2018 初三中考数学复习 实数的运算与代数式的化简 专项训练题及答案
代数式的化简求值问题(含答案)
第1讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x 整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-2
2018年数学全国中考真题实数的运算(含二次根式 三角函数特殊值的运算)(试题二)解析版一、选择题 1. 计算的结果等于( ) A. 5 B. C. 9 D.【答案】C【解析】分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9, 故选C .点睛:本题考查了有理数的乘方,比较简单,注意负号.2. (2018黑龙江绥化,4,3分) 下列运算正确的是( ) A.2a +3a =5a 2B.552-=-)( C.a 3·a 4=a12D.(π-3)0=1【答案】D.【解析】解:A 、235a a a +=,故错误; B 255-=(),故错误;C 、34347·a a a a +==,故错误;D 、0(3)1π-=,故正确.故选:D.【知识点】合并同类项,二次根式的性质,同底数幂的乘法,零指数幂的意义3. (湖北省咸宁市,1,3)咸宁冬季里某一天的气温为- 3℃〜2 ),则这一天的温差是( )A .1℃B .-1℃C .5℃D .-5℃ 【答案】C【解析】解:根据“温差=最高气温-最低气温”,2℃-(-3))=2℃+3℃=5℃,故选C . 【知识点】有理数的减法运算4. (2018吉林省,1, 2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣3【答案】A【解析】根据“两数相乘,同号得正”即可求出(﹣1)×(﹣2)=2.故选A .【知识点】有理数的乘法5. (2018贵州铜仁,10,4)计算990013012011216121++++++ 的值为( ) A. 1100 B. 99100 C. 199D. 10099【答案】B【解析】∵21-121121=⨯=,31-2132161=⨯=,41-31431121=⨯=,51-41541201=⨯=, 61-51651301=⨯=,……,1001-90110099199001=⨯=, ∴990013012011216121++++++ =11111111111122334455699100 =1991100100.6.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 020181-=- C . 32326(0)a a a a -⋅=≠ D =【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项02018-1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D ==故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式7. (2018湖北恩施州,16,3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图6,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.【答案】1838.【解析】本题为探索规律型,由题意可知,因为满六进一,从右到左依次排列的绳子分别代表绳结束乘以6的0次幂,6的1幂,6的2次幂,6的3次幂,6的4次幂.她一共采集到的野果数量为1838个.8. (2018辽宁锦州,6,3分)下列运算正确的是A 、7a -a=6B 、a 2·a 3=a 5C 、(a 3)3=a 6D 、(ab)4=ab 4【答案】B ,【解析】:根据合并同类项、幂的乘方、同底数幂的乘法、积的乘方法则进行解答. 二、填空题1. (2018湖北省江汉油田潜江天门仙桃市,12,3分)112()2--= .【答案】0【解析】直接利用二次根式的化简、绝对值的性质和负整数指数幂的性质分别化简,再计算.2323)21(23331=--+=--+-【知识点】二次根式分母有理化,绝对值,负整数指数幂2. (湖北省咸宁市,5,3)按一定顺序排列的一列数叫做数列,如数列:1111,,,,,261220则这个数列的前2018个数的和为__________. 【答案】20182019【解析】11111111,,,,,21262312342045====⨯⨯⨯⨯则第2018个数为120182019⨯ 则这个数列的前2018个数的和为111111223344520182019+++++⨯⨯⨯⨯⨯ =1111111111223344520182019-+-+-+-++- =112019-=20182019【知识点】探究规律3. (2018年黔三州,19,3)根据下列各式的规律,在横线处填空: 11+12−1=12,13+14−12=112,15+16−13=130,17+18−14=156,... (1)2017+12018− =12017×2018 . 【答案】11009【解析】按照等式顺序,第一个为11+12−1=12,第二个为13+14−1(3−1)÷2+1=13×4,第3个式子15+16−1(5−1)÷2+1=15×6,17+18−1(7−1)÷2+1=17×8,… …以此类推,12017+12018−1(2017−1)÷2+1 =12017×2018 . 【知识点】等式规律探索4. (2018江苏常州,9,2)计算:3-1-=_______. 【答案】2 【解析】21313=-=--5. (2018四川巴中,21(1),6分)(1)计算:│-2│ -2cos 60°+()-1-(2018-)0【答案】原式=2-2×+6-1=2﹣1+6﹣1=6.【解析】依据数的绝对值意义,│-2│=2;由特殊角的三角函数值得cos 60°=;由负整数指数幂的意义得()-1=611=6或者()-1=(6-1)-1=6;根据a 0=1(a ≠0)得(2018-)0=1.6.(2018广西南宁,17,3) 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 . 【答案】3,【解析】∵30=1,31=3,32=9,33=27,34=81∴各位数4个数一循环, ∴(2018+1)÷4=504余3, ∴1+3+9=13∴30+31+32+…+32018的结果的个位数字3.7. (2018湖北十堰,14,3分) 对于实数a ,b ,定义运算“)”如下,a )b =a 2-ab ,例如,5)3=52-5*3=10.若(x +1))(x -2)=6,则x 的值为 . 【答案】1【解析】由于(x +1))(x -2)=6,所以(x +1)2-(x +1)(x -2)=6,即有3x +3=6,解得x =1,故答案为:1.8. (2018湖北随州11,3分)8|2-2+2tan45°=______.【答案】4.【解析】842⨯2根据“负数的绝对值等于它的相反数”可得|2-2|=22-2;熟记特殊角的三角函数值可得2tan45°=2×1=2,所以原式=222)+2=222+2=4.三、解答题1. (2018省市,题号,分值)计算:11220182-⎛⎫--+ ⎪⎝⎭【思路分析】先计算各项的值,进而求得结果,一个负数的绝对值为它的相反数,任何非零数的零次幂都为1,一个数的-1次幂相当于它的倒数 【解题过程】原式=2-1+2=3【知识点】绝对值;零指数幂和负整指数幂;有理数加减2. (2018省市,题号,分值)先化简,再求值:22221644a a a aa-+-,其中a 【思路分析】先将分式化简,再将a 值代入求值【解题过程】()()()222244216224444a a a a a a a a a a a a +--==+-+-,当a =2时,原式 【知识点】分式的乘除;二次根式3. (2018广西省桂林市,19,6分)1103)6cos 45+2---︒⎛⎫⎪⎝⎭.【思路分析】先算出每一个式子的值,再依据混合运算顺序,依次计算即可.1103)6cos 45+2---︒⎛⎫ ⎪⎝⎭=6+121232-⨯=-=. 【知识点】实数的四则运算;特殊角三角函数值的运用;负指数次幂;0次幂;二次根式的化简4. (2018黑龙江省龙东地区,21,5分) 先化简,再求值:2221(1)21a a a a a a --÷+++,其中a =sin30°. 【思路分析】先化简分式,再求a 的值,最后把a 的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a a a a a a a a ++-+-++=22(1)(1)(1)(1)a a a a a a +++-=1aa -.当a =sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式5. (2018山东省东营市,19①,4分) 计算:02018112133012)tan ()()--︒+-- 【思路分析】根据绝对值、0指数、三角函数、负数的偶次幂、分数的负整数指数幂的法则性质进行计算即可。
全国各地2018年中考数学真题汇编实数与代数式(解答题21题)-精选
表示这三个数中最大 . 解决
,则 的取
解之: x=0(舍去) ③当 x+4≤2, 即 x≤ -2 时, 2( x+4) =2 解之: x=-3 故 x=0 或 x=-3 ( 3)解:①当 9=x2 , 且 3x- 2≥9时。则 x 2=3x-2 解之 :x 1=1,x 2=2 当 x=1 时, x2=1< 9(舍去) 当 x=2 时, x2=4< 9(舍去) ②当 x 2 最小时, 3x-2=9, 解之 x=
10. 计算:
【答案】解:原式 =
=
11. 计算:
.
【答案】解:原式 =4+1-6=-1
12. 计算或化简 .
( 1)
;
( 2)
.
【答案】( 1)解:( ) -1+|
- 2|+tan60 °
=2+( 2- ) +
=2+2- +
=4 ( 2)解:( 2x+3) 2- ( 2x+3)( 2x-3 ) =( 2x) 2+12x+9-[ (2x2) -9] =( 2x) 2+12x+9- ( 2x) 2+9 =12x+18
( 1)计算:
( 2)解方程: x 2-2x-1=0
【答案】( 1)解 :原式 =
-
( 2)解 :∵ a=1,b=-2,c=-1 ∴ ? =b2-4ac=4+4=8,
-1+3=2
∴ x=
x= ∴ x 1=
, x2=
8. 计算:
+
-4sin45 °+
.
【答案】原式 =
9. 计算: 【答案】原式 =2-3+8-1=6
初中数学代数式化简求值练习题(含答案)
初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。
2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。
3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。
4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。
5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。
7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。
8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。
10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。
11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。
12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。
13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。
2018年中考数学总复习专题提升一数轴实数的运算代数式的化简与求值试题
专题提升一数轴、实数的运算、代数式的化简与求值一、数轴热点解读实数和数轴上的点一一对应,利用数轴可以比较直观地解决数和式的问题,体现了数形结合的重要数学思想,是中考的热点.母题呈现(2016·台湾)如图,数轴上A、B、C三点所表示的数分别为a、b、c.若|a-b|=3,|b-c|=5,且原点O 与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?( )A.在A的左边 B.介于A、B之间C.介于B、C之间 D.在C的右边对点训练1.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )第1题图A.-4 B.-2 C.0 D.42.(2017·广州)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )第2题图A.-6 B.6 C.0 D.无法确定3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )第3题图A.ac>bc B.|a-b|=a-bC.-a<-b<-c D.-a-c>-b-c4.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,5.第4题图A.p B.q C.m D.n5.如图,数轴上有A,B,C,D四点,根据图中各点的位置,判断哪一点所表示的数与11-239最接近( )第5题图A.A B.B C.C D.D6.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是3和-1,则点C所对应的实数是( )第6题图A.1+3 B.2+3C.23-1D.23+1二、实数的混合运算热点解读先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号内的,若没有括号,在同一级运算中,要从左至右依次进行运算.它是中考的必考题型.母题呈现(2016·绍兴)计算:55-(2-5)0+⎝⎛⎭⎪⎫12-2.对点训练7.(2016·临沂)计算:||-3+3tan30°-12-(2016-π)0.8.(2015·汕尾)计算:8+|22-3|-⎝ ⎛⎭⎪⎫13-1-(2015+2)0.9.(2015·内江)计算:|-2|-(π-2015)0+⎝ ⎛⎭⎪⎫12-1-2sin60°+12.10.已知a =⎝ ⎛⎭⎪⎫13-1,b =2cos45°+1,c =(2010-π)0,d =|1-2|. (1)请化简这四个数;(2)根据化简结果,列式表示这四个数中“有理数的和”与“无理数的积”的差,然后计算结果.。
实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-1
2018年数学全国中考真题实数的运算(含二次根式 三角函数特殊值的运算)(试题一)解析版一、选择题1. (2018四川绵阳,1,3分) 0)2018(-的值是 A.-2018 B.2018 C.0 D.1 【答案】D.【解析】解:0)2018(-=1.故选D.【知识点】零指数幂 2. 7.(2018山东烟台,7,3分)利用计算器求值时,小明将按键顺序为的显示结果记为a ,的显示结果记为b .则a ,b 的大小关系为( )A. a<b B .a>b C .a=b D .不能比较 【答案】B【解析】本题考查鲁教版课本中(大雁牌)计算器的使用方法,,,∴a>b ,故选B .【知识点】锐角三角函数;负整数指数幂;计算器的使用;1. (2018内蒙古呼和浩特,9,3分)下列运算及判断正确的是( ) A. 115()5155-⨯÷-⨯= B.方程 23(1)1x x x ++-=有四个整数解C.若3356710,a ⨯=310a b ÷= , 则6310567a b ⨯=D.有序数对2(1,)m m +在平面直角坐标系中对应的点一定在第一象限 【答案】:B【解析】:对于A:1115()55(5)525555-⨯÷-⨯=-⨯⨯-⨯=,所以A 不正确;-44411(sin 30)=()1612()2a -=︒==26123b ==对于C:∵3356710a ⨯=,∴3310567a =,∵310a b ÷=,∴3331056710a a b ⨯=⨯ ,所以C 不正确; 对于D: ∵220,11,0.m m m ≥∴+≥≥所以D C 不正确;【知识点】实数的运算,零指数幂,幂的运算,平面直角坐标系的象限点的特征2. (2018山东菏泽,1,3分)下列各数:-2,0,13,0.020020002…,π ) A .4 B .3 C .2 D .1 【答案】C【解析】,则-2,0,130.020020002…,π是无理数,故选C . 【知识点】无理数3. (2018山东省日照市,7,3分) 计算:(12)-1+tan 30°·sin 60°=( ) A .-32B .2C .52D .72【答案】C【解析】因为原式=2+12=52,故选C 。
2018年中考数学真题知识分类练习试卷:代数式(含答案)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
中考数学复习《数与式》考点及测试题(含答案)
中考数学复习《数与式》考点及测试题(含答案)【专题分析】本专题的主要考点有实数的有关概念,科学记数法,非负数的性质,实数的运算;幂的运算,整式的运算,因式分解;分式的概念,分式的加减,分式的混合运算;二次根式的有关概念,二次根式的性质,二次根式的运算等.中考中数与式的考查一般以客观张题为主,但分式的化简求值经常有开放型题目.数与式的考查常见题型以选择题或填空题为主,整式和分式的化简求值一般以解答题的形式进行考查.数与式在中考中所占比重约为20%~25%. 【解题方法】解决数与式问题的常用方法有数形结合法,特殊值法,分类讨论法,整体代入法,设参数法,逆向思维法等. 【知识结构】【典例精选】:计算:2-1-3tan 60°+(π-2 015)0+⎪⎪⎪⎪⎪⎪-12.【思路点拨】根据负整数指数幂、特殊角的三角函数、零次幂以及绝对值的概念计算即可.【自主解答】解:原式=12-3×3+1+12=-1.把x 2y -2y 2x +y 3分解因式正确的是( )A.y(x2-2xy+y2) B.x2y-y2(2x-y)C.y(x-y)2 D.y(x+y)2【思路点拨】首先提取公因式y,再利用完全平方公式进行二次分解即可.答案:C规律方法:利用两种方法结合的分解因式题目,提公因式后不要忘记利用公式法二次分解,分解因式要在规定的范围内分解彻底.先化简,再求值:(x+3)(x-3)+2(x2+4),其中x= 2.【思路点拨】原式第一项利用平方差公式展开,第二项去括号,合并同类项得到最简结果,将x的值代入计算即可求出代数式的值.【自主解答】解:原式=x2-9+2x2+8=3x2-1.当x=2时,原式=3×(2)2-1=5.规律方法:整式的计算,要根据算式的特点选择合适的方法,可先选择乘法公式展开,然后合并;或先因式分解,然后计算.先化简,再求值:m-33m2-6m÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+3x+1=0的根.【思路点拨】在化简时要先算括号里面的,再把除法变为乘法,然后分解因式并约分,最后相乘.【自主解答】解:原式=m-33m m-2÷m2-9m-2=m-33m m-2×m-2m+3m-3=13m m+3.∵m是方程x2+3x+1=0的根,∴m2+3m+1=0,∴m2+3m=-1,即m(m+3)=-1,∴原式=13×-1=-13.规律方法:1.本题采用了整体代入法求解,这是求代数式的值常用的方法,体现了整体思路的应用.2.分式的化简求值是先化简,再求值;化简时一定要化到最简,结果是最简分式或整式.【能力评估检测】一、选择题1.已知空气的单位体积质量是0.001 239 g/cm 3,则用科学记数法表示该数为( A )A .1.239×10-3g/cm 3B .1.239×10-2 g/cm 3C .0.123 9×10-2 g/cm 3D .12.39×10-4 g/cm 3 2.下列运算错误的是( B )A. ⎝ ⎛⎭⎪⎫120=1 B .x 2+x 2=2x 4C .|a |=|-a | D. ⎝ ⎛⎭⎪⎫b a 23=b3a63.下列运算错误的是( D )A.a -b 2b -a2=1 B.-a -ba +b=-1 C. 0.5a +b 0.2a -0.3b =5a +10b 2a -3b D. a -b a +b =b -a b +a4.下列二次根式中,不能与2合并的是( C ) A.12B. 8C. 12D.18 5.若m =22×(-2),则有( C )A .0<m <1B .-1<m <0C .-2<m <-1D .-3<m <-26.(2015·绍兴鲁迅中学模拟)下列三个分式12x 2,5x -14m -n ,3x的最简公分母是( D )A .4(m -n )xB .2(m -n )x 2C. 14x2m -nD .4(m -n )x 27.已知x -1x =3,则4-12x 2+32x 的值为( D )A .1 B. 32 C. 52 D. 72【解析】把x -1x =3两边同乘x ,得x 2-1=3x ,即x 2-3x =1,所以4-12x 2+32x =4-12(x 2-3x )=4-12×1=72. 8.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252【解析】观察前四个表格中的数字,第1个表格中 9=2×4+1,第2个表格中20=3×6+2,第3个表格中35=4×8+3,第4个表格中54=5×10+4,且每个表格中左下角的数字是右上角数字的一半,左上角的数字比左下角数字小1,所以b =12×20=10,a =b -1=9,x =20×10+9=209.故选C.答案: C9.实数a ,b 在数轴上对应的点的位置如图所示,计算|a -b |的结果为( C )A .a +bB .a -bC .b -aD .-a -b【解析】由图可知,a <0,b >0,所以a -b <0,所以 |a -b |=-(a -b ),C 正确.10.如图,在边长为2a 的正方形中央剪去一边长为 (a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )第1个 第2个 第3个 第4个 … … …A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2【解析】平行四边形的面积为(2a )2-(a +2)2=4a 2-(a 2+4a +4)=4a 2-a 2-4a -4=3a 2-4a -4.故选C.11.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”,其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边的长为1x,矩形的周长为2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x (x >0),解得x =1.这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小, 因此x +1x (x >0)的最小值是2.模仿张华的推导,你求得式子x 2+9x(x >0)的最小值是( )A .2B .4C .6D .10【解析】∵x >0,∴在原式中分母分子同除以x ,即x 2+9x =x +9x ,在面积是9的矩形中设矩形的一边长为x ,则另一边长为9x ,矩形的周长为2⎝⎛⎭⎪⎫x +9x ;当矩形成为正方形时,就有x =9x (x >0),解得x =3.这时矩形的周长2⎝⎛⎭⎪⎫x +9x =12最小,因此x +9x(x >0)的最小值是6.故选C.答案: C 二、填空题12.分解因式:9x 3-18x 2+9x =9x (x -1)2 . 13.若式子2-xx有意义,则实数x 的取值范围是x ≤2且x ≠0 .14.计算:-36+214+327=-32. 15.已知(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为12.【解析】由题意知,∵(a +6)2≥0,b 2-2b -3≥0.而(a +6)2+b 2-2b -3=0,∴(a +6)2=0且b 2-2b -3=0.整理,得a =-6,b 2-2b =3,∴2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.三、解答题16.计算:||-3-12+2sin 60°+⎝ ⎛⎭⎪⎫13-1.解:原式=3-23+2×32+3=3. 17.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2. 当x =-1,y =33时,原式=-1+1=0. 18.先化简,再求值:⎝⎛⎭⎪⎫1-1x +2÷x 2+2x +1x +2,其中x =3-1. 解:原式=x +1x +2÷x +12x +2=x +1x +2·x +2x +12=1x +1. 当x =3-1时,原式=13-1+1=13=33.19.探究下面的问题:(1)在图甲中,阴影部分的面积和为a 2-b 2(写成两数平方差的形式); (2)将图甲中的第①块割下来重新与第②块拼成如图乙所示的一个长方形,那么这个长方形的长是a +b ,宽是 a -b ,它的面积是(a +b )(a -b )(写成两个多项式的形式);(3)由这两个图可以得到的乘法公式是(a +b )(a -b )=a 2-b 2(用式子表示);(4)运用这个公式计算:(x -2y +3z )(x +2y -3z ).(x -2y +3z )(x +2y -3z )=[x -(2y -3z )]·[x +(2y -3z )]=x 2-(2y -3z )2=x 2-4y 2+12yz -9z 2.20.如果10b =n ,那么b 为n 的劳格数,记为b =d (n ),由定义可知:10b=n 与b =d (n )所表示的b ,n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d (10)=1,d (10-2)=-2; (2)劳格数有如下运算性质:若m ,n 为正数,则d (mn )=d (m )+d (n ),d ⎝ ⎛⎭⎪⎫m n =d (m )-d (n ).根据运算性质,填空:d a 3d a=3(a 为正数),若d (2)=0.301 0,则d (4)=0.602 0,d (5)=0.6990,d (0.08)=-1.097.(3)如表中与数x 对应的劳格数d (x )有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27 d (x ) 3a -b +c 2a -ba +c1+a -b -c3-3a -3c4a -2b3-b -2c6a -3b解:(1)1 -2(2)d a 3d a =3d a d a=3.由运算性质可得,d (4)=0.602 0,d (5)=d (10)-d (2)= 1-0.301 0=0.699 0,d (0.08)=-1.097.(3)若d (3)≠2a -b ,则d (9)=2d (3)≠4a -2b ,d (27)=3d (3)≠6a -3b ,从而表中有三个劳格数是错误的,与题设矛盾,∴d (3)=2a -b ;若d (5)≠a +c ,则d (2)=1-d (5)≠1-a -c , ∴d (8)=3d (2)≠3-3a -3c ,d (6)=d (3)+d (2)≠1+a -b -c ,表中也有三个劳格数是错误的,与题设矛盾.∴d(5)=a+c.∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)-1=3a-b+c-1,d(12)=d(3)+2d(2)=2-b-2c.。
代数式化简求值专项训练及答案
代数式化简求值专项训练及答案代数式化简求值专项训练1.先化简,再求值:(1))1-+-x+xx,其中31=x.xx+x-(22)((-)3(1)()23,(2)(a+b)(a-b)+(a+b)2-a(2a+b),其中a=23b=-11。
2(3)22(3)(3)(5)(5)-++-+-,其中2a b a b a b a bb=-.a=-,12.已知312=-y x ,2=xy ,求 43342y x y x -的值。
3.若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值4.已知22==+ab b a ,,求32232121ab b a b a ++的值.5.已知x 2+x -1=0,求x 3+2x 2+3的值.6.已知:222450a b a b ++-+=,求2243a b +-的值.7.已知等腰△ABC的两边长,a b满足:22-+-+=,求△a ab b a2448160ABC的周长?8.若(x2+px+q)(x2-2x-3)展开后不含x2,x3项,求p、q的值.9、已知x、y都是正整数,且372+2x,求x、y的值。
=y10、若182+x能分解成两个因式的积,求整数a的值?+ax代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则未读完的页数是n12.解:(1)∵a﹣b=3,∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:319.解:(1)∵其余三面留出宽都是x米的小路,∴由图可以看出:菜地的长为18﹣2x米,宽为10﹣x米;(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;(3)6a2﹣4ab﹣4(2a2+ab)=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣=27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,∴第n个正方形点阵中的规律是=n2.29.解:根据图案可知,(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。
【中考数学】2018最新版本中考数学专项训练化简求值练习题(历年真题-可打印)
初三数学中考化简求值专项练习题注意:此类要求的题目,如果没有化简,直接代入求值一分不得!考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算类型一:化简之后直接带值,有两种基本形式:(1)含有根式的带值,一般这种情况前面的化简会出现平方的模式,可以为前面的 化简正确与否提供一定的判断!(2)不含根式,是最简单的形式。
1、化简,求值: 111(11222+---÷-+-m m m m m m ), 其中m =3. 2、先化简,再求值:13x -·32269122x x x x x x x-+----,其中x =-6. 3、先化简,再求值:222211y xy x x y x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y 4、先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =. 5.先化简,再求值:)11(x -÷11222-+-x x x ,其中x =2 6.先化简,再求值:2224441x x x x x x x --+÷-+-,其中32x =. 7.(2011•綦江县)先化简,再求值:错误!未找到引用源。
,其中x=错误!未找到引用源。
8.先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a . 9.(2011•成都)先化简,再求值:232()111x x x x x x --÷+--,其中32x =类型二:带值的数需要计算,含有其它的知识点,相对第一种,这类型要稍微难点。
(1)含有三角函数的计算。
需要注意三角函数特殊角所对应的值,需要识记,熟悉三角函数。
1、先化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan450 2、先化简,222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°) 3、(2011•襄阳)先化简再求值:错误!未找到引用源。
人教版数学中考复习:实数的混合运算及代数式的化简求值(含答案)
实数的混合运算一、选择题1.计算(-2)0+9÷(-3)的结果是()A.-1 B.-2 C.-3 D.-42.在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( ) A.+B.-C.×D.÷3.计算(12-56+512-724)×24的结果是( )A.-5 B.-4 C.-8 D.84.计算(-12)×16-16÷23的结果是( )A.0 B.14 C.-4 D.-185的结果是( )A.6 B.C. 6 D.126( )A.6至7之间B.7至8之间C.8至9之间D.9至10之间7.计算-22+(|-3|2-42×116-8.5)÷(-12)3的结果是( )A.0 B.1 C.2 D.3 二、填空题8.计算:-0.252÷(-12)4×(-1)27=______.9.计算:(-298081)×(-9)=______.10.计算:-13×23-0.34×27+13×(-13)-57×0.34=______.112-1-|-2|+(-13)0=______.12.计算:=______.13.若a+1,则a3-5a+2015=______.三、解答题14.计算6÷(-12+13).方方同学的计算过程如下:原式=6÷(-12)+6÷13=-12+18 =6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.15.计算:(1) 10+8×(-12)2-2÷15.(2) (3-)-2+|1-(π-2)0.16.已知a =2b =2,试求下列各式的值:(1)ab -ba ;(2)(a )2(b )2.代数式的化简求值一、选择题1.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2·3ab 3=-3a 2b 5C .b a b -+a b a -=-1D .21a a -·11a +=-12.计算:2225631x x xx x x -+-÷-+,其结果是( )A .(1)2x x x --B .(2)1x x x --C .2(1)x x x -- D .1(2)x x x --3.当x =2时,多项式ax 5+bx 3+cx -10的值为7,则当x =-2时,这个多项式的值是() A .-3 B .-27 C .-7 D .74.当a =14,b =198时,式子6a 2-2ab -2(3a 2-12ab )的值是( )A .-17 B .17 C .-7 D .75.若x 2+4x -4=0,则3(x -2)2-6(x -1)(x +1)的值为( )A .-6B .6C .18D .306.若a +b +c =0,则111111()()()a b c b c c a a b +++++的值等于( )A .0B .1C .-1D .-37.已知多项式ax +3与bx 2-6x +9的乘积中不含x 2与x 的项,则a 、b 的值为( )A .a =2,b =0B .a =1,b =1C .a =0,b =0D .a =2,b =4二、填空题8.若(2a +3b )2=(2a -3b )2+A ,则A =______.9.计算:(m -2n +3)(m +2n -3)=________.10.化简:(23a a -+93a-)÷3a a +=______. 11.已知x 2+x -5=0,则代数式(x -1)2-x (x -3)+(x +2)(x -2)的值为______.12.若1(21)(21)n n -+=2121a b n n +-+,对任意自然数n 都成立,则a =______,b =______;计算:m =113⨯+135⨯+157⨯+…+11921⨯=______. 三、解答题13.已知x ,y 满足方程组52, 25 1.x y x y -=-⎧⎨+=-⎩①②求代数式(x -y )2-(x +2y )(x -2y )的值.14.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y .15.先化简,再求值:(a +1-451a a --)÷(11a --22a a -),其中a =-1. 16.先化简(22221x x x +--2221x x x x --+)÷1x x +,然后解答下列问题: (1)当x =3时,求原代数式的值;(2)原代数式的值能等于-1吗?为什么?参考答案实数的混合运算1.B[解析]原式=1-3=-2.故选B.2.C[解析]填入“+”时的结果是2;填入“-”时的结果是-4;填入“×”时的结果是-11;填入“÷”时的结果是325.填入“-”时结果最小.故选C.3.A[解析]原式=12×24-56×24+512×24-724×24=12-20+10-7=22-27=-5.故选A.4.D[解析]原式=(-1)×16-16÷8=-16-2=-18.故选D.5.D [解析]原式=-)==12.6.B[解析]原式=43<4,∴7<48.故选B.7.A[解析]原式=-4+(9-1-812)÷(-18)=-4+(-12)÷(-18)=-4+4=0.8.1[解析]原式=-116×16×(-1)=1.9.26989[解析]原式=298081×9=(30-181)×9=270-19=26989.10.-13.34[解析]原式=-13×(2133+)-0.34(2577+)=-13-0.34=-13.34.11.72[解析]原式=3-12+2-2+1=72.12.-13 [解析]原式=-+(=()2-2=2-(15-)=-13.13.2017[解析]∵a2=+1)2=3+,∴原式=a(a2-5)+2015=+1)(3+-5)+2015=+-1)+2015=2+2015=2017.14.解:方方同学的计算过程错误.正确的计算过程如下:原式=6÷(-36+26)=6÷(-16)=-36.15.解:(1)原式=10+8×14-2×5=10+2-10=2;(2)原式=(9-5)-2+1)-1=16.解:(1)∵a+b=(2+(2=4,a-b=(2-(2)=ab =(2=4-3=1.∴a b -b a =22a b ab-=()()a b a b ab +-=;(2)(a )2(b )2=[(a )(b )]2=[ab (a +b )+2]2=(3+)2=41+.代数式的化简及求值1.C2.B3.B [解析]依题意,得25a +23b +2c -10=7.即25a +23b +2c =17.当x =-2时,原式=-25a -23b -2c -10=-(25a +23b +2c )-10=-17-10=-27.故选B .4.A [解析]原式=6a 2-2ab -6a 2+ab =-ab .当a =14,b =198时,原式=-14×198=-17.故选A . 5.B [解析]原式=3(x 2-4x +4)-6(x 2-1)=3x 2-12x +12-6x 2+6=-3x 2-12x +18=-3(x 2+4x )+18.∵x 2+4x -4=0,∴x 2+4x =4.原式=-3×4+18=6.故选B .6.D [解析]原式=a c b ++a b c ++b c a +=b b -+c c-+a a -=-3 7.D [解析](ax +3)(bx 2-6x +9)=abx 3-6ax 2+9ax +3bx 2-18x +27=abx 3-(6a -3b )x 2+(9a -18)x +27.依题意可得630,9180.a b a -=⎧⎨-=⎩解得2,4.a b =⎧⎨=⎩ 8.24ab9.m 2-4n 2+12n -910.a [解析]原式=(23a a --93a -)÷3a a +=293a a --÷3a a +=(a +3)·3a a +=a . 11.2 [解析]原式=x 2-2x +1-x 2+3x +x 2-4=x 2+x -3.因为x 2+x -5=0,所以x 2+x =5.所以原式=5-3=2.12.12,-12;1021 [解析]∵1(21)(21)n n -+=2121a b n n +-+=(21)(21)(21)(21)a n b n n n ++--+=2()()(21)(21)a b n a b n n ++--+, ∴对任意自然数n ,等式2(a +b )n +a -b =1都成立.∴0,1.a b a b +=⎧⎨-=⎩解得a =12,b =-12. ∴m =12(1-13+13-15+…+119-121)=12(1-121)=1021. 13.解:原式=x 2-2xy +y 2-x 2+4y 2=-2xy +5y 2.①+②得:3x =-3,即x =-1.把x =-1代入①,求得y =15. 所以原式=-2×(-1)×15+5×(15)2=25+15=35. 14.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y 时,原式=-1+1=0. 15.解:原式=21(45)1a a a ----÷2(1)a a a --=2(2)1a a --·(1)2a a a --=a 2-2a . 当a =-1时,原式=(-1)2-2×(-1)=3.16.解:(1)原式=[2(1)(1)(1)x x x x +-+-2(1)(1)x x x --]•1x x + =(21x x --1x x -)•1x x + =1x x -•1x x + =11x x +-. 当x =3时,原式=3131+-=2; (2)如果11x x +-=-1,那么x +1=-x +1. 解得x =0. 当x =0时,除式1x x +=0,原式无意义. 故原代数式的值不能等于-1.。
全国各地2018年中考数学真题汇编 实数与代数式(选择+填空28题)-精编
实数与代数式(选择+填空28题)一、选择题1. (2018山东潍坊)( )A. B.C.D.【答案】B2.(2018四川内江)已知:,则的值是()A. B.C.3 D. -3 【答案】C3.按如图所示的运算程序,能使输出的结果为的是()A. B.C. D.【答案】C4.下列无理数中,与最接近的是()A. B.C.D.【答案】C5.四个数0,1,,中,无理数的是()A.B.1C.D.0【答案】A6.下列计算正确的是()A.B.C.D.【答案】D7.估计的值在()A. 5和6之间B. 6和7之间 C. 7和8之间 D. 8和9之间【答案】D8.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B.56 C. 3 5 D. 28 【答案】B9.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【答案】A10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张 C. 20张 D. 21张【答案】D11.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B.14 C. 1 6 D. 18 【答案】C12.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,则△的面积是()A.504B.C.D.【答案】A13.将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29… … … … … …根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633【答案】A14.利用如图1的二维码可以进行身份识别,某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20。
代数式的化简求值问题(含答案)
第1讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x 整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
九年级数学下册代数式化简与展开练习题
九年级数学下册代数式化简与展开练习题代数是数学中的一个重要分支,是研究代数结构及其变换性质的数学学科。
而代数式化简与展开是代数学习的重要内容之一。
在这篇文章中,我们将给出一些九年级数学下册代数式化简与展开的练习题,帮助同学们加深理解与掌握。
一、代数式的基本概念在开始练习之前,我们先来回顾一些关于代数式的基本概念。
代数式是由运算符号和各种数、字母等表示数的形式符号组成的式子。
常见的代数式包括多项式、分式、根式等。
在化简与展开代数式时,我们需要运用各种代数公式和运算法则。
二、化简代数式练习1. 化简下列代数式:a) $2x + 3y + 4x - 5y$b) $4(a + b) - 2(a - b)$c) $3(x + y) - 2(x - y) + 5(x + y)$d) $5x + 3y - 2(2x - 4y)$2. 化简下列代数式:a) $3x(x - 2) + 2x(5 - 3x)$b) $4(x - 1)(x + 2) - 3(x + 2)^2$c) $2(3x + 4y) - 5(x + y)(x - y)$d) $3(x + 2)^2 - 2(2x - 1)(x + 3)$三、展开代数式练习1. 展开下列代数式:a) $(x + 2)^2$b) $(3x - 1)(2x + 5)$c) $(2x + 3)^3$d) $(4x - 2)^2 - (3x + 1)^2$2. 展开下列代数式:a) $(x + 1)(x - 2) + (x + 1)(x + 3)$b) $(2x - 1)(3x + 2) - (x - 2)(x + 1)$c) $(2x + 1)^3 - (3x - 2)^3$d) $(4x - 3)^3 + (4x - 3)(2x + 1) + (2x + 1)^2$在解答上述习题时,同学们需要注意运用整数运算法则、配方法、公式等进行化简或者展开,注意符号的运算规则,并且要熟练运用乘法公式、开方公式、平方公式等相关内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 初三中考数学复习 实数的运算与代数式的化简 专项训练题
1. 在实数0,π,227,2,-9中,无理数的个数为( B ) A .1个 B .2个 C .3个 D .4个
2.下列运算结果为正数的是( A ) A .(-3)2 B .-3÷2 C .0×(-2 017) D .2-3
3.下列运算正确的是( C )
A .a 0=0
B .a 2+a 3=a 5
C .a 2·a -1=a D.1a +1b =1a +b
4. 近似数
5.0×102精确到( C )
A .十分位
B .个位
C .十位
D .百位
5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是( A )
A .-2a +b
B .2a -b
C .-b
D .b
6.下列计算正确的是( D )
A.x 2y 2=x y (y≠0) B .xy 2÷12y
=2xy(y≠0) C .2x +3y =5xy (x≥0,y ≥0) D .(xy 3)2=x 2y 6
7.计算(x +1)(x +2)的结果为( B )
A .x 2+2
B .x 2+3x +2
C .x 2+3x +3
D .x 2+2x +2
8.如图,在平面直角坐标系中,点P 坐标为(-2,3),以点O 为圆心,以OP 为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( A )
A .-4和-3之间
B .3和4之间
C .-5和-4之间
D .4和5之间
9.已知x +1x =3,则下列三个等式:①x 2+1x 2=7;②x-1x
=5;③2x 2-6x =-2中,正确的个数有( C )
A .0个
B .1个
C .2个
D .3个
10. 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( B )
A .Φ45.02
B .Φ44.9
C .Φ44.98
D .Φ45.01
11.使12n 是整数的最小正整数n =__3__.
12.已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b__>__0.(填“>”“<”或“=”)
13.我们规定“⊗”的意义是:当a>b 时,a ⊗b =a +b ;当a≤b 时,a ⊗b =a -b ,其他运算符号意义不变,按上述规定(3⊗1)-(3⊗2)=__3__.
14.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__ab__(用含a ,b 的代数式表示).
15.如图所示,已知A ,B ,C 是数轴上的三个点,且C 在B 的右侧.点A ,B 表
示的数分别是1,3若BC =2AB ,则点C 表示的数是___7___.
16.计算:|-2|+3-8-(-1)2 017.
解:原式=2-2+1=1.
17计算:2 0170-|1-2|+(13)-1+2cos45°. 解:原式=1-2+1+3+2×
22=5-2+2=5. 18.计算:(x -y)2-(x -2y)(x +y).
解:原式=-xy +3y 2.
19. 化简:(x -5+16x +3)÷x -1x 2-9
. 解:原式=x 2-4x +3.
20.化简x 2-2x +1x 2-1÷(x -1x +1
-x +1). 解:x 2-2x +1x 2-1÷(x -1x +1-x +1)=(x -1)2(x +1)(x -1)÷x -1-(x -1)(x +1)x +1=
x -1x +1·x +1x -1-x 2+1=x -1-x (x -1)=-1x
.。