材料力学 (陪浙大 刘鸿文 第五版)14 静不定结构 完整版共66页
合集下载
刘鸿文版材料力学课件全套
0.8m
B C
Fmax
FRCx C FRCy
d
1.9m
例题2.2 悬臂吊车的斜杆AB为直径
d=20mm的钢杆,载荷W=15kN。当W A 移到A点时,求斜杆AB横截面上的
应力。
解:当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
讨论横梁平衡 Mc 0
W
Fmax Fmax sin AC W AC 0
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
(精品)材料力学课件:静不定问题分析-1
4 - 24 + 3 = -1
5 - 24 + 3 = 0
6 - 24 + 3 = 1
Page4
平面刚架: 三度内力静不定
断开:内力静定
刚性连接:多了三 个约束
两度内力静不定
六度内力静不定
四度内力静不定
封闭框架三内,加一铰减一,加一刚接杆加三,加一铰支杆加一
Page5
平面曲杆:
三度内力静不定 两度内力静不定 ➢ 例:判断内力静不定度
Page2
➢ 外力静不定
存在多余外部约束
外力静不定(一度)
外力静不定(三度)
外力静不定(六度)
平面静定结构: 3个约束 空间静定结构: 6个约束
Page3
➢ 内力静不定 存在多余内部约束 平面桁架:
内力静不定度 = m - 2n + 3 m: 杆数 n: 节点数
外力静定 内力静不定(一度)
几何可变
M( x3 ) (N P)x3
单位载荷状态:
B
C
1
D
M(
x1 )
1 2
x1
M(
x2
)
1 2
x2
1
A
H
M ( x3 ) x3
m / m
1 EI
(2
N 4
a3 3
(N
P)
a3 3
)
a EA
N
m/m 0
N 5P 9
Page26
B
a
A
B
A
a
a
EI C EI EA
H
EI
P
C
D
➢ 求节点H的垂直位移:
选取单位载荷状态:
材料力学(刘鸿文_第5版)
第十四章 习题
2012年11月5日星期一
常州大学机械学院力学教研室
第五章 习题
第六章 弯曲变形
§6-1、工程中的弯曲变形问题 §6-2、挠曲线的微分方程 §6-3、用积分法求弯曲变形 6.1和连续性条件 6.3(a) Page 196 §6-4、用叠加法求弯曲变形 6.9(a) 6.10(b) Page 200 §6-5、简单超静定梁 Page 208 6.36 §6-6、提高弯曲刚度的一些措施
第十三章 习题
§13-1、概述 §13-2、杆件应变能的计算104 Page §13-3、应变能的普遍表达式 §13-4、互等定理 Page 106 §13-5、卡氏定理 Page 107 §13-6、虚功原理 §13-7、单位载荷法 Page 109 莫尔积分 §13-8、计算莫尔积分的图乘法 Page 109
第一章 绪论
§1-1、材料力学的任务 §1-2、变形固体的基本假设 §1-3、外力及其分类 §1-4、内力、截面法和应力的概念 §1-5、变形与应变 §1-6、杆件变形的基本形式
第一章 绪论习题
Page 11 1.2 Page 11 1.4 1.6
第二章 拉伸、压缩与剪切 第二章 习题
§2-1、轴向拉伸与压缩的概念和实例 §2-2、轴向拉伸与压缩时横截面上的内力和应力 2.2 Page 53 2.1(a)(c) §2-3、直杆轴向拉伸或压缩时斜截面上的应力 Page 54 2.6 §2-4、材料拉伸时的力学性能 §2-5、材料压缩时的力学性能 §2-7、失效、安全因数与强度计算54 2.7 Page 54 2.12 Page §2-8、轴向拉伸或压缩时的变形 58 2.19 Page 61 2.30 Page
附录 I 平面图形的几何性质
材料力学第五版(刘鸿文主编)课后答案之欧阳文创编
幻灯片89
幻灯片90
幻灯片91
幻灯片92
幻灯片93
幻灯片94
幻灯片95
幻灯片96
幻灯片97
幻灯片98
幻灯片99
幻灯片100
幻灯片101
幻灯片102
幻灯片103
幻灯片104
幻灯片105
幻灯片106
幻灯片107
幻灯片108
幻灯片109
幻灯片110
幻灯片111
幻灯片112
幻灯片113
幻灯片114
幻灯片115
幻灯片491
幻灯片492
幻灯片493
幻灯片494
幻灯片495
幻灯片496
幻灯片497
幻灯片498
幻灯片499
幻灯片500
幻灯片501
幻灯片502
幻灯片503
幻灯片504
幻灯片505
幻灯片506
幻灯片507
幻灯片508
幻灯片509
幻灯片510
时间:2021.03.12
创作:欧阳文
幻灯片1
时间:2021.03.12
创作:欧阳文
幻灯片2
幻灯片3
幻灯片4
幻灯片5
幻灯片6
幻灯片7
幻灯片8
幻灯片9
幻灯片10
幻灯片11
幻灯片12
幻灯片13
幻灯片14
幻灯片15
幻灯片16
幻灯片17
幻灯片18
幻灯片19
幻灯片20
幻灯片21
幻灯片22
幻灯片23
幻灯片24
幻灯片25
幻灯片26
幻灯片27
幻灯片28
幻灯片341
幻灯片342
幻灯片343
幻灯片90
幻灯片91
幻灯片92
幻灯片93
幻灯片94
幻灯片95
幻灯片96
幻灯片97
幻灯片98
幻灯片99
幻灯片100
幻灯片101
幻灯片102
幻灯片103
幻灯片104
幻灯片105
幻灯片106
幻灯片107
幻灯片108
幻灯片109
幻灯片110
幻灯片111
幻灯片112
幻灯片113
幻灯片114
幻灯片115
幻灯片491
幻灯片492
幻灯片493
幻灯片494
幻灯片495
幻灯片496
幻灯片497
幻灯片498
幻灯片499
幻灯片500
幻灯片501
幻灯片502
幻灯片503
幻灯片504
幻灯片505
幻灯片506
幻灯片507
幻灯片508
幻灯片509
幻灯片510
时间:2021.03.12
创作:欧阳文
幻灯片1
时间:2021.03.12
创作:欧阳文
幻灯片2
幻灯片3
幻灯片4
幻灯片5
幻灯片6
幻灯片7
幻灯片8
幻灯片9
幻灯片10
幻灯片11
幻灯片12
幻灯片13
幻灯片14
幻灯片15
幻灯片16
幻灯片17
幻灯片18
幻灯片19
幻灯片20
幻灯片21
幻灯片22
幻灯片23
幻灯片24
幻灯片25
幻灯片26
幻灯片27
幻灯片28
幻灯片341
幻灯片342
幻灯片343
材料力学课件--13-a 静不定结构
l
B l/2 C l/2 C l
B
F
D l/2 A l/2
F
D A
X1 解:取固定端处的反力偶为多余约束. 变形协调条件是:A点的转角等于零.
2013-8-8 材料力学课件
(Statically Indeterminate Structure)
l
B l/2 C l/2 C
l
B
F
D l/2 A l/2
q
B A l A
q
B
X1
Δ1F
1 l qx 2 ql 4 0 ( 2 ) xdx 8 EI EI
1 l l3 11 0 x xdx 3 EI EI
代入 Δ1 X1 Δ1F 0
2013-8-8
l3 ql 4 X1 0 解得 3 EI 8 EI 材料力学课件
3 X 1 ql 8
(Statically Indeterminate Structure)
二、力法正则方程 (Generalized equations in the force method)
上例中以多余力为未知量的变形协调方程可改写成下式
11 X 1 Δ1F 0
变形协调方程的标准形式,即所谓的力法正则方程. X1— 多余未知量;
2
(Statically Indeterminate Structure)
q
B A l A
q
B
X1
B x A x
A
B
1
(4) 用莫尔定理求 11
1
M ( x) x
2013-8-8
M ( x) x
1 l l3 11 x xdx 0材料力学课件 3 EI EI
B l/2 C l/2 C l
B
F
D l/2 A l/2
F
D A
X1 解:取固定端处的反力偶为多余约束. 变形协调条件是:A点的转角等于零.
2013-8-8 材料力学课件
(Statically Indeterminate Structure)
l
B l/2 C l/2 C
l
B
F
D l/2 A l/2
q
B A l A
q
B
X1
Δ1F
1 l qx 2 ql 4 0 ( 2 ) xdx 8 EI EI
1 l l3 11 0 x xdx 3 EI EI
代入 Δ1 X1 Δ1F 0
2013-8-8
l3 ql 4 X1 0 解得 3 EI 8 EI 材料力学课件
3 X 1 ql 8
(Statically Indeterminate Structure)
二、力法正则方程 (Generalized equations in the force method)
上例中以多余力为未知量的变形协调方程可改写成下式
11 X 1 Δ1F 0
变形协调方程的标准形式,即所谓的力法正则方程. X1— 多余未知量;
2
(Statically Indeterminate Structure)
q
B A l A
q
B
X1
B x A x
A
B
1
(4) 用莫尔定理求 11
1
M ( x) x
2013-8-8
M ( x) x
1 l l3 11 x xdx 0材料力学课件 3 EI EI
刘鸿文材料力学第五版课件
§9-2 两端绞支细长压杆的临界压力
l l 2 x x
x Fcr
A
w
Fcr (+)
w
M (x)= Fcrw
B y
(a)
B y
(b)
M(x)=Fcrw
EIw'' M (x) Fcrw 令 Fcr k 2
EI w''k 2w 0 w Asin kx Bcoskx
当x=0时,w=0。
稳 时
B
B
B
挠
D
曲
线 形
C
C
状
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Fcr 欧拉公式
Fcr
2EI
l2
Fcr
2EI
(0.7l ) 2
Fc
r
2EI
(0.5l ) 2
Fcr
2EI
(2l ) 2
长度系数μ =1 0.7 =0.5 =2
2EI
Fcr l 2
=1
§9-3 其它支座条件下细长压杆的临界压力
细长压杆临界力的欧拉公式的统一形式
Fcr
2EI ( l ) 2
其中,μ —压杆长度系数 μ l—压杆的相当长度。
两端铰支
=1
两端固定 = 0.5
一端固定,另一端铰支 = 0.7
一端固定,另一端自由 = 2
§9-3 其它支座条件下细长压杆的临界压力
轴向压力较小时,杆件能保持稳定的直线平衡状态;
轴向压力增大到某一特殊值时,直线不再是杆件唯一的 平衡状态 失稳(屈曲):
材料力学(刘鸿文版)全套课件 PPT
850 750 650 550
104
105
106
107
108
N
从图可以得出三点结论:
(1)对于疲劳,决定寿命的 最重要因素是应力幅 。
(2)材料的疲劳寿命N 随应力幅 的增大而减小。
(3)存在这样一个应力幅,低于该应力幅,疲劳破坏不会发生,该应力幅
称为疲劳极限,记为 -1 。
目录
对于铝合金等有色金属,其S-N曲线没有明显的水平部分,一般规定
Δ
max
m in
O t
目录
通常用以下参数描述循环应力的特征
(1)应力比 r
r min max
r = -1 :对称循环 ; r = 0 :脉动循环 。
r < 0 :拉压循环 ; r > 0 :拉拉循环 或压压循环。
(2)应力幅
max min
(3)平均应力 m
B L
解: ⑴ 弯矩方程
F
A
M (x) M e Fx
Me
⑵ 变形能
V
L
M 2 (x) dx 2EI
L
1 2EI
(M
e
Fx)2 dx
M
2 e
L
M e FL2
F 2 L2
2EI 2EI 6EI
B L
F
⑶ 当F和M0分别作用时
A M0
V 1
MeL 2EI
F 2 L3 V 2 6EI
例:试求图示悬臂梁的应变能,并利用功
能原理求自由端B的挠度。
F
解:
l
x
M (x) F x
V
材料力学全套刘鸿文版
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
F
y
F N 2 45° B x
Fx 0
FN3F425kN
x 2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
x
lim x0
s x
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
F
y
F N 2 45° B x
Fx 0
FN3F425kN
x 2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
x
lim x0
s x
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
材料力学绪论
强度+刚度
钻头:稳定性 立柱:强度+刚度
大型桥梁满足强度、刚度、稳定性要求
斜拉索:强度 桥梁:强度、刚度 桥墩:强度、稳定性
谈谈感想:
日常生活的各行各业的零部件均满足强度、刚度、 稳定性的要求,系统才能正常运转
《材料力学》的重要性另你震惊了吗?
工程中的另一方面的要求防止系统超载的安全销,容 Nhomakorabea发生破坏
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺木塔
塔高9层共67.31米,用木材 7400吨
900多年来历经数次地震不倒,
现存唯一木塔
材料力学的地位非常重要
第一章
§1.1
§1.2
绪论
材料力学的任务
变形固体的基本假设
§1.3
§1.4
外力及其分类
内力、截面法及应力的概念
§1.5
§1.6
变形与应变
受压的细长杆(如:液压油缸的活塞杆)
应具有足够的稳定性
承载能力—— 杆件承受载荷的能力 强度 刚度 稳定性 抵抗破坏的能力(不破坏) 抵抗变形的能力(变形在允许的范围内) 保持原有的直线平衡的能力
不仅与构件的形状、尺寸有关,更与材料的力学性能有关 理论分析+实验研究
60时 +
10时
工程中满足强度、刚度、稳定性的实例
2 缓冲弹簧
弹簧应有较大的变形才能很好的减振
3、蹦床? 4、蹦极的柔索?
5、汽车车身在发生碰撞或者滚翻时的变形?
人类的灾难
对工程中不满足刚度、强度、稳定性而发生失效 的构件给工农业造成巨大的损失,例子不胜枚举
1912年4月14日晚12时30分,由英国开往纽约的《泰坦尼克》 原因 铆钉质量差,有杂质 铆钉材料测试在室温下进行,但大西洋-11度
《材料力学》精品课程(全册)第十四章 超静定结构
,YB
9qa 16
X
A
qa 16
,
YA
7qa 16
目录
上面我们讲的是只有一个多余约束的情况! 那么当多余约束不止一个时,力法方程是什么样的呢?
P2
P2
P1
P1
P3
P3
X3
X1
X2
目录
变形协调条件 :
1 2 3 0
i 表示 X作i 用点沿着 方向X的i 位移
由叠加原理:
1 1X1 1X 2 1X3 1P 0 1 11 X 1 12 X 2 13 X 3 1P 0
C
B 11
对于线弹性结构,位移与力成正比,X1是单位力“1”的X1倍,故1X1
的X1倍,即有
1X1 11 X1
也是11
所以(*)式可变为: 11 X 1 1F 0
若:
11
l3 3EI
于是可求得
1F
Fa 2 6EI
(3l a)
X1
Fa 2 2l 3
(3l
a)
目录
例14.1:试求图示平面刚架的支座反力。已知各杆 EI=常数。
可得:
12 21 23 32 0
于是正则方程可化为
11 X 1 13 X 3 1F
31 X 1 33 X 3 3F
22 X 2 0
目录
对称结构在反对称载荷作用下的情况:
F P
F P
F
X3
X2
F
X1
X3 X2
P
P
同样用图乘法可证明
当对称结构上受反对称载荷作用时,
在对称面上对称内力等于零。
目录
例如:
该体系中多出一个外部约束,为一次超静定梁
刘鸿文版材料力学课件全套
目录
FN
F
x
F
0
FN F 0 FN F
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
1 B 1 F2
2 C 2
3 D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。
F1 F1 F1
FN kN
F3
3
F4
解:1、计算各段的轴力。 AB段
目录
§2.1
轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F F F
压缩
F
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F m F FN FN F
a d
a ' b ab 0.025 6 m 125 10 200 ab
即为切应变 。
a'
ab, ad 两边夹角的变化:
0.025 tan 100 10 6 (rad ) 250
目录
§1.6 杆件变形的基本形式
杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲
目录
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
4、小变形与线弹性范围 认为构件的变形极其微小, 比构件本身尺寸要小得多。
如右图,δ远小于构件的最小尺寸, 所以通过节点平衡求各杆内力时,把支 架的变形略去不计。计算得到很大的简 化。
FN
F
x
F
0
FN F 0 FN F
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
1 B 1 F2
2 C 2
3 D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。
F1 F1 F1
FN kN
F3
3
F4
解:1、计算各段的轴力。 AB段
目录
§2.1
轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F F F
压缩
F
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F m F FN FN F
a d
a ' b ab 0.025 6 m 125 10 200 ab
即为切应变 。
a'
ab, ad 两边夹角的变化:
0.025 tan 100 10 6 (rad ) 250
目录
§1.6 杆件变形的基本形式
杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲
目录
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
4、小变形与线弹性范围 认为构件的变形极其微小, 比构件本身尺寸要小得多。
如右图,δ远小于构件的最小尺寸, 所以通过节点平衡求各杆内力时,把支 架的变形略去不计。计算得到很大的简 化。
材料力学全套刘鸿文版
2020年3月4日星期三
材料力学
Mechanics of Materials
§1-1 材料力学的任务
材料力学研究什么?
工程材料的力学性能和构件的安全问题。
工程结构或机械的各组成部分统称为构件
1. 材料力学主要研究构件的强度、刚度和稳定性等 问题,
2. 以理论分析为基础,培养学生将工程实际问题提 炼成力学问题(即力学建模),
Mechanics of Materials
三、应力:内力系在某点
的内力集度,反映内力系
在该点的强弱。
FN
C
A
p FN m A
p
lim
A0
pm
lim
A0
FN A
dFN dA
2020年3月4日星期三
材料力学
Mechanics of Materials
应力p可分解:
正应力—— ; 切应力——。
p
应力单位:牛/米2(N/m2),称为帕斯卡或简称帕 ( Pa ) 。 通 常 使 用 的 是 兆 帕 , 即 MPa ( 1MPa=106Pa)
2020年3月4日星期三
材料力学
Mechanics of Materials
§1-5 变形和应变
y
L’
M’ M
L
M’
N’
x+ s
M x N
x
2020年3月4日星期三
到了很大的简化。
B
C
δ2
F
2020年3月4日星期三
材料力学
Mechanics of Materials
FN1
FN2
P
刘鸿文版材料力学课件全套
e
Mel EI
M e 2l 2EI
M 2l 2EI
横力弯曲:V
l
M 2 (x) dx 2E I ( x)
13-3 变形能的普遍表达式
F3
1
F2
F1
2 3
V
W
1 2
F11
1 2
F2 2
1 2
F3 3
即:线弹性体的变形能等于每一外力与其相应位移乘积的二分之一的 总和。
M (x)
M (x)
N ( x)
目录
疲劳极限
将若干根尺寸、材质相同的标准试样,在疲劳试验机上依次进行r = -1 的常幅疲劳试验。各试样加载应力幅 均不同,因此疲劳破坏所经历 的应力循环次数N 各不相同。
以 为纵坐标,以N 为横坐标(通常为对数坐标),便可绘出该材料的应 力—寿命曲线即S-N 曲线如图(以40Cr钢为例)
注:由于在r =-1时,max = /2,故S-N 曲线纵坐标也可以采用max 。
M e L2 2EI
A
( A ) F
( A ) Me
FL2 2EI
MeL EI
V
W
1 2
FwA
1 2
M
e
A
F 2 L3 6EI
MeF2 2EI
M
2 e
L
2EI
§13-4 互等定理
F1
F2
1
2
F1
11
21
F2
12
22
ij
荷载作用点
•位移发生点
F1
11
21
F2
12
22
先作用 F1,后作用 F2,外力所作的功:
1F 2
Fl EA
材料力学(刘鸿文)第十四章超静定结构
P
aa
2a
2a
4、作刚架的弯矩图
q=4KN/m B
4m
4m
C
四、静不定综合
1、两根长为L=2米的竖直简支梁,在跨中用一根拉紧的金属丝
相连。左边梁的抗弯刚度为EI1=50KNm2,右边梁的抗弯刚度 为EI2=150KNm2。金属丝的横截面面积为65毫米2,E=70GPa, 求在两梁的跨中施加两个2KN的力后,金属丝内的应力。
a C
D
a
2a
B
8、两个长度相等的悬臂梁之间用一拉杆连接,梁与 杆采用同种材料制成。梁的抗弯截面系数为 WZ=AL/16,惯性矩为IZ=AL2/3。其中:A为杆的 横截面面积;L为梁的长度。求拉杆内的应力。
L
L
P
L/2 L/2
9、L1/L2=2/3,EI1/EI2=4/5。中间夹一刚珠。 求梁内的最大弯矩。
也可以把卡盘处视为多余约束而解除,得到静定基。
9 相当系统
在外载和多余约束作用下的静定基称为相当系统。
R
P
P
M P
10 超静定问题的分析方法
1.位移法: 以未知位移为基本未知量。
列出用位移表示的力的平衡方程
2.力法: 以未知力为基本未知量。
① 变形比较法 ② 力法正则方程 ③ 三弯矩方程
§14–2 变形比较法 原理:
支梁,AB的A端固定,B端自由。加载前两梁在中
点接触,不计梁的自重。求在力P的作用下B端沿作
用力方向的位移。
D
P
A
B
C
15 水平刚性横梁AB上部由杆1和杆2悬挂,下部由 铰支座C支承,如图所示。由于制造误差,使杆1的 长度做短了δ=1.5mm。已知两杆的材料和横截面面 积均相同,且E1=E2=E=200GPa,A1=A2=A。试求 装配后两杆的应力。
刘鸿文材料力学第五版课件
z A 1kN· m 5kN C 1kN· m B D x
z
5kN A CC 10kN B 3.64kN D
D
x
y
1.82kN 300mm
300mm
100mm
3.64kN
1 kN· m使轴产生扭转
y 1.82kN 10kN
§8-4 扭转与弯曲的组合
(3)绘制轴的内力图
z 5kN
3.64kN
1kN· m B D x
第八章 组合变形
§8-3 偏心压缩 §8-4 扭转与弯曲的组合
北京交通大学工程力学研究所
柯燎亮
§8-3 偏心压缩
一、偏心拉(压)
1.定义 当外力作用线与杆的轴线平行但不重合时, 将引起轴向 拉伸(压缩)和平面弯曲两种基本变形. 例如钻床的立柱、厂房中支承吊车梁的柱子。 F
F2
F1
O1
z A(yF,zF) y
M max 20kN m
πD W (1 4 ) 32
3
15kN· m
+
扭矩
20kN· m
-
r3
M2 T2 157.26MPa [ ] W
弯矩
§8-4 扭转与弯曲的组合
例题2 传动轴如图所示.在A处作用一个外力偶矩Me=1kN· m,皮 带轮直径D=300mm,皮带轮紧边拉力为F1,松边拉力为F2.且 F1=2F2,l=200mm,轴的许用应力[]=160MPa.试用第三强度理论设 y 计轴的直径
§8-3 偏心压缩
2. (外力分析)以横截面具有两对称轴的等直杆受偏心拉力 F 为例
(1)将外力向截面形心简化,使每个力(或力偶)只产生一种 基本变形形式 轴向拉力 F 力偶矩 M = F e,
z
5kN A CC 10kN B 3.64kN D
D
x
y
1.82kN 300mm
300mm
100mm
3.64kN
1 kN· m使轴产生扭转
y 1.82kN 10kN
§8-4 扭转与弯曲的组合
(3)绘制轴的内力图
z 5kN
3.64kN
1kN· m B D x
第八章 组合变形
§8-3 偏心压缩 §8-4 扭转与弯曲的组合
北京交通大学工程力学研究所
柯燎亮
§8-3 偏心压缩
一、偏心拉(压)
1.定义 当外力作用线与杆的轴线平行但不重合时, 将引起轴向 拉伸(压缩)和平面弯曲两种基本变形. 例如钻床的立柱、厂房中支承吊车梁的柱子。 F
F2
F1
O1
z A(yF,zF) y
M max 20kN m
πD W (1 4 ) 32
3
15kN· m
+
扭矩
20kN· m
-
r3
M2 T2 157.26MPa [ ] W
弯矩
§8-4 扭转与弯曲的组合
例题2 传动轴如图所示.在A处作用一个外力偶矩Me=1kN· m,皮 带轮直径D=300mm,皮带轮紧边拉力为F1,松边拉力为F2.且 F1=2F2,l=200mm,轴的许用应力[]=160MPa.试用第三强度理论设 y 计轴的直径
§8-3 偏心压缩
2. (外力分析)以横截面具有两对称轴的等直杆受偏心拉力 F 为例
(1)将外力向截面形心简化,使每个力(或力偶)只产生一种 基本变形形式 轴向拉力 F 力偶矩 M = F e,
材料力学1第五版刘鸿文主编高等教育出版社
机械电子工程 材料力学
山 东 农 业 大 学 机电学院
精品文档 欢迎下载
读书破万卷,下笔如有神--杜甫
机械电子工程 材料力学
F
(2) 铆钉连接(Riveted connections)
F
机械电子工程 材料力学
F
铆钉(rivet) F
山 东 农 业 大 学 机电学院 (3) 键块联接(Keyed connection) (4) 销轴联接(Pinned connection)
齿轮(gear)
F
m
键(key)
轴(shaft)
28.6MPa
(3)校核挤压强度
bs
F Abs
F lh 2
57 103 100 6 106
95.3MPa
bs
综上,键满足强度要求.
机械电子工程 材料力学
山 东 农 业 大 学 机电学院
例题13 一销钉连接如图所示, 已知外力 F=18kN,被连接的构件 A 和 B 的厚度分别为 t=8mm 和
t1=5mm ,销钉直径 d=15mm ,
d 销钉材料的许用切应力为
[] = 60MPa ,许用挤压应力为 [bS]= 200MPa .
试校核销钉的强度.
机械电子工程 材料力学
F
B
A
t1
t t1
F
山 东 农 业 大 学 机电学院
解: (1)销钉受力如图b所示
F
剪切面
F
d
F
F
2
2
挤压面
机械电子工程 材料力学
d
B
A
t1
t t1
F
山 东 农 业 大 学 机电学院
(2)校核剪切强度
山 东 农 业 大 学 机电学院
精品文档 欢迎下载
读书破万卷,下笔如有神--杜甫
机械电子工程 材料力学
F
(2) 铆钉连接(Riveted connections)
F
机械电子工程 材料力学
F
铆钉(rivet) F
山 东 农 业 大 学 机电学院 (3) 键块联接(Keyed connection) (4) 销轴联接(Pinned connection)
齿轮(gear)
F
m
键(key)
轴(shaft)
28.6MPa
(3)校核挤压强度
bs
F Abs
F lh 2
57 103 100 6 106
95.3MPa
bs
综上,键满足强度要求.
机械电子工程 材料力学
山 东 农 业 大 学 机电学院
例题13 一销钉连接如图所示, 已知外力 F=18kN,被连接的构件 A 和 B 的厚度分别为 t=8mm 和
t1=5mm ,销钉直径 d=15mm ,
d 销钉材料的许用切应力为
[] = 60MPa ,许用挤压应力为 [bS]= 200MPa .
试校核销钉的强度.
机械电子工程 材料力学
F
B
A
t1
t t1
F
山 东 农 业 大 学 机电学院
解: (1)销钉受力如图b所示
F
剪切面
F
d
F
F
2
2
挤压面
机械电子工程 材料力学
d
B
A
t1
t t1
F
山 东 农 业 大 学 机电学院
(2)校核剪切强度
材料力学1_第五版_刘鸿文主编
ΔFN dFN s lim ΔA 0 ΔA dA
p
t
M
s
位于截面内的应力称为“切应力”(The stress acting tangent to section is called the Shear Stress)
ΔT dT t lim ΔA 0 ΔA dA
四 、变形和位移(deformation and displacement)
2
沿截面切线方向的切应力 t
F
k
k pα
x
t p sin
s
2
sin2
s
pα
t
k
2.符号的规定(Sign convention) (1)α角 自 x 转向 n 逆时针时 为正号 顺时针时 为负号
F
F
k n
拉伸为正 (2)正应力 压缩为负
F
k
k pα
x
(3)切应力 对研究对象任一点取矩 顺时针为正
§2-3 应力及强度条件 (Stress and strength condition)
一、横截面上的正应力(Normal stress on cross section)
a
c
F b
d
F
1.变形现象(Deformation phenomenon)
a
F
a b
c
d
c
F
b
d
(1) 横向线ab和cd仍为直线,且仍然垂直于轴线; (2) ab和cd分别平行移至a'b'和c'd' , 且伸长量相等. 结论:各纤维的伸长相同,所以它们所受的力也相同.
① 截开 在所求内力的截面处,假想 地用截面将杆件一分为二.
相关主题