(完整版)平行与垂直的知识点总结,推荐文档

合集下载

七年级数学:《平行垂直》知识点归纳

七年级数学:《平行垂直》知识点归纳

七年级数学:《平行垂直》知识点归纳一、知识梳理二、1、平行线的定义:三、在同一平面内不相交的两条直线叫做平行线.四、2、平行的表示:五、用符号“∥”表示,读作“平行于” .六、3、同一平面内两条直线的位置关系:七、平行或相交.八、4、平行公理:九、经过直线外一点,有且只有一条直线与已知直线平行.十、5、平行的传递性:十一、平行于同一直线的两直线平行.十二、6、平行与角的联系:十三、若一个角的两边与另一个角的两边分别平行,则这两个角相等或互补.十四、7、垂直定义:十五、如果两条直线相交所成的四个角中有一个角是直角,那么这两条直线互相垂直.十六、其中一条直线叫做另一条直线的垂线.它们的交点叫做垂足.十七、两条线段、射线垂直是指这两条线段、射线所在的直线垂直.十八、8、垂直的表示:十九、用符号“⊥”表示,读作“垂直于” .二十、9、垂直公理:二十一、过一点有且只有一条直线与已知直线垂直.二十二、10、点到直线的距离:二十三、直线外一点到这条直线的垂线段的长度.二十四、11、垂线段的性质:二十五、直线外一点与直线上各点连接的所有线段中,垂线段最短.二十六、12、垂直与角的联系:二十七、若一个角的两边与另一个角的两边分别垂直,则这两个角相等或互补.二、典型例题例1、概念辨析(1)两条不相交的直线叫做平行线.(2)两条直线不相交就平行.(3)两条射线或线段平行,是指它们所在的直线平行.(4)在同一平面内不相交的两条线段必平行.(5)经过一点,有且只有一条直线与已知直线平行.(6)同一平面内垂直于同一直线的两条直线互相平行.(7) 点A为直线l外一点,点B在直线l上,若AB=5厘米,则点A到直线l的距离为5cm.解析:(1)错误,必须加同一平面内,否则在立体几何中,会出现异面的情况.比如一个正方体,上面和前面相交的棱与右面和后面相交的棱,所在直线就是既不平行也不相交.(2)错误,理由同(1).(3)正确.(4)错误,反例如下图:(5)错误,必须在直线外,否则,如果这个点在直线上,所作直线就与已知直线重合.(6)正确.(7)错误,如下图,当点B在B2处,点A到直线l的距离为5cm,当点B在B1,点A到直线l的距离小于5cm.例2、试画图说明平面内三条直线的位置关系.分析:我们知道,同一平面内的两条直线有相交、平行两种关系.那么到了三条直线,就会出现三条都平行,两条平行,都不平行的情况.在三条都平行的情况外,必然有相交的情况,我们可以从交点数来考虑,即有一个,有两个,有三个交点三种.解答:例3、(1)如图,P是∠AOB外一点,过点P画直线PC∥OA,交OB于点C,过点P画直线PD∥O B,交OA反向延长线于点D,量出∠AOB、∠CPD的度数,你有什么发现?点P如果在∠AOB内部呢?(2)如图,P是∠AOB外一点,过点P画直线PC⊥OA,交OA于点C,过点P画直线PD⊥O B,交OB于点D,量出∠AOB、∠CPD的度数,你有什么发现?点P如果在∠AOB内部呢?分析:本题不难,主要是根据要求作图,然后发现度数之间的联系,不是相等就是互补,最后,再关注所研究的两个角的位置关系,发现其中一个角的两边与另一个角的两边分别平行,从而得出最后结论.解答:(1)当P是∠AOB外一点,∠AOB+∠CPD=180°当P是∠AOB内一点,∠AOB=∠CPD发现:若一个角的两边与另一个角的两边分别平行,则这两个角相等或互补.(2)当P是∠AOB外一点,∠AOB=∠CPD当P是∠AOB内一点,∠AOB+∠CPD=180°发现:若一个角的两边与另一个角的两边分别垂直,则这两个角相等或互补.三、思维提升例1、网格作图(1)利用图(1)中的网格,利用直尺过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于______.分析:网格作图是今后的重点内容,我们应该引起足够的重视,(1)对于作平行,有2种作法,第一种观察线段AB是横2竖4的长方形对角线,那么,过要画的点P,也应该是构造横2竖4的长方形对角线.第二种,采用平移的方法,从点A平移到点P,需要向右4格再向下1格,那么点B也要同样平移,然后将线段两端延长,变成直线.对于作垂直,则和平行相反,过点P需要构造横4竖2的长方形对角线.(2)我们可以保持EF不动,将AB,CD平移,注意,有2种情况.(3)对于网格图形的面积,我们通常可以采用割补法,割,把大图形分成几个小图形,计算面积和,补,把大图形再补成一个更大的,可直接计算面积的图形,减去周围几个小图形的面积和.本题适合用补的方法.解答:例2、垂线段再认识如图,在6×6的正方形网格中,点P是∠AOB的边OB上的一点.过点P画OB的垂线,交OA于点C;过点P画OA的垂线,垂足为H;(1)请找出图中所有的垂线段,并说明这条垂线段的长度是哪个点到哪条直线的距离.(2)线段PC、PH、OC这三条线段大小关系是______.(用“<”号连接)分析:要找垂线段,首先要找出所有的垂足,因为垂线段是直线外一点到垂足的距离.这里的垂足显然只有P,H,那么点O,点C,可以和点P,点H组成垂线段.要说明垂线段长度是哪个点到哪一条直线的距离,那么必然选择的是垂线段的两个端点中,不是垂足的那个点,到垂足所在的另外一条与垂线段垂直的直线的距离.解答:(1)OP,OP的长度是点O到直线PC的距离.CP,CP的长度是点C到直线OB的距离.OH,OH的长度是点O到直线PH的距离.CH,CH的长度是点C到直线PH的距离.PH,PH的长度是点P到直线OC的距离.(2)PH<PC<OC.例3、思考类作图同一平面内已知线段AB长为10cm,点A、B到直线l的距离分别为6cm和4cm,符合条件的直线l有_______条?分析:显然,同学们都能想到作线段AB的垂线,将线段AB分成6cm,4cm两部分.但其实,在线段AB的两侧还有两条,分别以A、B为圆心、6cm和4cm为半径作圆,当所画的直线与两个圆分别都只有一个交点时,也符合题意,这样的直线有两条,即共有3条.到了初三,我们会知道,这三条线就是所画的两个圆的切线.解答:如图,三条红色的直线即为所求.变式如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.分析:我们可以先找线,再确定点,先找出到l1距离为2的直线,到12距离为1的直线,显然,它们的交点,就满足题意.画图后,不难发现到l1距离为2的直线有2条,到12距离为1的直线有2条,这4条直线两两相交,有4个交点,这4个交点就是"距离坐标"是(2,1)的点.解答:如图,到l1距离为2的直线是2条蓝色直线,到12距离为1的直线是2条红色直线,四个交点即为所求.。

空间几何的平行与垂直关系知识点总结

空间几何的平行与垂直关系知识点总结

空间几何的平行与垂直关系知识点总结空间几何是研究点、线、面等几何形体在空间中的相互关系和特性的学科。

在空间几何中,平行和垂直是两种重要的关系。

本文将总结空间几何中的平行与垂直关系的知识点。

一、平行关系平行是指两条直线或两个平面在空间中永远不会相交的关系。

平行关系在日常生活和工程建设中经常被应用到。

1. 平行关系的性质- 平行线与同一平面内的直线交线的两个内角是同位角,即两个内角之和等于180度。

- 平行线与同一平面外的直线交线的两个内角也是同位角,同位角性质适用于平行于同一平面内的两条直线。

2. 判定平行关系的方法- 平行线的判定:如果两条直线上有一点与第三条直线上的两个点重合,并且这两条直线分别与第三条直线平行,则这两条直线是平行线。

- 平行面的判定:如果两个平面上有一条直线与第三个平面上的两条直线重合,并且这两个平面分别与第三个平面平行,则这两个平面是平行面。

3. 平行线的性质- 平行线投影性质:平行于同一平面内的两条直线的等角投影相等。

- 平行线的方向性:平行线有确定的方向,可以延长或缩短,但方向不会改变。

二、垂直关系垂直是指两条直线或两个平面相交成直角的关系。

垂直关系在几何学、建筑学和物理学中都有广泛应用。

1. 垂直关系的性质- 垂直关系性质一:两个直角相等。

- 垂直关系性质二:两个互相垂直的直线或两个互相垂直的平面,其中一个与第三个垂直,则它们与第三个也是垂直关系。

- 垂直关系性质三:垂直于同一面的直线与该面的交线垂直。

2. 判定垂直关系的方法- 判定直线垂直关系的方法:如果两条直线上有一点与第三条直线上的两个点重合,并且这两条直线分别与第三条直线垂直,则这两条直线是垂直的。

- 判定面垂直关系的方法:如果两个平面上有一条直线与第三个平面上的两条直线相交成直角,并且这两个平面分别与第三个平面垂直,则这两个平面是垂直的。

三、平行和垂直关系的应用平行和垂直关系在日常生活和工程建设中具有广泛的应用。

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。

理解和掌握这些关系,对于解决相关的几何问题具有关键作用。

下面我们通过一些例题来深入探讨,并对相关知识点进行总结。

一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。

2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。

证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。

又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。

(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。

2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。

证明:连接 AC 交 BD 于 O,连接 MO。

因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。

又因为 M 是 PC 的中点,所以MO∥PA。

因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。

(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。

2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。

证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。

二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。

小学数学平行与垂直知识点总结

小学数学平行与垂直知识点总结

小学数学平行与垂直知识点总结在小学数学中,平行与垂直是几何图形中非常基础且重要的概念。

理解这两个概念对于后续学习更复杂的几何知识有着至关重要的作用。

一、平行(一)平行的定义在同一平面内,不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

这里要注意“在同一平面内”这个前提条件,如果不在同一平面内,即使两条直线不相交,也不能说它们是平行的。

(二)平行线的特点1、平行线之间的距离处处相等。

比如两条平行的铁轨,它们之间的枕木长度都是相等的。

2、平行线无论延长多远都不会相交。

(三)平行线的表示方法通常用“//”来表示平行,比如直线 a 与直线 b 平行,可以记作 a//b。

(四)画平行线的方法1、借助直尺和三角尺:先将三角尺的一条直角边与已知直线重合,再将直尺与三角尺的另一条直角边重合,然后沿着直尺平移三角尺,最后沿着三角尺的直角边画直线,就得到了与已知直线平行的直线。

2、用方格纸画平行线:在方格纸上,根据方格的横竖线来画平行线。

(五)生活中的平行线例子1、黑板的上下两条边。

2、窗户的左右两条边。

3、公路上的双黄线。

二、垂直(一)垂直的定义如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

(二)垂直的特点1、两条直线互相垂直时,形成的四个角都是直角。

2、垂线是直线,垂线段是线段。

(三)垂直的表示方法通常用“⊥”来表示垂直,比如直线 a 与直线 b 垂直,可以记作 a⊥b,交点 O 为垂足,记作“a⊥b 于点O”。

(四)画垂线的方法1、过直线上一点画垂线:将三角尺的一条直角边与已知直线重合,让三角尺的另一条直角边经过已知点,沿着这条直角边画直线,就是已知直线的垂线。

2、过直线外一点画垂线:先将三角尺的一条直角边与已知直线重合,让三角尺的另一条直角边靠近已知点,然后平移三角尺,使三角尺的另一条直角边经过已知点,沿着这条直角边画直线,就是已知直线的垂线。

平行线和垂直线知识点

平行线和垂直线知识点

平行线和垂直线知识点在几何学中,平行线和垂直线是两个基本的概念。

它们在直线和平面的研究中具有重要的意义。

本文将介绍平行线和垂直线的定义、性质以及它们之间的关系。

一、平行线的定义和性质平行线是指在同一个平面上永远不会相交的直线。

具体而言,对于两条直线l和m,如果它们在同一个平面上且不相交,我们可以说直线l与直线m是平行的,记作l ∥ m。

根据平行线的定义,我们可以得出以下性质:性质1:如果一条直线与两条平行线相交,那么它将分成两个相对应的锐角和两个相对应的钝角。

性质2:平行线具有传递性,即如果直线l与直线m平行,直线m 与直线n平行,那么直线l与直线n也平行。

性质3:如果两条平行线分别与第三条直线相交,那么相应的对应角是相等的。

性质4:如果两条直线分别与一组平行线相交,那么对应角是相等的。

二、垂直线的定义和性质垂直线是指两条直线形成的角度为90度的直线。

具体而言,对于两条直线l和m,如果它们相交且所成的角度为90度,我们可以说直线l与直线m是垂直的,记作l ⊥ m。

垂直线具有以下性质:性质1:一条直线与平面上的一条垂直线相交,则它与该垂直线所成的角度为90度。

性质2:如果两条直线互相垂直,那么它们是共面的。

三、平行线和垂直线的关系平行线和垂直线是两种不同的情况,但它们之间存在一些重要的关系。

性质1:如果两条平行线被一条横切线相交,那么所成的对应角是相等的。

性质2:如果两条直线互相垂直,那么它们的斜率乘积为-1。

性质3:如果一条直线与一组平行线相交,那么它所成的角度与这组平行线的对应角度相等。

性质4:如果两条直线互相垂直,那么它们的方向余弦的乘积为0。

以上是平行线和垂直线的一些基本定义和性质。

这些概念在几何学中占有重要地位,不仅在纸上的学习中有用,也在实际生活中的测量和建筑等领域有广泛的应用。

对于学习几何学的人来说,掌握这些知识点是必不可少的。

总结:通过本文的介绍,我们了解到平行线和垂直线的定义、性质以及它们之间的关系。

立体几何平行和垂直知识点整理

立体几何平行和垂直知识点整理

立体几何平行和垂直知识点整理立体几何是研究三维空间中的几何关系的一个分支。

在立体几何中,平行和垂直是两个基本的几何关系。

本文将整理平行和垂直的相关知识点,包括定义、性质、判定方法和应用。

一、平行线1.定义:平行线是在同一个平面上永不相交的两条直线。

2.性质:a.平行线上的任意两点与直线外的一点构成的角是等于180度的;b.平行线上的任意两条直线与直线外的一条直线构成的对应角是等于180度的;c.平行线的斜率相等;d.平行线之间的距离是恒定的,且等于两条平行线上任意一点与另一条线的垂直距离;e.平行线可以用符号“∥”表示。

3.判定方法:a.若两条直线的斜率相等且有一个公共点,则这两条直线平行;b.若两条直线的斜率乘积为-1,则这两条直线垂直。

4.应用:a.平行线的概念经常用于几何证明和推理;b.在建筑和工程中,平行线可用于制定准确的测量和构图;c.在计算机图形学中,平行线的概念可用于处理线段的遮挡和相交问题。

二、垂直线1.定义:垂直线是与另一条线段、直线或平面成直角的线。

2.性质:a.垂直线上的任意两点与直线外的一点构成的角是等于90度的;b.垂直线上的任意两条直线与直线外的一条直线构成的对应角是等于90度的;c.两条直线垂直时,它们的斜率乘积为-1;d.垂直线可以用符号“⊥”表示。

3.判定方法:a.通过斜率判断:若两条直线的斜率乘积为-1,则这两条直线垂直;b.通过直角边判断:若两条直线上各自有一条线段互相垂直,且这两条直线有一个公共点,则这两条直线垂直;c.通过垂线判断:若两条直线上各自有一条线段的延长线相交于一点,则这两条直线垂直。

4.应用:a.垂直线的概念广泛用于建筑、土木工程和制图中,可用于确定垂直墙壁、柱子、支柱等;b.在三角测量和地理测量中,垂直线可用于构建垂直边、垂直角、垂线等。

总结:平行和垂直是立体几何中两个重要的几何关系。

平行线在同一个平面上永不相交,其性质包括构成的角相等、斜率相等等,可用于几何证明和计算机图形学中。

平行线与垂直线知识点总结

平行线与垂直线知识点总结

平行线与垂直线知识点总结平行线和垂直线是几何中重要的概念。

它们之间存在一些关键性的属性和定理,了解这些知识点对于理解几何学的基础原理和解题技巧至关重要。

本文将对平行线和垂直线的定义、性质以及相关定理进行总结。

一、平行线1. 定义:平行线是在同一个平面中,永远不相交的两条直线。

用符号“//”表示两条平行线。

2. 性质:- 平行线之间存在等距离:两条平行线的任意两点之间的距离相等。

- 平行线的斜率相等:两条平行线的斜率是相等的。

- 平行线具有传递性:若直线a//b,b//c,则a//c。

3. 平行线的判定:- 垂直平分线判定法:如果两条线段的中垂线重合,则这两条线段平行。

- 角平分线判定法:如果两条角的角平分线平行,则两条角所在的直线平行。

- 逆否命题判定法:如果两条直线的对应角都不相等,则这两条直线平行。

- 同位角定理:两条平行线被一条横切线所交,所形成的同位角相等。

- 内错角定理:两条平行线被一条横切线所交,所形成的内错角互补。

- 外错角定理:两条平行线被一条横切线所交,所形成的外错角相等。

二、垂直线1. 定义:垂直线是在同一个平面中,相交时所成的角度为90度的两条直线。

2. 性质:- 垂直线之间的角度为90度。

- 垂直线的斜率乘积为-1。

- 垂直线上的任意线段之间距离相等。

3. 垂直线的判定:- 垂直平分线判定法:如果两条线段的中垂线垂直,则这两条线段垂直。

- 互相垂直的直线判定法:如果两条直线斜率的乘积为-1,则这两条直线垂直。

- 同位角定理:两条垂直线被一条直线所交,所形成的同位角相等。

- 内错角定理:两条垂直线被一条直线所交,所形成的内错角互补。

- 外错角定理:两条垂直线被一条直线所交,所形成的外错角相等。

总结:平行线和垂直线是几何学中十分重要的概念。

平行线具有等距离和相等斜率的特点,垂直线具有90度的角度和斜率乘积为-1的特点。

我们可以利用垂直线和平行线的性质来判断线段和直线的关系,以及解决各类几何题目。

平面平行和垂直知识点总结

平面平行和垂直知识点总结

平面平行和垂直知识点总结1.定义平面平行: 平面上的两条直线,如果它们的方向相同或重合,则这两条直线是平行的。

平面垂直: 平面上的两条直线,如果它们的方向互相垂直,则这两条直线是垂直的。

2.平行线的性质(1) 两条平行线平行于同一平面;(2) 两条平行线的斜率相同;(3) 平行线上任意一组对应角,必有相等的对应角;(4) 平行线被斜线切割,相交角互补,即对应角相等;(5) 平行线被一条直线所切,对应角相等;(6) 平行线横跨两条直线,内错角、内外角互补;(7) 平行线横跨三条直线,内错角、内外角互补。

3.垂直线的性质(1) 垂直线的斜率乘积为-1;(2) 垂直线必然相交于一点;(3) 垂直线上的任意两组对应角相等;(4) 垂直线被斜线切割,相交角互补,即对应角相等。

4.平面中的垂直线和平行线(1) 垂直线和平行线的关系:平面内一直线和另一直线相互垂直,则这两直线必然平行;(2) 平行线的垂直平分线:若平面上一直线同时是两条平行线的垂直平分线,则这两条平行线必定对称。

5.平行线和垂直线的判定平行线:两条直线斜率相等则平行;或平面内一直线与另一直线相交角相等,则这两直线平行。

垂直线:两条直线相互垂直的条件是它们的斜率乘积为-1;或两条直线的相交角为90度。

6.平面中的平行线和垂直线关系(1) 平面中一条直线被另一直线切割为等角,则这两条直线必然平行;(2) 平面中一条直线被另一直线垂直平分,则这两条直线必然平行。

7.平行线和垂直线的性质应用(1) 平行线性质的应用:在平面上两直线平行,则它们的任意一组对应角相等;或两直线被一直线斜切,则对应角相等。

(2) 垂直线性质的应用:在平面上两直线相互垂直,则它们的任意一组对应角相等。

8.解题技巧(1) 利用斜率判断平行、垂直关系;(2) 利用对应角、内错角、内外角关系判断平行线;(3) 利用斜线的垂直平分性质判断平行关系;(4) 利用斜线的垂直平分性质判断垂直关系。

完整版)立体几何中平行与垂直证明方法归纳

完整版)立体几何中平行与垂直证明方法归纳

完整版)立体几何中平行与垂直证明方法归纳本文系统总结了立体几何中平行与垂直证明方法,适合高三总复时学生构建知识网络、探求解题思路、归纳梳理解题方法。

以下是常见证明方法:一、“平行关系”常见证明方法一)直线与直线平行的证明1.利用平行四边形的对边互相平行的特性;2.利用三角形中位线性质;3.利用空间平行线的传递性(即公理4);4.利用直线与平面平行的性质定理;5.利用平面与平面平行的性质定理;6.利用直线与平面垂直的性质定理;7.利用平面内直线与直线垂直的性质;8.利用定义:在同一个平面内且两条直线没有公共点。

二)直线与平面平行的证明1.利用直线与平面平行的判定定理;2.利用平面与平面平行的性质推论;3.利用定义:直线在平面外,且直线与平面没有公共点。

三)平面与平面平行的证明1.利用平面与平面平行的判定定理;2.利用某些空间几何体的特性;3.利用定义:两个平面没有公共点。

二、“垂直关系”常见证明方法一)直线与直线垂直的证明1.利用直角三角形的两条直角边互相垂直的特性;2.看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直;3.利用直线与平面垂直的性质:如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。

1.利用空间几何体的特性:例如长方体侧棱垂直于底面。

2.观察直线与平面所成角度:若直线与平面所成角为90度,则该直线垂直于平面。

3.利用直线与平面垂直的判定定理:若一条直线与一个平面内的两条相交直线垂直,则该直线垂直于此平面。

4.利用平面与平面垂直的性质定理:若两个平面互相垂直,则在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。

5.利用常用结论:例如若一条直线平行于一个平面的垂线,则该直线也垂直于此平面。

平行线和垂直线的关系知识点总结

平行线和垂直线的关系知识点总结

平行线和垂直线的关系知识点总结平行线和垂直线是几何学中最基本的概念之一,它们之间存在着重要的关系。

本文将对平行线和垂直线的定义、性质及相关定理进行总结。

一、平行线的定义与性质1. 定义:如果两条直线在同一个平面上,且它们没有任何交点,那么它们被称为平行线。

2. 性质:a. 平行线的斜率相等:对于两条平行线l₁和l₂,如果l₁的斜率等于k,则l₂的斜率也等于k。

b. 平行线的法向量相等:对于两条平行线l₁和l₂,如果l₁的法向量为n₁,则l₂的法向量也等于n₁。

二、垂直线的定义与性质1. 定义:如果两条直线在同一个平面上,且它们相交成直角(90度),那么它们被称为垂直线。

2. 性质:a. 垂直线的斜率互为相反数:对于两条垂直线l₁和l₂,如果l₁的斜率为k₁,则l₂的斜率为-k₁。

b. 垂直线的法向量互为相反数:对于两条垂直线l₁和l₂,如果l₁的法向量为n₁,则l₂的法向量为-n₁。

三、平行线与垂直线的相关定理1. 垂直线的判定定理:如果两条直线的斜率互为相反数,那么它们是垂直线。

证明:设直线l₁的斜率为k₁,直线l₂的斜率为k₂。

根据性质2a,如果k₁=-k₂,那么l₁和l₂是垂直线。

2. 平行线的判定定理:如果两条直线的斜率相等且不相交,那么它们是平行线。

证明:设直线l₁的斜率为k₁,直线l₂的斜率为k₂。

根据性质2a,如果k₁=k₂且l₁和l₂没有交点,那么l₁和l₂是平行线。

3. 平行线之间的性质定理:如果有一条直线与两条平行线相交,那么它与另一条平行线也相交,并且这两条相交的线段互相平行。

证明:设直线l与平行线l₁和l₂相交于点A和B。

根据性质1,线段AB与l₁平行,线段AB与l₂平行。

这表明l与l₁和l₂的交点在同一直线上,且l与l₁和l₂平行。

四、应用案例1. 平行线和垂直线的应用广泛,例如在建筑设计中,可以利用平行线和垂直线的性质制定合理的结构方案,确保建筑物的稳定性和美观性。

2. 在平面几何中,利用平行线和垂直线的性质可以解决许多几何问题,如求解直线的交点、证明直线与圆的关系等。

平行线与垂直线的认识与判断知识点总结

平行线与垂直线的认识与判断知识点总结

平行线与垂直线的认识与判断知识点总结一、平行线的定义与性质平行线是在同一个平面上且不相交的两条直线。

根据平行线的定义和性质,可以总结出以下知识点:1. 定理1:如果一条直线与两条平行线相交,那么这两条平行线之间的对应角相等。

2. 定理2:如果两条直线与一条平行线相交,那么与这两条直线对应的的两组内错角互补。

3. 定理3:如果两条平行线分别与一条直线相交,那么对应角相等,内错角互补。

4. 定理4:如果两条直线被一条平行线截断,那么截断线上的对应线段成比例。

二、垂直线的定义与性质垂直线是与另一条线段、线、平面或者其中一个副角成直角的线。

根据垂直线的定义和性质,可以总结出以下知识点:1. 定理1:如果两条直线相交且互相垂直,那么它们之间的角是直角。

2. 定理2:如果一条直线与另一条与之垂直的线交于一点,那么对于这两条直线上的任意两组内错角和对应角,它们的和都是直角。

三、平行线与垂直线的判断方法判断两条直线是否平行或垂直,可以根据以下方法进行:1. 判断平行线的方法:a) 观察是否有两条直线上的对应角相等或内错角互补,如果成立,则两条直线平行。

b) 如果两条直线的斜率相等,但不相交,则这两条直线平行。

c) 如果两条直线的法向量相等,则这两条直线平行。

2. 判断垂直线的方法:a) 观察是否有两条直线上的对应角和内错角的和为直角,如果成立,则两条直线垂直。

b) 如果两条直线的斜率互为相反数,且不相交,则这两条直线垂直。

c) 如果两条直线的斜率的乘积为-1,则这两条直线垂直。

四、应用举例下面以几个实例来应用平行线与垂直线的知识:例1:已知直线L1:y = 2x + 3,直线L2:y = -0.5x + 5。

判断L1和L2的关系。

解:通过观察可以发现,L1和L2的斜率互为相反数,且它们的直线方程不同,不相交。

所以根据判断垂直线的方法,可以判断L1和L2垂直。

例2:已知直线L1:y = 3x + 2,直线L2:y = 3x + 5。

四年级(上册)平行与垂直(知识点+例题+随堂+课后作业)[整理]

四年级(上册)平行与垂直(知识点+例题+随堂+课后作业)[整理]

第五讲平行与垂直【知识梳理】【知识回顾】知识点1 平行与垂直的定义①在同一平面不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

图一:“直线A 和直线B 是平行线;直线A 的平行线是直线B ”②如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

图二:“直线A 和直线B 相互垂直;直线A 是直线B 的垂线;点C 是垂足。

”温馨提示:在同一平面两条直线的位置关系有两种(平行与相交)垂直是相交的特殊情况知识点2 垂线的画法平行与垂直定义垂线的画法平行线的画法①例一:过直线上一点画这条直线的垂线方法?答:把三角尺的一条直角边靠近直线,三角尺上的直角顶点靠近直线上的点,然后用笔沿另一条直角边画出直线就可以了。

小结:过一点有且只有一条直线与已知直线垂直。

②例二:过直线外一点画这条直线的垂线方法?答:把三角尺的一条直角边靠近直线,三角尺上的另一条边靠近直线外的点,然后用笔沿这条边画直线就可以了。

③例三:把直线外一点A与直线上任意一点连接,所画线段哪个最短?小结:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

即“点A到直线所画的垂直线段最短;点A到这条直线的距离是10厘米”知识点3 平行线的画法①例一:怎样画平行线?答:可以用直尺和三角尺来画平行线,先把三角尺的一条直角边紧靠直线,再把直尺紧靠三角尺的另一条直角边,这时沿直尺平移三角尺,再画一条直线就可以了。

小结:过直线外一点,有且只有一条直线与已知直线平行。

②例二:在两条平行线之间画几条与平行线垂直的线段,这些线段的长度特点?小结:两条平行线之间的距离是相等的。

③例三:怎样画出一条长3厘米,宽2厘米的长方形?提示:长方形的对边是互相平行,两条边是互相垂直的。

因此可以用画垂线或平行线的方法画。

小结:先画一条长3厘米的线段;再过线段端点画一条2厘米的垂线;再过另一个点也画一条2厘米的垂线;连接两个端点就可以了。

平行线与垂直线知识点总结

平行线与垂直线知识点总结

平行线与垂直线知识点总结一. 平行线的定义和性质在几何学中,平行线是指位于同一个平面中且不相交的两条直线。

下面将总结平行线的定义和性质。

1. 定义:平行线是指在同一个平面内永远不会相交的两条直线。

2. 符号表示:一般用符号 "||" 表示平行线,例如 AB || CD,表示线段 AB 平行于线段 CD。

3. 性质:a) 平行线具有相同的斜率:如果两条直线的斜率相等,则它们是平行线。

b) 平行线的倾斜角度相同:如果两条直线与同一条横线相交,且与横线的夹角相等,则它们是平行线。

c) 平行线之间的距离永远相等:如果两条平行线间有一条垂直于它们的直线,则该直线与这两条平行线的距离相等。

二. 垂直线的定义和性质垂直线是几何学中常见的线型之一,与平行线相对。

下面将总结垂直线的定义和性质。

1. 定义:垂直线是指形成直角(90度角)的两条直线。

2. 符号表示:一般用符号 "⊥" 表示垂直线,例如 AB ⊥ CD,表示线段 AB 垂直于线段 CD。

3. 性质:a) 垂直线具有互补角:两条垂直线所形成的互补角之和为90度。

b) 垂直线的斜率互为倒数:如果两条直线的斜率互为倒数(乘积为-1),则它们是垂直线。

c) 垂直线与水平线的关系:垂直线与水平线互为补线,并且垂直线斜率为无穷大或无穷小。

三. 平行线和垂直线的应用平行线和垂直线在几何学和实际生活中都具有广泛的应用。

1. 几何学中的应用:a) 平行线和垂直线可用于证明几何定理,如两个角的和为180度等。

b) 在平行四边形、三角形等图形的证明和计算中,平行线和垂直线的应用常常起到关键作用。

2. 实际生活中的应用:a) 建筑工程中,平行线和垂直线的概念用于设计和构造平整的墙壁、地板、天花板等。

b) 道路、铁路的规划和设计中,平行线和垂直线用于确保交通线路的畅通和安全。

c) 绘画和艺术中,运用平行线和垂直线能够帮助艺术家构图和表达透视效果。

(完整版)平面向量的平行与垂直

(完整版)平面向量的平行与垂直

AC a b(, R),则A, B,C三点共线的充要条件是
是_______1__.
4. 若三点A(1,-5),B(a,-2),C(-2, -1)共线,则实数a的值为________.
5. 平面上三个向量a,b, c 的模均为1,它们相互
之间的夹角均为120°,求证:(a
b)
⊥c
选做题: 在△ABC中,角A,B,C的对边分别 为a,b,c,且cosC= 3
x1y2 xห้องสมุดไป่ตู้ y1 0
(b 0)
ab
a b 0
x1x2 y1y2 0
(a 0, b 0)
一、基础训练
r
r
rr
1.已知平面向量 a (3,1),b (x, 3), a // b,则x
等于_____-_9______
r
r
2.已ar 知br 与平面ar 向垂量直,a=则(1是,-_3_)__,b_-_=1_(_4_,-__2_),
r
b
r
(1, 3r)
c
(k , 2)
,若
10
(a
c)
b
则k= 0
;若(
a ,
c)

b
则k
=
3
. ,
2. 已知向量a (1, 2) b (2,3) 若向量 c 满足(c a) / /b
77
c (a b) ,则c ___(__9_,__3_) _______
3. 已知a,b是不共线的向量,AB a b,
平面向量的平行与垂直
涟水县第一中学
陈刚
基础知识回顾:
1.平行(共线)向量定义:
方向 记作
相ar∥同或br;相反

平行与垂直知识点总结

平行与垂直知识点总结

平行与垂直知识点总结平行与垂直是几何学中的重要概念,涉及到直线在空间中的位置关系。

在几何学中,我们经常需要理解和利用平行与垂直的概念,这些概念对于解决几何问题、建筑设计、地图绘制等方面都具有重要的作用。

因此,了解平行与垂直的知识点对于我们的数学学习和日常生活都具有重要的意义。

本文将从平行和垂直的定义、性质、判定以及相关定理等方面对平行与垂直进行总结,希望能够对读者有所帮助。

一、平行线的定义在平面几何中,两条直线称为平行线,如果它们在同一平面上,且不相交。

这意味着,平行线在同一平面上不会相交,其间的距离始终保持相等。

1.1 平行线的符号表示:在数学中,我们通常用符号“ ||”来表示两条线段是平行的。

1.2 平行线的特征:1)平行线永远不会相交。

2)平行线的斜率相同。

3)平行线之间的夹角相等。

二、垂直线的定义与平行线相对应的概念是垂直线。

两条直线称为垂直线,如果它们在同一平面上,并且它们的交角为 90 度。

2.1 垂直线的符号表示:在数学中,我们通常用符号“⊥”来表示两条线段是垂直的。

2.2 垂直线的特征:1)垂直线可以相交,但相交的角度为 90 度。

2)垂直线的斜率相乘等于 -1。

3)垂直线之间的夹角为 90 度。

三、平行和垂直线的判定在几何学中,我们常常需要判定两条直线是否平行或垂直,下面来总结一些判定准则。

3.1 判定两条直线是否平行的几种方法:a)斜率判定法:当两条直线的斜率相等时,它们是平行线。

b)观察判定法:在图形上观察两条线段的倾斜情况,如果它们很明显地呈现出平行的形态,则可以判断它们是平行线。

c)角度判定法:两条平行线之间的夹角相等,可以通过观察夹角的大小来判断两条直线是否平行。

3.2 判定两条直线是否垂直的方法:a)斜率判定法:当两条直线的斜率相乘等于 -1 时,它们是垂直线。

b)观察判定法:在图形上观察两条直线的交角,如果它们的交角为 90 度,则可以判断它们是垂直线。

c)角度判定法:两条垂直线之间的夹角为 90 度,可以通过观察夹角的大小来判断两条直线是否垂直。

空间几何的平行与垂直关系知识点总结

空间几何的平行与垂直关系知识点总结

空间几何的平行与垂直关系知识点总结在空间几何中,平行与垂直关系是非常重要的概念,它们贯穿于整个几何学习的始终。

理解和掌握这些关系对于解决空间几何问题至关重要。

下面,我们就来详细总结一下空间几何中平行与垂直关系的相关知识点。

一、线线平行1、平行线的定义在同一平面内,不相交的两条直线叫做平行线。

2、线线平行的判定定理(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

3、线线平行的性质定理(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

4、空间中直线平行的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

二、线面平行1、线面平行的定义如果一条直线与一个平面没有公共点,那么这条直线与这个平面平行。

2、线面平行的判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

3、线面平行的性质定理如果一条直线与一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线与交线平行。

三、面面平行1、面面平行的定义如果两个平面没有公共点,那么这两个平面平行。

2、面面平行的判定定理(1)如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

(2)如果两个平面都平行于同一条直线,那么这两个平面平行。

3、面面平行的性质定理(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。

四、线线垂直1、线线垂直的定义如果两条直线所成的角为直角,那么这两条直线互相垂直。

2、线线垂直的判定定理(1)如果一条直线垂直于一个平面,那么这条直线垂直于平面内的任意一条直线。

(2)如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。

五、线面垂直1、线面垂直的定义如果一条直线与一个平面内的任意一条直线都垂直,那么这条直线与这个平面垂直。

平行与垂直知识点总结

平行与垂直知识点总结

直线和平面垂直的定义:如果一条直线a 和一个平面 内的任意一条直线都垂直,我们就说直线a 和平面 互相垂直.直线a 叫做平面 的垂线,平面 叫做直线a 的垂面。

直线与平面垂直的判定定理(线线垂直→线面垂直):如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

基础例题:1、求证在正方体ABCD-A 1B 1C 1D 1中,体对角线AC 1垂直于面对角线BD2、AB 是圆O 的直径,C 是异于A 、B 的圆周上的任意一点,PA 垂直于圆O 所在的平面,证明:PAC BC 平面直线与平面垂直的性质定理(线面垂直→线线垂直):如果一条直线垂直于一个平面,那么他就和平面内的任意一条直线垂直。

基础例题1.已知:在空间四边形ABCD 中,AC =AD ,BC =BD ,中点为CD E ,求证:AB ⊥CD推论1(线线平行→线面垂直)如果在两条平行线中,有一条垂直于平面,那么另一条也垂直于这个平面。

CC1推论2(线面垂直→线线平行)如果两条直线同垂直于一个平面,那么这两条直线平行。

正方体AC 1中,EF 与异面直线AC,A 1D 都 垂直相交,交点分别为E,F , 求证:EF//BD 12、直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理(线线平行→线面平行):如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

基本例题:1已知:空间四边形ABCD 中,F E ,分别是AD AB ,的中点求证:BCD EF 平面//2、已知,空间四边形ABCD 中,H G F E ,,,分别是边DA CD BC AB ,,,的中点求证:EFG AC 平面//直线和平面平行的性质定理(线面平行→线线平行):如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

基础例题:如图,E 、H 分别是空间四边形ABCD 的边AB 、AD 的中点,平面α过EH 分别交BC 、CD 于F 、G.求证:EH ∥FG .四、两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点 (2)两个平面的位置关系:两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。

高三平行与垂直知识点

高三平行与垂直知识点

高三平行与垂直知识点在数学中,平行与垂直是两个重要的概念。

它们在几何学和代数学中都扮演着重要的角色。

本文将介绍高三学生在学习平行与垂直时需要了解的知识点,包括定义、判定条件以及相关性质。

一、平行线的定义及判定条件:平行线是指在同一平面上始终保持相同的方向,永不相交的两条直线。

以下是平行线的定义及判定条件:1. 若两条直线在同一平面上没有交点且距离始终相等,则这两条直线是平行的。

2. 若两条直线的斜率相等但不相交,则这两条直线是平行的。

3. 若两条直线的法向量相等,则这两条直线是平行的。

二、垂直线的定义及判定条件:垂直线是指两条直线在交点处互相垂直的性质。

以下是垂直线的定义及判定条件:1. 若两条直线的斜率相乘为-1,则这两条直线垂直。

2. 若两条直线的方向角相差90度,则这两条直线垂直。

3. 若两条直线的乘积斜率为-1,则这两条直线垂直。

三、平行线和垂直线的性质:1. 平行线的性质:(1)平行线与一条横切线的交点所对应的内角相等。

(2)平行线与一条横切线的交点所对应的外角互补。

(3)平行线上的任意两条相交线所对应的对顶角相等。

(4)平行线上的两个异面直角锐角对应角相等。

2. 垂直线的性质:(1)垂直线与一条横切线的交点所对应的内角为直角。

(2)垂直线与一条横切线的交点所对应的外角为直角。

(3)垂直线上的任意两条相交线所对应的对顶角互补。

(4)垂直线上的两个异面直角钝角对应角相等。

四、平行线和垂直线的应用:1. 平行线的应用:(1)在构造平行四边形或矩形时,需要用到平行线的性质。

(2)在解决几何证明问题时,平行线的性质常常被用作推理的基础。

2. 垂直线的应用:(1)在建筑工程中,垂直线用于确定建筑物的垂直性。

(2)在解决各类几何问题时,垂直线与平行线的性质被广泛应用。

综上所述,高三学生需要掌握平行线和垂直线的定义、判定条件以及相关性质。

理解并应用这些知识点,可以帮助学生更好地解决几何问题,并在数学学习中取得较好的成绩。

探讨平行线与垂直线的关系(知识点总结)

探讨平行线与垂直线的关系(知识点总结)

探讨平行线与垂直线的关系(知识点总结)平行线与垂直线是几何学中重要的两种线性关系,它们在数学和日常生活中都扮演着重要的角色。

本文将探讨平行线和垂直线的关系,并总结它们的相关知识点。

一、平行线的定义和性质平行线是指在同一个平面上不相交且永不相交的两条直线。

平行线具有以下性质:1. 任意直线与平行线的关系:给定一条平行线和一条直线,如果该直线与已知平行线的其中一条直线平行,则它与另外一条平行线也平行。

2. 平行线之间的距离关系:平行线之间的距离始终保持相等。

3. 平行线与传统图形的关系:在平行线的基础上,我们可以构造出各种传统图形,如平行四边形、相似三角形等。

二、垂直线的定义和性质垂直线是指在同一个平面上相交成直角的两条直线。

垂直线具有以下性质:1. 直线间垂直的判定:当两条直线的斜率互为倒数且乘积为-1时,这两条直线互相垂直。

2. 垂直线与传统图形的关系:垂直线与梯形、矩形等图形密切相关,并且垂直线可以作为研究图形性质的重要线索。

三、平行线与垂直线的关系平行线和垂直线是两种非常特殊的线性关系,它们之间存在一定的关系:1. 平行线与垂直线的关系:在同一个平面上,如果一条直线与另外两条直线分别垂直,则这两条直线必定平行。

2. 垂直线的特征:两条平行线中一条与一垂直线相交时,和另一条的交角都是直角。

3. 平行线与垂直线的构造:根据平行线和垂直线的定义和性质,我们可以通过给定的条件构造出平行线和垂直线。

四、相关知识点总结平行线与垂直线的关系是几何学中的基础内容,需要掌握以下知识点:1. 平行线与垂直线的定义和性质。

2. 在已知条件下判断平行线与垂直线的关系。

3. 利用平行线和垂直线构造出其他几何图形。

总之,平行线与垂直线是几何学中不可或缺的重要概念。

它们相互补充和支持,为我们研究和解决各种几何问题提供了基础。

通过深入理解平行线和垂直线的定义、性质和关系,我们能够更好地应用它们解决实际问题,并扩展我们对几何学的认识。

(完整版)平行与垂直的知识点总结,推荐文档

(完整版)平行与垂直的知识点总结,推荐文档

l C A αB
l AC
l AC
AB AB
A
l
AC, AB
(一) 异面直线所成的角:
(1) 范围: (0,90]
(2)求法: 方法一:定义法。
方法二:用面面垂直实现。 如果两个平面互相垂直,那么在一个平面 内垂直于它们交线的直线垂直于另一个平 面
步骤 1:平移,使它们相交,找到夹角。 步骤 2:解三角形求出角。 (二) 线面角 (1)定义:直线 l 上任取一点 P(交点除外)
1
两直线互相垂直. 方法一:用线面垂直实现。 一条直线垂直于一个平面,则垂直于
这个平面内的任意一条直线.
l
m α
l m
l
m
②一条直线与两条平行直线中的一条 垂直,也必与另一条垂直.即若 b∥c,a⊥b,则 a⊥c
③如果一条直线与一个平面平行,那 么这条直线与这个平面的垂线垂直.即若 a∥α,b⊥α,则 a⊥b.
方法三:用线面垂直实现。
若 l , m ,则 l // m 。
④中位线定理、平行四边形、比例线 段……, ⑤平行于同一直线的两直线平行,即若 a∥b,b∥c,则 a∥c.(公理 4) 2. 线面平行:
ቤተ መጻሕፍቲ ባይዱ
l
l //
β
m
m //
//
l, m 且且且
α
三.垂直关系: 1.两直线垂直的判定 ①定义:若两直线成 90°角,则这
,作 PO 于 O,连结 AO,则 AO 为斜 线 PA 在面 内的射影, PAO (图中 ) 为直线 l 与面 所成的角。
2
P
αA θ O
(2)范围: [0,90] 当 0 时, l 或 l // 当 90 时, l
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何知识点
一.平行关系:
1.线线平行:
方法一:用线面平行实现。

如果一条直线
和一个平面平行,经过这条直线的平面和
这个平面相交,那么这条直线和交线平行
m
l
m
l
l
//
//






=


β
α
β
α
方法二:用面面平行实现。

两平行平面与同一个平面相交,那么两条
交线平行
m
l
m
l//
//






=

=

β
γ
α
γ
β
α
方法三:用线面垂直实现。

若,则。

α
α⊥
⊥m
l,m
l//
④中位线定理、平行四边形、比例线
段……,
⑤平行于同一直线的两直线平行,即若
a∥b,b∥c,则a∥c.(公理4)
2.线面平行:
方法一:用线线平行实现。

如果平面外一条直线和这个平面内的一条
直线平行,则这条直线与这个平面平行.
α
α
α//
//
l
l
m
m
l








方法二:用面面平行实现。

两个平面平行,其中一个平面内的直线
平行于另一个平面
α
β
β
α
//
//
l
l





3.面面平行:
方法一:用线面平行实现。

如果一个平面内有两条相交直线都平行于
另一个平面,那么这两个平面平行
β
α
β
α
α
//
,
//
//






⊂且且且
m
l
m
l
三.垂直关系:
1.两直线垂直的判定
①定义:若两直线成90°
角,则这
两直线互相垂直.
方法一:用线面垂直实现。

一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.
m
l m l ⊥⇒⎭
⎬⎫
⊂⊥αα②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c
③如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.2. 线面垂直:
方法一:用线线垂直实现。

如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.
α
α⊥⇒⎪⎪⎭

⎪⎬⎫
⊂=⋂⊥⊥l AB AC A AB AC AB l AC l ,方法二:用面面垂直实现。

如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面
αββαβα⊥⇒⎪⎭

⎬⎫
⊂⊥=⋂⊥l l m l m ,2. 面面垂直:
方法一:用线面垂直实现。

如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
βαβα⊥⇒⎭
⎬⎫
⊂⊥l l 方法二:计算所成二面角为直角。

二.夹角问题。

(一)
异面直线所成的角:
(1) 范围:]90,0(︒︒(2)求法:方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(二)
线面角
(1)定义:直线l 上任取一点P (交点除外),作PO 于O,连结AO ,则AO 为斜

α线PA 在面内的射影,(图中)
αPAO ∠θ为直线l 与面所成的角。

α
(2)范围: ]90,0[︒︒当时,或︒=0θα⊂l α//l 当时,︒=90θα⊥l (3)求法:方法一:定义法。

步骤1:作出线面角,并证明。

步骤2:解三角形,求出线面角(三)
二面角及其平面角
(1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角为二面角—l —的平θαβ面角。

(2)范围: ]180,0[︒︒(3)求法:方法一:定义法。

步骤1:作出二面角的平面角,并证明。

步骤2:解三角形,求出二面角的平面角。

(一)
正棱锥:底面是正多边形且顶点
在底面的射影在底面中心。

(二)
正棱柱:底面是正多边形的直棱柱。

(三)正多面体:
(四)
棱锥的性质:平行于底面的的截
面与底面相似,且面积比等于顶点到截面的距离与棱锥的高的平方比。

正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形。

(五)
体积:
=且且
V
=且且
V。

相关文档
最新文档