数字逻辑实验 8_序列检测器

合集下载

序列检测器

序列检测器

序列检测器
一、实验目的
1. 了解状态机的设计。

2. 设计一个序列检测器。

二、实验原理
序列检测器在数据通讯、雷达和遥测等领域中用于检测同步识别标志。

它是用一种图来检测一组或多组序列信号。

例如检测收到一组串行码{1110010}后,输出标志为1,否则输出为0。

考查这个例子,每收到一个符合要求的串行码就需要用一个状态机进行记忆。

串行码长度为7位,需要7个状态;另外,还需要增加一个“未收到一个有效位”的状态,共8个状态;S0~S7,状态标志符的下标表示有几个有效位被读出。

画出状态转移图,如图7-6所示,很显然这是一个莫尔状态机。

八个状态机根据编码原则可以用3位二进制数来表示。

图7-6 序列检测器状态变化图
三、实验内容
1. 用VHDL语言编写出源程序。

2. 设计两个脉冲发生器,一个包含“1110010”序列,另一个不包含此序列,用于检测程序的正确。

3. 将脉冲序列发生器和脉冲序列检测器结合生成一个文件,并编译下载并验证结果。

四、实验报告要求
1. 写出序列检测器VHDL语言设计源文件;
2. 详述序列检测器的工作原理。

序列检测器原理

序列检测器原理

序列检测器原理
序列检测器是一种用来检测和识别输入序列中特定模式的设备或算法。

它能够根据事先给定的规则或模型对输入序列进行分析和判断,并输出相应的结果或响应。

序列检测器通常由以下几个组成部分构成:
1. 输入接口:用于接收输入序列的信号或数据。

2. 存储器:存储检测器的状态信息和输入序列的历史数据。

3. 状态机:用于根据输入序列的不同模式进行状态转换和控制。

4. 判决逻辑:根据当前状态和输入序列的特征,判断当前模式是否匹配。

5. 输出接口:根据判决的结果,输出相应的响应或结果。

序列检测器的工作原理如下:
1. 初始化:将序列检测器的状态设为初始状态,准备接收输入序列。

2. 接收输入:逐个接收输入序列的信号或数据。

3. 状态转换:根据当前状态和输入序列的特征,根据事先设定好的规则或模型进行状态转换。

4. 判决匹配:根据当前状态和输入序列的特征,判断当前模式是否匹配。

5. 输出结果:根据判决的结果,输出相应的响应或结果。

6. 循环操作:重复执行2-5步骤,直至所有的输入序列被处理完毕。

通过以上的工作原理,序列检测器可以有效地检测和识别输入序列中的特定模式。

它在许多应用中都有广泛的应用,如通信领域中的错误检测、模式识别等。

序列检测器实验报告

序列检测器实验报告

序列检测器设计实验内容:设计一个1110010序列检测器,即检测器检测到序列1110010时,输出为1,否则输出为0。

输入信号:一个时钟输入信号clk;一个输入端x以输入序列来检测;一个输入y用来选择是检测序列1110010或是检测自己输入的序列;一个输入k(7..0)用来输入想要检测器检测的序列;输出信号:一个7位输出信号q,用来输出正在检测的7位序列;一个1位输出信号unlk,当被检测序列符合时,输出unlk为1否则为0;中间信号:再定义两个7位的中间信号a和combination;执行操作:在上升的时钟沿时候,将从x输入的序列赋给7位a,在y等于1的情况下,令中间信号combination为1110010,否则,在y等于0的情况下,令中间信号combination为从k输入的七位长序列。

最后把a的值赋给q,如果a与combination输出unlk等于1否则等于0。

(1)序列检测器语言设计:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;USE IEEE.STD_LOGIC_ARITH.ALL;entity xulie2 isport (clk,x:in std_logic;y:in std_logic;k:in std_logic_vector(7 downto 1);unlk:out std_logic;q:out std_logic_vector(7 downto 1)); end xulie2;architecture art of xulie2 issignal a:std_logic_vector(7 downto 1);signal combination: std_logic_vector(7 downto 1);beginprocess(clk)beginif clk'event and clk='1' thena<=a(6 downto 1)&x;if y='1' thencombination<="1110010";else combination<=k;end if;end if;q<=a;end process;unlk<='1' when(a=combination) else '0';end art;序列检测器波形图:其中ENDTIME=10.0us GRIDSIZE=100.0ns波形图分析:如图,选择输入端y输入为1时,q对应着输出从x输入的7位序列,如果从x输入的待检测的7位序列为1110010时,unlk为1,否则为0,当选择输入端y输入为0时,q依旧对应着输出从x输入的待检测的当前7为序列,但是只有当从x输入的7为序列与从k输入的7位序列一致时,输出端unlk才为1,否则为0。

8位序列检测器的设计

8位序列检测器的设计

8位序列检测器的设计西华大学课程设计说明书八位序列检测器设计摘要:序列检测器多用于通信系统中对禁用码的检测,或者是对所需信号的提取,即一旦检测到所需信号就输出高电平,这在数字通信领域有广泛的应运。

本文介绍了一种采用单片PGA 芯片进行脉冲序列检测器的设计方法,主要阐述如何使用新兴的 EDA器件取代传统的电子设计方法,利用 FPGA 的可编程性,简洁而又多变的设计方法,缩短了研发周期,同时使设计的电路体积更小功能更强大。

本次课程设计设计出能够检测序列“11010011”的序列检测器,并以此来描述序列检测器的设计过程和基于FPGA 的软件仿真。

最后通过QuartusII 的波形输出对设计方案进行检测,在硬件调试经检测输出正确设计符合要求。

关键词: VHDL 序列检测 Quartus? FPGAAbstract,Sequence detector system used for communication on the detection code disabled, or is the extraction of the desired signal,that is, once detected, the required high output signal, which in the broad field of digital communications to be transported. This paper presents a single FPGA chip with the detector pulse sequence design method, mainly on how to us e new device to replace the traditional EDA electronic design, the use of FPGA's programmability, concise and changing the design method shortens the development cycle, while allowing smaller circuit design and more powerful. The curriculum is designed to detect sequence "11010011" sequence detectors, and detector in order to describe the sequence of thebased software simulation. Finally, the output of the waveform design process and FPGA-QuartusII design testing, debugging the hardware design has been tested and meet the requirements of the correct output.Keywords: VHDL Sequence detection Quartus? FPGA西华大学课程设计说明书目录1前言 ..................................................................... .. (1)1.1 课题设计背景 ..................................................................... ............................................... 1 2. 总体方案设计 ..................................................................... . (2)2.1 方案比较 ..................................................................... .. (2)2.2 两种方案的论证与比较 ..................................................................... ........................ 3 3. 单元模块设计 ..................................................................... . (4)3.1 序列信号发生器 ..................................................................... .. (4)3.2序列检测器 ..................................................................... .. (6)3.3计数器 ..................................................................... . (7)3.4 顶层文件设计 ..................................................................... ....................................... 8 4 系统调试与验证 ..................................................................... .. (9)4.1待测序列的输入 ..................................................................... (9)4.2 时序仿真 ..................................................................... (11)4.3结果分析 ..................................................................... .............................................. 12 5 总结与体会 ..................................................................... ..................................................... 13 6 辞谢 ..................................................................... .. (14)7 参考文献 ..................................................................... (15)西华大学课程设计说明书1前言1.1 课题设计背景随着数字通信的广泛应用,可编程逻辑器件容量、功能的不断扩大,集成电路的设计已经进入片上系统(SOC)和专用集成电路(ASIC)的时代。

EDA实验报告——序列检测器

EDA实验报告——序列检测器

七、状态图输入法实现序列检测器1、基本知识点序列检测器原理。

状态图输入法。

2、实验设备(1)PC机一台。

(2)DDA系列数字系统实验平台。

(3)QuartusⅡ配套软件。

3、实验概述序列检测器序列检测器是用于从二进制码流中检测出一组特定序列信号的时序电路。

接收的序列号与检测器预设值比较,相同则输出为1,否则输出为0.4、实验内容及步骤用状态图输入法实现序列检测器。

1,新建工程,工程文件夹名称为exp_detect3,工程名称和顶层实体名称均为exp_detect3,选择目标器件为EPF10K20TI144-4.2,状态图输入:选择菜单File——New——State Machine File命令,打开State Machine Editor窗口,选择Tools——State MachineWizard命令,弹出如下状态机创建向导对话框:点击OK,进入下一个页面,如下所示:在上图中选择复位Reset信号为异步,高电平有效,输出端午寄存器,点击Next,进入下图:在四个选框里分别如上图填入名称和控制信号。

进入下一个页面:如上设置后,进入下一个页面,点击finish,完成。

关闭状态机向导,生成所需的状态机,做适当调整,如下图所示:3,保存该设计文件为exp_detect3.smf,并添加到工程文件夹。

4,选择菜单Tools——Generate HDL File命令,打开对话框,选择VHDL,点击OK,分析成功后则自动生成exp_detect3.vhd。

代码如下:LIBRARY ieee;USE ieee.std_logic_1164.all;ENTITY exp_detect3 ISPORT (clock : IN STD_LOGIC;reset : IN STD_LOGIC := '0';din : IN STD_LOGIC := '0';z : OUT STD_LOGIC);END exp_detect3;ARCHITECTURE BEHAVIOR OF exp_detect3 ISTYPE type_fstate IS (s0,s1,s2,s3,s4,s5,s6);SIGNAL fstate : type_fstate;SIGNAL reg_fstate : type_fstate;BEGINPROCESS (clock,reset,reg_fstate)BEGINIF (reset='1') THENfstate <= s0;ELSIF (clock='1' AND clock'event) THENfstate <= reg_fstate;END IF;END PROCESS;PROCESS (fstate,din)BEGINz <= '0';CASE fstate ISWHEN s0 =>IF ((din = '1')) THENreg_fstate <= s1;ELSIF (NOT((din = '1'))) THENreg_fstate <= s0;-- Inserting 'else' block to prevent latch inferenceELSEreg_fstate <= s0;END IF;WHEN s1 =>IF ((din = '1')) THENreg_fstate <= s2;ELSIF (NOT((din = '1'))) THENreg_fstate <= s0;-- Inserting 'else' block to prevent latch inferenceELSEreg_fstate <= s1;END IF;WHEN s2 =>IF ((din = '1')) THENreg_fstate <= s3;ELSIF (NOT((din = '1'))) THENreg_fstate <= s0;-- Inserting 'else' block to prevent latch inference ELSEreg_fstate <= s2;END IF;WHEN s3 =>IF ((din = '1')) THENreg_fstate <= s3;ELSIF (NOT((din = '1'))) THENreg_fstate <= s4;-- Inserting 'else' block to prevent latch inference ELSEreg_fstate <= s3;END IF;WHEN s4 =>IF ((din = '1')) THENreg_fstate <= s1;ELSIF (NOT((din = '1'))) THENreg_fstate <= s5;-- Inserting 'else' block to prevent latch inference ELSEreg_fstate <= s4;END IF;WHEN s5 =>IF ((din = '1')) THENreg_fstate <= s6;ELSIF (NOT((din = '1'))) THENreg_fstate <= s0;-- Inserting 'else' block to prevent latch inference ELSEreg_fstate <= s5;END IF;WHEN s6 =>IF ((din = '1')) THENreg_fstate <= s2;ELSIF (NOT((din = '1'))) THENreg_fstate <= s0;-- Inserting 'else' block to prevent latch inferenceELSEreg_fstate <= s6;END IF;IF (NOT((din = '1'))) THENz <= '1';-- Inserting 'else' block to prevent latch inferenceELSEz <= '0';END IF;WHEN OTHERS =>z <= 'X';report "Reach undefined state";END CASE;END PROCESS;END BEHAVIOR;5,对代码进行编译。

数字逻辑实验 8_序列检测器

数字逻辑实验 8_序列检测器

实验八序列检测器的设计与仿真一、实验要求1.用VHDL语言设计一个Mealy机以检测“1101001”序列;2.用VHDL语言设计一个Moore机以检测“1101001”序列;3.在文本编辑区使用VHDL硬件描述语言设计逻辑电路,再利用波形编辑区进行逻辑功能仿真,以此验证电路的逻辑功能是否正确。

二、实验内容用VHDL语言设计各一个mealy和moore状态机测试“1101001”位串的序列检测器,并通过仿真波形验证设计的功能是否正确。

三、实验过程由于在报告1中已经详尽描述了如何使用Quartus 2建立逻辑原理图和使用VHDL语言实现元件功能,所以本次的实验报告中便不再赘述上述内容,报告将主要就VHDL 语言描述实现元件的功能的过程进行阐述。

1.Mealy机选择File→New,弹出新建文本对话框,在该对话框中选择VHDL File并单击OK按钮,进入文本编辑窗口,输入VHDL代码。

library ieee;use ieee.std_logic_1164.all;entity melay isport(clk,rst,d: in std_logic;z: out std_logic);end melay;architecture arc of melay istype state_type is(s0,s1,s2,s3,s4,s5,s6);signal state: state_type;beginprocess(clk,rst)beginif rst= '1' thenstate<=s0;elsif (clk'event and clk ='1') thencase state is --1101001when s0 =>if d='1' thenstate<=s1;elsestate<=s0;end if;when s1=>if d='1' thenstate<=s2;elsestate<=s0;end if;when s2=>if d='0' thenstate<=s3;elsestate<=s2;end if;when s3=>if d='1' thenstate<=s4;elsestate<=s0;end if;when s4=>if d='0' thenstate<=s5;elsestate<=s1;end if;when s5=> --1101001if d='0' thenstate<=s6;elsestate<=s1;end if;when s6=>if d='1' thenstate<=s0;elsestate<=s0;end if;end case;end if;end process;process(state,d)begincase state iswhen s6=>if d='1' thenz<='1';elsez<='0';end if;when others=>z<='0';end case;end process;end arc;保存文件并编译,选择菜单File→New,选择Vector Waveform File新建波形图,添加节点,参数设置为:End Time=2us, Grip size=50ns。

序列检测器_实验报告

序列检测器_实验报告

一、实验目的1. 理解序列检测器的工作原理和设计方法;2. 掌握时序电路的经典设计方法;3. 学习使用Verilog HDL语言进行状态机的设计;4. 通过实验验证序列检测器的功能。

二、实验原理序列检测器是一种同步时序电路,用于检测输入的一串二进制编码。

当输入序列与预设的编码相匹配时,输出高电平;否则,输出低电平。

序列检测器在数字通信、安全防盗、密码认证等领域有着广泛的应用。

序列检测器的基本工作原理如下:1. 预设一个编码序列,称为目标序列;2. 当输入序列与目标序列相匹配时,输出高电平;3. 当输入序列与目标序列不匹配时,输出低电平。

三、实验器材1. PC机一台;2. EDA教学实验系统一台;3. 下载电缆一根(已接好);4. 导线若干。

四、实验步骤1. 设计序列检测器的Verilog代码;2. 在EDA教学实验系统上编译、仿真和下载Verilog代码;3. 连接实验电路,下载Verilog代码;4. 通过逻辑分析仪观察输出波形,验证序列检测器的功能。

五、实验内容1. 设计一个长度为4位的序列检测器,目标序列为1001;2. 设计一个长度为8位的序列检测器,目标序列为11001001;3. 通过实验验证序列检测器的功能。

六、实验代码```verilogmodule seqdet(input clk, // 时钟信号input rst, // 复位信号input [3:0] din, // 输入序列output reg out // 输出信号);// 定义状态localparam [1:0] IDLE = 2'b00,MATCH = 2'b01,NOMATCH = 2'b10;// 状态寄存器reg [1:0] state, nextstate;// 输出函数always @(posedge clk or posedge rst) beginif (rst) beginstate <= IDLE;out <= 1'b0;end else beginstate <= nextstate;out <= (state == MATCH) ? 1'b1 : 1'b0; endend// 激励函数always @() begincase (state)IDLE: beginif (din == 4'b1001) beginnextstate = MATCH;end else beginnextstate = NOMATCH;endendMATCH: beginnextstate = IDLE;endNOMATCH: beginnextstate = IDLE;enddefault: beginnextstate = IDLE;endendcaseendendmodule```七、实验结果与分析1. 长度为4位的序列检测器:当输入序列为1001时,输出高电平;当输入序列不为1001时,输出低电平。

序列检测器

序列检测器

目录第一章设计方案.........................................................11.1设计任务..........................................................11.2设计要求..........................................................11.2.1整体功能要求.................................................11.2.2测试要求.....................................................1 第二章设计思路.........................................................22.1数字频率计介绍....................................................22.2设计原理..........................................................22.2.1频率测量的基本原理...........................................22.2.2整体方框图及原理.............................................22.2.3序列器结构框图...............................................2 第三章模块介绍.........................................................43.1顶层文件模块......................................................43.1.1顶层文件原理.................................................43.1.2顶层文件模块verilog语言描述程序.............................43.2伪随机序列发生器模块..............................................43.2.1伪随机序列发生器.............................................43.2.2伪随机序列发生器原理.........................................53.2.3伪随机序列发生器模块verilog语言描述程序.....................63.3序列检测器模块....................................................73.3.1序列检测器原理...............................................73.3.2序列检测器模块verilog语言描述程序...........................7 第四章序列检测器的实现.................................................84.1序列检测器的verilog语言程序描述及仿真............................84.1.1序列检测器的verilog语言程序描述.............................84.1.2序列检测器的波形仿真.........................................94.2 设计中遇到的问题与解决方法.......................................104.2.1设计中遇到的问题.............................................104.2.2解决方法.....................................................10 第五章设计小结.........................................................115.1 心得体会..........................................................11第一章设计方案1.1设计任务在掌握常用数字电路功能和原理的基础上,根据EDA技术课程所学知识,利用硬件描述语言Verilog HDL、EDA软件Quartus II和硬件平台Cyclone/Cyclone II FPGA进行电路系统的设计。

序列检测器实验报告

序列检测器实验报告

序列检测器实验报告序列检测器实验报告概述:序列检测器是一种用于判断输入序列是否符合特定规则的工具。

在本次实验中,我们使用了一种基于深度学习的序列检测器模型,并对其进行了性能评估和优化。

1. 实验背景序列检测器在许多领域中都有着广泛的应用,如自然语言处理、语音识别、图像处理等。

本次实验旨在通过搭建一个序列检测器模型,探索其在序列数据处理中的效果和潜力。

2. 实验设计我们选择了一组包含数字序列的数据集作为实验样本。

数据集中的每个序列都由一系列数字组成,我们的目标是通过训练序列检测器模型,使其能够准确地判断输入序列是否符合某种规则。

3. 模型搭建我们采用了一种基于循环神经网络(RNN)的模型来构建序列检测器。

RNN是一类特殊的神经网络,可以有效地处理序列数据。

我们使用了长短期记忆(LSTM)单元作为RNN的基本构建块,以提高模型对长期依赖关系的建模能力。

4. 实验步骤首先,我们将数据集划分为训练集和测试集,其中训练集用于模型的训练和参数优化,测试集用于评估模型的性能。

接下来,我们对训练集进行预处理,将每个数字序列转换为对应的数值表示。

然后,我们构建了一个包含多个LSTM 层的序列检测器模型,并通过反向传播算法对其进行训练。

5. 实验结果经过多次实验和参数调整,我们得到了一个性能较好的序列检测器模型。

在测试集上的评估结果显示,该模型能够以高准确率和较低的误判率判断输入序列是否符合规则。

此外,我们还对模型的训练时间和资源消耗进行了分析,发现其在处理大规模序列数据时表现出较好的效率。

6. 优化探索为了进一步提升序列检测器的性能,我们尝试了一些优化策略。

首先,我们增加了模型的深度,即增加了LSTM层的数量。

实验结果显示,增加模型深度可以提高模型的准确率,但也会增加训练时间和资源消耗。

其次,我们尝试了不同的优化算法和学习率调度策略,以寻找更好的模型参数配置。

最后,我们还尝试了集成学习的方法,将多个序列检测器模型的预测结果进行集成,以进一步提升模型的性能。

序列检测器设计-modelsim-verilog-实验报告

序列检测器设计-modelsim-verilog-实验报告

实验四-序列检测一、实验目的:1.实验目的:通过学习硬件编程语言,掌握一般时序逻辑分析的方法。

2.学会使用Verilog语言编写实现任意序列检测。

3.学会使用Verilog编写测试文件testbech的方法并在Modelsim中实现时序仿真。

二、实验设备1.PC机一台2.Modelsim软件三、实验内容:序列检测器是能够与从二进制码流中检测出一组特定序列的信号的时序电路。

通过接受的序列号与检测其预设值比较,当检测到输入信号匹配时,输出响应的指示。

设计序列检测器,要求能够识别序列“10010”。

din为数字码流的输入,z是检测标记的输出,高电平表示“发现指定序列”,低电平表示“没有发现指定的序列”。

1.打开Modelsim软件,切换目录至常用位置,这里选择D:\seqdet。

(注,在D:\seqdet 目录下一保存有序列检测文件seqdet.v和测试文件seqdet_tb.v,源程序在附录里)2.然后新建工程,File ->New->Project,建立工程工程为seqdet,设置如下,并在接下来的步骤中添加序列检测文件seqdet.v和测试文件seqdet_tb.v。

4.编译文件编译无误后,进行仿真5.文件仿真在弹出的窗口中选择Design->work->seqdet_tb,默认选中优化选项。

选择OK6.添加信号到wave视图中。

在仿真状态下,切换到左侧导航窗口到object视图下,添加信号T,clk,rst,x,z,q到wave窗口中,添加完成后如图所示:7.运行仿真至1000ns,,波形图显示如图所示:8.结果分析:对上述图形分析如下,用蓝色表示的为第一次检测到匹配序列“10010”,黄色表示为第二次匹配序列,紫色表示为第三次匹配序列。

z分别在这三处匹配时输出高电平,其他为低电平,实现了序列检测的功能。

四,程序:①源程序模块seqdet.v :module seqdet(input wire x, //信号输入input wire clk, //时钟信号input wire rst,output wire z,output reg [4:0] q //序列输出);wire [4:0] q_next;assign q_next ={q[3:0],x};assign z = (q_next== 5'b10010) ? 1'b1:1'b0;always @ (posedge clk,negedge rst)if(!rst)q <= 5'd0;elseq <= q_next;endmodule②测试程序模块seqdet_tb.v`timescale 1ns/1nsmodule seqdet_tb;localparam T =20;reg clk,rst;reg [23:0] data;wire z,x;wire [4:0] q;assign x = data[23];initialbeginclk =0;rst =1;#2 rst =0;#30 rst =1;data =20'b1100_1001_0000_1001_0100;#(T*1000) $stop;endalways #T clk = ~clk;always @ (posedge clk)#2 data = {data[22:0],data[23]};seqdet U1(.x(x),.z(z),.clk(clk),.q(q),.rst(rst));endmodule五、实验总结:通过本次实验,对Verilog硬件描述语言有了进一步认识,学会编写verilog语言的文本设计方法,并学会编写testbench测试程序。

八位序列检测器设计

八位序列检测器设计

八位序列检测器设计班级:1302012学号:姓名:郭春晖一、设计说明使用quartus软件进行仿真和验证,并且还可以检测其他的序列,只需要修改一部分代码就可以实现。

二、方案工作原理:基于FPGA的多路脉冲序列检测器的设计方案,使用VHDL语言设计时序逻辑电路,先设计序列发生器产生序列:01010;再设计序列检测器,检测序列发生器产生序列,若检测到信号与预置待测信号相同,则输出“1”,否则输出“0”,并且将检测到的信号的显示出来。

三、单元模块设计1、序列信号发生器序列信号是指在同步脉冲作用下循环地产生一串周期性的二进制信号。

利用状态机设计,首先定义一个数据类型FSM_ST它的取值为st0到st15的16个状态。

序列信号发生器的代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY SHK ISPORT (CLK,RST :IN STD_LOGIC; CO :OUT STD_LOGIC );END SHK;ARCHITECTURE behav OF SHK ISTYPE FSM_ST IS (s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15);SIGNAL REG:FSM_ST;SIGNAL Q:STD_LOGIC;BEGINPROCESS(CLK,RST)BEGINIF RST ='1' THEN REG<=s0;Q<='0';ELSIF CLK'EVENT AND CLK='1' THENCASE REG ISWHEN s0=> Q<='1'; REG<=s1; WHEN s1=> Q<='0';REG<=s2;WHEN s2=> Q<='1';REG<=s3; WHEN s3=> Q<='1';REG<=s4;WHEN s4=> Q<='0';REG<=s5; WHEN s5=> Q<='1';REG<=s6;WHEN s6=> Q<='0';REG<=s7; WHEN s7=> Q<='0';REG<=s8;WHEN s8=> Q<='0';REG<=s9; WHEN s9=> Q<='1';REG<=s10;WHEN s10=> Q<='1';REG<=s11; WHEN s11=> Q<='0';REG<=s12;WHEN s12=> Q<='1';REG<=s13; WHEN s13=> Q<='0';REG<=s14;WHEN s14=> Q<='1';REG<=s15; WHEN s15=> Q<='0';REG<=s0;WHEN OTHERS=>REG<=s0;Q<='0';END CASE;END IF;END PROCESS; CO<=Q;END behav;转化成可调用的元件:波形仿真如下:2、序列检测器脉冲序列检测起可用于检测一组或多组二进制码组成的脉冲序列信号,当序列检测器连续接收到一组穿行二进制码后,如果这组码与检测器中预先设置的码相同,则输出1,否则输出0。

序列检测器设计实践报告

序列检测器设计实践报告

序列检测器设计实践报告一、引言序列检测器是现代通信系统中的关键组件之一,它能够检测出接收到的数据序列是否符合特定规则或模式。

在本次实践中,我们通过使用Verilog HDL 语言和ModelSim 软件,成功设计了一个基于有限状态机的序列检测器。

本报告将详细介绍设计实践的目标、设计思路、实现过程以及结果与分析。

二、设计目标本次实践的设计目标是设计一个序列检测器,其输入为一串二进制数据序列,输出为判断该数据序列是否符合预定的模式。

具体要求如下:1. 输入数据序列长度为N。

2. 设计的状态机模型能够正确判断数据序列是否匹配给定的模式。

3. 能够根据实际需要,设计一个可重用的序列检测器。

三、设计思路为了实现序列检测器,我们采用了有限状态机(Finite State Machine)的设计方法。

基于有限状态机的序列检测器通常包含以下几个关键部分:1. 状态寄存器(State Register):用于保存当前状态的寄存器。

2. 状态转移逻辑(State Transition Logic):用于根据当前状态和输入决定下一状态。

3. 输出逻辑(Output Logic):用于根据当前状态和输入决定输出。

在本次实践中,我们根据识别特定序列的要求设计了一个有限状态机模型。

具体步骤如下:1. 根据给定的数据序列模式,分析出可能的状态数以及状态转移条件。

2. 基于状态数和状态转移条件,设计状态转移表和状态转移条件的真值表。

3. 使用Verilog HDL语言,将状态寄存器、状态转移逻辑和输出逻辑实现为模块。

4. 将各个模块组合在一起,以实现完整的序列检测器。

四、实现过程1. 建立状态转移表和真值表根据给定的数据序列模式,我们设定了以下状态:- `S0`:初始状态;- `S1`:序列开始状态;- `S2`:序列匹配状态;- `S3`:序列不匹配状态。

根据分析,我们得到以下状态转移表和状态转移条件的真值表:状态/输入0 1S0 S1 S0S1 S2 S0S2 S2 S3S3 S1 S0状态/输入输出-S2 1S3 02. 实现Verilog HDL模块我们根据状态转移表和真值表,用Verilog HDL语言实现了状态寄存器、状态转移逻辑和输出逻辑。

序列检测器

序列检测器
entity exp_detect1 is
port(clk,rst,din:in std_logic;
z:out std_logic);
end exp_detect1;
architecture bhv of exp_detect1 is
type state_type is(s0,s1,s2,s3,s4,s5,s6); ---状态定义
前者次态和输出均取决于现态和当前输入,后者下一状态取决于当前状态和当前输入,但其输出仅取决于当前状态。
(2)type 语句如何定义状态机状态?注意事项有什么?
答:type 语句可以定义新的数据类型格式:
type 数据类型名 is (元素列表)。
例:
type state_type is (s0, s1, s2, s3, s4);
end if;
when s6=>
if din='0' then
state<=s0;
else
state<=s2;
end if;
end case;
end if;
end process;
process(state,din) ---输出设置
begin
case state is
when s6=>
if din='0' then
type 数据类型名 is (元素列表)
(2)设计步骤
①根据设计要求确定状态机类型。
②列出状态机的状态和输出,分析状态转移关系并化简。
③依据选定状态机类型,绘制状态图。
④编写VHDL定义状态,并建立状态机进程。
⑤编写VHDL描述状态的转移及输出,从而完成状态机设计。

序列检测器实验报告

序列检测器实验报告

实验七序列检测器实验一、实验目的1、掌握序列检测器的工作原理;2、掌握时序电路的经典设计方法;3、学习AHDL 语言的状态机的设计方法;二、原理代码序列检测器是一种同步时序电路,它用于搜索,检测输入的二进制代码串中是否出现指定的代码序列,001 序列检测器的原理图如下:三、实验内容设计一个 1110010 序列检测器,即检测器连续收到一组串行码“1110010”后,输出检测标志1,否则输出0。

要求用图形输入法完成:①作状态图和状态表;②状态化简,建立最简状态表;③写出状态编码;画出状态编码表;④建立激励函数,输出函数真值表;⑤写出激励函数和输出函数表达式;⑥画出逻辑电路测试图;⑦逻辑功能仿真,记录仿真波形并加以说明;⑧下载验证(两种以上的方式)根据实验要求,得到实验所需要的是八个状态,包括初始状态。

根据实验要求检现态S 次态/输出 S/QD=0 D=1初始状态 S0 S0 /0 S1/0接收到1 S1 S0 /0 S2/0接收到11 S2 S0 /0 S3/0接收到111 S3 S4 /0 S3/0接收到1110 S4 S5 /0 S0/0接收到11100 S5 S0 /0 S6/0接收到111001 S6 S7 /1 S2/0接收到1110010 S7 S0 /0 S1/0确定各种不同状态的的表示并且做出状态表根据所得到的状态表写出真值表达式D0*=D0D2’X’+D0D1’D2+D0’D1D2X’D1*=D0D1D2+D1D2’X+XD0’D1+D0’D2X+D1’D2X00 01 11 1000 101 1 111 1 110 1D2*= D0D2’X’+D0’D2’X+XD0’D1+D1D2X根据得到的函数方程,画出电路图如下得到序列波形图输出一个时钟信号以方便下载的时候能够比较方便的对输入的序列进行调试手动调整输入的序列已达到要求,方便检测。

同时在始终是下跳沿的是后调整输入,这样的话不会出现不能及时的出现z为1时的值Sel为q[2..0]的输出,通过它的值来选择7个输入的值的有效性,并确定result的值,使清零端有(无)效,以此来得到最后的输出为一还是为0实验心得:这次的实验收获颇多,一直没有自己用D触发器设计过元件,但是这次自己设计了一个,虽然在刚刚开始的时候听了同学的讲解,但是最终自己是弄懂了,并会连接和设计,在实验过程中,由于连线很复杂,容易将线结在一起,所以在连线时要尽量的化简,务必使线少一点,整个图清晰明了,然后检验时也会少去许多不必要的麻烦在对整个设计的进行状态分析时,要选择好做需要的状态过程,并且分析,不然在最后得方程画图时,会出现不了期望的结果。

序列信号检测器的设计与实现数电实验报告

序列信号检测器的设计与实现数电实验报告

序列信号检测器的设计与实现数电实验报告序列信号检测器的设计与实现数电实验报告数字电路与逻辑计实验报告序列信号检测器的设计与实现一、课题名称:序列信号检测器的设计与实现二、实验目的:(1)熟悉用VHDL语言设计时序逻辑电路的方法;(2)熟悉序列信号检测器的设计方法;(3)了解状态机的设计方法。

三、实验所用仪器及元器件:(1)计算机(2)直流稳压电源(3)数字系统与逻辑设计实验开发板四、实验内容:用VHDL语言设计实现一个序列信号检测器,当检测到“”时,输出为“1”;其他情况时,输出为“0”,仿真验证其功能,并下载到实验板测试。

五、设计思路与过程:第1步,画出原始状态图和状态表。

根据任务书要求,设计的序列检测器有一个外部输入x和一个外部输出Z。

输入和输出的逻辑关系为:当外部输入x第一个为“1”,外部输出Z为“0”;当外部输入x第二个为“0”,外部输出Z为“0”;当外部输入x第三个为“1”,外部输出Z才为“1”。

假定有一个外部输入x序列以及外部输出Z为:输入x: 0 1 0 1 1 1 0 1 1 1 1 0 1 输出Z: 0 0 0 1 0 0 0 1 0 0 0 0 1要判别序列检测器是否连续接收了“”,电路必须用不同的状态记载外部输入x的值。

假设电路的初始状态为A,x输入第一个值“1”,检测器状态由A装换到B,用状态B记载检测器接受了序列的第一个值“1”,这时外部输出Z=0;x输入“0”,检测器状态由B 装换到C,用状态C记载检测器接受了序列的第二个值“0”,外部输出Z=0;x输入第三个值“1”,检测器状态由C 装换到D,外部输出Z=1。

然后再根据外部输入及其他情况时的状态转移,写出相应的输出。

以上分析了序列检测器工作,由此可画出图一所示的原始状态图。

根据原始状态图可列出原始状态表,如表一所示。

0/0A1/0B1/00/00/01/0CD1/10/0图一原始状态图表一:原始状态表SnSn?1 X=1 B B D B X=0 0 0 0 0 Z X=1 0 0 1 0 X=0 A C A C A B C D第2步,在对原状态表进行简化,从状态表就可以看出B、D 两个状态为等价状态。

序列检测器 实验报告

序列检测器 实验报告

序列检测器实验报告序列检测器是一种常见的信号处理技术,广泛应用于通信、雷达、生物医学和金融等领域。

本文将介绍序列检测器的原理、实验设计和实验结果,并对其应用进行讨论。

一、序列检测器的原理序列检测器是一种用于检测和识别输入信号序列的设备或算法。

它通过对输入信号进行观测和分析,判断信号是否符合特定的模式或规律。

常见的序列检测器包括有限状态机、卷积神经网络和隐马尔可夫模型等。

有限状态机是一种基本的序列检测器,它由一组状态和状态之间的转移规则组成。

在每个时刻,输入信号会触发状态之间的转移,最终达到一个终止状态。

通过定义状态和转移规则,可以实现对输入信号序列的检测和识别。

二、实验设计本实验旨在设计并实现一个简单的序列检测器,用于检测二进制信号序列中是否存在特定的模式。

实验使用MATLAB软件进行仿真,并基于有限状态机的原理进行设计。

1. 实验步骤(1)定义有限状态机的状态和转移规则;(2)生成一组随机的二进制信号序列作为输入;(3)根据状态和转移规则,对输入信号进行观测和分析;(4)判断输入信号是否符合特定的模式,并输出检测结果。

2. 实验参数为了简化实验设计,我们假设输入信号序列中的模式为"110"。

具体的状态和转移规则如下:(1)初始状态为S0;(2)当输入为"1"时,状态转移为S1;(3)当输入为"0"时,状态转移为S0;(4)当当前状态为S1且输入为"0"时,状态转移为S2;(5)当当前状态为S2且输入为"1"时,状态转移为S3;(6)当当前状态为S3且输入为"0"时,状态转移为S0。

三、实验结果经过实验设计和仿真,我们得到了以下实验结果:1. 输入信号序列:1011010110112. 检测结果:存在模式"110"通过对输入信号序列进行观测和分析,我们成功地检测到了模式"110"的存在。

序列检测器实验报告

序列检测器实验报告

#### 实验目的1. 理解序列检测器的工作原理;2. 掌握时序电路的经典设计方法;3. 学习使用Verilog HDL语言进行状态机的设计;4. 验证序列检测器在实际电路中的性能。

#### 实验原理序列检测器是一种同步时序电路,用于检测特定的串行码序列。

它能够识别并响应特定长度的二进制序列,一旦检测到匹配序列,就会产生一个输出信号。

序列检测器在数字通信、数据存储和信号处理等领域有着广泛的应用。

#### 实验器材1. PC机一台;2. FPGA开发板;3. 下载电缆一根;4. 信号发生器;5. 示波器;6. 连接线若干。

#### 实验步骤1. 设计序列检测器:使用Verilog HDL语言设计一个序列检测器,该检测器能够检测到特定的序列,如“101”。

2. 实现状态机:将序列检测器设计为一个状态机,通过定义状态和状态转移图来实现序列检测功能。

3. 代码编写与仿真:在FPGA开发板上编写Verilog代码,并使用仿真软件进行功能验证。

4. 硬件实现:将Verilog代码下载到FPGA开发板上,通过信号发生器生成测试序列,并使用示波器观察输出信号。

5. 性能测试:测试序列检测器在实际电路中的性能,包括检测速度、误检率等。

#### 实验内容1. 状态机设计:根据序列检测器的要求,设计状态转移图,并定义状态编码。

2. Verilog代码编写:使用Verilog HDL语言编写序列检测器的代码,包括模块定义、信号定义、状态定义、状态转移和输出逻辑等。

3. 仿真验证:使用仿真软件对Verilog代码进行功能验证,确保序列检测器能够正确地检测到指定序列。

4. 硬件下载与测试:将Verilog代码下载到FPGA开发板上,生成测试序列,并使用示波器观察输出信号,验证序列检测器的实际性能。

#### 实验结果与分析1. 仿真结果:在仿真软件中,序列检测器能够正确地检测到指定序列“101”,输出信号符合预期。

2. 硬件测试结果:在FPGA开发板上,序列检测器能够正确地检测到指定序列“101”,输出信号与仿真结果一致。

实验八用状态机实现序列检测器的设计

实验八用状态机实现序列检测器的设计

实验八用状态机实现序列检测器的设计
1、实验目的
本实验旨在通过状态机的设计实现一个序列检测器,该序列检测器可
以检测01序列中可编程的模式,并实现相应的响应动作。

2、实验原理
序列检测器是一种有限状态机,由一系列状态和一系列触发器组成,
可以检测特定的序列,并拥有一定的驱动和响应动作。

根据所检测的序列,检测器通过触发器设置能够自动的转换到特定的状态,触发器的设置可以
根据需要进行调整,从而实现不同的序列和不同的响应动作。

3、实验内容
(1)状态机的设计
状态机的设计分为状态图设计和状态表设计两部分,在状态图设计中,绘制出起始状态、可能的转移状态以及相应的触发器, shown by figure 1 below . 再根据实验的要求,结合状态图和状态表,确定每一个触发器
的对应的转移状态以及响应动作, shown by table 1 below .
(2)用VHDL编程实现状态机
在VHDL中,可以实现上面的状态机,用自定义的类型定义状态、触
发器、响应动作以及转移条件,将状态图转换成可执行的VHDL代码,shown by listing 1 below .
(3)VHDL代码的仿真
在仿真中,可以根据状态图测试序列检测器的功能,确保能够检测出正确的模式,并实现预期的响应动作, shown by figure 2 below.
4、实验结果。

实训八 用状态机实现序列检测器的设计

实训八  用状态机实现序列检测器的设计

实训八用状态机实现序列检测器的设计一、实训目的1.掌握一种状态机的设计方法2.用状态机实现序列检测器的设计,并对其进行仿真和硬件测试二、实训器材1.EDA实验箱1台2.微型计算机1台3.MAX+PLUSII10.2软件1套4.下载电缆1条三、实训原理序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出1,否则输出0。

由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置数的对应码相同。

在检测过程中,任何一位不相等都将回到初始状态重新开始检测。

例中描述的电路完成对序列数"11100101"的。

当这一串序列数高位在前(左移)串行进入检测器后,若此数与预置的密码数相同,则输出“A”,否则仍然输出“B”。

四、设计程序(参考程序)LIBRARY IEEE ;USE IEEE.STD_LOGIC_1164.ALL;ENTITY SCHK ISPORT( DIN,CLK,CLR : IN STD_LOGIC ; --串行输入数据位/工作时钟/复位信号AB : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); --检测结果输出END SCHK;ARCHITECTURE behav OF SCHK ISSIGNAL Q : INTEGER RANGE 0 TO 8 ;SIGNAL D : STD_LOGIC_VECTOR(7 DOWNTO 0); --8位待检测预置数BEGIND <= "11100101 " ; --8位待检测预置数PROCESS( CLK, CLR )BEGINIF CLR = '1' THEN Q <= 0 ;ELSIF CLK'EVENT AND CLK='1' THEN --时钟到来时,判断并处理当前输入的位CASE Q ISWHEN 0=> IF DIN = D(7) THEN Q <= 1 ; ELSE Q <= 0 ; END IF ;WHEN 1=> IF DIN = D(6) THEN Q <= 2 ; ELSE Q <= 0 ; END IF ;WHEN 2=> IF DIN = D(5) THEN Q <= 3 ; ELSE Q <= 0 ; END IF ;WHEN 3=> IF DIN = D(4) THEN Q <= 4 ; ELSE Q <= 0 ; END IF ;WHEN 4=> IF DIN = D(3) THEN Q <= 5 ; ELSE Q <= 0 ; END IF ;WHEN 5=> IF DIN = D(2) THEN Q <= 6 ; ELSE Q <= 0 ; END IF ;WHEN 6=> IF DIN = D(1) THEN Q <= 7 ; ELSE Q <= 0 ; END IF ;WHEN 7=> IF DIN = D(0) THEN Q <= 8 ; ELSE Q <= 0 ; END IF ;WHEN OTHERS => Q <= 0 ;END CASE ;END IF ;END PROCESS ;PROCESS( Q ) --检测结果判断输出BEGINIF Q = 8 THEN AB <= "1010" ; --序列数检测正确,输出“A” ELSE AB <= "1011" ; --序列数检测错误,输出“B” END IF ;END PROCESS ;END behav ;提示:若对于D <= "11100101 ",电路需记忆:初始状态、1、11、111 、1110 、11100、111001、1110010、11100101 共9种状态。

序列检测器的设计实验报告

序列检测器的设计实验报告

序列检测器的设计实验报告一、实验目的本次实验的目的是设计一个能够检测特定序列的数字逻辑电路,即序列检测器。

通过设计和实现这个电路,深入理解数字电路的基本原理和设计方法,掌握状态机的概念和应用,提高逻辑分析和电路设计的能力。

二、实验原理序列检测器是一种能够在输入数据流中检测特定序列的电路。

它通常由状态机实现,状态机根据输入的变化在不同的状态之间转移,并在特定的状态下输出检测结果。

以检测序列“1011”为例,我们可以定义以下几个状态:状态 S0:初始状态,等待输入。

状态 S1:接收到“1”,等待下一个输入。

状态 S2:接收到“10”,等待下一个输入。

状态 S3:接收到“101”,等待下一个输入。

状态 S4:接收到“1011”,输出检测成功信号。

根据状态转移和输出的规则,可以画出状态转移图,并根据状态转移图设计相应的逻辑电路。

三、实验设备与器材1、数字电路实验箱2、逻辑门芯片(如与门、或门、非门等)3、示波器4、电源四、实验步骤1、分析设计要求,确定状态转移和输出规则,画出状态转移图。

2、根据状态转移图,列出状态转换表,确定每个状态下的输入和输出。

3、使用卡诺图或其他逻辑化简方法,对状态转换表进行化简,得到最简的逻辑表达式。

4、根据逻辑表达式,选择合适的逻辑门芯片,在实验箱上搭建电路。

5、连接电源和示波器,对电路进行测试。

输入不同的序列,观察输出是否符合预期。

五、实验电路设计以下是检测序列“1011”的逻辑电路设计:状态变量定义:设当前状态为 Q1Q0,其中 Q1 为高位,Q0 为低位。

状态转移方程:Q1(n+1) = Q1Q0 + XQ1' (其中 X 为输入)Q0(n+1) = XQ0' + Q1Q0输出方程:Y = Q1Q0X根据上述方程,使用与门、或门和非门搭建电路。

六、实验结果与分析在实验中,输入了不同的序列,包括“1011”以及其他随机序列。

通过示波器观察输出,当输入序列为“1011”时,输出为高电平,表示检测成功;当输入其他序列时,输出为低电平,表示未检测到目标序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八序列检测器的设计与仿真一、实验要求1.用VHDL语言设计一个Mealy机以检测“1101001”序列;2.用VHDL语言设计一个Moore机以检测“1101001”序列;3.在文本编辑区使用VHDL硬件描述语言设计逻辑电路,再利用波形编辑区进行逻辑功能仿真,以此验证电路的逻辑功能是否正确。

二、实验内容用VHDL语言设计各一个mealy和moore状态机测试“1101001”位串的序列检测器,并通过仿真波形验证设计的功能是否正确。

三、实验过程由于在报告1中已经详尽描述了如何使用Quartus 2建立逻辑原理图和使用VHDL语言实现元件功能,所以本次的实验报告中便不再赘述上述内容,报告将主要就VHDL 语言描述实现元件的功能的过程进行阐述。

1.Mealy机选择File→New,弹出新建文本对话框,在该对话框中选择VHDL File并单击OK按钮,进入文本编辑窗口,输入VHDL代码。

library ieee;use ieee.std_logic_1164.all;entity melay isport(clk,rst,d: in std_logic;z: out std_logic);end melay;architecture arc of melay istype state_type is(s0,s1,s2,s3,s4,s5,s6);signal state: state_type;beginprocess(clk,rst)beginif rst= '1' thenstate<=s0;elsif (clk'event and clk ='1') thencase state is --1101001when s0 =>if d='1' thenstate<=s1;elsestate<=s0;end if;when s1=>if d='1' thenstate<=s2;elsestate<=s0;end if;when s2=>if d='0' thenstate<=s3;elsestate<=s2;end if;when s3=>if d='1' thenstate<=s4;elsestate<=s0;end if;when s4=>if d='0' thenstate<=s5;elsestate<=s1;end if;when s5=> --1101001if d='0' thenstate<=s6;elsestate<=s1;end if;when s6=>if d='1' thenstate<=s0;elsestate<=s0;end if;end case;end if;end process;process(state,d)begincase state iswhen s6=>if d='1' thenz<='1';elsez<='0';end if;when others=>z<='0';end case;end process;end arc;保存文件并编译,选择菜单File→New,选择Vector Waveform File新建波形图,添加节点,参数设置为:End Time=2us, Grip size=50ns。

所完成的波形图如下图:波形解释:rst为复位端,高电平有效,返回最初状态;clk为时钟信号输入端口;,state。

s0~s6表示mealy机中各步状态;z表示检测序列为“1101001”时,表示输出高电平。

保存波形文件,并在settings中选择functional功能仿真,绘制网格,仿真可得出如图波形:根据mealy状态表和序列检测器相应功能验证,当rst=‘1’时,不管当前状态为何,都将被初始为最初态s0;当输入d端依次输入“1101001”时,当检测到最后一位输入正确的同时,z端马上跳为高电平,表示所检测序列正确。

其他可看出,当处于时钟上升沿时,state 中各状态依照输入数据依次跳变。

最后mealy机成功检测出相应序列,设计成功。

已知序列检测器的Mealy机状态表为:同样可依次对照上述仿真图形,显然上述序列检测器mealy机功能设计正确。

2.序列检测器moore机选择File→New,弹出新建文本对话框,在该对话框中选择VHDL File并单击OK按钮,进入文本编辑窗口,输入VHDL代码。

library ieee;use ieee.std_logic_1164.all;entity moore isport(clk,rst,d: in std_logic;z: out std_logic);end moore;architecture arc of moore is --moore:输出只和当前状态有关;type state_type is(s0,s1,s2,s3,s4,s5,s6,s7);signal state:state_type;beginprocess(clk,rst)beginif rst= '1' then --1101001state<=s0;elsif(clk'event and clk='1') thencase state is --1101001when s0 =>if d='1' thenstate<=s1;elsestate<=s0;end if;when s1=>if d='1' thenstate<=s2;elsestate<=s0;end if;when s2=>if d='0' thenstate<=s3;elsestate<=s2;end if;when s3=>if d='1' thenstate<=s4;elsestate<=s0;end if;when s4=>if d='0' thenstate<=s5;elsestate<=s1;end if;when s5=> --1101001if d='0' thenstate<=s6;elsestate<=s1;end if;when s6=>if d='1' thenstate<=s7;elsestate<=s0;end if;when s7=>if d='1' thenstate<=s1;elsestate<=s0;end if;end case;end if;end process;process(state,d)begincase state iswhen s6=>if d='1' thenz<='1';elsez<='0';end if;when others=>z<='0';end case;end process;end arc;可看出,moore机的设计和mealy机上大体相同,只有在状态的传递上有细微区别。

保存文件并编译,选择菜单File→New,选择Vector Waveform File新建波形图,添加节点,参数设置为:End Time=3us, Grip size=50ns。

所完成的波形图如下图:图中各端口设置功能同mealy机。

保存波形文件,并在settings中选择functional功能仿真,绘制网格,仿真可得出如图波形:仿真波形分析:由于设计的moore状态机检测序列功能相同,与mealy不同在于当状态跳变判断s7时,z端才跳变为高电平。

根据刚刚对mealy机的仿真分析和下表的状态值变化显然可知,moore 机实现了检测序列“1101001”的功能,设计成功。

已知序列检测器的Mealy机状态表为:四、总结本节实验中,通过对用VHDL语言对mealy状态机和moore状态机进行设计,更加熟练了使用VHDL语言对元件的设计。

也通过用不同的状态机设计序列检测器,而对两种状态机的区别有了更深刻的了解。

Moore状态机输出只和当前状态有关,而mealy机输出和当前状态和输入信号有关,由于moore机没有组合逻辑,所以moore机的状态会多一些。

也对序列检测器的实现使得我对序列检测器的作用和功能了之于心。

一开始没有弄清moore 机和mealy机的区别,导致后来写moore机的时候出现了停滞,不过在弄清他们的区别时候,写出moore机就没什么问题了。

不已然,已经到了数字逻辑的最后一个实验了,回想做实验时,有苦有乐,从开始的对VHDL语言的一窍不通,到现在可以用它设计简单的元件并实现功能,实验中我收获了许多,实验对我成长的帮助必不可少。

虽然马上就要结束实验,不过还有许多VHDL语言的奥妙在可以发挥它的地方等待着我们去探索,我也会继续探索VHDL语言,用它来实现更多好玩好用的东西。

2013/12/23。

相关文档
最新文档