:(2)由(1)知MN ∥A 1C 1,又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角,∴∠DNM =∠D 1A 1C 1. 4.两异面直线所成的角通过平移直线至相交位置求两条异面直线所成的角,是数学中转化思想的运用,也是立体几何问题的一个难点.【例5】如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A.90B.75C.60D.45【答案】A【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几,放置在三角形中,利用何体的结构特征,把空间中异面直线CD和PB所成的角转化为平面角AEF解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.5.忽略异面直线所成的角的范围致误【例6】如图,已知空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点,且直线BC与MN所成的角为30°,求BC与AD所成的角.【错因分析】在未判断出∠MEN 是锐角或直角还是钝角之前,不能断定它就是两异面直线所成的角,因为异面直线所成的角α的取值范围是090α<≤,如果∠MEN 为钝角,那么它的补角才是异面直线所成的角. 学#科网【正解】以上同错解,求得∠MEN =120°,即BC 与AD 所成的角为60°.【误区警示】求异面直线所成的角的时候,要注意异面直线所成的角α的取值范围是090α<≤.1.若,a b 为异面直线,直线c a ∥,则c 与b 的位置关系是 A .相交 B .异面 C .平行 D .异面或相交 2.已知∥AB PQ ,∥BC QR ,∠ABC =30°,则∠PQR 等于 A .30° B .30°或150° C .150° D .以上结论都不对 3.已知异面直线,a b 分别在平面,αβ内,且c αβ=,那么直线c 一定A .与a b ,都相交B .只能与a b ,中的一条相交C .至少与a b ,中的一条相交D .与a b ,都平行 4.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有A .2对B .3对C .4对D .6对5.如图,四面体ABCD 中,AD BC =,且AD BC ⊥,E F 、分别是AB CD 、的中点,则EF 与BC 所成的角为A .30B .45C .60D .906.如果OA //O A '',OB //O B '',那么AOB ∠和A O B '''∠的关系为 . 7.下列命题中不正确的是________.(填序号)①没有公共点的两条直线是异面直线; ②分别和两条异面直线都相交的两直线异面;③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行; ④一条直线和两条异面直线都相交,则它们可以确定两个平面.8.如图所示,两个三角形ABC 和A'B'C'的对应顶点的连线AA',BB',CC'交于同一点O , 且AO BO COOA OB OC =='''.求证:△∽△ABC A B C '''.9.空间四边形ABCD中,AB=CD且AB与CD所成的角为60°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.10.分别和两条异面直线相交的两条不同直线的位置关系是A.相交B.异面C.异面或相交D.平行11.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为A.相交B.平行C .异面而且垂直D .异面但不垂直12.如图,正四棱锥ABCD P 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于_________.ECDPAB13.如图,若P 是△ABC 所在平面外一点,PA ≠PB ,PN ⊥AB ,N 为垂足,M 为AB 的中点,求证:PN 与MC 为异面直线.14.(2016上海)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是BC D E F A B 11D 1A .直线AA 1B .直线A 1B 1C .直线A 1D 1 D .直线B 1C 115.(2015广东)若直线l 1与l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是 A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交16.(2015浙江)如图,直三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB =AC =AA 1=1,BC =2,则异面直线A 1C 与B 1C 1所成的角为A .30°B .45°C .60°D .90°17.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定1 2 3 4 5 10 11 14 15 16 17 DBCBBCDDDCD1.【答案】D【解析】c a ∥,a b ,为异面直线,所以c 与b 的位置关系是异面或相交.4.【答案】B【解析】根据异面直线的定义观察图形,可知有三对异面直线,分别是PB 与AC 、P A 与BC 、PC 与AB ,故选B. 5.【答案】B【解析】如图,设G 为AC 的中点,连接,EG FG .由中位线可知,∥∥EG BC GF AD ,所以GEF ∠就是EF 与BC 所成的角,且三角形GEF 为等腰直角三角形,所以45GEF ∠=.6.【答案】相等或互补【解析】根据等角定理的概念可知AOB ∠和A O B '''∠的关系为相等或互补. 7.【答案】①②8.【解析】∵AA'与BB'交于点O ,且AO BOOA OB='',∴AB ∥A'B'.同理,AC ∥A'C'.又∠BAC 与∠B'A'C'两边的方向相反,∴∠BAC =∠B'A'C'. 同理,∠ABC =∠A'B'C'. 因此,△∽△ABC A B C '''.9.【解析】如图,取AC 的中点G ,连接EG 、FG ,则EG ∥AB ,GF ∥CD ,且由AB =CD 知EG =FG ,∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角. ∵AB 与CD 所成的角为60°,∴∠EGF =60°或120°. 由EG =FG 知△EFG 为等腰三角形, 当∠EGF =60°时,∠GEF =60°;当∠EGF =120°时,∠GEF =30°.学@科网 故EF 与AB 所成的角为60°或30°.10.【答案】C【解析】(1)若两条直线与两异面直线的交点有4个,如图(1),两条直线异面;(2)若两条直线与两异面直线的交点有3个,如图(2),两条直线相交.故选C.(1) (2)【误区警示】在判断两直线的位置关系时,要全面思考问题,可通过画出相关图形帮助分析,从而防止遗漏.本题中,没有明确指出直线交点的个数,两条直线分别与两异面直线相交,交点可能有4个,此时两条直线异面,也可能有3个,此时两条直线相交.11.【答案】D【解析】将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.13.【解析】假设PN与MC不是异面直线,则存在一个平面α,使得PN⊂α,MC⊂α,于是P∈α,C∈α,N∈α,M∈α.∵PA≠PB,PN⊥AB,N为垂足,M是AB的中点,∴M,N不重合.∵M∈α,N∈α,∴直线MN⊂α.∵A∈MN,B∈MN,∴A∈α,B∈α.即A,B,C,P四点均在平面α内,这与点P在平面ABC外相矛盾.∴假设不成立,则PN与MC是异面直线.16.【答案】C【解析】根据题意,得BC∥B1C1,故异面直线A1C与B1C1所成的角即BC与A1C所成的角.如图,连接A 1B ,在△A 1BC 中,BC =A 1C =A 1B =2,故∠A 1CB =60°,即异面直线A 1C 与B 1C 1所成的角为60°.故选C.17.【答案】D【解析】如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,则14l l ∥;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA。
第2节 两直线的位置关系
第2节 两直线的位置关系知识梳理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=特别地,原点O (0,0)与任一点P (x ,y )的距离|OP | (2)点到直线的距离公式平面上任意一点P0(x 0,y 0)到直线l :Ax +By +C =0的距离d(3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =4.对称问题(1)点P (x 0,y 0)关于点A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y 0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x 02+b ,可求出x ′,y ′.1.两直线平行的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行的充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). 2.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0.3.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在.2.两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( )A.235B.2310 C .7 D.72 答案 D解析 由题意知a =6,直线3x +4y -12=0可化为6x +8y -24=0,所以两平行直线之间的距离为|11+24|36+64=72.3.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎨⎧y =2x ,x +y =3,得⎩⎨⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.4.(2021·武汉联考)若直线ax +4y -2=0与直线2x -5y +b =0垂直,垂足为(1,c ),则a +b +c =( )A .-2B .-4C .-6D .-8 答案 B解析 ∵直线ax +4y -2=0与直线2x -5y +b =0垂直,∴-a 4×25=-1, ∴a =10,∴直线ax +4y -2=0的方程即为5x +2y -1=0. 将点(1,c )的坐标代入上式可得5+2c -1=0, 解得c =-2.将点(1,-2)的坐标代入方程2x -5y +b =0得2-5×(-2)+b =0,解得b =-12.∴a +b +c =10-12-2=-4.故选B.5.(2020·淮南二模)设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 答案 A解析 当λ=-3时,两条直线的方程分别为6x +4y +1=0,3x +2y -2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的充分不必要条件,故选A.6.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 答案 4解析 法一 由题意可设P ⎝ ⎛⎭⎪⎫x 0,x 0+4x 0(x 0>0), 则点P 到直线x +y =0的距离d =⎪⎪⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号.故所求最小值是4.法二 设P ⎝ ⎛⎭⎪⎫x 0,4x 0+x 0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x 20.令1-4x 20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的点P 到直线x +y =0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4.考点一 两直线的平行与垂直【例1】已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a2x -3, l 2:y =11-ax -(a +1), l 1∥l 2⇔⎩⎪⎨⎪⎧-a2=11-a ,-3≠-(a +1),解得a =-1,综上可知,当a =-1时,l 1∥l 2. 法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎨⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇔⎩⎨⎧a 2-a -2=0,a (a 2-1)≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝ ⎛⎭⎪⎫-a 2·11-a=-1,得a =23. 法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0,可得a =23.感悟升华 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【训练1】 (1)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( )A .6x -4y -3=0B .3x -2y -3=0C .2x +3y -2=0D .2x +3y -1=0(2)(多选题)(2021·重庆调研)已知直线l 1:x +my -1=0,l 2:(m -2)x +3y +3=0,则下列说法正确的是( ) A .若l 1∥l 2,则m =-1或m =3 B .若l 1∥l 2,则m =3 C .若l 1⊥l 2,则m =-12 D .若l 1⊥l 2,则m =12 答案 (1)A (2)BD解析 (1)因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.(2)若直线l 1∥l 2,则3-m (m -2)=0,解得m =3或m =-1,但m =-1时,两直线方程分别为x -y -1=0,-3x +3y +3=0即x -y -1=0,两直线重合,只有m =3时两直线平行,A 错误,B 正确;若l 1⊥l 2,则m -2+3m =0,m =12,C 错误,D 正确.考点二 两直线的交点与距离问题【例2】 (1)(2021·淮南模拟)已知直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限,则实数k 的取值范围为( ) A.⎝ ⎛⎭⎪⎫-32,-1 B.⎝ ⎛⎭⎪⎫-∞,-32∪(-1,+∞) C.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫-13,12 (2)(2021·广州模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________. 答案 (1)D (2)[0,10]解析 (1)联立⎩⎨⎧kx -y +2k +1=0,2x +y -2=0,解得x =1-2k 2+k ,y =2+6k 2+k (k ≠-2).∵直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限, ∴1-2k 2+k >0,且2+6k2+k >0. 解得-13<k <12.故选D.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解之得0≤a ≤10, 所以a 的取值范围是[0,10].感悟升华 1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等.【训练2】 (1)(多选题)(2020·济宁调研)已知直线l 1:2x +3y -1=0和l 2:4x +6y -9=0,若直线l 到直线l 1的距离与到直线l 2的距离之比为1∶2,则直线l 的方程为( )A .2x +3y -8=0B .4x +6y +5=0C .6x +9y -10=0D .12x +18y -13=0(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________________. 答案 (1)BD (2)5x +3y -1=0解析 (1)设直线l :4x +6y +m =0,m ≠-2且m ≠-9,直线l 到直线l 1和l 2的距离分别为d 1,d 2,由题知:d 1=|m +2|16+36,d 2=|m +9|16+36,因为d 1d 2=12,所以2|m +2|16+36=|m +9|16+36,即2|m +2|=|m +9|,解得m =5或m =-133,即直线l 为4x +6y +5=0或12x +18y -13=0. (2)先解方程组⎩⎨⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53, 于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0. 考点三 对称问题角度1 点关于点对称【例3】过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.感悟升华 1.点关于点的对称:点P (x ,y )关于M (a ,b )对称的点P ′(x ′,y ′)满足⎩⎨⎧x ′=2a -x ,y ′=2b -y . 2.直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.角度2 点关于线对称【例4】一束光线经过点P (2,3)射在直线l :x +y +1=0上,反射后经过点Q (1,1),则入射光线所在直线的方程为________. 答案 5x -4y +2=0解析 设点Q (1,1)关于直线l 的对称点为Q ′(x ′,y ′),由已知得⎩⎪⎨⎪⎧y ′-1x ′-1=1,x ′+12+y ′+12+1=0,解得⎩⎨⎧x ′=-2,y ′=-2,即Q ′(-2,-2),由光学知识可知,点Q ′在入射光线所在的直线上,又k PQ ′=3-(-2)2-(-2)=54,∴入射光线所在直线的方程为y -3=54(x -2),即5x -4y +2=0.感悟升华 1.若点A (a ,b )与点B (m ,n )关于直线Ax +By +C =0(A ≠0,B ≠0)对称,则直线Ax +By +C =0垂直平分线段AB ,即有⎩⎪⎨⎪⎧n -b m -a ·⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.2.几个常用结论(1)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ). (2)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ).(3)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x ,2b -y ).角度3 线关于线对称【例5】 (1)(2021·成都诊断)与直线3x -4y +5=0关于x 轴对称的直线的方程是( )A .3x -4y +5=0B .3x -4y -5=0C .3x +4y -5=0D .3x +4y +5=0(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________. 答案 (1)D (2)x -2y +3=0解析 (1)设所求直线上点的坐标(x ,y ),则关于x 轴的对称点(x ,-y )在已知的直线3x -4y +5=0上,所以所求对称直线方程为3x +4y +5=0,故选D. (2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎨⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0.感悟升华 求直线l 1关于直线l 对称的直线l 2有两种处理方法:(1)在直线l 1上取两点(一般取特殊点),利用点关于直线的对称的方法求出这两点关于直线l 的对称点,再用两点式写出直线l 2的方程.(2)设点P (x ,y )是直线l 2上任意一点,其关于直线l 的对称点为P 1(x 1,y 1)(P 1在直线l 1上),根据点关于直线对称建立方程组,用x ,y 表示出x 1,y 1,再代入直线l 1的方程,即得直线l 2的方程.【训练3】已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 对称的直线l ′的方程.解(1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,即A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,即M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3).又m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一 在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3),则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设Q (x ,y )为l ′上任意一点,则Q (x ,y )关于点A (-1,-2)的对称点为 Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.活用直线系方程具有某些共同特点的所有直线的全体称为直线系,直线系方程问题是高中数学中的一类重要问题,在解题中有着重要的应用.在直线方程求解中,可以由特定条件设出直线系方程,再结合题目中其他条件求出具体直线,这个解题思路在解决许多问题时,往往能起到化繁为简,化难为易的作用.一、相交直线系方程【例1】已知两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点为P ,求过点P 且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 法一 解l 1与l 2组成的方程组得到交点P (0,2),因为k 3=34,所以直线l 的斜率k =-43,方程为y -2=-43x ,即4x +3y -6=0.法二 设所求直线l 的方程为4x +3y +c =0,由法一可知P (0,2),将其代入方程,得c =-6,所以直线l 的方程为4x +3y -6=0.法三 设所求直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0,因为直线l 与l 3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l 的方程为4x +3y -6=0.二、平行直线系方程【例2】已知直线l 1与直线l 2:x -3y +6=0平行,l 1与x 轴、y 轴围成面积为8的三角形,请求出直线l 1的方程.解 设直线l 1的方程为x -3y +c =0(c ≠6),令y =0,得x =-c ;令x =0,得y =c 3,依照题意有12×|-c |×⎪⎪⎪⎪⎪⎪c 3=8,c =±4 3.所以l 1的方程是x -3y ±43=0. 【例3】已知直线方程3x -4y +7=0,求与之平行且在x 轴、y 轴上的截距和是1的直线l 的方程.解 法一 设存在直线l :x a +y b =1,则a +b =1和-b a =34组成的方程组的解为a=4,b =-3.故l 的方程为x 4-y 3=1,即3x -4y -12=0.法二 根据平行直线系方程可设直线l 为3x -4y +c =0(c ≠7),则直线l 在两坐标轴上截距分别对应的是-c 3,c 4,由-c 3+c 4=1,知c =-12.故直线l 的方程为3x -4y -12=0.三、垂直直线系方程【例4】求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解 因为所求直线与直线2x +y -10=0垂直,所以设直线方程为x -2y +c =0,又直线过点A (2,1),所以有2-2×1+c =0,解得c =0,即所求直线方程为x -2y =0.思维升华 直线系方程的常见类型1.过定点P (x 0,y 0)的直线系方程是y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0);2.平行于已知直线Ax +By +C =0的直线系方程是Ax +By +λ=0(λ是参数且λ≠C );3.垂直于已知直线Ax +By +C =0的直线系方程是Bx -Ay +λ=0(λ是参数);4.过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R,但不包括l2).A级基础巩固一、选择题1.已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a=() A. 2 B.2- 2 C.2-1 D.2+1答案C解析由题意得|a-2+3|1+1=1.解得a=-1+2或a=-1- 2.∵a>0,∴a=-1+ 2.2.已知直线l过点(0,7),且与直线y=-4x+2平行,则直线l的方程为() A.y=-4x-7 B.y=4x-7C.y=4x+7 D.y=-4x+7答案D解析过点(0,7)且与直线y=-4x+2平行的直线方程为y-7=-4x,即直线l 的方程为y=-4x+7,故选D.3.已知b>0,直线(b2+1)x+ay+2=0与直线x-b2y-1=0垂直,则ab的最小值为()A.1 B.2 C.2 2 D.23答案B解析由已知两直线垂直可得(b2+1)-ab2=0,即ab2=b2+1,又b>0,所以ab=b+1 b.由基本不等式得b+1b≥2b·1b=2,当且仅当b=1时等号成立,所以(ab)min=2.故选B.4.坐标原点(0,0)关于直线x-2y+2=0对称的点的坐标是()A.⎝ ⎛⎭⎪⎫-45,85B.⎝ ⎛⎭⎪⎫-45,-85 C.⎝ ⎛⎭⎪⎫45,-85 D.⎝ ⎛⎭⎪⎫45,85 答案 A解析 设对称点的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧x 02-2×y 02+2=0,y 0=-2x 0,解得⎩⎪⎨⎪⎧x 0=-45,y 0=85,即所求点的坐标是⎝ ⎛⎭⎪⎫-45,85. 5.(2020·豫西五校联考)过点P (1,2)作直线l ,若点A (2,3),B (4,-5)到它的距离相等,则直线l 的方程为( )A .4x +y -6=0或x =1B .3x +2y -7=0C .4x +y -6=0或3x +2y -7=0D .3x +2y -7=0或x =1答案 C解析 若A ,B 位于直线l 的同侧,则直线l ∥AB .k AB =3+52-4=-4,∴直线l 的方程为y -2=-4(x -1),即4x +y -6=0;若A ,B 位于直线l 的两侧,则直线l 必经过线段AB 的中点(3,-1),∴k l =2-(-1)1-3=-32,∴直线l 的方程为y -2=-32(x -1),即3x +2y -7=0. 综上,直线l 的方程为4x +y -6=0或3x +2y -7=0,故选C.6.(多选题)(2021·泰安调研)已知直线l :(a 2+a +1)x -y +1=0,其中a ∈R ,则下列说法正确的是( )A .当a =-1时,直线l 与直线x +y =0垂直B .若直线l 与直线x -y =0平行,则a =0C .直线l 过定点(0,1)D .当a =0时,直线l 在两坐标轴上的截距相等答案 AC解析 对于A 项,当a =-1时,直线l 的方程为x -y +1=0,显然与x +y =0垂直,所以正确;对于B 项,若直线l 与直线x -y =0平行,可知(a 2+a +1)·(-1)=1·(-1),解得a =0或a =-1,所以不正确;对于C 项,当x =0时,有y =1,所以直线过定点(0,1),所以正确;对于D 项,当a =0时,直线l 的方程为x -y +1=0,在两轴上的截距分别是-1,1,所以不正确.7.(2021·宝鸡模拟)光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6B .a =-3,b =16C .a =3,b =-16D .a =-13,b =-6答案 D解析 由题意,直线y =-3x +b 与直线y =ax +2关于直线y =-x 对称, 所以直线y =ax +2上的点(0,2)关于直线y =-x 的对称点(-2,0)在直线y = -3x +b 上,所以(-3)×(-2)+b =0,所以b =-6,所以直线y =-3x -6上的点(0,-6)关于直线y =-x 的对称点(6,0)在直线y =ax +2上,所以6a +2=0,所以a =-13.8.(多选题)(2021·长沙模拟)已知直线l :3x -y +1=0,则下列结论正确的是( )A .直线l 的倾斜角是π6B .若直线m :x -3y +1=0,则l ⊥mC .点(3,0)到直线l 的距离是2D .过(23,2)与直线l 平行的直线方程是3x -y -4=0答案 CD解析 对于A ,直线l :3x -y +1=0的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B ,因为直线m :x -3y +1=0的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C ,点(3,0)到直线l 的距离d =|3·3-0+1|(3)2+(-1)2=2,故C 正确;对于D ,过(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得: 3x -y -4=0,故D 正确.二、填空题9.(2020·南昌重点中学联考)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.答案 x +2y -3=0解析 由题意可知圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),由已知得直线l 2的斜率k =-12,所以直线l 2的方程为y -2=-12(x +1),即x +2y -3=0.10.直线x -2y -3=0关于定点M (-2,1)对称的直线方程是________. 答案 x -2y +11=0解析 设所求直线上任一点(x ,y ),则关于M (-2,1)的对称点(-4-x ,2-y )在已知直线上,∴所求直线方程为(-4-x )-2(2-y )-3=0,即x -2y +11=0.11.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则PQ 的最小值为________.答案 2910解析 因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910. 12.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________.答案 25解析 因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43. k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形.又k AD ·k AB =-1,即AD ⊥AB ,故四边形ABCD 为矩形.故S四边形ABCD =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25.B 级 能力提升13.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线的方程分别是x =0,y =x ,则直线BC 的方程是( )A .y =3x +5B .y =2x +3C .y =2x +5D .y =-x 2+52答案 C解析 A 关于直线x =0的对称点是A ′(-3,-1),关于直线y =x 的对称点是A ″(-1,3),由角平分线的性质可知,点A ′,A ″均在直线BC 上,所以直线BC 的方程为y =2x +5.故选C.14.(多选题)(2021·南京调研)已知直线l 1:ax -y +1=0,l 2:x +ay +1=0,a ∈R ,以下结论正确的是( )A .不论a 为何值,l 1与l 2都互相垂直B .当a 变化时,l 1与l 2分别经过定点A (0,1)和B (-1,0)C .不论a 为何值,l 1与l 2都关于直线x +y =0对称D .如果l 1与l 2交于点M ,则|MO |的最大值是2答案 ABD解析 对于A ,a ×1+(-1)×a =0恒成立,l 1与l 2都互相垂直恒成立,故A 正确;对于B ,直线l 1:ax -y +1=0,当a 变化时,x =0,y =1恒成立,所以l 1恒过定点A (0,1);l 2:x +ay +1=0,当a 变化时,x =-1,y =0恒成立,所以l 2恒过定点B (-1,0),故B 正确;对于C ,在l 1上任取点(x ,ax +1),关于直线x +y =0对称的点的坐标为(-ax -1,-x ),代入l 2:x +ay +1=0,则等式左边不恒等于0,故C 不正确;对于D ,联立⎩⎨⎧ax -y +1=0,x +ay +1=0,解得⎩⎪⎨⎪⎧x =-a -1a 2+1,y =-a +1a 2+1,即M ⎝ ⎛⎭⎪⎫-a -1a 2+1,-a +1a 2+1, 所以|MO |=⎝ ⎛⎭⎪⎫-a -1a 2+12+⎝ ⎛⎭⎪⎫-a +1a 2+12=2a 2+1≤2,所以|MO |的最大值是2,故D 正确.15.已知直线l 经过直线2x +y -5=0与x -2y =0的交点,若点A (5,0)到直线l 的距离为3,则l 的方程为________.答案 x =2或4x -3y -5=0解析 法一 两直线交点为(2,1),当斜率不存在时,所求直线方程为x -2=0,此时A 到直线l 的距离为3,符合题意;当斜率存在时,设其为k ,则所求直线方程为y -1=k (x -2),即kx -y +(1-2k )=0.由点到线的距离公式得d =|5k +1-2k |k 2+1=3,解得k =43,故所求直线方程为4x -3y -5=0.综上知,所求直线方程为x -2=0或4x -3y -5=0.法二 经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=2或λ=12. 所以l 的方程为x =2或4x -3y -5=0.16.已知点A (4,-1),B (8,2)和直线l :x -y -1=0,动点P (x ,y )在直线l 上,则|P A |+|PB |的最小值为________.答案 65解析 设点A 1与A 关于直线l 对称,P 0为A 1B 与直线l 的交点,∴|P 0A 1|=|P 0A |,|P A 1|=|P A |.在△A 1PB 中,|P A 1|+|PB |>|A 1B |=|A 1P 0|+|P 0B |=|P 0A |+|P 0B |,∴|P A |+|PB |≥|P 0A |+|P 0B |=|A 1B |.当P 点运动到P 0时,|P A |+|PB |取得最小值|A 1B |.设点A 关于直线l 的对称点为A (x 1,y 1),则由对称的充要条件知⎩⎪⎨⎪⎧y 1+1x 1-4·1=-1,x 1+42-y 1-12-1=0,解得⎩⎨⎧x 1=0,y 1=3,∴A 1(0,3). ∴(|P A |+|PB |)min =|A 1B |=82+(-1)2=65.。
两直线位置关系判断方法
两直线位置关系判断方法
两直线位置关系的判断方法有多种,其中一种常见的方法是利用斜率。
如果两条直线都存在斜率,则当斜率不相等时,两直线相交;斜率相等,则可根据两直线在Y轴的截距是否相等判断是平行还是重合:截距相等则重合。
斜率相等时,直线重合也可根据两条直线是否有公共点来确定。
另一种判断方法是利用投影。
在工程制图中,两直线的位置关系一般有以下几种:
1. 平行,其判断依据为两条直线的投影在各投影面上都平行;
2. 相交,其判断依据为两条直线的相交点,在三视图上符合投影规律;
3. 交叉(异面直线),其判断依据为两条直线的相交点,在三视图上不符合投影规律。
以上是判断两直线位置关系的方法,建议查阅数学教材或咨询数学老师以获取更多信息。
空间中两直线的位置关系
平行直线不会相交于 任何点,除非它们是 同一条直线。
平行直线具有相同的 方向向量,但长度可 以不同。
平行直线的性质
平行直线之间的距离是恒定的, 不会因为直线上的点而改变。
平行直线上的任意两点与另一条 平行直线上的对应两点之间的距
离相等。
平行直线上的线段之比是恒定的, 不会因为线段上的点而改变。
平行直线的判定条件
异面直线
异面直线的定义
异面直线是指不在同一个平面上且不 相交的两条直线。
异面直线可以是平行的,也可以是相 交的,但无论如何都不会共面。
异面直线的性质
异面直线不会相交于一点,即它 们没有公共点。
异面直线可以无限延长而不相交。
异面直线所形成的角是锐角、直 角或钝角。
异面直线所成的角
异面直线所成的角的取值范围是$0^circ$到$90^circ$, 包括$0^circ$和$90^circ$。
空间中两直线的位置关系
目录
• 空间中两直线的位置关系概述 • 平行直线 • 相交直线 • 异面直线 • 两直线的位置关系应用
01
空间中两直线的位置关系概 述
定义与分类
定义
空间中两直线的位置关系是指两 条直线在同一平面或不同平面内 的相对位置。
分类
根据两条直线的相对位置,可以 分为平行、相交和异面三种关系 。
参数式
通过直线上的一点和直线的方 向向量,以及一个参数来表示 直线方程。
定义
直线方程是描述直线位置和方 向的数学表达式。
点向式
通过直线上的一点和直线的方 向向量来表示直线方程。
一般式
通过直线上所有点的坐标满足 的等式来表示直线方程。
02
平行直线
平行直线的定义
直线与直线的位置关系
它们在 y 轴上的截距分别为 b1=5-43m,b2=5+8 m.
(1)由 k1≠k2,得-3+4 m≠-5+2 m,
4.点 A(x1,y1)、B(x2,y2)间的距离:
|AB|= x2-x12+y2-y12
5.点 P(x0,y0)到直线 l d=|Ax0+A2B+y0B+2 C|.
Ax+By+C=0 的距离:
6.两平行线间距离:
两平行直线 l1 Ax+By+C1=0 与 l2 间的距离为 d= |CA2-2+CB12| .
有一条或两条直线的斜率均不存在的情况.在两条直线l1、 l2 斜 率 都 存 在 且 不 重 合 的 条 件 下 , 才 有 l1∥l2⇔k1 = k2 与 l1⊥l2⇔k1·k2=-1.在斜率不存在或斜率为零情况下讨论 两直线位置关系宜用数形结合求解.
已知两直线l1 x+ysinθ-1=0和l2 试求θ的值,使得:
2.(2009·安徽文)直线l过点(-1,2)且与直线2x-3y+ 4=0垂直,则l的方程是( )
A.3x+2y-1=0 B.3x+2y+7=0 C.2x-3y+5=0 D.2x-3y+8=0 [答案] A
[解析] 本题考查直线方程的点斜式,以及两条的垂直 关系.
∵直线 l 与直线 2x-3y+4=0 垂直, ∴直线 l 的斜率 k=-32, 又∵直线 l 过点(-1,2), ∴其方程为 y-2=-32(x+1), 即 3x+2y-1=0.
Ax+By+C2=0
1.过点(1,0)且与直线x-2y-2=0平行的直线方程是
两条直线位置关系以及点到直线距离公式
行()1112222220A B CA B CA B CÛ=¹¹。
3) 对于特殊情况(直线平行于x 轴或垂直于x 轴时需要单独讨论)轴时需要单独讨论) 3.相交:如果两条直线斜率不同那么必然相交与一点。
相交:如果两条直线斜率不同那么必然相交与一点。
1)斜截式:111:l y k x b =+与直线222:l y k x b =+相交12k k Û¹2)一般式:直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=相交1221A B A B Û¹ 3)对于特殊情况(如果一条直线有斜率,而另一条直线没有斜率,那么这两条直线相交)。
例1:已知直线()212:260,:110l ax y l x a y a ++=+-+-=,求适合下列条件的a的取值范围。
的取值范围。
1)1l 与2l 相交;相交; 2)12//l l ; 3)1l 与2l 重合。
重合。
两条直线位置关系以及点到直线距离公式两条直线位置关系以及点到直线距离公式一、两条直线相交、平行、重合条件一、两条直线相交、平行、重合条件1. 重合:如何两条直线重合,那么化简之后的重合:如何两条直线重合,那么化简之后的方程方程是相同的,具体为:是相同的,具体为:1) 斜截式:直线111:l y k x b =+与直线222:l y k x b =+重合1212,k k b b Û==。
2) 一般式:直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=重合()1112222220A B C A B C A B C Û==¹。
3) 对于特殊情况(直线平行于x 轴或垂直于x 轴时需要单独讨论)。
2.平行:如果两条.平行:如果两条直线斜率直线斜率相同或垂直于x 轴,并且不重合,那么这两条直线就是平行的。
垂直于同一直线的两条直线位置关系
垂直于同一直线的两条直线位置关系一、直线的垂直关系1. 两条直线垂直的定义直线上的一点作为顶点,以该点为中心的两条射线,如果它们互相垂直,则称这两条射线互相垂直。
在平面几何中,两条直线是垂直的,指的是它们的倾斜角是 90 度的关系。
2. 垂直直线的性质垂直直线之间的交角为 90 度。
根据垂直的定义,两条垂直直线至少有一个公共垂直。
3. 如何判断两条直线是否垂直判断两条直线是否垂直可以通过它们的斜率来进行。
如果两条直线的斜率相乘等于 -1,那么这两条直线是垂直的。
当两条直线的斜率分别为 m1 和 m2 时,如果满足 m1 * m2 = -1,则这两条直线是垂直的。
二、垂直直线的位置关系1. 直线和其垂线任意一条直线上的点到另一条直线的垂线距离是最短的,垂线上的点到任意直线上的点的连线都和该直线垂直。
2. 直线和直线组成的角两条垂直直线组成的角被称为直角。
直角是一个等于 90 度的角。
3. 垂直平分线一个线段的中垂线是一个与该线段垂直,并将该线段等分的线段。
4. 垂直平行线两条不在同一直线上的直线,如果它们的斜率均相乘等于 -1,则这两条直线是垂直平行线。
5. 垂直直线的几何性质垂直直线所包含的角是直角,垂直直线可以互相垂直平分。
三、实际应用1. 垂直直线的应用在建筑工程中,垂直直线是非常重要的,例如在建筑设计中,墙壁应该垂直于地面,以确保建筑的结构稳固。
2. 直角坐标系在数学中常用的直角坐标系中,垂直直线经常被用来表示坐标轴。
3. 衡量角度在工程测量中,垂直直线可用于测量角度大小,例如在道路修建中,交叉路口的直角转弯设计。
结语垂直于同一直线的两条直线的位置关系在几何学中具有重要意义,它们不仅在理论上具有严谨的定义和性质,而且在实际应用中也有着广泛的应用。
我们应该充分理解这一概念,才能更好地应用于实际生活和工作中。
垂直于同一直线的两条直线位置关系是平面几何中一个重要而基础的概念。
在前面的文章中,我们已经讨论了垂直直线的定义、性质以及其在实际生活中的应用。
直线位置关系判断公式
直线位置关系判断公式好嘞,今天咱们聊聊直线的位置关系,听起来好像有点抽象,其实特别有意思。
想象一下,你和朋友在街上闲逛,突然一条直线出现在你们面前,你就开始想:“这条线到底跟我有什么关系呢?”嘿,别着急,咱们慢慢来。
得知道直线的基本概念。
直线是最简单的几何形状,像极了你直挺挺的走路姿势,或者说是那条从A到B的路,绝对不绕弯。
可是,当咱们谈论直线的位置关系时,就有点复杂了。
就像生活中有些朋友的性格一样,分为三种:相交、平行和重合。
听起来是不是很神秘?先说说相交。
这就像两个朋友在街头偶遇,突然一拍即合,开始聊起来。
那条直线A和直线B如果相交,意味着它们在某个点碰了面。
就像你和老同学不期而遇,聊得火热。
几何上说,如果两个直线的斜率不一样,它们一定会在某一点上相遇。
直线的斜率就像是生活的节奏,有高有低,但只要不一样,总会有交集的那一刻。
接着是平行。
平行的直线就像是两条永远不会相交的道路,走着走着你会发现,“哎呀,它跟我保持着同样的距离啊!”平行线的斜率一样,直线A和直线B就像是一对双胞胎,虽然形态各异,但始终保持着那份亲密。
想想看,生活中有多少朋友也是这样,虽然你们的道路各自不同,但心里总是有那份默契。
再说重合,这可是最有意思的。
就像两个人形影不离,走到哪儿都在一起。
重合的直线其实就是同一条线,没什么区别。
它们在所有点上都是一致的。
就像你和最好的朋友,做任何事都喜欢一起,连选的食物都一样。
重合的直线,简直就是心灵契合的典范。
要判断这些关系,得用一些简单的公式。
别担心,听起来复杂,实际上就像玩拼图。
对于直线A和直线B,如果它们的方程是y = k1x + b1和y = k2x + b2,咱们只需看看k1和k2的关系。
若k1和k2不相等,哎呀,它们相交;若相等而b1不等,它们就是平行的;若相等而b1也等,那就是重合了,真是完美的“重聚”啊!生活就像一场几何游戏,直线在其中扮演着重要角色。
它们提醒我们,人与人之间的关系也有千千种。
第02讲 两条直线的位置关系 (精讲)(学生版)
第02讲 两条直线的位置关系 (精讲)目录第一部分:知识点精准记忆 第二部分:课前自我评估测试 第三部分:典型例题剖析题型一:两条直线的位置关系 角度1:判断两直线的位置关系 角度2:由两直线的位置关系求参数 角度3:由两直线的位置关系求直线方程题型二:与距离有关的问题题型三:对称问题 角度1:点关于直线对称 角度2:直线关于直线对称 题型四:直线系方程的应用 角度1:平行、垂直直线系方程 角度2:过两直线交点的直线系方程第四部分:高考真题感悟知识点一:两条直线平行与垂直的判断1、两条直线平行对于两条不重合的直线1l ,2l ,其斜率分别为1k ,2k ,有1212l l k k ⇔=.对两直线平行与斜率的关系要注意以下几点 (1)1212l l k k ⇔=成立的前提条件是:①两条直线的斜率都存在; ②1l 与2l 不重合.(2)当两条直线不重合且斜率都不存在时,1l 与2l 的倾斜角都是90,则12l l . (3)两条不重合直线平行的判定的一般结论是:1212l l k k ⇔=或1l ,2l 斜率都不存在.2、两条直线垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于1-;反之,如果它们的斜率之积等于1-,那么它们互相垂直,即12121l l k k ⊥⇔⋅=-.对两直线垂直与斜率的关系要注意以下几点(1)12121l l k k ⊥⇔⋅=-成立的前提条件是:①两条直线的斜率都存在;②10k ≠且20k ≠. (2)两条直线中,一条直线的斜率不存在,同时另一条直线的斜率等于零,则两条直线垂直. (3)判定两条直线垂直的一般结论为:12121l l k k ⊥⇔⋅=-或一条直线的斜率不存在,同时另一条直线的斜率等于零.知识点二:直线的交点与直线的方程组成的方程组的解的关系直线1l :1110A x B y C ++=(22110A B +≠)和2l :2220A x B y C ++=(22220A B +≠)的公共点的坐标与方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩的解一一对应.1l 与2l 相交⇔方程组有唯一解,交点坐标就是方程组的解; 1l 与2l 平行⇔方程组无解; 1l 与2l 重合⇔方程组有无数个解.知识点三:距离公式1、两点之间的距离公式:平面上任意两点111(,)P x y ,222(,)P x y间的距离公式为12||PP =特别地,原点(0,0)O 与任一点(,)P x y的距离||OP =2、点到直线的距离公式平面上任意一点000(,)P x y 到直线l :0Ax By C ++=的距离d =.3、两条平行线间的距离一般地,两条平行直线1l :1110A x B y C ++=(22110A B +≠)和2l :2220A x B y C ++=(22220A B +≠)间的距离1222d A B=+.知识点四:对称问题1、点关于点对称问题(方法:中点坐标公式) 求点11(,)P x y 关于点00(,)A x y 的对称点(,)Q a b由:100022x a x y b y +⎧=⎪⎪⎨+⎪=⎪⎩⇒010122a x x b y y =-⎧⎨=-⎩ 2、点关于直线对称问题(联立两个方程)求点11(,)P x y 关于直线l :0Ax By C ++=的对称点(,)Q a b ①设PQ 中点为A 利用中点坐标公式得11(,)22x a y b A ++,将11(,)22x a y bA ++代入直线l :0Ax By C ++=中;②1PQ l k k ⋅=- 整理得:1111022()1x ay b A B C y b A x a B ++⎧++=⎪⎪⎨-⎪⋅-=--⎪⎩ 3、直线关于点对称问题(求1l 关于点()b a P ,的对称直线2l ,则12l l )方法一:在直线1l 上找一点A ,求点A 关于点P 对称的点B ,根据1212//l l k k ⇒=,再由点斜式求解; 方法二:由21//l l 21//l l ,设出2l 的直线方程,由点P 到两直线的距离相等12d d =求参数.方法三:在直线2l 任意一点()y x ,,求该点关于点P 对称的点()y b x a --2,2,则该点()y b x a --2,2在直线1l 上.4、直线关于直线对称问题4.1直线1l :1110A x B y C ++=(22110A B +≠)和l :0Ax By C ++=(22220A B +≠)相交,求1l 关于直线l 的对称直线2l ①求出1l 与l 的交点P②在1l 上任意取一点M (非P 点),求出M 关于直线l 的对称点N ③根据P ,N 两点求出直线2l4.2直线1l :1110A x B y C ++=(22110A B +≠)和l :0Ax By C ++=(22220A B +≠)平行,求1l 关于直线l 的对称直线2l ①21k k =②在直线1l 上任取一点M ,求点M 关于直线l 的对称点N ,利用点斜式求直线2l .1.(2022·广东汕头·高二期末)2a =-是直线230ax y++=和()5370x a y a +-+-=平行的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2022·河北保定·高一阶段练习)“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(2022·陕西咸阳·高一期末)已知直线20x y m -+=(0m >)与直线30x ny +-=互相平行,且它们之m n +=______.4.(2022·10y +-=与直线30my ++=平行,则它们之间的距离是( ) A .1B .54C .3D .45.(2022·全国·高三专题练习)若点()1,1A a a -+,(),B a a 关于直线l 对称,则l 的方程为( ) A .10x y -+= B .10x y +-= C .2210x y -+=D .220x y +-=题型一:两条直线的位置关系 角度1:判断两直线的位置关系典型例题例题1.(2022·湖南湘潭·高二期末)已知直线12:10,:10++=--=l x y l x y ,则1l 与2l ( )A .垂直B .平行C .重合D .相交但不垂直例题2.(2022·全国·高二课时练习)直线210ax y --=和直线230y x b -+=平行,则直线y ax b =+和直线31y x 的位置关系是( )A .重合B .平行C .平行或重合D .相交同类题型归类练1.(2022·全国·高二课时练习)设a 、b 、c 分别为ABC 中A ∠、B 、C ∠所对边的边长,则sin 0x A ay c ++=与sin sin 0bx y B C -+=的位置关系是( ) A .相交但不垂直 B .垂直 C .平行D .重合2.(2022·全国·高二课时练习)ABC 中,a 、b 、c 是内角A 、B 、C 的对边,且lgsin A 、lgsin B 、lgsin C成等差数列,则直线21:(sin )(sin )0l A x A y a +-=与22:(sin )(sin )0l B x C y c +-=的位置关系是( ).A .重合B .相交不垂直C .垂直D .平行角度2:由两直线的位置关系求参数典型例题例题1.(2022·四川自贡·高一期末(文))若直线20x ay +-=与直线210a x y ++=平行,则=a ( ) A .1-或0B .1-C .1或0D .1例题2.(2022·贵州·遵义市第五中学高二期中(理))直线220ax y +-= 与直线2(3)20x a y --+=互相垂直,且两直线交点位于第三象限,则实数a 的值为( ) A .1B .3C .-1D .-3例题3.(2022·山东·济南市历城第二中学模拟预测)已知0a >、0b >,直线1:(4)10l x a y +-+=,2:220l bx y +-=,且12l l ⊥,则1112a b++的最小值为( ) A .2 B .4 C .25D .45例题4.(2022·山西省长治市第二中学校高二期末)设直线()1:1320l a x y +++=,直线2:210l x y ++=,若12l l //,则=a _______.同类题型归类练1.(2022·湖北孝感·高二期末)“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.(2022·全国·高三专题练习)已知1:3250l x ay +-=,()2:3120l a x ay ---=,则满足12l l ∥的a 的值是( )A .16-B .0C .16-或0D .16或03.(2022·江苏·高二)已知直线():120l x a y +-+=,20l y +=,且12l l ⊥,则22a b +的最小值为( )A .14B .12C D .13164.(2022·山东德州·高二期末)函数22()34e x f x x x =-+在点(0,f (0))处的切线与直线22x ay =-平行,则a =______.5.(2022·全国·高二课时练习)“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的______条件. 6.(2022·河南·高三阶段练习(理))已知直线()1:2350l a x y --+=和()2:3170l x b y -+-=互相垂直,且,a b +∈R ,则21a b+的最小值为____________.角度3:由两直线的位置关系求直线方程典型例题例题1.(2022·重庆南开中学高一期末)已知直线:(21)(1)1170l x y λλλ-+-+-=,R λ∈. (1)若直线l 与直线1:(1)10l x y λ+++=垂直,求实数λ的值(2)若直线l 在x 轴上的截距是在y 轴上截距的2倍,求直线l 的方程.例题2.(2022·全国·高二课时练习)已知直线1:20l mx y m ++=,()2:3170l mx m y +-+=,分别求实数m 的值,使得: (1)12//l l ;(2)12l l ⊥.例题3.(2022·全国·高二课时练习)求过1:2320l x y -+=与2:3420l x y --=的交点且与直线440x y +-=平行的直线方程.例题4.(2022·全国·高二课时练习)求经过两条直线2310x y -+=和20x y +-=的交点,且与直线230x y ++=垂直的直线的方程.同类题型归类练1.(2022·陕西·铜川阳光中学高一期末)已知直线l 经过点(23)P ,. (1)若点(11)A ,在直线l 上,求直线l 的方程; (2)若直线l 与直线2310x y -+=平行,求直线l 的方程.2.(2022·内蒙古·赤峰二中高二期末(文))已知直线1l :()410m x y --+=和2l :()()4110m x m y +++-=. (1)若12l l ∥,求实数m 的值; (2)若12l l ⊥,求实数m 的值.3.(2022·江苏·高二课时练习)已知直线()21:(2)340l m x m m y ++-+=和直线2:22(3)20()l mx m y m m +-++=∈R .(1)当m 为何值时,直线1l 和2l 平行? (2)当m 为何值时,直线1l 和2l 重合?题型二:与距离有关的问题典型例题例题1.(2022·重庆长寿·高二期末)在第一象限的点()1,A a 到直线4310x y +-=的距离为3,则a 的值为__________.例题2.(2022·江苏·高二专题练习)点P 为直线3420x y+=-上任意一个动点,则P 到点(3,1)-的距离的最小值为___________.例题3.(2022·全国·高二专题练习)两条平行线12l l ,分别过点()()1223P Q --,,,,它们分别绕 P Q ,旋转,但始终保持平行,则12l l ,之间距离的取值范围是____.例题4.(2022·江苏·高二专题练习)(1)已知实数对(,)x y 满足10x y ++=值;(2)求y例题6.(2022·山东聊城·二模)实数1x ,2x ,1y ,2y 满足:2111ln 0x x y --=,2240x y --=,则()()221212x x y y -+-的最小值为( )A .0B .C .D .8同类题型归类练1.(2022·全国·高二专题练习)到直线3410x y +=-的距离为3且与此直线平行的直线方程是____. 2.(2022·江苏·高二)两条平行线4310x y +-=与8630x y ++=之间的距离是___________.3.(2022·全国·高二课时练习)直线l 过点(1,2)P -且到点(2,3)A 和点(4,5)B -的距离相等,求直线l 的方程. 4.(2022·陕西渭南·高一期末)已知直线l 经过点()2,5P -,()2,2Q . (1)求直线l 的方程;(2)若直线m 与l 平行,且它们间的距离为4,求直线m 的方程.5.(2022·海南·琼海市嘉积第二中学高二期末)若实数a b c d ,,,满足22ln ,32b a a d c =-=-,则()()22a cb d -+-的最小值为___________.6.(2022·全国·高二专题练习)设R a b ∈,_______.题型三:对称问题 角度1:点关于直线对称典型例题例题1.(2022·江苏·高二)点(3,9)关于直线3100x y +-=对称的点的坐标是______.例题2.(2022·广东·高二阶段练习)在平面直角坐标系内,一束光线从点(1,2)A 出发,被直线y x =反射后到达点(3,6)B ,则这束光线从A 到B 所经过的距离为( )A .BC .4D .5例题3.(2022·全国·高二课时练习)将一张坐标纸折叠一次,使点()3,2与点()1,4重合,则折痕所在直线的一般式方程为___________.同类题型归类练1.(2022·全国·高二专题练习)原点关于210x y -+=的对称点的坐标为_____.2.(2022·全国·高二单元测试)点(2,2)A 关于直线2y x =+的对称点的坐标为______.角度2:直线关于直线对称典型例题例题1.(2022·安徽省六安中学高二期末(理))直线21y x =+关于直线y x =对称的直线方程为( ) A .310x y -+= B .310--=x y C .210x y --= D .210x y -+=例题2.(2022·全国·高二课时练习)已知直线1l :30ax y -+=与直线2l 关于直线l :10x y +-=对称,直线2l 与直线3l :310x y +-=垂直,则a 的值为( )A .13-B .13 C .3 D .3-例题3:(2022·江苏·高二)已知点()0,2A ,直线1:10l x y --=,直线2:220l x y -+=.(1)求点A 关于直线1l 的对称点B 的坐标;(2)求直线2l 关于直线1l 的对称直线方程.同类题型归类练1.(2022·陕西·长安一中高一期末)直线1:10l x y +-=关于直线2:330l x y --=的对称直线方程为__________.2.(2022·江苏·高二课时练习)已知直线:33l y x =+,求:(1)直线l 关于点(3,2)M 对称的直线的方程;(2)直线20x y --=关于直线l 对称的直线的方程.3.(2022·安徽省亳州市第一中学高二阶段练习)已知直线l :220x y +-=和直线1l :2y x =-.(1)求直线l 关于点()1,1A 对称的直线2l 的方程;(2)求直线l 关于直线1l 对称的直线3l 的方程.题型四:直线系方程的应用角度1:平行、垂直直线系方程典型例题例题1求过直线1l :240x y -+=和2l :20x y +-=的交点P ,且与直线3l :3450x y -+=垂直的直线l 方程.例题2:求过点(1,4)A -且与直线2350x y ++=平行的直线方程.同类题型归类练1、求与直线3410x y ++=平行且过点(1,2)的直线l 的方程。
两直线的位置关系
例 3 求经过两条直线 2x+3y+1=0 和 x-3y+4=0 的交 点,并且垂直于直线 3x+4y-7=0 的直线方程.
【思路】 (1)先求两条直线的交点坐标,再由两线的垂直 关系得到所求直线的斜率,最后由点斜式可得所求直线方程. (2)因为所求直线与直线 3x+4y-7=0 垂直, 两条直线的斜 率互为负倒数,所以可设所求直线方程为 4x-3y+m=0,将两 条直线的交点坐标代入求出 m 值,就得到所求直线方程.
5 7 ∴交点为(- , ). 3 9
∵所求直线与 3x+4y-7=0 垂直, 4 ∴所求直线的斜率 k= . 3 7 4 5 由点斜式,得 y- = (x+ ). 9 3 3 故所求直线的方程为 4x-3y+9=0.
方法二 设所求直线的方程为 4x-3y+m=0. 5 x=-3, 将方法一中求得的交点坐标 y=7. 9 5 7 代入上式得 4· (- )-3·+m=0. 3 9 ∴m=9.代入所设方程. 故所求直线的方程为 4x-3y+9=0.
1 2 【答案】 a=2,垂足坐标为( ,- )或 a=-3,垂足坐 2 3 9 2 标为(- , ) 17 17
例 2
(2013· 北京东城区)若 O(0,0),A(4,-1)两点到直线
ax+a2y+6=0 的距离相等,则实数 a=________.
|4a-a2+6| 6 2 【解析】 由题意,得 2 4= ,即 4 a - a + 2 4 a +a a +a 6=± 6,解之得 a=0 或-2 或 4 或 6.检验得 a=0 不合题意,所 以 a=-2 或 4 或 6.
(1)当 m=4 时,直线 l1 的方程为 4x+8y+n=0,把 l2 的方 程写成 4x+8y-2=0. |n+2| ∴ = 5,解得 n=-22 或 n=18. 16+64 所以,所求直线的方程为 2x+4y-11=0 或 2x+4y+9=0.
两条直线的位置关系知识点及题型归纳
知识点精讲
一、两直线平行与垂直的判定
两条直线平行与垂直的判定以表格形式出现,如表9-1所示.
两直线方程
平行
垂直
(斜率存在)
(斜率不存在)
或
或 中有一个为0,另一个不存在.
二、三种距离
1.两点间的距离
平面上两点 的距离公式为 .
特别地,原点O(0,.0)与任一点P(x,y)的距离
简证:首先易知:若直线l关于直线 对称的直线是 ,则经过它们的交点(假定相交)且垂直于 的直线 也是l与 的同,故只证 的情形.
然后把每条直线都平移至过原点O,所得直线分别为 ,且
不妨在直线 上取异于O的点 ,则关于 对称的点为
故 ,所以 ,得证.
变式1 (1)求点P(4,5)关于点M(3,-2)对称的点Q的坐标;
2.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=( )
A.1或-3B.-1或3C.1或3D.-1或-3
3.直线y=3x绕原点逆时针旋转 ,再向右平移1个单位,所得直线( )
A. B. C. D.
4.设a,b,c分别是 中角A,B,C所对边的边长,则直线 与的 位置关系是( )
A. B.6C. D.
变式2 在等腰三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA反射后又回到点P(如图9-9所示).若光线QR经过 的重心,则AP等于( )
A.2B.1C. D.
有效训练题
1.若直线ax+2y+6=0和直线 垂直,则a的值为( )
A. B.0C. 或0D.-3
2.点到直线的距离
点 到直线 的距离
江苏理数 第九章 解析几何 第二节 两条直线的位置关系
1 4 4 则 ×a×b=2,得 ab=4,④ 2 由③④,得 a=2,b=2.
[谨记通法] 1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1) 两直线平行 ⇔ 两直线的斜率相等且在坐标轴上的截距 不等; (2)两直线垂直⇔两直线的斜率之积等于-1. [提醒] 当直线斜率不确定时,要注意斜率不存在的情况.
2.已知直线 3x+4y-3=0 与直线 6x+my+14=0 平行,则 它们之间的距离是________.
6 m 14 解析:因为 = ≠ ,所以 m=8,直线 6x+my+14=0 3 4 -3 |-3-7| 可化为 3x+4y+7=0,两平行线之间的距离 d= 2 2 =2. 3 +4 答案:2
2.已知过点 A(-2,m)和点 B(m,4)的直线为 l1,直线 2x+y-1 =0 为 l2,直线 x+ny+1=0 为 l3.若 l1∥l2,l2⊥l3,则实数 m +n=________.
4-m 解析:因为 l1∥l2,所以 =-2(m≠-2),解得 m= m+ 2 -8(经检验, l1 与 l2 不重合), 因为 l2⊥l3, 所以 2×1+1×n =0,解得 n=-2,所以 m+n=-10. 答案:-10
|C1-C2| 2 2 A + B d=_________
Ax+By+C2=0间距离
[小题体验]
1. (教材习题改编)已知点(a,2)(a>0)到直线 l: x-y+3=0 的距离 为 1,则 a=________. |a-2+3| 解析:由题意知 =1,所以|a+1|= 2, 2
又 a>0,所以 a= 2-1.答案: 2-1
[小题纠偏]
1.已知直线 l1:(t+2)x+(1-t)y=1 与 l2:(t-1)x+(2t+3)y +2=0 互相垂直,则 t 的值为________. 1 解析:①若 l1 的斜率不存在,此时 t=1,l1 的方程为 x= ,l2 的方 3
两条直线的位置关系(含答案)
两直线的位置关系【知识清单】:1.两条直线位置关系的判定(1)易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑. (2)比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.2.两条直线的交点的求法:直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B2y +C 2=0的解.3.距离注意:运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件,盲目套用公式导致出错.【考点突破】:考点一 两条直线的位置关系 (基础送分型考点——自主练透)1.(2016·重庆巴蜀中学模拟)若直线ax +2y +1=0与直线x +y -2=0互相垂直,那么a 的值等于( ) A .1 B .-13C .-23D .-2解析:选D 由a ·1+2·1=0得a =-2,故选D.2.(2016·金华十校模拟)“直线ax -y =0与直线x -ay =1平行”是“a =1”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由直线ax -y =0与x -ay =1平行得a 2=1,即a =±1,所以“直线ax -y =0与x -ay =1平行”是“a =1”的必要不充分条件.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.考点二 距离问题(重点保分型考点——师生共研)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上, ∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|5=2, 即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. [由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.[即时应用](2016·绵阳一诊)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( ) A .95B .185 C .2910D .295解析:选C 因为36=48≠-125,所以两直线平行,由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|PQ |的最小值为2910.考点三 对称问题(常考常新型考点——多角探明)[命题分析]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有: 角度一:点关于点的对称问题1.(2016·蚌埠期末)点P (3,2)关于点Q (1,4)的对称点M 为( ) A .(1,6) B .(6,1) C .(1,-6)D .(-1,6)解析:选D 设M (x ,y ),则⎩⎨⎧3+x2=1,2+y2=4,∴x =-1,y =6,∴M (-1,6).角度二:点关于线的对称问题2.已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为________. 解析:设A ′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,故A ′⎝⎛⎭⎫-3313,413. 答案:A ′⎝⎛⎭⎫-3313,413 角度三:线关于线的对称问题3.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0), 由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0. 角度四:对称问题的应用4.(2016·淮安一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′, 所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=0[方法归纳]:1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.【三维演练】:一抓基础,多练小题做到眼疾手快[小题纠偏]1.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A .1710B .175C .8D .2解析:选D ∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d=|-3-7|32+42=2.2.已知p :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,q :a =-1,则p 是q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A .平行 B .垂直 C .相交但不垂直D .不能确定解析:选C 由⎩⎪⎨⎪⎧2x +y +m =0,x +2y +n =0,可得3x +2m -n =0,由于3x +2m -n =0有唯一解,故方程组有唯一解,故两直线相交,两直线的斜率分别为-2,-12,斜率之积不等于-1,故不垂直.2.已知直线(k -3)x +(4-k )y +1=0与2(k -3)x -2y +3=0平行,那么k 的值为( ) A .1或3 B .1或5 C .3或5D .1或2解析:选C 法一:把k =1代入已知两条直线,得-2x +3y +1=0与-4x -2y +3=0,此时两条直线的斜率不相等 ,所以两条直线不平行,所以k ≠1,排除A ,B ,D.法二:因已知两条直线平行,所以k =3或⎩⎪⎨⎪⎧k ≠3,k -32(k -3)=4-k -2≠13,解得k =3或k =5. 3.平行线3x +4y -9=0和6x +8y +2=0的距离是( ) A .85B .2C .115D .75解析:选B 依题意得,所求的距离等于|-18-2|62+82=2.4.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=0解析:选D 设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0.5.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]二保高考,全练题型做到高考达标1.(2015·大连二模)已知直线l 1:(3+a )x +4y =5-3a 和直线l 2:2x +(5+a )y =8平行,则a =( ) A .-7或-1 B .-7 C .7或1D .-1解析:选B 由题意可得a ≠-5,所以3+a 2=45+a≠5-3a 8,解得a =-7(a =-1舍去). 3.(2016·宜春统考)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0 B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0解析:选D 依题意,设直线l :y -4=k (x -3), 即kx -y +4-3k =0, 则有|-5k +2|k 2+1=|k +6|k 2+1, 因此-5k +2=k +6,或-5k +2=-(k +6), 解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0.4.(2015·合肥一模)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( ) A .x -2y +1=0 B .x -2y -1=0 C .x +y -1=0D .x +2y -1=0解析:选B 因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x ,y ),则⎩⎨⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0.6.(2015·成都检测三)已知直线l 1:ax +(3-a )y +1=0,l 2:2x -y =0.若l 1⊥l 2,则实数a 的值为________. 解析:由2×a +(3-a )×(-1)=0, 解得a =1. 答案:17.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________. 解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79. 答案:-13或-798.(2016·江西八校联考)已知点P (x ,y )到A (0,4)和B (-2,0)的距离相等,则2x +4y 的最小值为________. 解析:由题意得,点P 在线段AB 的中垂线上,则易得x +2y =3,∴2x +4y ≥22x ·4y =22x+2y=42,当且仅当x =2y =32时等号成立,故2x +4y 的最小值为4 2.答案:4 29.已知光线从点A (-4,-2)射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′, 则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C . 故BC 所在的直线方程为 y -6-4-6=x -1-2-1,即10x -3y +8=0.10.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标. (2)当点P 到直线l 的距离最大时,求直线l 的方程.解:(1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧ 2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3,∴直线l 恒过定点(-2,3).(2)设直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大. 又直线PA 的斜率k PA =4-33+2=15,∴直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x +y +7=0.三上台阶,自主选做志在冲刺名校1.(2016·湖北七市三联)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( )A .24,14B .2,22C .2,12D .22,12解析:选D 依题意得|a -b |=(a +b )2-4ab =1-4c ,当0≤c ≤18时,22≤|a -b |=1-4c ≤1.因为两条直线间的距离等于|a -b |2,所以两条直线间的距离的最大值与最小值分别是22,22×12=12.2.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R). (1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值. 解:(1)因为l 1∥l 2, 所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎫a 2+122+14, 因为a 2≥0, 所以b ≤0.又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0].(2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0,显然a ≠0,所以ab =a +1a ,|ab |=⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立,因此|ab |的最小值为2.【拓展延伸】:1、 设a 、b 、c 分别是ABC ∆中角A 、B 、C 的对边的长,则直线sin y+c=0A x a + 与直线sin y+sinC=0bx B - 的位置关系为2、 在平面直角系xoy 中,已知圆C :222(62)4560x y m x my m m +---+-=,直线l 经过点(1,0) .若对任意的实数m ,定直线l 被圆C 截得的弦长为定值,则直线l 的方程为 . 3、(1)如果直线+2y+2=0ax 与直线3y 2=0x -- 平行,则a = . (2)直线1+ay+6=0l x :与直线2:(2)3y+2=0l a x a -+ 平行,则a = . (3)已知直线1+2ay 1=0l x -:与直线2:(31)y 1=0l a x a --- 平行,则a = . 4、(1)若直线m +y=0x 与直线+2y+1=0x 互相垂直,则m =(2)直线1+y =0l x a a -:与直线2:(23)y 1=0l ax a ---垂直,则a = . 5、已知m 为实数,直线1m +y+3=0l x :与直线2:(3m 2)+my+2=0l x -,则: (1)当12l l 时,m 的值为 ;(2)当12l l ⊥时,m 的值为6、求过点A (2,3),分别满足下列条件的直线的方程:(1)与直线2+y 5=0x -平行 ; (2)与直线2+y 5=0x -垂直7、(1)已知直线l 与直线+3y 5=0m x -:2平行,且在两坐标轴上的截距之和为1,求直线l 方程.(2)求与直线5+3y 1=0x -垂直,且在两坐标轴上的截距之和为4的直线方程.8、(1)两条直线13y 15=0l x --:与直线2:3y 6=0l kx --与两坐标轴正向围成的四边形有一个外接圆,则实数k 的值为(2)若点A (-1,1)在直线p y+4=0x q +m:上,且直线m 与直线n :(p 1)y+q=0x -+互相垂直,当p 、q 同号时,求直线m 的方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两条直线的位置关系判断方法
设平面上两条直线的方程分别为11112222:0,:0
l a x b y c l a x b y c ++=++= 一.行列式法
记系数行列式为1
122,a b D a b =
和相交⇔0D ≠ 1221b a b a ≠⇔
1l 和2l 平行⇔0,0x D D =≠或0,0y D D =≠
和重合⇔0===x y D D D
二.比值法
和相交()0b ,a 22≠; 和垂直⇔0b a b a 2211=+;
和平行
()0c ,b ,a 222≠;
和重合()0c ,b ,a 222≠ 三.斜率法
111222:y 0.:y 0l k x b l k x b =+==+=(条件:两直线斜率都存在,则可化成点斜式) 12l l ⇔与相交21k k ≠ ;
2121b b k k ≠=,
2121b b k k ==,;
-1.=21k k ;
特别提醒:在具体判断两条直线的位置关系时,先考虑比值法,但要注意前提条件(分母不
为零);再考虑斜率法,但也有条件(两条直线的斜率都存在),最后选择行列式(无条件); 注:(1)两直线平行是它们的法向量(方向向量)平行的充分非必要条件;
(2)两直线垂直是它们的法向量(方向向量)垂直的充要条件;
(3)两条直线平行⇔它们的斜率均存在且相等或者均不存在;
(4)两条直线垂直⇔他们的斜率均存在且乘积为-1,或者一个存在另一个不存在;
1122,x c b D c b -=-1122y a c D a c -=-1l 2l 1l 2l 1l 2l ⇔2
121b b a a ≠1l 2l 1l 2l ⇔212121c c b b a a ≠=1l 2l ⇔2
12121c c b b a a ==12l l ⇔与平行12l l ⇔与重合12l l ⇔与垂直
例题分析
1.下列命题中正确的是……………………………………………………………………( B )
A.平行的两条直线的斜率一定相等
B.平行的两条直线倾斜角相等
C.两直线平行的充要条件是斜率相等
D.两直线平行是他们在y 轴上截距不相等的充分条件
分析:A.两条直线斜率均不存在时也是平行,此时斜率不存在;
C.”斜率相等”是”两直线平行”的既不充分也不必要条件;
D.既不充分也不必要条件,因为两条直线斜率均不存在时也是平行,此时不存在y 轴上的截距,反之显然不成立;
2、若l 1与l 2为两条不重合的直线,它们的倾斜角分别为a 1,a 2,斜率分别为k 1,k 2,则下列命题
(1)若l 1∥l 2,则斜率k 1=k 2; (2)若斜率k 1=k 2,则l 1∥l 2;
(3)若l 1∥l 2,则倾斜角a 1=a 2;(4)若倾斜角a 1=a 2,则l 1∥l 2;
其中正确命题的个数是…………………………………………………………………( C )
A .1
B .2
C .3
D .4
分析:(2)(3)(4)对,此时要注意已知条件l1与l 2为两条不重合的直线
3、已知两条不重合的直线l 1,l 2的倾斜角分别为α1,α2,给出如下四个命题: ∥若sin α1=sinα2,则l 1∥l 2
∥若cos α1=cosα2,则l 1∥l 2
∥若l 1∥l 2,则tan α1•tanα2=﹣1
∥若l 1∥l 2,则sin α1sinα2+cosα1cosα2=0
其中真命题是…………………………………………………………………………( B )
A .①③
B .②④
C .②③
D .①②③④
分析:①sin α1=sin α2, 可知α1=α2 或α1 +α2 =π,因为倾斜角α1,α2的范围[)π0,,所以不一定推出;
②cos α1=cos α2 ,可知 α1=α2 ,因为倾斜角α1,α2的范围[)π0,,所以可以推出;
③如果成立的话,必须斜率存在,可是α1=π,α2 =
2
π,致使斜率不存在; ④若两条直线斜率都存在时,显然成立,若两条直线斜率有一个不存在时也成立,
下证,不妨设α1=π,α2 =2π,此时也成立; 4、已知直线06y )2k (x 3:l 1=++-与直线02y )3k 2(kx :l 2=+-+,记3
k 2k )2k (3D -+-=.”0D =”是”两条直线1l 与直线2l 平行”的…………………………… ( A ) A .充分不必要条件; B .必要不充分条件 ; C .充要条件; D .既不充分也不必要条件
5、若直线1:l 22+=+x ay a 与直线2:l 1+=+ax y a 不重合,则12l l ∥的充要条件( C )
A. 1a =-;
B. 12
=a ; C. 1a =; D. 1a =或1a =-. 分析:法1:比值法,此时要保证分母不为零,故讨论
当0a =时,1:2=l x ;2:1=l y ,此时垂直,不满足条件,舍去
当1a -=时,1:0-=l x y ;2:0-=l y x ,此时重合,舍去
当10a -,≠时,12122111+⇔
=≠⇔=+a a l l a a a ∥ 法2.())1a (1a 2D );1a (2a D ,a 1D y x 2+-=+-=-=)(1a =⇔
类似也可以用斜率法,此时只需要讨论0a =和0a ≠两种情况
6、直线,01by x :l ,01y ax :l 21=-+=++则1b
a -=是21l l ⊥的………………………………( A ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 分析:⇔⊥21l l 0
b a =+
7、“a=2”是”直线ax+2y=0平行于直线x+y=1”的…………………………………………( C )
A.充分不必要条件;
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
分析:(比值法:先观察有没有一条直线方程前面的系数是不是均为零,若有就把其作为分母) 直线ax+2y=0平行于直线x+y=1⇔ 1
0121a ≠=2a =⇔ 8.已知直线()01m 4y )m m (x )3m m 2(:l 221=---+-+与直线()R a 03y )1a (x 2:l 2∈=+--
(1)m 为___1m ≠且98m ≠-__时,21l l 与相交;
(2)m 为__6- __时,21l l 与垂直;
分析:直线方程含有参数m ,故必须保证这个方程表示的是直线(y ,x 前面的系数不全为零),故1≠m
(1)21l l 与相交⇔98
≠-m ; (2)21l l 与垂直⇔6=-m
9、已知直线()R ααsin x y :l 1∈=和直线c x 2y :l 2+=,则下列关于直线21l ,l 关系判断正确的有____.③____
①.通过平移可以重合;②不可能垂直;③可能与x 轴围成直角三角形;
分析:①如果两条直线平移之后可以重合,就必须满足斜率相同,可是2αsin ≠ ②如果两条直线垂直就必须斜率之积等于-1,此时12αsin -=⋅,6
π5α= ③由第②问中,可知这两条直线有可能垂直,故可能与x 轴围成直角三角形,因为只要有一个角是直角就可以啦;
10、若直线l 1:2x+(m+1)y+4=0与直线l 2:mx+3y ﹣2=0平行,则m 的值为( C )
A .﹣2
B .﹣3
C .2或﹣3
D .﹣2或﹣3
分析:同第5题
11、已知P 1(a 1,b 1)与P 2(a 2,b 2)是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组的解的情况是…………………………………………( B )
故下面只需要先判断1221b a b a -是否为0
证: 因为 P 1(a 1,b 1)与P 2(a 2,b 2)是直线y=kx+1(k 为常数)上两个不同的点并且直线y=kx+1的斜率存在,
∥k=,即a 1≠a 2,并且b 1=ka 1+1,b 2=ka 2+1,
∴a 2b 1﹣a 1b 2=a 2 (ka 1+1)-a 1 (ka 2+1)=ka 1a 2﹣ka 1a 2+a 2﹣a 1=a 2﹣a 1
∥方程组有唯一解.。