高等数学考试必背数学公式
高中数学必备必考公式大全

高考数学必备必考公式大全一、集合1.并集的运算A∪B={x|x∈A,或x∈B}2. 并集的运算性质(1) A∪A=A(2)A∪∅=A(3)A∪B=B∪A(4) A∪B=A⇔B⊆A3. 交集的运算A∩B={x|x∈A,且x∈B}4. 交集的运算性质(1)A∩A=A(2)A∩∅=∅(3)A∩B=B∩A(4)A∩B=A⇔A⊆B5. 补集的运算∁U A={x|x∈U,且x∉A}6. 补集的运算性质(1) ∁U (∁U A)=A(2) ∁U U=∅,∁U∅=U(3)A∪(∁U A)=U,A∩(∁U A)=∅(4) ∁U (A∩B)=( ∁U A)∪(∁U B), ∁U (A∪B)=( ∁U A)∩(∁U B)二、函数与导数公式1. 有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q)(2)=a r-s(a>0,r,s∈Q)(3)(a r)s=a rs(a>0,r,s∈Q)(4)(ab)r=a r b r(a>0,b>0,r∈Q)2.对数运算公式(1)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:log a(M·N)=log a M+log a N;log a=log a M-log a N;log a M n=n log a M(n∈R)(2)对数恒等式a log aN =N(a>0,且a≠1,N>0)(3)对数运算的换底公式log a b=(a>0,且a≠1;c>0,且c≠1;b>0)(4)换底公式的变形log a b·log b a=1,即log a b=lo b n=log a blog N M==(5)换底公式的推广log a b·log b c·log c d=log a d3.求导公式及运算法则(1)基本初等函数的导数公式a.若f(x)=c(c为常数),则f'(x)=0.b.若f(x)=x n(n∈Q*),则f'(x)=nx n-1.c.若f(x)=sin x,则f'(x)=cos x.d.若f(x)=cos x,则f'(x)=-sin x.e.若f(x)=a x,则f'(x)=a x ln a.f.若f(x)=e x,则f'(x)=e x.g.若f(x)=log a x,则f'(x)=.h.若f(x)=ln x,则f'(x)=.(2)导数运算法则a.[f(x)±g(x)]'=f'(x)±g'(x)b.[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x)c.[]'=(g(x)≠0)(3)复合函数的导数(理)设y=f(u),u=φ(x),则y'x=y'u u'x或记作f '[φ(x)]=f '(u)φ'(x).特别地,[f (ax +b )] '=a f' (ax+b).4.定积分的运算性质(理)(1)b a ⎰kf (x )d x=k b a ⎰f (x )d x (k 为常数)(2) b a ⎰[f (x )±g (x )]d x=b a ⎰f (x )d x±b a ⎰g (x )d x (3)b a ⎰f (x )d x=-a b ⎰f (x )d x(4)c a ⎰f (x )d x=b a ⎰f (x )d x+cb ⎰f (x )d x (a<b<c )三、三角函数1. 同角关系:(1)平方关系:sin 2α+cos 2α=1.(2)商的关系:=tan α(α≠+k π,k ∈Z ). 2. 诱导公式:奇变偶不变,符号看象限。
高考数学必背公式

高考数学必背公式
高考数学必背公式包括但不限于:
1. 圆的公式:
圆体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程(x-a)2+(y-b)2=r2,其中(a,b)是圆心坐标
圆的一般方程x2+y2+dx+ey+f=0,其中d2+e2-4f>0
2. 椭圆公式:
椭圆周长公式:l=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差
椭圆面积公式:s=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
3. 两角和公式、倍角公式、半角公式、和差化积等三角函数公式。
4. 等差数列、等比数列等数列公式。
5. 抛物线等几何图形公式。
以上信息仅供参考,建议查阅高中数学教材或教辅资料,获取更准确全面的信息。
大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
高等数学重要公式(必记)

高等数学重要公式(必记)一、导数公式:二、基本积分表:三、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:四、三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学公式大全

高等数学公式大全一、方程1.一元一次方程一元一次方程是指由一个未知数及其平方项和一次项所组成的方程,它的标准形式为:ax + b = 0, 其解为: x = -b/a2.一元二次方程一元二次方程是指由一个未知数的二次项、一次项和常数项组成的方程,它的标准形式为:ax² + bx + c = 0,其解为:x1,2 = [-b ±√(b²-4ac)]/2a3.不定方程不定方程是指方程右端没有任何量,且没有可以代求解的未知数,它的标准形式为:ax + b = 0,其解为:任何实数x即为解4.幂指数方程幂指数方程是指指数函数方程经过变形后所得的方程,它的标准形式为:ax^m+bx^n=c,其解为:x=(c-b)/a5.二元一次方程二元一次方程是指有两个未知数,右端只有一次项的方程,它的标准形式为:ax + by = c,其解为:x = (c-b)/a, y = (c-a)/b6.二元二次方程二元二次方程是指有两个未知数,右端有两次项的方程,它的标准形式为:ax² + by² + cxy + dx + ey + f = 0,其解为: x=-ey/2c+【(ey/2c)² - (d+bx/c) 】^½ / (d+bx/c) 、 y=-dx/2c+【(dx/2c)² - (e+ax/c) 】^½ / (e+ax/c)二、椭圆方程1.一般形式一般形式是指将椭圆方程转化为一般形式来求解的方法,它的标准形式为:Ax²+By²+Cxy+Dx+Ey+F=0,其解为:X=-2CX0/(B-A)±b^½*[(CX0/(B-A))²-(2BX0²/B-A)];。
高等数学公式必背大全

高等数学必背公式说明:这里有你想要的东西,高等数学必备公式一应俱全。
导数公式:a = sec" x (cfgx)f = -csc 2 x (secx)f = secx-^x (cscx/ = -cscx-ctgx {a x y = a x \na(arcsinx)'=〔——=vl-x 2 (arc COSY )"=1 x\na基本积分表:j tgxdx = -In |c osx| + C j ctgxdx = In |sin x| + C j secxdx = ln|secx ++ Cj c scxdx = In |cscx - ctg^ + C r dx1 x -I —一 =-arctg-+C J^r+对 aaf —2— = f sec 2 xdx = tgx+ C Jcos" x 」| ] *'、— = jcsc 2 xdx = -ctgx + C J secx ・ tgxclx = secx + C J c sex ・ ctgxdx = - c sex + Cjshxdx = chx + C f chxdx = shx + C72]I n = jsin ,xdx =jcos" xdx =-——on_______ _____________ 2 ______________ j* ylx 2 +a 2dx =扌 \/x 2 +a 2 + 牛ln(x + >Jx 2 +a~) + Cf y/x 2 -erdx =丄yjx 2 -a 2 J2 2-x 2+ —arcsin —+ C 2 a. 2u 1-M 2 Xsin x = ------- , cosx = -------- - , u =tQ —9\ + u 2 1 + M 2 2Per -;r= arcsin —+ C =ln(x + 土/ ) + C+ C- — In x + yjx 2 -a 2 +Cj* yja 1 -x 2dx = y 三角函数的有理式积分:1 + w2 a + x一些初等函数: 两个重要极限:双曲正弦皿r -X-x双曲余弦:C/2X =匚丄2双曲正切:〃X=—=chx e x +e ']・ sinxlim ------ = 1lim (1 + 丄)x=e = 2.718281828459045...xX->Xarshx = ln(x + V%2 +1)archx = ±\n(x + Jx? _])1 1 + xart hx = —In ----2 1 — x三角函数公式:•诱导公式:数角sin cos tg ctg-a -sina cosa -tga -ctga90°-a cosa sina ctga tga90°+a cosa -sina -ctga -tga180°-a sma -cosa -tga -ctga180°+a -sina ・ cosa tga ctga27O°-a -cosa -sina ctga tga27O°+a -cosa sma -ctga -tga360°-a -sina cosa -tga -ctga360°+a sma cosa tga ctga•和差化积公式:sin(a ±0) = sinacos0 土cosasin 0 sin a + sin 0 = 2sin a + ^cos—―— cos(tz±^)= cosacos/7 + sinasin 03土tg/3•和差角公式:恥±0匕珂"0 亦匕±0)仝曲50期2 2 sin a-sin 0 = 2cos Q "sin ―—2 2q c a + fl a_ 卩cosa + cosp = 2cos ---------- cos ------ —2 2 cosa-cos0 = 2sin ° + " sin ——2 2•倍角公式:•半角公式^叫宀+響宀+…W+…+S,中值定理与导数应用拉格朗日中值定理:f(b) - /(d) = f 《)0 - a)当F(x) = x 时,柯西中值定理就是立格朗日中值定理<:曲率:sin la = 2sincrcosacos2a = 2cos 2 cr-1 = l-2sin 2 a = cos' a-sin' a ctg2a = ------------2ctga fg2a = 2弋sin 3a = 3sina-4sin 、a cos3a = 4cos a-3cosa1一3妙 a・a sin —= 2a U-cosa l-cosa sin a tg — = ± \ ----------------------- = ----------- = ----------- '2 V 1 + cosa sine? 1 + cosaa , /1 + cosaCOS — =±a ---------2 V 2a ll + cosa 1 + cosa sin er etg — = ±A i---------- = ------------ = ------------ 2 Vl-cosa sin a l-cosa^— = 2RsinC•余弦定理:c 2=«2 +b 2 - labeQsC•反三角函数性质:arcsinx = — -arc COST 2aretgx = —- arcctgx高阶导数公式一莱布尼兹(Leibniz)公式: 柯西中值定理:F(b)-F ⑷广⑷ 陀)-正弦定理:bsinB弧微分公式:ds = y ]\ + y ,2dx,其中y = Fga平均曲率斤彳予卜a:从M 点到M ,点,切线斜率的倾角变化量;As : MM 弧长。
高等数学复杂公式汇总(考试必备)

高等数学1. 常用极限公式:lim sin x = 1 lim (1 + 1 )x = ex)0x x)w x当 x ) 0 时, sin x = x, tgx = x, ln(1 + x) = x,1 - cosx = x 2, arcsin x = x (用在乘除运算中)22. 求导公式:(a x )' = a x ln a (log a x )' = x l n 1 a (t g ' = c o 1 x (c t g )x ' = - s i n 21x(arcsin x)' = 1 (a r c c )s ' = - 1 (a r c t x= 1 (a r c c t)g ' - 11 - x2 1 - x 2 1 + x 2 1 + x 2(|( v u))|'= u ' v v 2-uv '3. 积分公式:j x ndx =x n+1 + c(n 丰 -1)jdx = arctgx + cj a xdx =1lnaa x+ c j1sinx dx = ln (|(tg 2x))| + c j1dx = arcsin x + cj ln xdx = x ln x - x分部积分: j uv ' dx = uv - j u ' vdx 4. 极值公式:f ' (x) > 0 > 增函数 f ' (x) < 0 > 减函数 f '(x 0 ) = 0时〈有有极极小大值值5. 向量公式:单位向量: x 2 + y 2 + z 2 = 1向量数量积: a . b = a . bcos(a,b) = x 1x 2 + y 1 y 2 + z 1 z 21 - x 2^a 、b 垂直 一 a . b = x 1x 2 + y 1 y 2 + z 1 z 2 = 0a 、b 平行 一 a 人 b = 0或b = 入a 或 x 1 = y 1 = z1x 2 y 2 z 2三点共线: AB 人 AC = 0 三角形面积: S = a 人 b 2一 一1w 点到平面的距离: d = Ax 0+ By 0 + Cz 0 + DA 2 +B 2 +C 2直线的两点式方程:x _ x 1 y _ y 1 z _ z 1x 2 _ x 1 y 2 _ y 1 z 2 _ z 1Fz x x = _?F z6. 级数展开式:1 1 _ x11 + x = x x nn=0wn=0 ( -1<x<1)( -1<x<1)e x= xw xn(_ w < x < +w)ln(1 _ x) = _xw xn(_ 1 三 x < 1)nn=0(2n + 1)!cos x = x w(_ 1)nx 2n(_ w < x < +w) 7. 微分方程:n=1nln(1+ x) = xw(_1)n_1x n(_ 1 < x 三 1) n=1sin x = xw(_ 1)n x 2n+1 (_ w < x < +w)n=0 (2n )!隐函数偏导:n=0n!= == x (_ 1)n x n⑴一阶线性微分方程: y'+p(x)y = q(x) 通解: y = e _j p(x)dxjq(x)ej p(x)dxdx + c ⑵二阶线性微分方程:①齐次方程: y''+p 1 y'+p 2 y = 0特征根: r 1 丰 r 2时, y = c 1e r 1x + c 2 e r 2xr 1 = r 2时, y = (c 1 + c 2 x)e r 1xr 1 = a + ib, r 2 = a _ ib 时, y = e ax (c 1 c o x + c 2 s i nbx)②非齐次方程: y''+p 1 y'+p 2 y = f (x) y = c 1 y 1 + c 2 y 2 + y * , (y * = x k Q m (x)e ax )8. 二元函数极值: A = f xx '' (x 0 , y 0 ), B = f xy '' (x 0 , y 0 ), C = f yy '' (x 0 , y 0 )⑴当 B 2 - AC < 0且A < 0(或C < 0)时, f (x 0 , y 0 )为极大值; 当 B 2 - AC < 0且A > 0(或C > 0)时, f (x 0 , y 0 )为极小值; ⑵当 B 2 - AC > 0 时,不是极值;⑶当 B 2 - AC =0 时,可能是、可能不是极值。
高等数学必背公式大全

高等数学必背公式大全1、勾股定理:a2+b2=c22、椭圆方程:(x-x0)2/a2+(y-y0)2/b2=13、两点公式:,P1P2,=√((x2-x1)2+(y2-y1)2)4、双曲线方程:a2(x2/b2)-(y2/c2)=15、圆的方程:(x-x0)2+(y-y0)2=r26、三角形公式:a2+b2=c27、直线方程:y = kx + b (斜率k和截距b)8、斜率定理:m1*m2=-1/K29、余弦定理:a2 = b2 + c2 - 2bc*cosA10、正弦定理:a * sinA = b * sinB = c * sinC11、贝塞尔曲线方程:(x-x0)4+(y-y0)4=r412、三角函数公式:sin2A + cos2A = 113、极坐标方程:r = a * e(acosθ + bsinθ)14、反正弦定理:y = arcsin(x/a) + c15、偏微分公式:dy/dx = (dy/du) * (du/dx)16、平面四边形公式:a2+b2=c2+d217、反余弦定理:y = arccos(x/a) + c18、三角形面积公式:S = 1/2 * a * b * sinC19、多边形内角和公式:(n-2)*π=∑(内角弧度)20、抛物线公式:y=ax2+bx+c21、多项式求导公式:f'(x) = an-1 * xn-1 + an-2 * xn-2 + …… + a1 * x + a022、函数变换公式:f(x+h) = f(x) + hf'(x)23、矩阵乘法公式:(AB)ij = ∑k=1n(Aik*Bkj)24、求和公式:∑(a1+an)*n/225、模除法:a / b = a mod b + b * (a div b)26、几何平均数公式:(a1*a2*a3*……*an)^(1/n)27、距离公式:L=(x2-x1)^2+(y2-y1)^228、几何中点公式:(x1+x2)/2,(y1+y2)/229、坐标转换公式:x = x0 + (x-x0)cosα - (y-y0)sinα。
最完整高数公式大全赶紧了以后用

最完整高数公式大全赶紧了以后用1.极限相关公式:- 极限定义:如果对于任意一个给定的正数ε,存在正数δ,使得只要x与a的距离小于δ,则必有f(x)与L的距离小于ε,即lim(x→a)f(x)=L。
2.一元函数相关公式:- 基本求导法则:(C)'=0,(xⁿ)'=nxⁿ⁻¹,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x,(cotx)'=-csc²x,(secx)'=secxtanx,(cscx)'=-cscxcotx。
- 链式法则:设y=f(u),u=g(x),则y=f(g(x)),则y'=(dy)/(dx)=(dy)/(du)*(du)/(dx)=f'(u)*g'(x)。
-高阶导数:(fⁿ(x))'=fⁿ⁻¹(x)·f'(x),其中n为正整数。
-函数泰勒级数展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+…+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x),其中Rⁿ(x)为剩余项。
- 微分方程:设y=f(x),则dy/dx=f'(x),d²y/dx²=f''(x),…3.多元函数相关公式:-偏导数:设z=f(x,y),则∂z/∂x表示在y固定的条件下对x的变化率,∂z/∂y表示在x固定的条件下对y的变化率。
-链式法则:设z=f(x,y),x=g(u,v),y=h(u,v),则∂z/∂u=∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u,…- 梯度:设z=f(x₁,x₂,…,xₙ),则gradz=(∂z/∂x₁,∂z/∂x₂,…,∂z/∂xₙ)。
- 散度:设F=(P,Q,R)为一个三维向量场,则divF=∂P/∂x+∂Q/∂y+∂R/∂z。
高数必备公式

高数必备公式在学习高等数学的过程中,公式是帮助我们解题的重要工具,掌握了相关的公式,我们可以更加高效地解决问题。
下面是一些高等数学中常用的必备公式,希望对大家的学习有所帮助。
一、微积分1.导数公式导数是微积分中的重要概念,通过导数可以描述函数在某一点上的变化率。
以下是一些常见函数的导数公式:- 常数函数:(c)'= 0,其中 c 为常数- 幂函数:(x^n)'=n*x^(n-1),其中 n 为常数- 指数函数:(a^x)'=a^x * ln(a),其中 a 为常数且 a>0- 对数函数:(log_a(x))'=(1/x) * (1/ln(a)),其中 a>0 且a≠1- 三角函数:(sin(x))'=cos(x),(cos(x))'=-sin(x),(tan(x))'=(sec^2(x)),(cot(x))'=-(csc^2(x)),(sec(x))'=sec(x) * tan(x),(csc(x))'=-csc(x) * cot(x)2.积分公式积分可以看作是导数的逆运算,用于求解函数的原函数。
以下是一些常见函数的积分公式:- 幂函数积分:∫x^n dx = (1/(n+1)) * x^(n+1),其中n ≠ -1- 指数函数积分:∫e^x dx = e^x- 对数函数积分:∫(1/x) dx = ln|x| + C- 三角函数积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln|cos(x)| + C3.泰勒级数展开公式泰勒级数是一种将函数展开成无穷多项式的方法,可以帮助我们在一定范围内近似计算复杂函数。
以下是一些常用函数的泰勒级数展开公式:- sin(x) = x - (x^3/3!) + (x^5/5!) - (x^7/7!) + ...- cos(x) = 1 - (x^2/2!) + (x^4/4!) - (x^6/6!) + ...- e^x = 1 + x + (x^2/2!) + (x^3/3!) + (x^4/4!) + ...二、线性代数1.向量运算公式向量是线性代数中的重要概念,通过一些向量运算公式可以方便地进行向量计算。
高等数学公式汇总

高等数学公式汇总高等数学公式汇总如下:1. 幂函数:指数函数:f(x) = cos(x) + i*sin(x)f(x) = exp(x) - 1/(2*exp(2x))f(x) = frac{1}{1-x^2}f(x) = sqrt(x)/x2. 三角函数:正弦函数:s(x) = sin(x)/cos(x)s(x) = frac{1}{sqrt{1-x^2}}s(x) = frac{cos(x) - x*sin(x)}{sqrt{1-x^2}}s(x) = frac{2*cos(x)/2}{sqrt{1-x^2}}3. 余弦函数:c(x) = cos(x)c(x) = cos(x)/s(x)c(x) = frac{1}{sqrt{1-x^2}}c(x) = frac{2*cos(x) - x*sin(x)}{sqrt{1-x^2}}4. 正切函数:tan(x) = sin(x)/cos(x)tan(x) = frac{sin(x) + cos(x)}{2*cos(x)/sin(x) -sin(x)/cos(x)}tan(x) = frac{1}{sqrt{1-sin^2(x)/cos^2(x)}}5. 指数函数和三角函数的组合:e^x = cos(x) + i*sin(x)e^x = exp(x) - 1/(2*exp(2x))e^x = frac{1}{1-x^2}e^x = sqrt(x)/x6. 对数函数:log(x) = ln(x/e) + i*π/2log(x) = ln(x) - ln(2*sqrt(x))log(x) = ln(1+x)7. 微积分中的基本公式:导数:f"(x) = lim(Δx->0)*frac{f(x+Δx) - f(x)}{Δx}f"(x) = lim(Δx->0)*frac{f(x+Δx) + f(x-Δx)}{2Δx}f"(x) = lim(Δx->0)*frac{f(x)/(x+Δx) - f(x)/(x-Δx)}{Δx/(x+Δx) + Δx/(x-Δx)}f"(x) = lim(Δx->0)*frac{f(x)/x}{1 + frac{f(x)}{x/2}} 微分中的基本公式:d/dx (a^x) = a^x*ln(a)d/dx (e^x) = e^x*ln(e)d/dx (1/x) = 1/x*ln(x)d/dx (a^x) * a^(-x) = e^xd/dx (x^n) = nx^(n-1)d/dx (sin(x)) = cos(x)d/dx (cos(x)) = -sin(x)d/dx (tan(x)) = sin(x)/cos(x)8. 积分基本公式:积分一:∫dx = x + C∫dx = 1/2*ln(|x| + 1) + C∫dx = 1/(2*sqrt(x^2 + 1)) + C∫dx = 1/(2*sqrt(x)) + C积分二:∫dx/dx = 1/x∫dx/(2x) = 1/(2*x^2)∫dx/(x^2 + z) = -1/(x^3 + z^2) + C积分三:∫e^x dx = e^x + C∫e^x dx = 1/(2*sqrt(e)*ln(e)) + C∫e^x dx = 1/(2*sqrt(e)*sin(x)) + C积分四:∫a^x dx = a^x + C∫a^x dx = 1/(2*sqrt(a^2 + 1)) + C∫a^x dx = 1/(2*sqrt(a)) + C9. 链式法则:链式法则:∫[(x+a)^2 - (x-a)^2] dx = x^3 + 3x^2*a + 3x*a^2 - (a^3 + a^2*a + a*a^2)= x^3 + 3x^2*a + 3x*a^2 - a^3 - a^2*a + a*a^2= (x-a)(x^2 + 3x*a + 3a^2) - a^310. 微积分中的常数和极限:常数:C = lim(n->无穷大)*sum(1/n)C = lim(n->无穷大)*sqrt(1+4n^2)C = lim(n->无穷大)*frac{1}{2*(1-2n^2) }C = lim(x->正无穷大)*log(1+x)C = lim(x->负无穷大)*log(1-x)极限:趋于1:s(n) = frac{1}{n} + 1/(n^2 + 2)趋于0:s(n) = frac{1}{n} + 1/(n^2)趋于正无穷:s(n) = frac{1}{n} + O(1/n^3)趋于负无穷:s(n) = frac{1}{n} + O(1/n^2)。
高考必备数学公式大全

高考必备数学公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_UA={xx∈ U且x∉ A}(U为全集)2. 集合元素个数公式。
- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),定义域为g(x)≠0的x的取值范围。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),定义域为f(x)≥slant0的x的取值范围。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1,对于函数y = f(x)- 若f(x_1),则y = f(x)在[a,b]上是增函数,f^′(x)≥slant0(可导函数时)。
- 若f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,f^′(x)≤slant0(可导函数时)。
3. 函数的奇偶性。
- 对于函数y = f(x),定义域关于原点对称。
- 若f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称。
- 若f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。
4. 一次函数y=kx + b(k≠0)- 斜率k=frac{y_2-y_1}{x_2-x_1},截距为b。
5. 二次函数y = ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)。
- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数开口向下,在x =-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 性质:当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。
高等数学公式大全(几乎包含了所有)

高等数学公式大全1、导数公式:2、基本积分表:3、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学必背基本公式

sin cos 1 [sin( ) sin( )]
2
sin sin 1 [cos( ) cos( )]
2
cos cos 1 [cos( ) cos( )]
2
sin sin 2sin cos
2
2
sin sin 2cos sin
2
2
(arctan
x
)
1
1 x
2
( x ) x 1
(cos x) sin x
(cot x) csc2 x
(csc x) csc x cot x
(e x ) e x
(ln x) 1 x
(arccos x)
1 1 x2
(
arccot
x )
1
1 x2
11
微分的计算
dy f ( x)dx
(★)
xX g( x)
x X
则 lim f ( x) 0.
x X
f (x)
lim f ( x) lim[ g( x)]
xX
xX g( x)
f (x)
lim
lim g( x) a 0 0.
xX g( x) xX
3
a.多项式与分式函数代入法求极限;
b.消去零因子法求极限;
c.
当a0 0,b0 0, m和n为非负整数时有
(2) 1 cos x ~ 1 x2 2
(3) x ~ ln(1 x) ~ ex 1
(4) ax 1 ~ x ln a(a 0, a 1)
(5) (1 x) 1 ~ x( 0是常数) 特别, n(n Z ),n 1 x 1 ~ x .
n
(6) ln x ~ x 1 (x 1)
高等数学公式大全(几乎包含了所有)

高等数学公式大全1、导数公式:2、基本积分表:3、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高中数学必背公式大全高考必考数学公式

高中数学必背公式大全高考必考数学公式1.二次方程的根与系数之间的关系:设二次方程 ax^2 + bx + c = 0(a ≠ 0)的根为 x1 和 x2,那么有以下关系式:x1+x2=-b/ax1*x2=c/a2.一元二次不等式的求解:设二次不等式 ax^2 + bx + c > 0(a ≠ 0)的解集为 S,那么有以下关系式:a>0时,S={x,x<x1或x>x2}a<0时,S={x,x1<x<x2}3.二次函数的顶点坐标:设二次函数 y = ax^2 + bx + c 的顶点坐标为 (h, k)那么有 h = -b/2a,k = f(h) = (4ac - b^2)/4a4.一次函数的斜率与函数图像的关系:设一次函数 y = mx + c 的斜率为 m,那么有以下关系式:m>0时,函数图像上升;m<0时,函数图像下降;m=0时,函数图像水平。
5.三角函数和三角公式:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)sin^2A + cos^2A = 1sin²θ + cos²θ = 16.幂函数的性质:若 a > 0 且a ≠ 1,则函数 y = ax^n (n 是整数)的性质如下:n>0时,函数图像单调递增;n<0时,函数图像单调递减;n为偶数时,函数图像关于y轴对称;n为奇数时,函数图像关于原点对称。
7.对数函数的性质:若 a > 0 且a ≠ 1,则函数 y = log_a(x) 的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(1,0),且以x轴为渐近线;log_a(a^b) = b8.指数函数的性质:若a>0且a≠1,则函数y=a^x的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(0,1),且a^0=1a^m*a^n=a^(m+n)9.排列组合公式:将n个物体排成一列,有以下公式:排列公式:从n个物体中任选m个物体的排列数为A(n,m)=n!/(n-m)!组合公式:从n个物体中任选m个物体的组合数为C(n,m)=n!/(m!*(n-m)!)10.三角函数的和差化积:sin(A + B) = sinA * cosB + cosA * sinBsin(A - B) = sinA * cosB - cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBcos(A - B) = cosA * cosB + sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些公式是高中数学中的常用公式,掌握并熟练运用它们对于高考数学考试非常重要。
高等数学公式大全(几乎包含了所有)

高等数学公式大全(几乎包含了所有)高等数学公式大全(几乎包含了所有)在高等数学中,公式是解决问题的重要工具之一。
它们可以帮助我们理解和描述数学概念,推导出新的数学结论,并应用于各个领域,包括物理学、工程学、经济学等。
本文将呈现一个高等数学公式大全,几乎包含了所有相关的公式。
希望这个公式大全能对广大数学爱好者和学习者有所帮助。
一、微积分公式微积分是高等数学的基础,它主要研究函数的极限、导数和积分等概念。
以下是一些常用的微积分公式:1. 极限公式:(1)极限的四则运算法则:对于函数f(x)和g(x),若lim[x→a] f(x)存在且等于A,lim[x→a] g(x)存在且等于B,则有:lim[x→a] (f(x)±g(x)) = A±Blim[x→a] (f(x)·g(x)) = A·Blim[x→a] (f(x)/g(x)) = A/B (若B≠0)lim[x→a] (c·f(x)) = c·A (c为常数)(2)洛必达法则:若lim[x→a] f(x) = lim[x→a] g(x) = 0或±∞,则有:lim[x→a] (f(x)/g(x)) = lim[x→a] (f'(x)/g'(x)) (其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数)2. 导数公式:(1)基本求导法则:对于常数c和可导函数u(x)、v(x),有以下导数法则:(常数法则) (c)' = 0(乘法法则) (u·v)' = u'·v + u·v'(除法法则) (u/v)' = (u'·v - u·v')/v^2(2)常见函数的导数公式:函数导数sin(x) cos(x)cos(x) -sin(x)e^x e^xln(x) 1/x3. 积分公式:(1)基本积分法则:对于连续函数f(x)和可导函数F(x),有以下积分法则:(常数法则)∫(c)dx = cx + C (C为常数)(幂函数积分法则)∫(x^n)dx = (x^(n+1))/(n+1) (n≠-1)(三角函数积分法则)∫sin(x)dx = -cos(x) + C∫cos(x)dx = sin(x) + C(2)常见函数的积分公式:函数积分e^x e^x + C (C为常数)1/x ln|x| + C二、线性代数公式线性代数是研究向量空间和线性映射的数学分支。
(完整版)高数常用公式手册

高等数学复习公式1、乘法与因式分解公式2、三角不等式■Ti3、一元二次方程U H-珀+巴=0 的解4、某些数列的前n项和5、二项式展开公式6、基本求导公式7、基本积分公式8—些初等函数两个重要极限9、三角函数公式正余弦定理10、莱布尼兹公式11、中值定理12、空间解析几何和向量代数13、多元函数微分法及应用14、多元函数的极值15、级数16、微分方程的相关概念1、乘法与因式分解公式1.1a3'—护=(口一卜)(& + b)1.2八土护干必十們n ■ n / ■ 、/ n 1 n 2.g a b (a b)(a a b2、三角不等式2.1 匕■. J -2.2 ■' > r - L2.3 二;•- * 门'2.4 ■- ■- ■- r - ■■- 2.6|训£ b 旨一常用高数公式(a-b)(a n~ (口十&)(厂十络十a" 皆---------------- a b n~2十矿+ ft Q —& t1+ '■' + fit —Q J伉为正整数)g为偶数)n 3 2 n 2 n 1、a b L ab b )( n 为奇数)3、一元二次方程 。
十+斑十的解3.2(韦达定理)根与系数的关系:r >0万程口恂定一黄恨, 3-3利别朮 沪-伽彳=0方程有相尊二买抿”I < U 方程有决辄肆琅.4、某些数列的前 n 项和4.1T r - 亦 + 1)1十2十3十…•十沖= ------ ---- 4.21 十3 + B+ —十(2⑺一1) = □& 4.32+4 + 5+ ■■■ + (2 外)=n (n 十 1)44[十沪十护十…十卅=巾+ 1)帥+ 1)64.5 f 十护十扌十…十(亦章=吧-1)a4.61彳+尸+*+…+异+44.7P+孑十用+…十(加一⑵^一 1)4.81卄也十L )=*十挈+可'J5、二项式展开公式5.1 (一时—+严时答2-沪十捫一%一宀…+7 !U p+止土色土^右 忖十十屮Jd!6、基本求导公式:(C) 0 (C为常数)(cot x) csc 2 xsin "2x (sec x)(csc x)sec x tan xesc x cot x (arcsin x)(log a x)1 1(ln x)x x ln a(sin x) cos x (cos x) sin x(tan x) sec2 x1 cos2 x(x ) x 1 (为实数) (a x) a x lna (e x) e x(arccos(arctan7、基本积分公式:0dx x) x)(arc cot x)1 x211 ~x7x dx 1)Idx xxe dx lnxsec xdx ln secx tan x Ccsc xdx ln cscx cot x Cdxarctan x C1 x2dxarcsin x C疋1e x Ca x dxx—C Inadx2~ cosx2sec xdx tancosxdx sin x Csin xdx cosx C 8、一些初等函数:两个重要极限:双曲正弦:shx 双曲余弦:chxx x e e2x x e e2双曲正切:thxshx x echx x e arshx ln (x x2 1) archx ln (x .x21)xeedx2sin x2csc xdx cot x Csec x tan xdxcscx cot xdxlimx 0lim(1丄厂x xsecxcscx Ce 2.718281828459045…arthx Iln 1_-2 1 x 9、三角函数公式:高等数学复习公式sinsin 2si n-cos22sinsin2 cos-sin22 coscos2 cos-cos-22 coscos 2 sin --sin -22■倍角公式:■半角公式:c os —21 cosV 2cot —21cos 1 cos sin 1 cossin 1 cos柯西中值定理: 当F(x) x 时,柯西中值定理就是 拉格朗日中值定理sin( )sin cos cos sin cos()cos cos sin sintan() tan tan 1 tan tan、 cot cot 1cot()cot cot■和差化积公式:sin2tan — 2■正弦定理: a sin A b sin B — 2R •余弦定理:c 2 sin C 2 2a b 2abcosC•反三角函数性质: arcs in x arccosx arcta n x —arc cot x2(uv)(n) n C :u (nkJ)u (n)v (n 1) nu v n(n 1)u(n 2)vn(n 1) (n k 1) (n k )v(k )10、高阶导数公式一一莱布尼兹( Leibniz )公式: 2!k!11、中值定理与导数应用: U V(n)拉格朗日中值定理: f(b) f(a) f ( )(b a)■和差角公式:si n2 cos2 cot2 tan22sin cos 22 cos 1 cot 2 12cot 2ta n 1 tan 21 2si n 22cos.2 sinsi n3 3sin4s in 3cos3 4CO £3 cos tan33ta n tan 321 3ta n12、空间解析几何和向量代数:空间2点的距离:d M 1M 2 向量在轴上的投影:Pr j u ABPrj u@1 a ?) Pr ja 1 Prja ?a b cos a x b xa zb z ,是一个数量,代表平行六面体的体积平面的方程:1、点法式:A(x X o ) B(y y o ) C(z z o ) 0,其中 n{代 B,C}, M o (x o , y o ,z o )2、一般方程:Ax By Cz D o3、截距世方程:△ y z -1a b c平面外任意一点到该平面的距离:|Ax o By o d -- ------------- Cz o D〜 、‘A 2 B 2 C 2x X o mt空间直线的方程:xX o y y ozzt,其中s {m,n, p};参数方程:y y o ntmnPPtz z o二次曲面:22 21、椭球面:y_ 刍1 ab 2 c222、抛物面:丄 y_ z,(p, q 同号)2p 2q3、双曲面:222单叶双曲面:务y_ 刍1 ab 2c 222双叶双曲面:qy ~~2刍1(马鞍abc13、多元函数微分法及应用两向量之间的夹角: cos axb : x 2 2 一 a xa y a yb y T~' 2 a z ... b x a z b z 2 2 b y b zcab a xb x ay b y k a z ,c b z a b sin 例:线速度: 向量的混合积: [abc] (a b) c a x b x ayb y C ya zb z Czc cos ,为锐角时, (X 2 X 1)2 Q2 yJ 2 (Z 2 Z 1)2 AB cos ,是AB 与u 轴的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 偏导函数的定义式: x
y x f y x x f y x f x x
∆-∆+=→∆),(),(lim ),(0
;y
y x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(0
2、 全微分可写作:dz
z
u dy y u dx x u du ∂∂+∂∂+∂∂=
(三元的情况);
3、设空间曲线Γ的参数方程为:注意其他两种形式的变形
Γ:⎪⎩
⎪⎨⎧===)()
()(t z t y t x ωϕφ三个函数可导,则在M 0(x ),,000z y 的切向量:{)(),(),(0'0'0't t t T ωψϕ=→
};切线方程:=-)
(0'
t x
x ϕ
=-)(0'0t y y ψ)
(0'
0t z z ω-;法平面方程:0))(())(())((00'
00'00'=-+-+-z z t y y t x x t ωψϕ 4、∑=0),,(:z y x F 偏导数连续且不同时为零,则在),,(0000z y x M ,法向量:{}
),,(),,,(,,,(000000000z y x F z y x F z y x F n z y x =→
;切平面方程:0)()()(000=-+-+-z z F y y F x x F z y x ;法线方程:z
y x F z z F y y F x x 000-=-=-。
5、方向导数:=∂∂l f .sin cos ϕϕy f x f ∂∂+∂∂;函数的梯度:=),(y x gradf j
y
f i x f ∂∂+∂∂.注意三元的情况及梯度和方向导数的关系 6、取得极值的充分条件:设函数),(y x f z =在点),(00y x 的某邻域内连续,有一阶及二阶连续偏导数,又),(00y x 是函数的驻点,令A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则),(y x f 在点),(00y x 处是否取得极值的条件如下:
(1)02>-B AC 时具有极值,当0<A 时有极大值,当0>A 时有极小值;(2)02<-B AC 时没有极值;(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论.
7、拉格朗日乘数法:要找函数),(y x f z =在条件0),(=y x ϕ下的可能极值点,先构造函数),(),(),(y x y x f y x F λϕ+=,其中λ
为某一常数,可由 ⎪⎩⎪⎨⎧==+=+.0),(,0),(),(,
0),(),(y x y x y x f y x y x f y y x x ϕλϕλϕ解出λ,,y x ,其中y x ,
就是可能的极值点的坐标.
8
、
对
弧长的积分:
)
()()()](),([),(22βαψϕψϕβ
α
<'+'=
⎰⎰dt t t t t f ds y x f L ,
.)(1)](,[),(2dx x x x f ds y x f b
a
L
⎰⎰
'+=ψψ)(b a <;.)(1]),([),(2dy y y y f ds y x f d
c
L
⎰⎰'+=ϕϕ)(d c <;
9、对坐标的曲线积分:
dt
t t t Q t t t P dy y x Q dx y x P L
)}()](),([)()](),([{),(),(ψψϕϕψϕβ
α'+'=
+⎰⎰;
.)}
()](,[)](,[{dx x y x y x Q x y x P Qdy Pdx b
a
L
⎰⎰'+=
+;.]}
),([)(]),([{dy y y x Q y x y y x P Qdy Pdx d c
L
⎰⎰+'=+注意:活用路径无相关以及格林公式。
10、格林公式:
⎰⎰⎰+=∂∂-∂∂L D
Qdy Pdx dxdy y
P
x Q )(
,注意格林公式应用条件,以及必要时补边的技巧。
11、曲面积分:),(:若曲面y x z z =∑,则 =⎰⎰∑
dS z y x f ),,(;1)]
,(,,[2
2
dxdy
z z y x z y x f xy
D y x ⎰⎰'+'+注意选择合适的投影面。
12、对坐标的曲面积分:⎰⎰⎰⎰=
∑
xy
D
dxdy y x z y x R dxdy
z y x R )],(,,[),,(,注意侧的方向,及扩展到其他面的计算。
13、高斯公式:
⎰⎰⎰⎰⎰∑
Ω
++=∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R
y Q x P )(
;高斯公式的应用条件,尤其注意方向。
14、常用已知和函数的幂级数:;11)1(0
x
x n n -=∑
∞=
;11)1()2(2
2x x
n n
n
+=-∑∞
=;1)3(2
2x a ax n n -=
∑∞
= ;!)4(0x n n e n x =∑∞
=;sin )!12()1()5(1121x n x n n n =--∑∞=--);1ln(1)1()6(0
1x n x n n n +=+-∑∞=+
15、常用的幂级数展开:
;
11
)1(0
x x n n -=∑∞
=
;11
)1()2(2
2x x
n n
n
+=-∑∞
=;1)3(2
2x a ax n n -=
∑∞
=
;!
)4(0x n n
e n x =∑∞
=;sin )!12()
1()5(1
1
21
x n x n n n =--∑∞
=--);1ln(1)1()6(0
1x n x n n n +=+-∑∞=+
16、泰勒级数: 如果)(x f 在点0x 处任意阶可导,则幂级数n n n x x n x f )(!)(00
0)(-∑∞
=称为)(x f 在点0x 的泰勒级数;麦克劳
林级数:
n n n x n f ∑
∞
=0
)(!)0(称为)(x f 的麦克劳林级数.,麦克劳林级数的余项:(1)1()(1)!
n n f x x n θ+++
另:关于解析几何、二重求积分、曲线曲面积分等公式在此不整理了,都是重要的。
实习闲暇时可拿出来背背,要同时将应用条件都记住。