最新初二-1-2绝对值化简-知识点、经典例题及练习题带答案

合集下载

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK绝对值计算与简化专项练习30题(附答案)1。

如图所示,a、b和c在数轴上的位置是已知的。

缩减:| 2a | ﹡a+c | ﹡1-b |+|-a-b |2。

有理数a、b、c在数轴上的对应位置如图所示。

缩减:| a-b |+| b-c |+| a-c |。

3。

已知xy 。

4。

计算:|-5 |+|-10 | >当前|-2 | .5。

当x 6。

如果ABC 的第1页上找到值。

的值。

7。

如果|3a+5|=|2a+10|,则查找值a.8。

已知| m-n | = n-m,并且|m|=4,|n|=3,找到(m+n)的值。

9.a、b位于如图所示的数轴上。

简化:| a |+| a-b | ﹡a+b |。

10。

有理数a、b、c在数轴上的位置如图所示。

请尝试简化以下公式:| a-c | ﹡a-b | ﹡b-c |+| 2a | .11。

如果|x|=3,|y|=2,并且x > y,则查找X-Y的值。

12。

简化:| 3x+1 |+| 2x-1 |。

13。

众所周知,有理数A和B在数轴上的对应点如图所示。

简化| a |+| a+b | ﹡1-a | ﹡b+1 | .2第2页共214.++= 1,找到()2003的值(1) | x+1 |+| x-2 |+| x-3 |?最小值(2)| x+1 |+| x-2 |+| x-3 |+| x-1 |?最小值(3) | x-2 |+| x-4 |+| x-6 |+...+| x-20 |?16。

计算:|﹡|﹡|+|﹡|+…+|17。

如果A、B和C是整数,并且| A-B |+| C-A | = 1,则查找| a-c |+| c-b |+| b-a |。

18。

众所周知,数字轴上的a、b和c数字的对应点如图所示,其中o 是原点。

简化| b-a | ﹡2a-b |+| a-c | ﹡c | .第3页共3页32|19。

尝试找到| x-1 |+| x-3 |+...+| x-2003 |+| x-2005 |。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

中考复习——绝对值的化简专题练习(解析版)

中考复习——绝对值的化简专题练习(解析版)

中考复习——绝对值的化简一、选择题1、如图,数轴上点A表示数a,则|a|是().A. 2B. 1C. -1D. -2答案:A解答:∵A点在-2处,∴数轴上A点表示的数a=-2,|a-2|=2.2、实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为().A. a-bB. b-aC. a+bD. -a-b 答案:C解答:观察数轴可得a>0,b<0,所以|a|-|b|=a-(-b)=a+b.3、如图,点A所表示的数的绝对值是().A. 3B. -3C. 13D. -13答案:A解答:点A表示的数是-3,|-3|=3.选A.4、实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为().A. a+bB. a-bC. b-aD. -a-b答案:C解答:由数轴值a<0,b>0,∴a-b<0,|a-b|为a-b的相反数.5、数线上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d-5d-c|,则关于D点的位置,下列叙述何者正确?().A. 在A的左边B. 介于A、C之间C. 介于C、O之间D. 介于O、B之间答案:D解答:∵c<0,b=5,|c|<5,|d-5d-c|,∴BD=CD,∴D点介于O、B之间,选D.6、已知实数a在数轴上的对应点位置如图所示,则化简|a-1|).A. 3-2aB. -1C. 1D. 2a-3答案:D解答:由数轴可知:1<a<2,所以|a-1|=a-1;a-2|=2-a;所以原式=a-1-(2-a)=2a-3,选D.7、如图,数轴上的A、B、C三点所表示的数分别是a、b、c,其中AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在().A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点B与点C之间或点C的右边答案:C解答:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B与点C之间,且靠近点B的地方.8、若a-|a|=2a,则实数a在数轴上的对应点一定在().A. 原点左侧B. 原点或原点左侧C. 原点右侧D. 原点或原点右侧答案:B解答:由a-|a|=2a,得|a|=-a,故a是非正数.9、实数在数轴上的位置如图所示,则|a-2.5|=().A. a-2.5B. 2.5-aC. a+2.5D. -a-2.5答案:B解答:如图可得a<2.5,即a-2.5<0,则|a-2.5|=-(a-2.5)=2.5-a.10、如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a-b|=3,|b-c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A. 在A的左边B. 介于A、B之间C. 介于B、C之间D. 在C的右边答案:C解答:∵|a-b|=3,|b-c|=5,∴b=a+3,c=b+5.∵原点O与A、B的距离分别为4、1,∴a=±4,b=±1.∵b=a+3,∴a=-4,b=-1.∵c=b+5,∴c=4.∴点O介于B、C点之间.选C.11、数轴上A、B、C三点所表示的数分别为a、b、c,且C在AB上,若|ab|,AC:CB=1:3,则下列b 、c 的关系式,何者正确?( ) A. |c |=12|b | B. |c |=13|b |C. |c |=14|b |D. |c |=34|b |答案:A解答:如下图所示, ∵C 在AB 上,AC :CB =1:3, ∴|c |=4a b ,又∵|ab |,∴|c |=12|b |.12、实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( ).A. aB. bC. cD. d答案:A 解答:方法一:由图可知:-4<a <-3,-2<b <-1,0<c <1,2<d <3, 故|a |最大. 方法二:由数轴可知,实数a 在数轴对应的点到原点的距离最大, 所以实数a 的绝对值最大. 选A.13、已知x 是整数,当|x 取最小值时,x 的值是( ).A. 5B. 6C. 7D. 8答案:A∴56,5,∴当|x取最小值时,x的值是5.选A.14、当1<a<2时,代数式|a-2|+|1-a|的值是().A. -1B. 1C. 3D. -3答案:B解答:因为1<a<2,所以a-2<0,1-a<0,所以|a-2|+|1-a|=-(a-2)-(1-a)=-a+2-1+a=1.15、数轴上A、B、C三点所代表的数分别是a、1、c,且|c-1|-|a-1a-c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?().A. B.C. D.答案:A解答:∵数轴上A、B、C三点所代表的数分别是a、1、c,设B表示的数为b,∴b=1,∵|c-1|-|a-1a-c|.∴|c-b|-|a-ba-c|.A、b<a<c,则有|c-b|-|a-b|=c-b-a+b=c-a=|a-c|,正确;B、c<b<a则有|c-b|-|a-b|=b-c-a+b=2b-c-a≠|a-c|,故错误;C、a<c<b,则有|c-b|-|a-b|=b-c-b+a=a-c≠|a-c|,故错误;D、b<c<a,则有|c-b|-|a-b|=c-b-a+b=c-a≠|a-c|,故错误.二、填空题16、|-3|的相反数是______.答案:-3解答:∵|-3|=3,∴3的相反数是-3,故答案为:-3.17、实数a在数轴上的位置如图,则|a|=______.-a解答:∵a<0,∴a0,则原式-a.18、实数a在数轴的位置如图所示,则|a-1|=______.答案:1-a解答:∵a<-1,∴a-1<0,原式=-(a-1)=1-a.19、在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为______.答案:-671解答:依题可知,|a-b|=2013,且AO=2BO,即b-a=2013,-a=2b,3b=2013,b=671,a=-1342,a+b=-671.20、在数轴上表示实数a a-2|的结果为______.答案:3解答:由数轴可得:a-5<0,a-2>0,a-2|=5-a+a-2=3.21、写出一个负数,使这个数的绝对值小于3:______.答案:-1(答案不唯一)解答:|-1|=1<3.22、已知aa+bb=0,则abab的值为______.答案:-1解答:由题意可得a、b异号,abab=-1.三、解答题23、我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法,例如,代数式|x-2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为|x+1x-(-1)|,所以|x+1|的几何意义就是数轴上x所对应的点与-1所对应的点之间的距离.发现问题:代数式|x+1|+|x-2|的最小值是多少?探究问题:如图,点A,B,P分别表示的是-1,2,x,AB=3.∵|x+1|+|x-2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3;当点P在点A的左侧或点B的右侧时,P A+PB>3,∴|x+1|+|x-2|的最小值是3.解决问题:(1)|x-4|+|x+2|的最小值是______.(2)利用上述思想方法解不等式:|x+3|+|x-1|>4.(3)当a为何值时,代数式|x+a|+|x-3|的最小值是2.答案:(1)6(2)x<-3或x>1.(3)a=-1或a=-5.解答:(1)设A表示的数为4,B表示的数为-2,P表示的数为x,∴|x-4|表示数轴上的点P到4的距离,用线段P A表示,|x+2x-(-2)|表示数轴上的点P到-2的距离,用线段PB表示,∴|x-4|+|x+2|的几何意义表示为P A+PB,当P在线段AB上时取得最小值为AB,且线段AB 的长度为6,∴|x-4|+|x+2|的最小值为6.故答案为:6.(2)设A表示-3,B表示1,P表示x,∴线段AB的长度为4,则|x+3|+|x-1|的几何意义表示为P A+PB,∴不等式的几何意义是P A+PB>AB,∴P不能在线段AB上,应该在A的左侧或者B的右侧,即不等式的解集为x<-3或x>1.(3)设A表示-a,B表示3,P表示x,则线段AB的长度为|-a-3|,|x+a|+|x-3|的几何意义表示为P A+PB,当P在线段AB上时P A+PB取得最小值,∴|-a-3|=2,∴a+3=2或a+3=-2,即a=-1或a=-5.。

绝对值计算化简专项练习30题(有答案)OK41304

绝对值计算化简专项练习30题(有答案)OK41304

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.【3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.5.当x<0时,求的值.《6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.$7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.、10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.>12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.{14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值:16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.-19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值./20.计算:.24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.>25.认真思考,求下列式子的值..!27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________(直接写出结果)【28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|﹣π|=_________;(2)计算=_________;(3)猜想:=_________,并证明你的猜想.|29.(1)已知|a﹣2|+|b+6|=0,则a+b=_________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.~30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:,1.﹣2a+c﹣12.2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=1$7.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.|所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,!∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,-∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+…+1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=23.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣1.25.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.答案为50 28.解:(1)原式=﹣(﹣π)=π﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值的性质及化简

绝对值的性质及化简

内容 基本要求略高要求较高要求绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b=(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+,对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立;对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立.绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值.零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.一、绝对值的概念例题精讲中考要求绝对值的性质及化简【例1】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.x 的几何意义是数轴上表示 的点与 之间的距离;x0x -(>,=,<);【例2】 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;【例3】 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .【例4】 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则 x = .二、绝对值的性质【例5】 填空:若a b a b +=+,则a ,b 满足的关系 .【例6】 填空:若a b a b -=-,则a ,b 满足的关系 .【例7】 填空:已知a 、b 是有理数,1a ≤,2b ≤,且3a b -=,则a b += .【例8】 若ab ab <,则下列结论正确的是 ( )A. 00a b <<,B. 00a b ><,C. 00a b <>,D. 0ab <【例9】 下列各组判断中,正确的是 ( )A .若a b =,则一定有a b =B .若a b >,则一定有a b > C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =- 【例10】 如果2a >2b ,则 ( ) A .a b > B .a >b C .a b < D a <b 【例11】 (4级)若a b >且a b <,则下列说法正确的是( ) A .a 一定是正数 B .a 一定是负数 C .b 一定是正数 D .b一定是负数【例12】 下列式子中正确的是 ( )A .a a >-B .a a <-C .a a ≤-D .a a ≥-【例13】 对于1m -,下列结论正确的是 ( ) A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤【例14】 若220x x -+-=,求x 的取值范围.【例15】 已知2332x x -=-,求x 的取值范围【例16】 下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大; ②没有最大的非负数,也没有最小的非负数; ③不相等的两个数,它们的绝对值一定也不相等; ④只有负数的绝对值等于它的相反数. A .0 B .1 C .2D .3【例17】 绝对值等于5的整数有 个,绝对值小于5的整数有个【例18】 绝对值小于3.1的整数有哪些?它们的和为多少?【例19】 有理数a 与b 满足a b >,则下面哪个答案正确( )A .a b >B .a b =C .a b <D .无法确定【例20】 已知:52a b ==,,且a b <;则____________a b ==,. 【例21】 非零整数m n ,满足50m n +-=,所有这样的整数组()m n ,共有【例22】 已知123a b c ===,,,且a b c >>,那么a b c +-=【例23】 如右图所示,若a 的绝对值是b 的绝对值的3倍,则数轴的原点在点.(填“A ”“B ”“C ”或“D ”)【例24】 如果1a b -=,1b c +=,2a c +=,求2a b c ++的值.【例25】 已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d += .【例26】 已知a 、b 、c 、d 是有理数,9a b -≤,16c d -≤, 且25a b c d --+=,则b a d c ---= .【例27】 有理数a 、b 、c 、d 各自对应着数轴上X 、Y 、Z 、R 四个点,且(1)b d -比a b -,a c -、a d -、b c -、c d -都大; (2)d a a c d c -+-=-;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是【例28】 若a b c d ,,,为互不相等的有理数,且c 最小,a 最大,且a c b c b d a d ---+-=-.请按a b c d ,,,从小到大的顺序排列.【例29】 I f 3x ≤,1y ≤,4z ≤,and 29x y z -+=,then 246x y z = .【例30】 如果1,11,a a a x a =+-=-那么____x a x a +--=。

绝对值计算化简专项练习题有答案)OK

绝对值计算化简专项练习题有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b| 2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a ﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7|(2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p?|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.绝对值化简求值参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣1 2.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49 9.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x <﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x <时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x ≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x ﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122.解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣1 25.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011| =|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x 到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x ﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣| =1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p?|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值计算化简专项练习30题(有答案)

绝对值计算化简专项练习30题(有答案)

.绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.﹣2a+c﹣1 2.2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =10∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣= 17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=219.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+…+1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=23.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.答案为50 28.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,。

绝对值计算化简专项练习题有答案

绝对值计算化简专项练习题有答案

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.绝对值化简求值参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2 =|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49 9.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x <﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x <时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x ≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x ﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x ﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x 到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x ﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2Welcome !!!欢迎您的下载,资料仅供参考!。

1-2-1_绝对值化简_题库教师版

1-2-1_绝对值化简_题库教师版

内容 基本要求略高要求较高要求绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b=(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+,对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立.中考要求例题精讲绝 对 值 化 简【例1】 (2级)⑴ 下列各组判断中,正确的是 ( )A .若a b =,则一定有a b =B .若a b >,则一定有a b >C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =-⑵ 如果2a >2b ,则 ( ) A .a b > B .a >b C .a b < D a <b⑶ 下列式子中正确的是 ( ) A .a a >- B .a a <- C .a a ≤- D .a a ≥-⑷ 对于1m -,下列结论正确的是 ( ) A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤ ⑸ (2002年江苏省竞赛题)若220x x -+-=,求x 的取值范围.【解析】 ⑴ 选择D .⑵ 选择B . ⑶ 我们可以分类讨论,也可以用特殊值法代入检验,对于绝对值的题目我们一般需要代正数、负数、0,3种数帮助找到准确答案.易得答案为D . ⑷ 我们可以用特殊值法代入检验,正数、负数、0,3种数帮助找到准确答案C . ⑸ ()22x x -=--,所以20x -≤,即2x ≤.【巩固】 (2级)绝对值等于5的整数有 个,绝对值小于5的整数有 个 【解析】 2;9个【巩固】 (2级)绝对值小于31⋅的整数有哪些?它们的和为多少? 【解析】 绝对值小于31⋅的整数有0,1±,2±,3±,和为0.【巩固】 (2级)有理数a 与b 满足a b >,则下面哪个答案正确 ( ) A .a b > B .a b = C .a b < D .无法确定 【解析】 选择D .【例2】 (2级)已知:⑴52a b ==,,且a b <;⑵()2120a b ++-=,分别求a b ,的值 【解析】 因为55a a ==±,因为22b b ==±,又因为a b <,所以22a b =-=±,即52a b =-=,或52a b =-=-, ⑵由非负性可知12a b =-=,【例3】 (2级)已知2332x x -=-,求x 的取值范围【解析】 因为23x -的绝对值等于它的相反数,所以230x -≤,即32x ≤【巩固】 (4级)若a b >且a b <,则下列说法正确的是( )A .a 一定是正数B .a 一定是负数C .b 一定是正数D .b 一定是负数【解析】 由分析可知a b ,中的较小数b 一定是负数,故选D【解析】 根据题意a b -和ab 两个代数式的值只能在0与1中取,用逐一列举的方法,求得满足条件的非负整数对有三对()()()011011,,,,,【巩固】 (6级)(2005年江苏省数学文化节基础闯关试题)非零整数m n ,满足50m n +-=,所有这样的整数组()m n ,共有【解析】 16【例5】 (4级)(人大附单元测试)如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【解析】 先判断每个绝对值符号内部的正负,而后化简原式()(1)()(1)a b b a c c =-++-+---112a b b a c c =--+-+--+=-【巩固】 (6级)已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=【解析】 由00xy x z ><<,可得0y z <<,又因为y z x >>,所以y x z <<,原式0x z y z x y =+---+=【例6】 (10级)(第4届希望杯2试)abcde 是一个五位自然数,其中a 、b 、c 、d 、e 为阿拉伯数码,且a b c d <<<,则a b b c c d d e -+-+-+-的最大值是 . 【解析】 当a b c d e <<<≤时,a b b c c d d e e a -+-+-+-=-,当9e =,1a =时取得最大值8;当a b c d <<<,且a e >时,2a b b c c d d e d a e -+-+-+-=--,当9d =,1a =,0e =时取得最大值17.所以a b b c c d d e -+-+-+-的最大值是17.【例7】 (8级)(河南省竞赛试题)已知2020y x b x x b =-+-+--,其中02020b b x <<,≤≤,那么y 的最小值为【解析】 ()()20202040y x b x x b x b x b x =-+--+---=--++=-⎡⎤⎡⎤⎣⎦⎣⎦,当20x =,y 的最小值为20【巩固】 (10级)(华罗庚金杯赛前培训题)a 、b 、c 分别是一个三位数的百、十、个位上的数字,且a b c ≤≤,则a b b c c a -+-+-可能取得的最大值是多少?【解析】 由a b c ≤≤,得2()a b b c c a b a c b c a c a -+-+-=-+-+-=-,要想结果尽可能大,取9c =,1a =即可,最大值为16.【例8】 (8级)(希望杯邀请赛试题)设a b c ,,为整数,且1a b c a -+-=,求c a a b b c -+-+-的值 【解析】 因为a b c ,,为整数,且1a b c a -+-=【巩固】 (6级)(北京市迎春杯竞赛试题)已知123a b c ===,,,且a b c >>,那么a b c +-= 【解析】 2或0【例9】 (6级)(1)(第10届希望杯2试)已知1999x =,则2245942237x x x x x -+-++++= .(2)(第12届希望杯2试)满足2()()a b b a a b ab -+--=(0ab ≠)有理数a 、b ,一定不满足的关系是( )A . 0ab <B . 0ab >C . 0a b +>D . 0a b +< (3)(第7届希望杯2试)已知有理数a 、b 的和a b +及差a b -在数轴上如图所示,化简227a b a b +---.a-ba+b【解析】 (1)容易判断出,当1999x =时,24590x x -+>,2220x x ++>,所以 224594223710819982x x x x x x -+-++++=-+=-这道题目体现了一种重要的“先估算+后化简+再代入求值”的思想.(2)为研究问题首先要先将题干中条件的绝对值符号通过讨论去掉, 若a b ≥时,222()()()()0a b b a a b a b a b ab -+--=---=≠, 若a b <时,2222()()()()2()a b b a a b a b b a a b ab -+--=-+-=-=,从平方的非负性我们知道0ab ≥,且0ab ≠,所以0ab >,则答案A 一定不满足. (3)由图可知01a b <-<,1a b +<-,两式相加可得:20a <,0a <进而可判断出0b <,此时20a b +<,70b -<, 所以227a b a b +---(2)2()(7)7a b a b =-+--+-=-.【巩固】 (8级)(第9届希望杯1试)若1998m =-,则22119992299920m m m m +--+++= .【解析】 211999(11)999199819879990m m m m +-=+-=⨯->,222999(22)999199819769990m m m m ++=+-=⨯+>,故22(11999)(22999)2020000m m m m +--+++=.【补充】(8级)若0.239x =-,求131********x x x x x x -+-++-------的值.【解析】 法1:∵0.239x =-,则原式(1)(3)(1997)(2)(1996)x x x x x x =-------+++++-1(32)(54)(19971996)=+-+-++- 111999=+++=法2:由x a b <≤,可得x b x a b a ---=-,则原式(1)(32)(19971996)x x x x x x =--+---++---111999=+++=点评:解法二的这种思维方法叫做构造法.这种方法对于显示题目中的关系,简化解题步骤有着重 要作用.【例10】 (10级)设2020A x b x x b =-+----,其中020b x <≤≤,试证明A 必有最小值 【解析】 因为020b x <≤≤,所以0200200x b x x b ----<≥,≤,,进而可以得到: 2220A x b x x x =--=--≥≥,所以A 的最小值为20-【例11】 (8级)若24513a a a +-+-的值是一个定值,求a 的取值范围.【解析】 要想使24513a a a +-+-的值是一个定值,就必须使得450a -≥,且130a -≤,原式245(13)3a a a =+---=,即1435a ≤≤时,原式的值永远为3.【巩固】 (8级)若1232008x x x x -+-+-++-的值为常数,试求x 的取值范围. 【解析】 要使式子的值为常数,x 得相消完,当10041005x ≤≤时,满足题意.【例12】 (2级)数,a b 在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--【解析】 ()()()2a b b a b a a a b b a b a b ++-+--=-++-+--=.【巩固】 (2级)实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-【解析】 由题意可知:0000a c b a b a c <->+<-<,,,,所以原式2c a =-【巩固】 (2级)若a b <-且0ab>,化简a b a b ab -+++.【解析】 若a b <-且0ab>,0,0a b <<,0,0a b ab +<>2a b a b ab a b a b ab ab a -+++=-+--+=-【例13】 (8级)(北大附中2005-2006学年度第一学期期中考试)设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-.【解析】 0a a +=,a a =-,0a ≤;ab ab =,0ab ≥;0c c -=,c c =,0c ≥()()()b a b c b a c b a b c b a c b -+--+-=-++----=.【例14】 (6级)如果010m <<并且10m x ≤≤,化简1010x m x x m -+-+--. 【解析】 1010101020x m x x m x m x m x x -+-+--=-+-++-=-.【巩固】 (2级)化简:⑴3x -; ⑵12x x +++【解析】 ⑴原式()()3333x x x x ⎧-<⎪=⎨-⎪⎩≥;⑵原式()()()232121231x x x x x --<-⎧⎪=-<-⎨⎪+-⎩≤≥【巩固】 (6级)若a b <,求15b a a b -+---的值. 【解析】 15154b a a b b a a b -+---=-++--=-.【巩固】 (8级)(第7届希望杯2试)若0a <,0ab <,那么15b a a b -+---等于 .【解析】 0a <,0ab <,可得:0b >,所以0b a ->,0a b -<,15154b a a b b a a b -+---=-++--=-.【巩固】 (2级)已知15x <≤,化简15x x -+-【解析】 因为15x <≤,所以1050x x --<≤,,原式154x x =-+-=【例15】 (8级)已知3x <-,化简321x +-+.【解析】 当3x <-时,3213213333x x x x x x +-+=+++=++=--=-=-.【巩固】 (8级)(第16届希望杯培训试题)已知112x x ++-=,化简421x -+-. 【解析】 由112x x ++-=的几何意义,我们容易判断出11x -≤≤.所以421x -+-421434311x x x x x =-+-=--=-+=+=+.【例16】 (8级)若0x <,化简23x x x x---.【解析】 223333x x x x xx x xx x----===----+.【巩固】 (8级)(四中)已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++--. 【解析】 ∵a a =-,∴0a ≤,又∵0b <,∴240a b +<,∴24(24)2(2)a b a b a b +=-+=-+,∴22242(2)2(2)(2)2a ba b a b a b a b+-+-==+++ 又∵20a b +<,∴4442(2)2a b a b a b-=-=+-++ 又∵230a -<,∴2222143(23)242424323b a a b a b a b b a -=-=-==++-++++--∴原式24132222a b a b a b a b=-++=++++ 点评:详细的过程要先判断被绝对值的式子x ,再去绝对值的符号.、【例17】 (8级)(第14届希望杯邀请赛试题)已知a b c d ,,,是有理数,916a b c d --≤,≤,且25a b c d --+=,求b a d c ---的值【解析】 因916a b c d --≤,≤,故91625a b c d -+-+=≤,又因为()()2525a b c d a b d c a b d c =--+=-+--+-≤≤,所以916a b c d -=-=,,故原式7=-板块二:关于a a的探讨应用【例18】 (6级)已知a 是非零有理数,求2323a a a a a a++的值.【解析】 若0a >,那么23231113a a a a a a ++=++=;若0a <,那么23231111a a a a a a++=-+-=-.【例19】 (10级)(2006年第二届“华罗庚杯”香港中学竞赛试题)已知a b c abc x a b c abc=+++,且a b c ,,都不等于0,求x 的所有可能值 【解析】 4或0或4-【巩固】 (10级)(北京市迎春杯竞赛试题)已知a b c ,,是非零整数,且0a b c ++=,求a b c abca b c abc+++的值【解析】 因为a b c ,,是非零有理数,且0a b c ++=,所以a b c ,,中必有一正二负,不妨设000a b c ><<,,,则原式()()11110a b c abca b c abc=+++=+-+-+=--【巩固】 (2级)若0a >,则_____aa=;若0a <,则_____a a =.【解析】 1;1-.重要结论一定要记得.【巩固】 (6级)当3m ≠-时,化简33m m ++【解析】 3m ≠-,30m +≠,当3m >-,即30m +>时,33m m +=+,所以313m m +=+;当3m <-,即30m +<时,3(3)m m +=-+,所以313m m +=-+.【例20】 (8级)(2009年全国初中数学竞赛黄冈市选拔赛试题)若01a <<,21b -<<-,则1212a b a ba b a b-++-+-++的值是( ) A .0 B .1- C .3- D .4-【解析】 ⑴ C .特殊值法:取0.5a =, 1.5b =-代入计算即可.【巩固】 (2级)下列可能正确的是( )A .1a ba b+= B .2a b c a b c ++=C .3c da b a b c d+++= D .4a b c d a b c d a b c d abcd +++++++= 【解析】 选D .排除法比较好或特殊值法1,1,1,1-.【巩固】 (6级)如果20a b +=,则12a ab b-+-等于( ) A .2 B .3 C .4 D .5【解析】 B【例21】 (8级)如果000a b c a b c a b c +->-+>-++>,,,则200220022002a b c a b c ⎛⎫⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值等于( )A .1B .1-C .0D .3【解析】 易知200220022002111a b c a b c ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,,,所以原式1=,故选择A【例22】 (8级)已知0abc ≠,求ab ac bcab ac bc++的值. 【解析】 ∵0abc ≠,∴a 、b 、c 三个数都不为零.若a 、b 、c 三个数都是正数,则ab 、ac 、bc 也都是正数,故原式值为3. 若a 、b 、c 中两正、一负,则ab 、ac 、bc 中一正、两负,故原式值为1-. 若a 、b 、c 中一正、两负,则ab 、ac 、bc 中一正、两负,故原式值为1-. 若 a 、b 、c 中三负,则ab 、ac 、bc 中三正,故原式值为3.【巩固】 (6级)若a ,b ,c 均不为零,求a b cabc++. 【解析】 若a ,b ,c ,全为正数,则原式3=;若a ,b ,c ,两正一负,则原式1=;若a ,b ,c ,一正两负,则原式1=-;若a ,b ,c ,全为负数,则原式3=-.【例23】 (6级)(第13届希望杯1试)如果20a b +=,求12a ab b-+-的值. 【解析】 由20a b +=得2b a =-,进而有1222a a a ab a a a===⋅--⋅,122a a a b a a ==-⋅- 若0a >,则111212322a a b b -+-=-+--=, 若0a <,则111212322a ab b -+-=--+-=.【巩固】 (6级)若a ,b ,c 均不为零,且0a b c ++=,求a b cabc++. 【解析】 根据条件可得a ,b ,c 有1个负数或2个负数,所以所求式子的值为1或1-【例24】 (8级)a ,b ,c 为非零有理数,且0a b c ++=,则a b b c c aa b b c c a ++的值等于多少? 【解析】 由0a b c ++=可知a ,b ,c 里存在两正一负或者一正两负;a b b c c a b c aa b c a b b c c a a b b c c a++=⋅+⋅+⋅ 若两正一负,那么1111b c aa b c a b b c c a⋅+⋅+⋅=--=-; 若一正两负,那么1111b c aa b c a b b c c a ⋅+⋅+⋅=--=-. 综上所得1a b b c c a a bb cc a++=-.【巩固】 (10级)(海口市竞赛题)三个数a ,b ,c 的积为负数,和为正数,且ab ac bc a b c x a b c ab ac bc=+++++, 求321ax bx cx +++的值.【解析】 a ,b ,c 中必为一负两正,不妨设0a <,则0,0b c >>; 1111110ab ac bca b c x a b c ab ac bc=+++++=-++--+=,所以原式=1.如果0a b c +->,0a b c -+>,0a b c -++>,求200220032004()()()a b c a b c-+的值. 【解析】 由0a b c +->,0a b c -+>,0a b c -++>,两两相加可得:0a >,0b >,0c >,所以原式结果为1.若将此题变形为:非零有理数a 、b 、c ,求1b =等于多少?从总体出发:2008()1aa =,所以原式1111=-+=.【例25】 (8级)(“祖冲之杯”初中数学邀请赛试题)设实数a ,b ,c 满足0a b c ++=,及0abc >,若||||||a b c x a b c =++,111111()()()y a b c b c a c a b=+++++,那么代数式23x y xy ++的值为______. 【解析】 由0a b c ++=及0abc >,知实数a ,b ,c 中必有两个负数,一个正数,从而有1x =-.又111111()()()y a b c b c a c a b =+++++=3a b ca b c---++=-,则231692x y xy ++=--+=.【例26】 (8级)有理数a b c ,,均不为零,且0a b c ++=,设a b c x b ca ca b=+++++,则代数式20042007x x -+的值为多少? 【解析】 由0a b c ++=易知a b c ,,中必有一正两负或两正一负,不妨设000a b c ><<,,或000a b c <>>,, 所以1a b c x a b a c a b =--=+++或者1a b c x b c a c a b=-++=-+++,所以1x =,所以原式2004=【巩固】 (8级)有理数a b c ,,均不为零,且0a b c ++=,设ab cx b c a c a b =+++++,则代数式19992000x x -+的值为多少?【解析】 由0a b c ++=易知a b c ,,中必有一正两负或两正一负,不妨设000a b c ><<,,或000a b c <>>,, 所以1a b c x a b a c a b =--=+++或者1a b cx b c a c a b=-++=-+++,所以当1x =时,原式1902= 当1x =-时,原式2098=【巩固】 (8级)已知a 、b 、c 互不相等,求()()()()()()()()()()()()a b b c b c c a c a a b a b b c b c c a c a a b ------++------的值.【解析】 由题意可得()()()0a b b c c a ---≠且()()()0a b b c c a -+-+-=,把a b -,b c -,c a -当成整体分类讨论:① 两正一负,原式值为1-;② 两负一正,原式值为1-.【例27】 (8级)(第18届希望杯2试)若有理数m 、n 、p 满足1m n p m n p ++=,求23mnp mnp 的值. 【解析】 由1m n p m n p++=可得:有理数m 、n 、p 中两正一负,所以0mnp <,所以1mnpmnp=-, 222333mnp mnp mnp mnp =⋅=-.【巩固】 (6级)已知有理数a b c ,,满足1a b c abc++=,则abcabc=( ) A .1 B .1- C .0 D .不能确定【解析】 提示:其中两个字母为正数,一个为负数,即0abc <【巩固】 (8级)有理数a ,b ,c ,d 满足1abcd abcd =-,求a b c da b c d+++的值. 【解析】由1abcdabcd=-知0abcd <,所以a ,b ,c ,d 里含有1个负数或3个负数: 若含有1个负数,则2a b c d a b c d +++=;若含有3个负数,则2a b c da b c d+++=-.【例28】 (6级)已知0ab ≠,求a ba b +的值【解析】 ⑴若a b ,异号,则0a bab += ⑵若a b ,都是正数,则2a ba b += ⑶若a b ,都是负数,则2a ba b+=-【巩固】 (6级)已知0ab ≠,求a b ab--的值.【解析】 分类讨论:当0a >,0b >时,110a b ab --=-=.当0a >,0b <时,1(1)2a b a b --=--=.当0a <,0b >时,112abab--=--=-.当0a <,0b <时,1(1)0abab--=---=.综上所述,a b ab--的值为2-,0,2.【例29】 (6级)若a b c ,,均为非零的有理数,求a b ca b c++的值 【解析】 ⑴当a b c ,,都是正数时,原式3a b ca b c=++= ⑵当a b c ,,都是负数时,原式3=- ⑶当a b c ,,有两个正数一个负数时,原式1=- ⑷当a b c ,,有两个负数一个正数时,原式1=-【巩固】 (6级)(第16届希望杯培训试题)若0abc <,求a b ca b c+-的值. 【解析】 由0abc <可得,a 、b 、c 中有3个负数或1个负数,当a 、b 、c 中有3个负数时,原式11(1)1=----=-;当a 、b 中有1个是负数时,原式1111=-+-=-; 当c 是负数时,原式11(1)3=+--=.板块三:零点分段讨论法(中考高端,可选讲)【例30】 (4级)(2005年云南省中考试题)阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:·⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-【解析】 ⑴分别令20x +=和40x -=,分别求得2x =-和4x =,所以2x +和4x -的零点值分别为2x =-和4x =⑵当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当24x -<≤时,原式 ()246x x =+--=;当4x ≥时,原式2422x x x =++-=-所以综上讨论,原式()()()222624224x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥【例31】 (6级)求12m m m +-+-的值.【解析】 先找零点,0m =,10m -=,20m -=,解得0m =,1,2.依这三个零点将数轴分为四段:0m <,01m ≤<,12m ≤<,2m ≥. 当0m <时,原式()()1233m m m m =-----=-+;当01m ≤<时,原式()()123m m m m =----=-+; 当12m ≤<时,原式()()121m m m m =+---=+; 当2m ≥时,原式()()1233m m m m +-+-=-.【例32】 (4级)化简:212x x ---【解析】 由题意可知:零点为102x x ==,当12x <时,原式1x =--当122x <≤时,原式33x =- 当2x ≥时,原式1x =+【巩固】 (4级)(2005年淮安市中考题)化简523x x ++-. 【解析】 先找零点.50x +=,5x =- ; 32302x x -==,,零点可以将数轴分成三段. 当32x ≥,50x +>,230x -≥,52332x x x ++-=+;当352x -<≤,50x +≥,230x -<,5238x x x ++-=-;当5x <-,50x +<,230x -<,52332x x x ++-=--.【巩固】 (6级)(北京市中考模拟题)化简:121x x --++.【解析】 先找零点.10x -=,1x =.10x +=,1x =-.120x --=,12x -=,12x -=或12x -=-,可得3x =或者1x =-;综上所得零点有1,-1,3 ,依次零点可以将数轴分成四段. ⑴ 3x ≥,10x ->,120x --≥,10x +>,12122x x x --++=-; ⑵ 13x <≤,10x -≥,120x --<,10x +>,1214x x --++=; ⑶ 11x -<≤,10x -<,120x --<,10x +≥,12122x x x --++=+; ⑷ 1x <-,10x -<,120x --<,10x +<,12122x x x --++=--.【例33】 (6级)(选讲)(北京市中考题)已知2x ≤,求32x x --+的最大值与最小值. 【解析】 法1:根据几何意义可以得到,当2x ≤-时,取最大值为5;当2x =时,取最小值为3-.法2:找到零点3、2-,结合2x ≤可以分为以下两段进行分析:当22x -≤≤时,323212x x x x x --+=---=-,有最值3-和5; 当2x <-时,32325x x x x --+=-++=;综上可得最小值为3-,最大值为5.【巩固】 (8级)(第10届希望杯2试)已知04a ≤≤,那么23a a -+-的最大值等于 . 【解析】 (法1):我们可以利用零点,将a 的范围分为3段,分类讨论(先将此分类讨论的方法,而后讲几何意义的方法,让学生体会几何方法的优越性)(1)当02a ≤≤时,2352a a a -+-=-,当0a =时达到最大值5; (2)当23a <≤时,231a a -+-=(3)当34a <≤时,2325a a a -+-=-,当4a =时,达到最大值3 综合可知,在04a ≤≤上,23a a -+-的最大值为5(法2):我们可以利用零点,将a 的范围分为3段,利用绝对值得几何意义分类讨论,很 容易发现答案:当0a =时达到最大值5.【巩固】 (6级)如果122y x x x =+-+-,且12x -≤≤,求y 的最大值和最小值【解析】 当10x -<≤时,有12223y x x x x =+-+-=+,所以13y <≤;当02x ≤≤时,有12232y x x x x =+-+-=-,所以13y -≤≤ 综上所述,y 的最大值为3,最小值为1-【巩固】 (6级)(2001年大同市中考题)已知759x -≤≤,求x 取何值时13x x --+的最大值与最小值. 【解析】 法1:13x x --+表示x 到点1和3-的距离差,画出数轴我们会发现当,79x =时两者的距离差最小为329-,即()m i n 32139x x --+=-;当53x -≤≤-时,两者的距离差最大为4,即m a x (13)4x x --+=. 法2:分类讨论:先找零点,根据范围分段,当53x -≤<-时,134x x --+=;当739x -≤≤时,1322x x x --+=--,当79x =有最小值329-;当3x =-有最大值4.综上所得,当53x --≤≤时,最大值为4;当79x =时,最小值为329-.练习 1. (2级)若ab ab <,则下列结论正确的是 ( ) A. 00a b <<, B. 00a b ><, C. 00a b <>, D. 0ab < 【解析】 答案BC 不完善,选择D .练习 2. (2级)(人大附期中考试)如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c++--+的值.【解析】 原式()()()0a b a c b c =-++-++=练习 3. (6级)已知0,0,x z xy y z x <<>>>,求x z y z x y +++--的值. 【解析】 由0,0x z xy <<>可得:0y z <<,又y z x >>,可得:y x z <<; 原式0x z y z x y =+---+=.练习 4. (8级)(第13届希望杯培训试题)若200122002x =,则|||1||2||3||4||5|x x x x x x +-+-+-+-+-= . 【解析】 因为200122002x =,所以23x <<,原式(1)(2)(3)(4)(5)9x x x x x x =+-+-------=. 课后练习练习 5. (6级)(2006年七台河市中考题)设2020y x b x x b =-+-+--,其中020,20b b x <<≤≤,求y 的最小值.【解析】 2020(20)(20)40y x b x x b x b x x b x =-+-+--=------=-,则20x =时,y 有最小值为20.练习 6. (4级)若0a <,化简a a --. 【解析】 22a a a a a a --=+==-.练习 7. (6级)若0a <,试化简233a a a a--.【解析】 2323553443a a a a a a a a a a-+===-----.练习 8. (6级)若245134x x x +-+-+的值恒为常数,则x 应满足怎样的条件?此常数的值为多少? 【解析】 要使245134x x x +-+-+的值恒为常数,那么须使450x ->,130x -<,即1435x <<,原式2451342453147x x x x x x =+-+-+=+-+-+=.练习 9. (8级)(第6届希望杯2试)a 、b 、c 的大小关系如图所示,求a b b c c a ab aca b b c c a ab ac-----++----的值.【解析】 从图中可知a b c <<且0a <,0b <,0c >,所以0a b -<,0b c -<,0c a ->,0ab >,0ac <, 所以0ab ac ->,原式(1)(1)112=---++=.练习 10. (8级)若0a b c ++=,0abc >,则b c c a a ba b c+++++= . ∵0a b c ++=,0abc >,∴a 、b 、c 中一正二负,∴1b c c a a b a b ca b c a b c+++---++=++=. 练习 11. (6级)求15y x x =--+的最大值和最小值.【解析】 法1:根据几何意义可以得答案;法2:找到零点5-,1,可以分为以下三段进行讨论: 当5x ≤-时,15156y x x x x =--+=-++=;当51x -<<时,151524y x x x x x =--+=---=--; 当1x ≥时,15156y x x x x =--+=---=-;综上所得最小值为6-,最大值为6.练习 12.(6级)(第2届希望杯2试)如果12x<<,求代数式2121x x xx x x---+--的值.【解析】当12x<<时,0x>,10x->,20x-<,原式211111 21x x xx x x--=++=-++= --.。

绝对值化简例题及练习题

绝对值化简例题及练习题

绝对值的化简⑴ 下列各组判断中,正确的是A .若a b =,则一定有a b = B .若a b >,则一定有a b > C. 若a b>,则一定有a b > D .若a b =,则一定有()22a b =- ⑵ 如果2a >2b ,则A .a b >B .a >bC .a b <D a <b⑶ 下列式子中正确的是A .a a >-B .a a <-C .a a ≤-D .a a ≥-⑷ 对于1m -,下列结论正确的是 A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤ ⑸若220x x -+-=,求x 的取值范围. 已知:⑴52a b ==,,且a b <;分别求a b ,的值 ⑵()2120a b ++-=,分别求a b ,的值 已知2332x x -=-,求x 的取值范围1、若a b >且a b <,则下列说法正确的是A .a 一定是正数B .a 一定是负数C .b 一定是正数D .b 一定是负数 例4、2级数,a b 在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--.巩固2级实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-例5、8级北大附中2005-2006学年度第一学期期中考试设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-..巩固、第7届希望杯2试若0a <,0ab <,那么15b a a b -+---等于 .例5、8级已知0abc ≠,求ab ac bc ab ac bc ++的值.6级若a ,b ,c 均不为零,求ab c a b c ++..1、2级人大附期中考试如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值.4级若0a <,化简a a --.3、6级若0a <,试化简233a aa a --.4、a 、b 、c 的大小关系如图所示,求a b b c c a ab ac a b b c c a ab ac -----++----的值.6级若a b <,求15b a a b -+---的值.6级当3m ≠-时,化简33m m ++2级已知15x <≤,化简15x x -+-8、2级若0a >,则_____a a =;若0a <,则_____a a = 9、如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.一、选择题每小题4分,共40分1. 下列各数不是正数的是A. B. +7C. +D. - 2. 在数轴上表示数-3,0,5,2,52的点中,在原点右边的有 A. 0个 B. 1个 C. 2个 D. 3个3. 一个数的绝对值是正数,则这个数是A. 正数;B. 不等于零的有理数;C. 任意有理数;D. 非负数.﹡4. 比较-2,-21,0,的大小,正确的是A. -2<-21<0<B. -21<-2<0<C. -2<-21<<0D. 0<-21<-2< ﹡5. 文具店、书店和玩具店依次坐落在上海市南京路东西走向的大街上,文具店在书店西边20m 处,玩具店位于书店东边100m 处,小明从书店沿街向东走了40m,接着又向西走了60m,此时小明的位置在A. 文具店B. 玩具店C. 文具店西边40mD. 玩具店东边-60m﹡6. 如果a <0,那么A. |a |<0B. --a >0C. |a |>0D. -a <0﹡7. 若a 、b 为有理数,那么下列结论中一定正确的是A. 若a <b,则|a|<|b|B. 若a >b,则|a|>|b|C. 若a =b,则|a|=|b|D. 若a ≠b,则|a|≠|b|﹡8. 下列各式中,正确的是A. -16->0B. 2.0>2.0C. 74->75- D. 6-<0 ﹡9、如果|a |=|b1|,那么a 与b 之间的关系是 A. a 与b 互为倒数B. a 与b 互为相反数C. a ·b =-1D. a ·b =1或a ·b =-1 ﹡﹡10、若320m n -++=,则2m n +的值为 .A. 4-B. 1-C. 0D. 4二、填空题每题4分,共24分11. 如果-150元表示支出150元,那么+300元表示_____.﹡12. 若|a|=|b|,则a 和b 的关系为__________.13. 绝对值大于1且不大于3的负整数有 个,它们是 .﹡14. 若│a │=a,则a 是 数;若│a │>a,则a 是 数.﹡15. 数轴上点M 表示2,点N 表示-,点A 表示-1,在点M 和点N 中,距离A 较远的点的是 . ﹡﹡16、在数轴上,A 点表示3,现在将A 点向右移动5个单位,再向左移动12个单位,这时A 点必须向 移动 个单位,才能到达原点.三、解答题共36分﹡17、本题9分已知a =2,b =2,c =3,且有理数a, b, c 在数轴上的位置如图所示,计算a+b+c 的值.﹡18、本题7分已知3,4a b ==且b<a,求a 、b 的值.﹡19、本题8分已知数轴上有A,B 两点,A,B 之间的距离为1,点A 与原点O 的距离是3,写出满足条件的点B 所对应的数.﹡﹡20. 本题12分已知a 、b 互为相反数,c 、d 互为倒数,│x │=3,求代数式a+b -cdx+3x .的值。

最新初二-1-2绝对值化简-知识点、经典例题及练习题带答案

最新初二-1-2绝对值化简-知识点、经典例题及练习题带答案

环球雅思教育学科教师讲义讲义编号:副校长/组长签字:签字日期:学员编号:年级:课时数:3课时学员姓名:辅导科目:数学学科教师:课题绝对值化简授课日期及时段教学目的能化简绝对值,解绝对值方程重难点化简与解方程【考纲说明】1、能够根据绝对值的意义、性质及非负性进行绝对值的化简;2、灵活运用绝对值的性质进行化简和方程的解决。

【趣味链接】由于研究的需要,人类创造了了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展.在中学数学中,常见的数学符号有以下八种:数量符号、运算符号、关系符号、结合符号、性质符号、简写符号、逻辑符号、集合论符号,其中,绝对值符号属于性质符号中的一种,常见的性质符号还有正号(+)和负号(-)。

数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。

我国宋朝科学家沈括说过,数学方法应该“见繁即变,见简即用”。

数学符号正是适应这种变“繁”为“简”的实际需要而产生的。

【知识梳理】一. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。

总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。

二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。

三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。

2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x ≤|x|。

3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。

4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。

【经典例题】【例1】(2012毫州)若0|2|)1(2=++-b a ,则b a +=_________.【例2】(2012曲阜)(1)已知x 是有理数,且|x|=|-4|,那么x=____;(2)已知x 是有理数,且-|x|=-|2|,那么x=____;(3)已知x 是有理数,且-|-x|=-|2|,那么x=____.【例3】(2012徐州)若|a|=b ,求|a+b|的值.【例4】(2012淮北)已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 4312--的值. 【例5】(2012商丘)|m+3 |+|n-27|+|2p-1|=0,求p+2m+3n 的值. 【例6】(2011菏泽)若已知a 与b 互为相反数,且|a-b|=4,求12+++-ab a b ab a 的值. 【例7】(2011新乡)计算:14134191413419-+---【例8】(2012开封)解方程:(1)05|5|23=-+x (2)|4x+8|=12(3)|3x+2|=-1 【例9】(2011济宁)若-2≤a≤0,化简|a+2|+|a-2|.【例10】(2012泰安)有理数a ,b ,c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|.【课堂练习】1、(2011许昌)若│x+2│+│y -3│=0,则xy=________.2、(2012周口)已知|1|x += 4,2(2)4y +=,求x y +的值.3、(2012淮安)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数x ,使得|x+5|+|x-2|=7这样的整数是_____.4、(2010枣庄)已知|a|=7,|b|=3,求a+b 的值.5、(2012安庆)若x>0,y<0,求32---+-x y y x 的值.C B 0 A1、如果a<2,那么│-1.5│+│a -2│等于( )A .1.5-aB .a-3.5C .a-0.5D .3.5-a2、若│a —4│+│b +5│=0,则a —b = .3、若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______.4、设a ,b 是有理数,则-8-|a-b|是有最大值还是最小值?其值是多少?5、如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y 的值是多少?6、化简:|a-b|.7、数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||8、若a<-b 且0 ba ,化简|a|-|b|+|a+b|+|ab|.本次______________同学课堂状态:_________________________________________________________________ 本次课后作业:___________________________________________________________________________________ 需要家长协助:____________________________________________________________________________________ 家长意见:________________________________________________________________________________________【参考答案】【经典例题】1、-12、(1)4,-4 (2)2,-2, (3)2,-23、2b4、245、56、47、08、(1)x=-35,-325;(2)x=1,x=-5(3)此方程无解 9、4 10、2b-2c 【课堂练习】1、-62、3或-1或-5或-93、7,5±4、10或4或-4或-105、-1【课后作业】1、D2、93、0或24、最大值-85、76、当a-b >0时,即a >b ,|a-b|=a-b ; 当a-b=0时,即a=b ,|a-b|=0; 当a-b <0时,即a <b ,|a-b|=b-a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环球雅思教育学科教师讲义
讲义编号:副校长/组长签字:签字日期:
学员编号:年级:课时数:3课时
学员姓名:辅导科目:数学学科教师:
课题绝对值化简
授课日期及时段
教学目的能化简绝对值,解绝对值方程
重难点化简与解方程
【考纲说明】
1、能够根据绝对值的意义、性质及非负性进行绝对值的化简;
2、灵活运用绝对值的性质进行化简和方程的解决。

【趣味链接】
由于研究的需要,人类创造了了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展.在中学数学中,常见的数学符号有以下八种:数量符号、运算符号、关系符号、结合符号、性质符号、简写符号、逻辑符号、集合论符号,其中,绝对值符号属于性质符号中的一种,常见的性质符号还有正号(+)和负号(-)。

数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。

我国宋朝科学家沈括说过,数学方法应该“见繁即变,见简即用”。

数学符号正是适应这种变“繁”为“简”的实际需要而产生的。

【知识梳理】
一. 绝对值的实质:
正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即
也就是说,|x|表示数轴上坐标为x的点与原点的距离。

总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。

二. 绝对值的几何意义:
一个数的绝对值就是数轴上表示这个数的点到原点的距离。

三. 绝对值的性质:
1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。

2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x ≤|x|。

3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。

4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。

【经典例题】
【例1】(2012毫州)若0|2|)1(2=++-b a ,则b a +=_________.
【例2】(2012曲阜)(1)已知x 是有理数,且|x|=|-4|,那么x=____;
(2)已知x 是有理数,且-|x|=-|2|,那么x=____;
(3)已知x 是有理数,且-|-x|=-|2|,那么x=____.
【例3】(2012徐州)若|a|=b ,求|a+b|的值.
【例4】(2012淮北)已知|x-1|=2,|y|=3,且x 与y 互为相反数,求
y xy x 4312--的值. 【例5】(2012商丘)|m+3 |+|n-2
7|+|2p-1|=0,求p+2m+3n 的值. 【例6】(2011菏泽)若已知a 与b 互为相反数,且|a-b|=4,求
12+++-ab a b ab a 的值. 【例7】(2011新乡)计算:14
134191413419-+---
【例8】(2012开封)解方程:(1)
05|5|2
3=-+x (2)|4x+8|=12
(3)|3x+2|=-1 【例9】(2011济宁)若-2≤a≤0,化简|a+2|+|a-2|.
【例10】(2012泰安)有理数a ,b ,c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|.
【课堂练习】
1、(2011许昌)若│x+2│+│y -3│=0,则xy=________.
2、(2012周口)已知|1|x += 4,2(2)4y +=,求x y +的值.
3、(2012淮安)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:
(1)求|5-(-2)|=______.
(2)找出所有符合条件的整数x ,使得|x+5|+|x-2|=7这样的整数是_____.
4、(2010枣庄)已知|a|=7,|b|=3,求a+b 的值.
5、(2012安庆)若x>0,y<0,求32---+-x y y x 的值.
C B 0 A
1、如果a<2,那么│-1.5│+│a -2│等于( )
A .1.5-a
B .a-3.5
C .a-0.5
D .3.5-a
2、若│a —4│+│b +5│=0,则a —b = .
3、若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______.
4、设a ,b 是有理数,则-8-|a-b|是有最大值还是最小值?其值是多少?
5、如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y 的值是多少?
6、化简:|a-b|.
7、数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||
8、若a<-b 且
0 b
a ,化简|a|-|b|+|a+b|+|ab|.
本次______________同学课堂状态:_________________________________________________________________ 本次课后作业:___________________________________________________________________________________ 需要家长协助:____________________________________________________________________________________ 家长意见:________________________________________________________________________________________
【参考答案】
【经典例题】
1、-1
2、(1)4,-4 (2)2,-2, (3)2,-2
3、2b
4、24
5、5
6、4
7、0
8、(1)x=-35,-3
25;(2)x=1,x=-5(3)此方程无解 9、4 10、2b-2c 【课堂练习】
1、-6
2、3或-1或-5或-9
3、7,5±
4、10或4或-4或-10
5、-1
【课后作业】
1、D
2、9
3、0或2
4、最大值-8
5、7
6、当a-b >0时,即a >b ,|a-b|=a-b ; 当a-b=0时,即a=b ,|a-b|=0; 当a-b <0时,即a <b ,|a-b|=b-a 。

7、b 8、ab-2a
物业公司业主走(回)访制度
一、制定走(回)访制度的意义:
1、加强物业管理处与广大业主(住户)的联系和沟通,让业主切身体会物业公司对其的重视和关心,从而相互理解便于更好的开展物业工作。

2、使管理处各项工作置身于业主(住户)监督之中,从而集思广益,及时总结经验、教训,不断改进管理服务工作,提高服务质量。

二、回访分类和回访方式:
1、回访分类:定期走访,专项走访,投诉回访,有偿服务回访、维修工单
2、回访方式:电话回访、上门面谈、日常巡视。

三、回访的操作规范:
1、客服专员负责小区内所有业主回访工作,通过回访了解业主服务需求,对业主提出的问题和意见建议及时记录,解决,反馈和上报。

并跟进处理结果,直至业主满意。

2、客服专员应了解回访业主公司的基本情况,公司的人员情况,经营项目等。

3、客服专员在回访过程中,首先应介绍自己的身份,说明回访目的,主动向业主介绍物业公司在近期的主要工作,对存在问题的管理措施,虚心听取业主的意见和建议,并做详细记录。

4、客服专员将回访中业主提出的各项内容详细记录在《业主回访记录表》中,并对能够当时解答和解决的问题立即予以答复,对暂时不能解决的问题,则详细记录。

5、回访结束时,应对业主理解和配合表示感谢,并希望得到业主继续支持与合作。

6、将《业主回访记录表》中业主提出的问题进行整理,分类,同时采取相应措施或通知相关部门解决处理,并跟进处理全过程。

7、如客服专员不能及时解决的问题须立即上报客服部主管、项目经理,由客服部主管、项目经理负责通知相关责任部门,落实解决措施和方法,并积极协调相关部门进行解决,将处理结果上报物业经理。

相关文档
最新文档