大学精品课件:第一部分:线性规划(12课时)
合集下载
线性规划PPT课件
线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
《运筹学线性规划》PPT课件
划问题化成如下的标准型:
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7 x1 x2 x4 x5 x7 2 3x1 x2 2x4 2x5 5 x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
一、线性规划问题的解的概念
(1.4)
标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线 性规划问题都可以通过上述手段把非标准 型的线性规划问题化成标准型。现举例如 下:
例1-4 试将如下线性规划问题化成标准型
多样性给讨论问题带来了不便。为了便于今后讨论,我 们规定线性规划问题的标准型为:
max Z c1x1 c2x2 cnxn
a11x1 a12x2 a21x1 a22x2
a1nxn b1 a2nxn b2
am1x1 am2x2 amnxn bm
x1, x2 , , xn 0
例1-1:(计划安排问题)某工厂在计划期内安排
生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的
设备A、B的台时、原材料的消耗及两种产品每件可
获利润见表所示:
I
II 资源总量
设备A(h)
0
3
15
设备B(h)
4
0
12
原材料(公斤)
2
2
14
利润(元)
2
3
问如何安排计划使该工厂获利最多?
解: 假设 x1、x2分别表示在计划期内生产
二、线性规划问题的图解法
对于简单的线性规划问题(只有两个决策变量的
线性规划问题),我们可以通过图解法对它进行求解
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7 x1 x2 x4 x5 x7 2 3x1 x2 2x4 2x5 5 x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
一、线性规划问题的解的概念
(1.4)
标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线 性规划问题都可以通过上述手段把非标准 型的线性规划问题化成标准型。现举例如 下:
例1-4 试将如下线性规划问题化成标准型
多样性给讨论问题带来了不便。为了便于今后讨论,我 们规定线性规划问题的标准型为:
max Z c1x1 c2x2 cnxn
a11x1 a12x2 a21x1 a22x2
a1nxn b1 a2nxn b2
am1x1 am2x2 amnxn bm
x1, x2 , , xn 0
例1-1:(计划安排问题)某工厂在计划期内安排
生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的
设备A、B的台时、原材料的消耗及两种产品每件可
获利润见表所示:
I
II 资源总量
设备A(h)
0
3
15
设备B(h)
4
0
12
原材料(公斤)
2
2
14
利润(元)
2
3
问如何安排计划使该工厂获利最多?
解: 假设 x1、x2分别表示在计划期内生产
二、线性规划问题的图解法
对于简单的线性规划问题(只有两个决策变量的
线性规划问题),我们可以通过图解法对它进行求解
《线性规划》课件
线性规划在计算和科学 中的作用
线性规划与其他数学方 法的关系
线性规划为其他计算学科和科 学领域提供了一种有用的工具, 包括操作研究、管理科学、计 算机科学、离散数学和工程。
线性规划和其他数学方法,如 图论、随机优化和动态编程, 经常在更复杂的问题中一起使 用,以提供最佳解决方案。
线性规划的重要性和应 用前景
线性规划的一般形式
目标函数和约束条件均为 >= 或 <= 形式。
线性规划的图形表示
线性规划可用于在二维或三维空间中绘制函数和约束条件,以帮助我们更好地理解问题。
线性规划求解方法
有多种方法可用于解决线性规划问题,包括单纯形法、双纯形法、人工变量法和网络流模型。
1
单纯形法
该方法是最常用的求解线性规划问题的方法。它通过逐步优化策略,找到目标函数的最 大值或最小值。
线性规划在涉及数学和科学的 许多领域都有着广泛的应用, 未来的不断发展将使其能够应 用于更多领域。
线性规划PPT课件
本课程将教授线性规划的基础知识和应用,以及用于解决各种实际问题的技 能和策略。
介绍线性规划ቤተ መጻሕፍቲ ባይዱ
线性规划是一种用于优化线性函数的数学方法,它在现代工程、经济学和科学等许多领域都发挥着重要 作用。
线性规划的应用
线性规划可用于创建计划、预 测趋势、优化资源和改进生产 效率。
线性规划的基本概念和 术语
2
双纯形法
双纯形法是单纯形法的一种改进版本,它避免了人工选择初始基变量的缺点。
3
人工变量法
这种方法基于将所有约束条件都转化为等式的基本原理,并将人工变量引入问题中,使 其满足最佳策略。
线性规划的应用案例
线性规划被广泛用于解决各种实际问题。以下是一些典型案例。
线性规划 ppt课件
约束条件为:
8 25 x1 8 15 x2 1800 8 25 x 1800 1 8 15 x2 1800 x1 0, x2 0
6
线性规划模型:
min z 40 x1 36 x2
5 x1 3 x2 45 x 9 1 s.t. x2 15 x1 0, x2 0
2
两个引例 问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
于加工三种工件.假定这两台车床的可用台时数分别为800和 900,三种工件的数量分别为400、600和500,且已知用二种 不同车床加工单位数量不同工件所需的台时数和加工费用如 下表.问怎样分配车床的加工任务,才能既满足加工工件的要 求,又使加工费用最低?
注:lingo的灵敏度分析需要激活(系统默认是不激活的)为了激活灵敏性分析, 运行LINGO|Options…,选择General Solver Tab, 在Dual Computations列表 框中,选择Prices and Ranges选项。 确认并运行LINGO|Ranges或快捷键 ctrl+R.
在LINGO模型 min 13* x1 9* x 2 10* x3 11* x 4 12* x5 8* x6; 窗口输入: x1 x 4 400;
x 2 x5 600; x3 x6 500; 0.4* x1 1.1* x 2 x3 800; 0.5* x 4 1.2* x5 1.3* x6 900;
Cost
X1 X2 X3 X4 X5 X6 Row Price
影子价格
Slack or Surplus
1 2 3 4 5 6
13800.00 0.000000 0.000000 0.000000 140.0000 50.00000
8 25 x1 8 15 x2 1800 8 25 x 1800 1 8 15 x2 1800 x1 0, x2 0
6
线性规划模型:
min z 40 x1 36 x2
5 x1 3 x2 45 x 9 1 s.t. x2 15 x1 0, x2 0
2
两个引例 问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
于加工三种工件.假定这两台车床的可用台时数分别为800和 900,三种工件的数量分别为400、600和500,且已知用二种 不同车床加工单位数量不同工件所需的台时数和加工费用如 下表.问怎样分配车床的加工任务,才能既满足加工工件的要 求,又使加工费用最低?
注:lingo的灵敏度分析需要激活(系统默认是不激活的)为了激活灵敏性分析, 运行LINGO|Options…,选择General Solver Tab, 在Dual Computations列表 框中,选择Prices and Ranges选项。 确认并运行LINGO|Ranges或快捷键 ctrl+R.
在LINGO模型 min 13* x1 9* x 2 10* x3 11* x 4 12* x5 8* x6; 窗口输入: x1 x 4 400;
x 2 x5 600; x3 x6 500; 0.4* x1 1.1* x 2 x3 800; 0.5* x 4 1.2* x5 1.3* x6 900;
Cost
X1 X2 X3 X4 X5 X6 Row Price
影子价格
Slack or Surplus
1 2 3 4 5 6
13800.00 0.000000 0.000000 0.000000 140.0000 50.00000
《管理运筹学》教学课件-第1章线性规划
要求至少应增加出油能力500桶/天,但又不得超过1100桶/天,试确定该公司总经济效益最大的
投资方案。
表 1.5
方 案 序 号
投资方案内容
技改方案内容
决
投资(万元)
策
年收益
变 量
第一年 第二年 (万元)
1 更新旧装置,提高炼油能力 500 桶/ X1
200
200
100
天
2 建造新装置, 提高炼油能力 1000 X2
2 、数学模型中系数的含义:
Max Z = 70x1+30x2 s.t. 3x1 + 9x2 ≤ 540
5x1 + 5x2 ≤ 450 9x1 + 3x2 ≤ 720 x1 , x2 ≥0
…① …② …③ …④ …⑤
①.目标函数中决策变量的系数70,30 ------ 叫价值系数,表单位产品提供的利润(元/件);
1946年,世界上第一台计算机问世,使单纯形法处理大规模L.P.数模成为可能。
三、 L.P.问题的求解过程
1、将实际问题转化为数学模型(数学公式):建模。 2、求解数学模型:
• 图解法: 适合于 2 个变量的 L.P. 数学模型。 • 单纯形法:适合于任意个变量的 L.P. 数学模型。 3、利用数学模型的最优解获得原问题的最优决策方案。
解: ① 设甲、乙产品产量分别为x1、x2 公斤——— 决策变量,简称变量 ② 设总利润为Z,则
Max Z = 70x1+30x2 ③ 设备可用工时数限制
——— 目标函数 ——— 约束条件
s.t. 3x1 + 9x2 ≤ 540 A 设备可用工时约束
5x1 + 5x2 ≤ 450 B 设备可用工时约束
《运筹学》课件 第一章 线性规划
10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0
[模板]线性规划PPT课件
顶点可达到。 4.解题思路是:先找出凸集的任一顶点,计算Z值,比较
Z值最大的顶点为止。
4.无可行解(例1.15):原因是模型本身错误,约束条件之间互相
矛盾,应检查修正。
1、2情形为有最优解 3、4情形为无最优解
-
36
图解法得到的启示
1.求解线性规划问题时,解的情况有:唯一最优解、无 穷多最优解、无界解和无可行解。
2.若线性规划问题的可行域存在,则可行域是一凸集。 3.若线性规划问题的最优解存在,则最优解一定在某个
一般情况,决策变量只取正值(非负值)
x1 0, x2 0
-
6
数学模型
max S=50x1+30x2 s.t. 4x1+3x2 120
2x1+ x2 50 x1,x2 0
线性规划数学模型三要素:
决策变量、约束条件、目标函数
-
7
1-2 线性规划问题的数学模型
例1 .2 营养配餐问题
假定一个成年人每天需要从食物中
第一章 线性规划与单纯形方法
-
1
内容:
线性规划的数学模型,标准形式,基本概念及基本原理;线性规划 的图解法,单纯形法,大M法,两阶段法。
• 重点: • (1)线性规划的基本概念 • (2)单纯形法的基本原理与计算步骤 • 难点: • (1)单纯形法的基本原理与计算步骤
• 基本要求: • (1)理解线性规划的基本概念:目标函数、约束条件、可行解与可行域、基可
和约束方程的影响是独立于其他变量的,
目标函数值是每个决策变量对目标函数
贡献的总和。
-
16
•连续性假定:线性规划问题中的 决策变量应取连续值。
•确定性假定:线性规划问题中的 所有参数都是确定的参数。线性 规划问题不包含随机因素。
Z值最大的顶点为止。
4.无可行解(例1.15):原因是模型本身错误,约束条件之间互相
矛盾,应检查修正。
1、2情形为有最优解 3、4情形为无最优解
-
36
图解法得到的启示
1.求解线性规划问题时,解的情况有:唯一最优解、无 穷多最优解、无界解和无可行解。
2.若线性规划问题的可行域存在,则可行域是一凸集。 3.若线性规划问题的最优解存在,则最优解一定在某个
一般情况,决策变量只取正值(非负值)
x1 0, x2 0
-
6
数学模型
max S=50x1+30x2 s.t. 4x1+3x2 120
2x1+ x2 50 x1,x2 0
线性规划数学模型三要素:
决策变量、约束条件、目标函数
-
7
1-2 线性规划问题的数学模型
例1 .2 营养配餐问题
假定一个成年人每天需要从食物中
第一章 线性规划与单纯形方法
-
1
内容:
线性规划的数学模型,标准形式,基本概念及基本原理;线性规划 的图解法,单纯形法,大M法,两阶段法。
• 重点: • (1)线性规划的基本概念 • (2)单纯形法的基本原理与计算步骤 • 难点: • (1)单纯形法的基本原理与计算步骤
• 基本要求: • (1)理解线性规划的基本概念:目标函数、约束条件、可行解与可行域、基可
和约束方程的影响是独立于其他变量的,
目标函数值是每个决策变量对目标函数
贡献的总和。
-
16
•连续性假定:线性规划问题中的 决策变量应取连续值。
•确定性假定:线性规划问题中的 所有参数都是确定的参数。线性 规划问题不包含随机因素。
管理运筹学线性规划PPT课件
位产品所需的设备台时及A、B 两种原材料的消耗, 如表所
示。
该工厂每生产一件产品Ⅰ可获利2 元, 每生产一件产品Ⅱ可
获利3 元, 问应如何安排计划使该工厂获利最多?
Ⅰ
Ⅱ
限制
设备
1
2
\
8台时
原材料A
4
0
\
16kg
原材料B
0
4
\
12kg
引例[2]:成本优化问题 某养鸡厂的混合饲料由A、B、C三种配料组成
第一章 线性规划(LP)
线性规划问题的提出; 图解法----二元线性规划问题 线性规划问题 解的概念; 线性规划问题的几何特征; 单纯形法---线性规划问题计算
第1节 线性规划问题及数学模型
1、线性规划问题的提出 2、线性规划数学模型举例
1、线性规划问题
引例[1]:生产计划安排
某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品, 已知生产单
S.T. 2X1 +X2 +X3 +X4
=100
2X2 +X3 + 3X5 +2X6 + X7
=100
X1 + X3 + 3X4 +2X6 +3X7 +4X8 =100
X1, X2, X3, X4, X5 , X6, X7, X8 >=0
Min Z= X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8
定量化分析技术 —— 数学建模技术; (运筹学方法精髓) —— 模型优化算法; (模型运算及分析) —— 计算机数据库技术等; (大规模问题的计算机求解)
线性规划PPT优秀课件
y
1
x+y-1>0
1
O
x+y-1<0 x+y-1=0
x
复习二元一次不等式表示平面区域的范例 例1 画出不等式2x+y-6<0表示的平面区域。 y
6
注意:把直
线画成虚线以 表示区域不包 括边界
O
2x+y-6=0
3
x
复习二元一次不等式表示平面区域的范例 y
5Hale Waihona Puke 例2 画出不等式组 x+y=0
x y 5 0 x y 0 x 3
探索结论
复习判断二元一次不等式表示哪一 侧平面区域的方法
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
可行域
(5,2)
(1,1)
线性规划
例1 解下列线性规划问题: 求z=2x+y的最大值和最小值,使式中x、y满足下 列条件: 2x+y=0 y
解线性规划问题的一般步骤:
2x+y=-3 y x 1 1 第一步:在平面直角坐标系中作出可行域; C( , ) 2 2 第二步:在可行域内找到最优解所对应的点; x y 1 O y 1 第三步:解方程的最优解,从而求出目标函数 B(2,-1) 2x+y=3
x-y=7 C(3,6) y=6
线性规划课件ppt
根据实际问题的特点,选择适合的线性规划模型进行建模和优化。
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
运筹学教学课件线性规划学习课件
降低潜在损失
通过全面、有效的风险管理策略,降低潜 在损失。
06线性规划在ຫໍສະໝຸດ 通运输中的应用线性规划在货物运输中的应用
优化运输路径
通过线性规划方法,可以优化货物的运输 路径,从而降低运输成本和时间。
车辆装载优化
线性规划可以优化车辆的装载方案,使得 车辆的装载量达到最大,减少车辆使用数 量和运输成本。
04
线性规划问题的求解方法
图解法
总结词
直观、简单、易懂
详细描述
图解法是一种用几何图形来求解线性规划问题的简单直观的方法,它通过将不等式约束条件转换为图形的限制 条件,将线性规划问题转化为在图中寻找最优解的问题。该方法适用于小规模问题,方便理解,是求解线性规 划问题的基本方法之一。
单纯形法
总结词
03
线性规划问题的数学模型
线性规划问题的标准形式
确定线性规划问题的标准形式
标准形式是由一个线性目标函数和一个线性约束条件组成的数学模型。
将非标准形式转化为标准形式
在求解线性规划问题时,通常需要将非标准形式转化为标准形式,这可以通过引入变量、转换约束条件等方式 实现。
线性规划问题的扩展形式
多目标线性规划
05
线性规划在管理决策中的应用
线性规划在生产计划中的应用
总结词
高效、低成本
确定生产计划目标
通过线性规划方法确定最优质、低 成本的生产计划。
优化生产资源配置
将有限的资源,如人力、物料、设 备等,根据不同产品或部门的需要 ,进行合理分配和优化。
提高生产效率
通过优化生产流程和布局,减少生 产过程中的浪费和等待时间,提高 生产效率。
特点
运筹学注重定量分析、优化思想和系统方法,强调理论与实践相结合,具有广泛应用性和多学科交叉 性。
01-线性规划ppt课件
Ⅰ
设备
1
原材料 A
4
原材料 B利用资源
2
8 台时
0
16 kg
4
12 kg
3
?元
第3页
Ⅰ
设备
1
原材料 A
4
原材料 B
0
利润
2
01:20
Ⅱ
可利用资源
2
8 台时
0
16 kg
4
12 kg
3
?元
设 x1、x2 分别表示计划期内产品Ⅰ、Ⅱ的产量, 建立数学模型:
利润最大
设备台时 原材料 A 原材料 B 产品产量
a21x1 + a22x2 +…+ a2nxn ( = , ) b2
…
…
(1.2)
am1x1 + am2x2 +…+ amnxn ( = , ) bm
x1,x2,…,xn 0
(1.3)
求解线性规划的任务就是:在所有满足约束条件的解(x1, x2,…,xn)中求出使目标函数 z 达到最优值的最优解(x1*, x2*,…,xn*)。
x2 1.4
x1 0,x2 0
第7页
01:20
• 线性规划模型的共同特征 (模型的三要素)
⑴ 每一个模型都有一组决策变量(x1,x2,…,xn), 这组决策变量每取一组值就代表一个具体的方案。一般 这些变量的取值都是连续且非负的。
⑵ 存在一定的约束条件,这些约束条件可以用一组 线性等式或线性不等式来表示。
等于约束右边与左边之差
xs =bi–(ai1 x1 + ai2 x2 + … + ain xn )
显然,xs也具有非负约束,即xs≥0, 这时新的约束条件成为
线性规划教材教学课件
02
线性规划的基本理论
线性规划的几何解释
01
线性规划问题可以解释为在多维 空间中寻找一个点,该点使得某 个线性函数达到最大或最小值。
02
线性规划问题可以用图形表示, 通过观察图形可以直观地理解问 题的约束条件和目标函数。
线性规划的基本定理
线性规划问题存在最优解,且最优解必定在约束条件的边界 上。
大M法的优点是计算量较小, 可以快速找到一个近似解,但 解的精度和可靠性相对较低。
大M法适用于一些对解精度要 求不高,但需要快速得到近似 解的场合。
两阶段法
两阶段法是一种求解线性规划问题的分 解方法,将原问题分解为两个阶段进行
求解。
第一阶段是求解一个初始的线性规划问 题,得到一个初步的解;第二阶段是在 初步解的基础上进行修正和调整,以得
Python求解线性规划
总结词
Python是一种通用编程语言,也提供了求解线性规划的 库。
详细描述
Python的PuLP库可以用来求解线性规划问题,用户只需 要编写Python代码来定义线性规划的约束条件和目标函 数,然后调用PuLP库的函数即可得到最优解。
总结词
PuLP库提供了多种求解器选项,包括GLPK、CBC、 CP,这些最优解称为最优 解集。
线性规划的解的概念
线性规划问题的最优解称为最优解, 而所有最优解的集合称为最优解集。
在最优解集中,存在一个最优解被称 为最优基解,它是线性规划问题的一 个基可行解。
03
线性规划的求解方法
单纯形法
单纯形法是一种求解线性规划问题的 经典方法,通过不断迭代和寻找最优 解的过程,最终找到满足所有约束条 件的解。
单纯形法具有简单易行、适用范围广 等优点,但也有计算量大、需要多次 迭代等缺点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 目标函数求最大值(有时求最小值)
(2) 约束条件都为等式方程,且右端常数项bi都大于或等于零 (3) 决策变量xj为非负。
2020/7/13
运筹学
线性规划问题的数学模型
Page 11
(2)如何化标准形式
目标函数的转换 如果是求极小值即 可化为求极大值问题。
minz ,c则j x可j 将目标函数乘以(-1),
其特征是: (1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值; (2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
2020/7/13
运筹学
线性规划问题的数学模型
Page 7
3. 线性规划数学模型的一般形式
目标函数:max (min) z c1x1 c2 x2 cn xn a11x1 a12x2 a1n xn ( ) b1
Chapter1 线性规划
(Linear Programming)
本章主要内容:
LP的数学模型 图解法 单纯形法 单纯形法的进一步讨论-人工变量法 LP模型的应用
2020/7/13
运筹学
线性规划问题的数学模型
PaБайду номын сангаасe 2
1. 规划问题 生产和经营管理中经常提出如何合理安排,使人力、 物力等各种资源得到充分利用,获得最大的效益, 这就是规划问题。
x
3
x3)
0x4
0x5
5 x1
x2
(
x
3
x3)
x4
7
x1 x2 ( 5x1 x2
x3 2(
x
3
x3) x3)
x5 2 5
x1
,
x
2
,
x
3
,
x
3,
x4 , x5
0
Page 15
2020/7/13
运筹学
线性规划问题的数学模型
Page 16
4. 线性规划问题的解
线性规划问题
n
max Z c j x j (1) j1
x1 x2 4x3 2 3x1 x2 2x3 5
x1, x2 0, x3无约束
2020/7/13
运筹学
线性规划问题的数学模型
Page 14
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
设备 产品
A
B
C
D 利润(元)
甲
2
1
4
0
2
乙
2
2
0
4
3
有效台时
12
8
16 12
2020/7/13
运筹学
线性规划问题的数学模型
Page 5
解:设x1、x2分别为甲、乙两种产品的产量,则数学模型为:
max Z = 2x1 + 3x2 2x1 + 2x2 ≤ 12
x1 + 2x2 ≤ 8
s.t.
4x1
≤ 16
xni 0 称为松弛变量
aij x j xni bi
xni 0 称为剩余变量
变量 x j 的变0换 可令 xj x,j 显然
x
j
0
2020/7/13
运筹学
Page 12
线性规划问题的数学模型
例1.3 将下列线性规划问题化为标准形式
Page 13
min Z 2x1 x2 3x3
5x1 x2 x3 7
pj xj
(
) B
X 0
其中: C (c1 c2 cn )
x1
X
xn
Pj
a1
j
amj
b1
B
bm
2020/7/13
运筹学
Page 8
线性规划问题的数学模型
矩阵形式:
max (min)Z CX
AX ( ) B
X
0
其中: C (c1 c2 cn )
a11 a1n
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
2020/7/13
运筹学
线性规划问题的数学模型
标准形式如下:
max Z
2 x1
x2
3(
Page 3
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
x
v a 2x2 x a dv 0 dx
2(a 2 x) x (2) (a 2 x)2 0
x a 6
2020/7/13
运筹学
线性规划问题的数学模型
Page 4
例1.2 某企业计划生产甲、乙两种产品。这些产品分 别要在A、B、C、D、四种不同的设备上加工。按工 艺资料规定,单件产品在不同设备上加工所需要的台 时如下表所示,企业决策者应如何安排生产计划,使 企业总的利润最大?
A
am1 amn
x1
X
xn
b1
B
bm
Page 9
2020/7/13
运筹学
线性规划问题的数学模型
Page 10
3. 线性规划问题的标准形式
n
max Z c j x j j1
s.t
n
aij x j
j1
bi
i 1,2,, m
x j 0, j 1,2,, n
特点:
即 maxz z c j x j
也就是:令 z z,可得到上式。
变量的变换
若存在取值无约束的变量 x,j 可令 其中: xj , xj 0
x j xj xj
2020/7/13
运筹学
线性规划问题的数学模型
约束方程的转换:由不等式转换为等式。
aij xj bi
aij x j bi
aij x j xni bi
4x2 ≤ 12 x1 ≥ 0 , x2 ≥ 0
2020/7/13
运筹学
线性规划问题的数学模型
Page 6
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints
怎样辨别一个模型是线性规划模型?
线性规划通常解决下列两类问题:
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
2020/7/13
运筹学
线性规划问题的数学模型
约束条件:
am1 x1
am2 x2
amn xn
(
) bm
x1 0 xnn 0
简写为:max (min) Z c j x j j 1
2020/7/13
n
aij x j ( ) bi (i 1 2m)
j 1
xj 0
运筹学(j 1 2n)
线性规划问题的数学模型
向量形式: max (min)z CX