采区供电设计

合集下载

矿井采区供电设计

矿井采区供电设计

矿井采区供电设计一、概述采用工作面走向(倾向)长壁大采高自然冒落后推式综合机械化采煤方法,采煤高度达5.2~6.2m,工作面按三进两回方式进行布置。

主要设备有**公司生产的SL-500型采煤机,公司生产的刮板输送机和转载机。

现以***矿****长壁大采高工作面为例,进行采区供电系统设计。

二、变电所的选择为保证**工作面设备供电的可靠性,供电的安全性,供电的质量以及供电的经济合理性。

将****长壁大采高工作面供电电源选择来自**盘区变电所变电所编号为3#、4#、6#、9#矿用高爆开关。

三、6KV干线电缆选型计算1、电缆选型根据我矿实际供电要求与负荷大小进行6KV电缆选型。

(1)机尾变电所4#高压开关至东二集中皮带巷胶带机用移变间采用MYPTJ3.6/6=320米;东二集中皮带巷胶带机用移变至溜子通道刮3*95+3*25/3+3*2.5型高压电缆L1板输送机用移变间采用MYPTJ3.6/6 3*95+3*25/3+3*2.5型高压电缆L=10米;溜子通2道刮板输送机用移变至一部刮板输送机用移变间采用MYPTJ3.6/6 3*95+3*25/3+3*2.5 =460米;一部刮板输送机用移变至东二进架运输巷胶带机用移变间采用型高压电缆L3=110米。

MYPTJ3.6/6 3*95+3*25/3+3*2.5型高压电缆L4(2)**盘区变电所9#高压开关至****1巷顺槽一部胶带机用移变间电缆采用=1600米;****1巷顺槽一部胶带机用移MYPTJ3.6/6 3*95+3*25/3+3*2.5型高压电缆L5变高压出线至****1巷顺槽二部胶带机用移变间采用MYPTJ3.6/6 3*50+3*16/3+3*2.5 =1500米。

型高压电缆L6(3)机尾变电所2#高压开关至设备列车牵引绞车用移变间采用MYPTJ3.6/6 3*35+3*16/3+3*2.5型高压电缆L=1900米。

7(4)**盘区变电所7#高压开关至乳化液泵用移变间电缆采用MYPTJ3.6/6 3*95+3*25/3+3*2.5型高压电缆L=4200米;乳化液泵用移变与转载机破碎机用移变间8=12米。

煤矿采区供电设计精编WORD版

煤矿采区供电设计精编WORD版

煤矿采区供电设计精编WORD版煤矿采区供电设计首先需要确定供电方式。

可以选择的供电方式包括局部供电和总体供电两种。

局部供电是指将变电所建设在采矿工作面附近,使得供电距离尽可能短,减少线路损耗,提高效率。

而总体供电则是将变电所建设在矿井尽可能远离采矿工作面的区域,通过电缆进行供电。

供电方式的选择需要综合考虑采区的大小、供电设备的容量以及运营成本等方面的因素。

其次,煤矿采区供电设计需要确定供电电压等级。

供电电压等级的选择需要综合考虑采矿设备的特点以及供电距离等因素。

通常情况下,矿井照明和通信设备通常选择低压供电,而露天矿的运输系统和通风设备通常选择中压供电。

高压供电一般用于输电线路和变电所等部分。

供电线路设计也是煤矿采区供电设计的一个重要方面。

安装在采矿工作面和矿井巷道中的供电线路需要考虑到矿井环境的特殊性。

因此,供电线路应具备足够的阻燃性能和耐高温性能,以防止火灾和其他安全事故的发生。

此外,供电线路的线径和电缆敷设方式也需要根据采区的具体情况进行选择。

此外,煤矿采区供电设计还需要考虑到应急供电和备份供电的问题。

煤矿是一个高风险行业,突发事故时停电可能会导致严重后果。

因此,需要设置应急发电系统,以确保采区在紧急情况下能够正常供电。

此外,备份供电也是供电设计中的一个重要方面,它可以通过设置备用变电所或备用电源等来保障供电的连续性。

综上所述,煤矿采区供电设计是一个综合性的工作,需要考虑到供电方式、供电电压等级、供电线路设计以及应急供电和备份供电等方面的问题。

只有通过科学合理的供电设计,才能保障煤矿的高效运营和矿工的安全。

采区供电设计 (2)

采区供电设计 (2)

采区供电设计计算说明书1.采区变电所位置的选择和设备布置:(1) 设于能向最多生产机械供电的负荷中心,使低压供电距离合理,并力求减少变电所的移动次数。

(2) 设于顶,底板坚固且无淋水及通风良好的地方,以保证变电所硐室内的温度不超过附近巷道温度的5°。

(3) 便于变电所设备运输此外,采区变电所不能设在工作面的顺槽中,一般设于采区与部署斜巷轨道巷之间的联络巷内。

掘进工作面的供电一般由采区变电所承担,不易设变电所。

2.采区用电设备的负荷统计,确定采区动力变压器的容量、台数。

(1)由8—2知ΣPe=399.9KW, 而功率因数从表2—1查得cos Φpj=0.6~0.7,取值0.7,计算需用系数为: Kx=0.286+0.714∑PePe max=0.286+0.714×80÷399.9=0.43 变压器容量为: S=pje x P K ϕcos ∑=0.43×399.9÷0.77=245.6KVA查表1—3可知,根据计算值选用一台KSJ 3—320/6型,低压为690V 。

(2)供电方式及电压等级的确定根据题意及8—2采区负荷统计表可知,采用固定式采区变电所供电,电压等级采用660V 。

(3)用电设备分组及配电点的数量及位置确定根据表8—2设备名称及使用地点,在回风巷和顺槽距工作面50米处和东翼第一区段上下巷,分别设1、2、3、4配电点。

对于上山带式输送机和顺槽带式输送机,分别采用干线式供电。

3.拟定采区供电图。

4电缆的确定当变电所在图1—8a中1、2位置的2位置时,第一区段(如西翼)为一个回采工作面,而东翼进行掘进准备时,其低压供电距离最远。

据此考虑各条供电电缆的长度,它们分别为:4.1第一配电点电缆长度的确定(1)第一配电点干线电缆选择:Lg1=(20+20+130+510-50)×1.1+24=717m式中 20+20——变电所内及变电所至第一区段平巷的距离;130+510——工作面和一翼区段走向长度;50——配电点距工作面的距离;1.1——橡套电缆的增数。

采面供电设计

采面供电设计

播土采区1307采面供电设计计算一、概述 (2)二、变电所及采面配电点位置的确定 (2)1.变电所位置确定 (2)2.采面配电点位置的确定 (2)三、负荷统计及其配电点变压器容量的选择 (3)1.负荷统计 (3)2.低压开关及配电点动力变压器选择 (4)四、电缆的选择 (6)1.高压电缆选择 (10)2.高压电缆截面的校验 (11)3.采煤机供电低压电缆的选择 (11)4.采面溜子低压电缆的选择 (12)5.乳化泵低压电缆的选择 (12)6.喷雾泵低压电缆的选择 (13)7.按启动条件校验各电缆 (13)五、过电流保护装置整定计算 (15)六、《12307采面供电图》见附图1-1 (19)七、《12307采面设备布置图》供电图见附图2-2 (19)一、概述二、该采煤工作面位于播土工业广场以东约2100m处, 工程垂直埋深47-150m。

切眼长度240m, 采长1400m左右。

工作面采用单一倾斜长壁后退式综合机械化采煤法, 采用MG-300/730-WD采煤机进行采煤, 一次采全高。

采用SGZ960/800中双链刮板输送机、SZZ960/250转载机和DSJ120/50/200X型可伸缩皮带输送机进行运输, 并配备轮式破碎机进行破碎。

上下端头采用ZZG6200/19/38型支撑掩护式液压支架, 切眼中间采用ZZ4800/18/38型支撑掩护式液压支架。

三、变电所及采面配电点位置的确定1.变电所位置确定2.根据采区变电所位置选择原则, 采区变电所要位于负荷中心,并且采用就近原则进行选择。

采面动力供电应由播土采区东二里块井下变电所进行供电。

供电电压为10KV, 供电线路长度为1680米左右。

3.采面配电点位置的确定四、工作面动力由采面下运巷设备列车移动变电站提供。

移动变电站设置在采面运输巷内, 且敷设供移动变电站的专用轨道, 轨距为900mm, 并将其设置在距采面切眼下出口150m位置。

各设备安装详细位置见附图(1-1)。

采区供电设计课程设计

采区供电设计课程设计

采区供电设计课程设计一、教学目标本课程的教学目标是使学生掌握采区供电设计的基本原理和方法,能够运用所学知识进行简单的采区供电设计。

1.掌握采区供电系统的基本组成和功能。

2.理解采区供电设计的基本原则和方法。

3.熟悉采区供电系统的运行管理和维护。

4.能够运用所学知识进行简单的采区供电设计。

5.能够对采区供电系统进行运行管理和维护。

情感态度价值观目标:1.培养学生对采区供电系统的安全意识和责任心。

2.培养学生对电力工程的热爱和敬业精神。

二、教学内容本课程的教学内容主要包括采区供电系统的基本组成和功能、采区供电设计的基本原则和方法、采区供电系统的运行管理和维护等方面的知识。

具体的教学大纲如下:1.采区供电系统的基本组成和功能2.采区供电设计的基本原则和方法3.采区供电系统的运行管理和维护三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法、实验法等。

1.讲授法:通过教师的讲解,使学生掌握采区供电系统的基本组成和功能、采区供电设计的基本原则和方法、采区供电系统的运行管理和维护等方面的知识。

2.讨论法:通过小组讨论,使学生深入理解采区供电系统的运行管理和维护等方面的知识。

3.案例分析法:通过分析实际案例,使学生掌握采区供电设计的基本原则和方法。

4.实验法:通过实验操作,使学生了解采区供电系统的运行管理和维护等方面的知识。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选用合适的教材,如《采区供电设计原理》等。

2.参考书:提供相关的参考书籍,如《采区供电系统设计手册》等。

3.多媒体资料:制作相关的多媒体课件,如采区供电系统的组成和功能、采区供电设计的原则和方法等。

4.实验设备:准备相关的实验设备,如采区供电系统模型等,以便进行实验操作。

五、教学评估本课程的评估方式将包括平时表现、作业和考试三个部分,以全面、客观、公正地评估学生的学习成果。

煤矿采区供电设计

煤矿采区供电设计

煤矿采区供电设计煤矿采区供电设计是指针对煤矿开采过程中需要的电力供应系统进行规划、设计和实施的过程。

一个合理的煤矿采区供电设计方案应该能够满足煤矿采区各个区域的电力需求,保障生产的正常进行,同时确保供电系统的安全可靠,提高矿区电力资源的利用效率。

首先,在进行煤矿采区供电设计时,需要对矿区的整体布局和现有的电力设施进行调查和勘察。

通过对矿区的电力负荷情况、用电设备、强电需求、用电能力等进行分析,综合考虑矿区的运行模式和用电特点,确定煤矿采区的供电能力和用电设备的配置。

其次,在煤矿采区供电设计中,需要考虑到矿区的主要设备和工艺过程对电力质量的要求。

根据矿区的用电特点,选择合适的供电设备,确定适当的电源电压和频率,确保供电系统能够满足矿区各个环节的用电要求,避免因为电压、电流波动等问题导致设备故障和生产事故的发生。

另外,在煤矿采区供电设计中,需要考虑到矿井的地质条件和环境因素对供电系统的影响。

例如,煤矿采区常常存在有害气体、水分、灰尘等环境污染物,这些都对供电设备的运行和维护提出了更高的要求。

因此,需要选择防爆、防水、抗污染的供电设备,保证供电系统的正常运行和安全可靠。

此外,煤矿采区供电设计还需要考虑系统的可靠性和容错能力。

煤矿采区作为一个连续作业的系统,对供电系统的连续性和稳定性要求较高。

因此,在设计过程中需要进行合理的备份和冗余设计,保障供电系统在设备故障、线路故障等突发情况下的正常运行。

最后,在煤矿采区供电设计中,还需要考虑节能和环保因素。

煤矿的采矿过程需要大量的电力支持,因此,合理利用新能源和节能技术,在供电系统中引入可再生能源等,降低对传统能源的依赖,减少环境污染和能源消耗。

综上所述,煤矿采区供电设计是一个复杂而关键的过程,需要综合考虑煤矿的实际情况和用电需求,充分利用现代化的电气设备和技术手段,确保矿区的安全和生产的正常进行。

通过合理的设计,可以提高煤矿采区供电系统的可靠性和稳定性,实现煤矿的高效、安全和可持续发展。

煤矿井下采区供电系统设计

煤矿井下采区供电系统设计

煤矿井下采区供电系统设计一、供电线路设计1.煤矿井下采区供电线路应采用三相四线制,线路电压为380/660V,频率为50Hz。

2.采用0.4/0.69kV双皮带电缆供电,采用Y型接线方式,配电箱与电缆的连接采用专用接头,保证安全可靠。

3.供电线路应采用集中供电和分散供电相结合的方式,根据井下设备的不同需求进行合理配电。

二、配电装置设计1.采用箱式变电站作为供电系统主要配电装置,箱式变电站应具备防尘、防水、防爆等功能,能够在恶劣的井下环境中正常工作。

2.配电装置应根据井下采区的实际情况进行合理布置,确保供电系统的可靠性和安全性。

3.配电装置应具备过载、短路、漏电等保护功能,并及时报警或切断电源,确保井下设备和人员的安全。

三、电缆敷设设计1.电缆应采用阻燃、耐磨损的特殊材料,具备良好的绝缘性能和机械性能,能够在井下恶劣环境中长期稳定运行。

2.电缆敷设应避免与锚杆、滚筒等设备相接触,避免外力磨损和机械损坏。

3.电缆敷设应采用固定夹具或线槽等形式固定,确保电缆的安全可靠运行。

四、绝缘电缆保护设计1.在采区内应设置绝缘保护装置,控制电缆的绝缘电阻,确保电缆与井壁不发生电击事故。

2.绝缘保护装置应具有自动断电功能,在电缆故障发生时能够及时切断电源,避免事故扩大发生。

3.绝缘电缆保护装置应定期检查和维护,确保其正常工作。

以上是一份关于煤矿井下采区供电系统设计的基本内容,为确保井下电气设备的安全运行,设计应遵循相关的国家标准和规范,并定期进行检查和维护。

同时,设计人员还需要根据煤矿井下采区的具体情况,合理安排供电线路、配电装置和电缆敷设等。

只有确保供电系统的可靠性和安全性,才能保障煤矿井下电气设备的正常运行。

煤矿采区变电所供电设计

煤矿采区变电所供电设计

煤矿采区变电所供电设计一、总体设计思路1.稳定性原则:供电系统应具有良好的稳定性,能够保证煤矿采区内各设备的正常运转。

2.可靠性原则:供电系统应具有高可靠性,能够保证变电所供电中断的概率极低,并能够有效应对各种突发状况。

3.安全性原则:供电系统应符合相关的安全标准和规范,确保供电系统的安全运行,并能够防范电气火灾和其他事故的发生。

4.经济性原则:供电系统设计应兼顾经济性,尽量减少投资成本同时保证供电质量。

5.环保性原则:供电系统设计应符合环保要求,减少对环境的污染。

二、供电系统设计内容1.负荷计算:通过对矿区设备的负荷需求进行计算,确定变电所的负荷容量,以保证变电所能够稳定供电。

2.供电方案设计:根据矿区的用电需求和供电条件,设计供电方案,包括输电线路的布置、变电所的布置和容量、开关设备的选择等。

3.供电线路设计:根据输电距离、负荷容量和供电质量要求,确定供电线路的截面、种类、走向和敷设方式,并进行线路杆塔的选型和布置。

4.变电所设计:确定变电所的布置和容量,包括主变压器的容量选择、高压开关设备的选型和布置、配电装置和保护装置的选型等。

5.供电系统配套设施设计:包括照明系统、接地系统、防雷系统、电力监测系统、安全设备等。

6.供电系统保护设计:设计合理的过电流保护、过电压保护、短路保护等措施,确保供电系统的安全性和可靠性。

7.供电系统运维设计:设计供电系统的运维管理办法,包括设备维护、故障排除、检修计划制定等。

三、供电系统设计要点1.考虑煤矿采区的特殊环境要求,对供电设备进行防爆设计,并选用合适的防爆型号设备。

2.根据供电线路的长度和负荷情况,选择合适的输电电压等级,以减少线路损耗和投资成本。

3.合理设计变电所的布置,使其满足矿区用电的需求,并兼顾安全、经济和运维的要求。

4.选用可靠性高的开关设备和保护装置,提高供电系统的可靠性和安全性。

5.提前考虑供电系统的扩容需求,合理规划变电所的容量和配电装置的备用容量。

采区供配电设计规范

采区供配电设计规范

6采区供配电设计6.1 采区变电所设计6.1.1采区严禁选用带油电气设备,设备选型应按现行《煤矿安全规程》的有关规定执行。

6.1.2采区变电所的位置选择,应符合下列规定:1.采区变电所宜设在采区上(下)山的运输斜巷与回风斜巷之间的联络巷内,或在甩车场附近的巷道内;2.在多煤层的采区中,各分层是否分别设置或集中设置变电所,应经过技术经济比较后择优选择;3.当采用集中设置变电所时,应将变电所设置在稳定的岩(煤)层中。

6.1.3当附近变电所不能满足大巷掘进供电要求时,可利用大巷的联络巷设置掘进变电所。

当大巷为单巷且无联络巷利用时,可采用移动变电站供电。

6.1.4采区变电所硐室的长度大于6m时,应在硐室的两端各设一个出口,并必须有独立的通风系统。

6.1.5采区变电所硐室,应符合下列规定: 1.硐室尺寸应按设备数量及布置方式确定,一般不预留设备的备用位置;2.硐室必须用不燃性材料支护;3.硐室通道必须装设向外开的防火铁门,铁门上应装设便于关严的通风孔;4.硐室内不宜设电缆沟,高低压电缆宜吊挂在墙壁上;5.变压器宜与高低压电器设备布置于同一硐室内,不应设专用变压器室;6.硐室门的两侧及顶端应预埋穿电缆的钢管,钢管内径不应小于电缆外径的1.5 倍;7. 硐室内应设置固定照明及灭火器。

6.I.6单电源进线的采区变电所,当变压器不超过2台且无高压出线时,可不设置电源进线开关。

当变压器超过2 台或有高压出线时,应设置进线开关。

6.1.7双电源进线的采区变电所,应设置电源进线开关。

当其正常为一回路供电、另一回路备用时,母线可不分段;当两回路电源同时供电时,母线应分段并设联络开关,正常情况下应分列运行。

6.1.8由井下主(中央)变电所向采区供电的单回电缆供电线路上串接的采区变电所数不应超过3个。

6.2 移动变电站6.2.1下列情况宜采用移动变电站供电:1.综采、连采及综掘工作面的供电;2.由采区固定变电所供电困难或不经济时;3.独头大巷掘进、附近无变电所可利用时。

采区供电设计

采区供电设计

第六章采区供电设计一、采区变电所位置的选择采区变电所的位置一般设在两条采区上山之间,在特殊情况下,也可以设在其它合适的地方,采区变电所的位置应遵循下述原则:1、应尽量靠近采区用电设备的负荷中心;2、顶底板条件好,且无淋水及地质构造影响;3、通风条件好、设备运送方便,且进出线易于敷设。

二、拟定供电电压及供电方案1、采区及设备的供电回路拟定采区用电设备的供电回路数,决定于用电设备的负荷等级。

采煤工作面或掘进工作面的所有机电设备,假如由于某种因素对它们停电,仅仅对产量有所影响,而不会引起人员生命发生危险等重大事故,此时,可采用单回路供电。

对于采区变电所的电源进线回路数要通过度析决定,假如一个矿井的采区较多,那么某一采区停电一段时间,对整个矿井的产量影响并不大,对这样的采区供电时,采用一路电源的供电系统便可满足规定了,不需要设立备用电源。

对于采用综合机械化采煤的矿井,假如仅设立一个或两个采煤工作面就能完毕全矿的计划产量,频繁停电,必将影响全矿生产任务的完毕,因此对这类采区供电时,便可考虑设立备用电源,采用双回路或环形供电系统。

对采区中的每一台机电设备来讲,假如停电,仅局部影响生产,采用一路电源对它们供电即可。

对于个别设立了地位十分重要的分区水泵的采区,由于这样的水泵属于一类负荷,假如它和采区机电设备由同一个采区变电所供电,那么对这样的采区变电所供电时,必须设立备用电源,并且由采区变电所对这些水泵供电时,也必须采用双回路或环形供电系统。

2、供电电压等级的拟定目前,在采区供电设计中,采区变电所的入线电压,一般采用6000V。

对出线电压,380V 的电压已逐步淘汰。

由于设备的功率越来越大,为了减少线路的电能损失,一般在660V与1140V电压之间。

对于功率较大的设备,要尽也许选用1140V的电压等级。

对一般功率的设备,要视具体情况而定。

部分大型现代化矿井综采工作面电牵引采煤机组已使用3000V 电压。

三、负荷分析与记录为了对的地设计一个新采区供电系统,一方面必须对采区的负荷情况进行全面分析,其内容涉及:用电设备的名称、数量、电压等级、功率、功率因数、负荷系数等有关参数,此外还要了解用电设备在采区的分布情况以及互相之间的关系、每台设备工作地位的重要性和它们对供电的规定等。

采区供电设计详解PPT课件

采区供电设计详解PPT课件
第25页/共51页
2.高压电缆截面的选择及校验--高压电缆截面 选择
第26页/共51页
2.高压电缆截面的选择及校验--按电缆短路时 的热稳定条件校验
第27页/共51页
2.高压电缆截面的选择及校验--按经济电流密 度确定电缆截面
第28页/共51页
3、低压电缆的选择及校验 • 选择原则 • 1、矿用橡套电缆型号选择时应符合《煤矿安全规程》的规定。 • 2、在正常工作时电缆芯线的实际温升不得超过绝缘所允许的最高温升,
作面,也可在普通660伏采区使用。
第23页/共51页
变压器正常运行时电压损失的计算
第24页/共51页
2、高压电缆截面的选择及校验--选择原则:
• 选择原则: • 1、选择适合井下用的高压电缆。 • 2、电缆耐压要大于电网电压。 • 3、电缆的截面要满足负荷及继电保护要求。4、选择的电缆满足供电要求。
• 式中:

S ———— 所计算的电力负荷总的是视在功率。KVA

∑PN ———
参加计算的所有用电设备(不包括
备用)额定功率之和。KW

cosφ —— 参加计算的电力负荷的平均功率因数。

Kr ———— 需用系数。
第20页/共51页
Kr— 需用系数 取值
第21页/共51页
平均功率因数cosφ 的取值
第30页/共51页
低压电缆的选择及校验--电缆截面确定
• 1、电缆截面的选择,应满足下列条件 • (1)电缆的正常工作负荷电流应等于式小于电缆允许
持续电流; • (2)正常运行时,电动机的端电压应不低于额定电压
的10%。 • (3)电缆末端的最小二相短路电流应大于馈电开关整
定电流值的1.5倍。 • (4)、对橡套电缆,需考虑电缆机械强度要求的最小

某煤矿井下采区变电所供电系统设计

某煤矿井下采区变电所供电系统设计

煤矿采区供电设计所需原始资料煤矿采区供电设计所需原始资料在进行井下采区供电设计时,必须首先收集以下原始资料,作为设计的依据。

(1)矿井的瓦斯等级,采区煤层走向、倾角,煤层厚度、煤质硬度、顶底板情况、支护方式。

(2)采区巷道布置,采区区段数目、区段长度、走向长度、采煤工作面长度,采煤工作面数目,巷道断面尺寸。

(3)采煤方法,煤、矸、材料的运输方式,通风方式。

(4)采区机械设备的布置,各用电设备的详细技术特征。

(5)电源情况。

了解采区附近现有变电所及中央变电所的分布情况,供电距离、供电能力及高压母线上的短路容量等情况。

(6)采区年产量、月产量、年工作时数,电气设备的价格、当地电价、硐室开拓费用、职工人数及平均工资等资料。

此外,在做井下采区供电设计时还需要准备下述资料:《煤矿安全规程》、《煤炭工业设计规范》、《煤矿井下供电设计技术规定》、《矿井低压电网短路保护装置整定细则》、《矿井保护接地装置安装、检查、测定工作细则》、《煤矿井下检漏继电器安装、运行、维护与检修细则》、《煤矿电工手册》第二分册(下)、《中国煤炭工业产品大全》、各类有关的电气设备产品样本、各类供电教材。

煤矿采区供电设计供电系统的拟定拟定采区供电系统,就是确定变电所内高、低压开关和输电线路及控制开关的数量。

在拟定供电系统时,应考虑以下原则:(1)在保证供电安全可靠的前提下,力求所用的开关、起动器和电缆等设备最少;(2) 原则上一台起动器只控制一台低压设备;一台高压配电箱只控制一个变压器。

当高压配电箱或低压起动器三台及以上时,应设置进线开关;采区为双电源供电时,应设置两台进线高压配电箱。

(3)当采区变电所的动力变压器多于一台时,应合理分配变压器的负荷,原则上一台变压器负担一个工作面的用电设备;且变压器最好不并联运行;(4)由工作面配电点到各用电设备宜采用辐射式供电,上山及顺槽的输送机宜采用干线式供电;供电线路应走最短的路线,但应注意回采工作面(机采除外)、轨道上下山等处不应敷设电缆,溜放煤、矸、材料的溜道中严禁敷设电缆,并尽量避免回头供电;(5)大容量设备的起动器应靠近配电点的进线端,以减小起动器间电缆的截面;(6)低瓦斯矿井掘进工作面的局部通风机,可采用装有选择性漏电保护装置的供电线路供电,或采用掘进与采煤工作面分开供电;(7)瓦斯喷出区域、高瓦斯矿井、煤(岩)与瓦斯(二氧化碳)突出矿井中,掘进工作面的局部通风机都应实行三专(专用变压器、专用开关、专用线路)供电;(8)局部通风机与掘进工作面的电气设备,必须装有风电闭锁装置。

采区供电设计完整版11.doc

采区供电设计完整版11.doc

前言本书是根据辽工大职业技术学院《机电设备维修与管理》专业毕业设计的要求,与图纸配套而编写的毕业设计说明书。

学校安排的毕业设计是对我们所学专业知识的总结和运用,培养我们的自学能力和独立性。

机电技术专业是应用煤矿井下供电理论知识具体解决煤矿井下供电的有关技术问题。

本设计是以山西汾矿集团水峪煤矿某采区模拟负荷的资料为基础,遵循《煤矿安全规程》、《煤矿工业设计规范》、《煤矿井下供电设计技术规定》等技术要求,在保证安全可靠的基础上进行经济技术比较,选择最佳方案。

设备选型应采用定型成套设备,尽量采用新技术,新产品,积极采取措施减少电能的损耗,节约能源。

全书共分七章,第一章阐述了井下供电设计的目的、任务和要求,第二章原始资料分析。

第三章按井下供电设计程序,对各设计环节进行分析、阐明。

第四章对井下高低压电缆的选择进行确定、并对支线和干线电缆的选择进行校验,电缆芯线截面按机械强度和允许电压损失进行选择。

第五章对井下短路的电流进行计算,分别对高、低压电网的短路参数进行计算。

第六章井下电气设备高低压进行选择、分别按工作条件、工作电压、短路容量、动热稳定性条件进行校验。

第七章对井下漏电保护及接地系统的整定。

由于编者学识水平有限,书中难免有错误和不妥之处,恳请老师批评指正。

编者:李瑞文1 采区供电设计概述1.1 采区供电设计的目的、要求及任务采区供电是整个井下供电的一个重要组成部分,同时也是井下采煤机械化,电气化的物质基础,它对整个采区的正常生产和安全应影响极大。

因此,正确地进行采区供电设计是十分必要的。

1.1.1采区供电设计的目的井下采区供电设计的目的是应用煤矿井下供电理论知识具体解决井下供电的技术问题,使学生学会查阅技术资料和各种文献的方法,培养计算数据,绘制图表,编写技术资料的能力,掌握井下供电设计的技术经济政策及安全规程的规定,完成井下采区供电设计的内容及对机电设计技术员的基本训练。

1.1.2对井下采区供电设计的基本要求1)设计要符合《煤矿安全规程》、《煤矿工业设计规范》和《煤矿井下供电设计技术规定》。

煤矿采区供电设计

煤矿采区供电设计

内蒙古蒙发煤炭有限责任公司呼和乌素煤矿煤矿4101综采工作面供电设计单位:机电科编制:张东东日期: 2012年8月1日呼和乌素煤矿采区供电设计一、原始资料:1、井田设计能力120万吨/年。

2、井田内布置方式:采区式,运输大巷底板岩巷。

3、矿井瓦斯等级:低等级。

4、采区煤层倾角:0°─5°设计煤层:4#。

0 / 20二、设计要求:1、设计要符合煤矿安全规程、煤矿工业设计规程、煤矿井下供电设计技术规定。

2、设计遵循煤炭工业建设的方针政策,在保证供电安全可靠的基础上进行技术经济比较,选用最佳方案。

3、设备选型时,应采用定型的成套设备,尽量采用新技术、新产品,积极采取措施减少电能损耗,节约能源。

4、设计质量要确保技术的先进性、经济合理性、安全适应性。

目录第一节、采区移动变电站位置的确定 (1)一、采区供电对电能的要求 (2)二、环境要求 (3)第二节拟定采区供电系统的原则 (3)一、采区高压供电系统的拟定原则 (3)二、采区低压供电系统的拟定原则 (3)第三节采区主要设备 (4)第四节采区负荷的计算及变压器容量、台数确定 (5)一、变压器选择注意事项 (5)二、台数的确定 (5)三、采区负荷的计算及变压器容量、台数确定 (5)第五节采区低压供电网络的计算 (7)一、电缆型号确定 (7)二、电缆长度确定 (8)三、选择支线电缆 (8)四、干线电缆的选择 (12)第六节采区电气设备的选择 (13)一、矿用低压隔爆开关选择 (13)三、磁力起动器的选择 (14)第七节采区接地保护措施 (14)第八节采区漏电保护措施 (16)第一节、采区移动变电站位置的确定一、采区供电对电能的要求1、电压允许偏差电压偏差计算公式如下: 电压偏差=额定电压额定电压—实际电压×100%《电能质量供电电压允许偏差》(GB 12325—90)规定电力系统在正常运行条件下,用户受电端供电电压允许偏差值为:(1)35KV 及以上供电和对电压有特殊要求的用户为额定电压的+5%—-5%;(2)10KV 及以上高压供电和低压电力用户的电压允许偏差为用户额定电压的+7%—-7%;(3)低压照明用户为+5%—-10%。

煤矿采区供电设计

煤矿采区供电设计

煤矿采区供电设计
首先,煤矿采区供电设计需要考虑的首要问题是供电线路的布置。

通常,煤矿采区供电线路通常分为主馈线、支线和末端用户线路三个部分。

主馈线是从变电所引入煤矿,通过合理的布置和规划,确保供电线路的安全性和可靠性。

支线连接主馈线和末端用户线路,负责将电能输送到各个采煤区井下设备。

末端用户线路是将电能输送到井下设备,如提升机、风机、照明设备等。

其次,煤矿采区供电设计还需要考虑电源系统的可靠性。

为确保煤矿采区供电的连续性,需要采用双电源供电系统。

一方面,主要电源由变电所供电,主馈线和支线采用环网制,以提高供电系统的可靠性,减少电能中断的可能性。

另一方面,备用电源由备用变电所提供,以保证在主电源出现故障时,能及时切换到备用电源,确保煤矿采区的供电正常。

此外,煤矿采区供电设计还需要考虑井下设备的功率需求。

不同的井下设备具有不同的功率需求,根据实际情况进行合理的负荷配分和供电容量的计算。

在计算供电容量的同时,还要考虑负荷的平衡和合理性,以提高供电系统的能源利用率。

最后,煤矿采区供电设计还需要考虑电气设备的选择和安装。

电气设备的选择需要兼顾设备的功能性、安全性和适应性,以满足井下设备的工作需求。

安装电气设备时,需要按照相关规范和标准进行施工和调试,确保设备正常运行和使用安全。

综上所述,煤矿采区供电设计是一项复杂而重要的工作,需要考虑供电线路的布置、电源系统的可靠性、井下设备的功率需求以及电气设备的
选择和安装。

通过科学合理的供电设计,可以提高煤矿的生产效率和安全性,确保煤矿的正常运转。

采 区 供 电 设 计 要 求

采 区 供 电 设 计 要 求

井下采区供电设计说明书目录:1:确定采区变电所和工作面配电点的位置。

2:拟定采区供电系统。

3;计算与选择采区变电所动力变压器(型号、容量、台数)。

4:选择采区低压动力电缆(型号、长度、芯数、截面积)。

5:选择采区配电装置。

6:整定采区低压电网过流保护装置。

7:制订采区保护接地措施。

8:制定采区漏电保护措施。

9:制定采区变电所防火措施。

10:绘制采区供电系统图。

11:绘制采区变电所设备布置图。

采区供电设计要求采区供电设备的选择包括主变压器的选择,采区供电系统的拟定,低压电缆的选择,低压开关的选择。

相关计算有负荷容量和负荷电流的计算,电压损失的计算,短路电流的计算和过流保护整定计算。

第一节设备选择前的准备一、采区供电设计所需原始资料在进行井下采区供电设计时,必须首先收集以下原始资料,作为设计的依据。

(1)矿井的瓦斯等级,采区煤层走向、倾角,煤层厚度、煤质硬度、顶底板情况、支护方式。

(2)采区巷道布置,采区区段数目、区段长度、走向长度、采煤工作面长度,采煤工作面数目,巷道断面尺寸。

(3)采煤方法,煤、矸、材料的运输方式,通风方式。

(4)采区机械设备的布置,各用电设备的详细技术特征。

(5)电源情况。

了解采区附近现有变电所及中央变电所的分布情况,供电距离、供电能力及高压母线上的短路容量等情况。

(6)采区年产量、月产量、年工作时数,电气设备的价格、当地电价、硐室开拓费用、职工人数及平均工资等资料。

此外,在做井下采区供电设计时还需要准备下述资料:《煤矿安全规程》、《煤炭工业设计规范》、《煤矿井下供电设计技术规定》、《矿井低压电网短路保护装置整定细则》、《矿井保护接地装置安装、检查、测定工作细则》、《煤矿井下检漏继电器安装、运行、维护与检修细则》、《煤矿电工手册》第二分册(下)、《中国煤炭工业产品大全》、各类有关的电气设备产品样本、各类供电教材。

二、采区变电所位置的确定采区变电所是采区供电的中心,它担负着整个采区的受电、变电、配电任务。

煤矿采区供电系统设计

煤矿采区供电系统设计
确保采区供电系统在任何情况下都能提供安全可 靠的电力,预防发生电气事故。
02 设备可靠性
选用高可靠性、高稳定性的电气设备,降低故障 率,提高供电系统的稳定性。
03 备用电源
为确保安全可靠,应设置备用电源,以便在主电 源出现故障时能够迅速切换。
节能环保原则
优化供电系统
通过优化供电系统设计, 降低能耗,提高能源利用 效率。
应急预案
制定供电系统应急预案, 定期进行演练,确保在突 发情况下能够迅速响应。
事后分析
对故障处理过程进行记录 和分析,总结经验教训, 优化供电系统设计和管理 。
煤矿采区供电系统发展趋势
06
与展望
智能化发展
智能监控
利用物联网、大数据等技术,实时监控供电系统的运行状态,实现 故障预警和远程控制。
智能调度
供电线路设计
01
02
03
线路选型
根据采区环境条件和用电 设备特性,选择合适的电 缆型号和截面,确保线路 安全可靠运行。
线路路径
合理规划线路路径,尽量 避开危险区域,减少交叉 跨越,降低安全风险。
线路保护
根据线路长度和负载情况 ,配置相应的保护装置, 提高线路的稳定性和可靠 性。
变压器设计
变压器型号
减少环境污染
合理处理采区产生的废弃 物,降低对环境的污染, 保护生态环境。
节能设备
选用节能型电气设备,减 少电能消耗和浪费。
经济合理性原则
控制成本
01
在满足安全、可靠、节能环保的前提下,合理控制供电系统设
计的成本。
经济效益
02
提高供电系统的经济效益,降低运营成本,增加企业盈利能力

技术经济比较

矿井采区供电设计

矿井采区供电设计

矿井采区供电设计首先,供电系统是矿井采区供电设计的重要组成部分。

矿井采区供电系统一般由配电变电站、配电路、电缆线路等构成。

配电变电站是供电系统的核心设施,负责将输电线路电能进行变换和配电。

配电路主要用于将变电站输出的电能分配到各个采矿设备、照明设备等终端。

电缆线路则是连接分配设备和电力终端设备之间的导线。

在供电系统的设计过程中,需要考虑电能损耗和电能负荷平衡等因素,保证供电系统的可靠性和稳定性。

其次,供电方式是矿井采区供电设计的另一个重要方面。

矿井采区的供电方式一般有交流供电和直流供电两种。

交流供电方式适用于较大的供电负荷,可以通过变压器将输电线路的高压电能变换成低压交流电,供给采矿设备使用。

直流供电方式适用于远离电网的矿井采区,可以降低输电线路的损耗,提高供电的稳定性。

在供电方式的设计过程中,需要综合考虑供电负荷、电能损耗和供电可靠性等因素,选择合适的供电方式。

最后,安全防护是矿井采区供电设计的关键要素。

矿井采区供电存在一定的危险性,一旦发生电气事故,会对矿工和采矿设备造成严重威胁。

因此,在供电设计过程中,需要采取一系列的安全防护措施,保障矿井采区的供电安全。

例如,可以设置过电压保护装置、漏电保护装置等设备,及时监测和隔离电气故障,减少事故发生的风险。

此外,还需要对供电系统进行定期巡视和维护,确保供电设备的正常运行和安全使用。

综上所述,矿井采区供电设计是确保矿井采区正常运行的重要保障。

供电系统、供电方式和安全防护是矿井采区供电设计的关键要素,需要充分考虑采矿设备的电能需求、供电负荷平衡等因素,确保供电系统的可靠性和稳定性。

此外,还需要采取一系列的安全防护措施,保障矿井采区的供电安全。

通过科学合理的供电设计,可以提高矿井采区的供电效率,降低事故发生的概率,提高矿井采区的生产效益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采区供电设计
———————————————————————————————— 作者:
———————————————————————————————— 日期:
采区供电设计
作者:佚名文章来源:本站原创点击数:559更新时间:2011-3-8


采区供电设计
1,采区变电所位置的选择和设备布置:
(1)设于能向最多生产机械供电的负荷中心,使低压供电距离合理,并力求减少变电所的移动次数。
选用UP-1000-3ⅹ25+1ⅹ10
Lz14(面积范围:4-6mm²,取s=4mm²)
选用Uz-500-3ⅹ4+2ⅹ4
Lz21(面积范围:16-35mm²,取s=35mm²)
选用UP-1000-3ⅹ35+1ⅹ6+4ⅹ4
Lz22(面积范围:16-35mm²,取s=35mm²)
选用UP-1000-3ⅹ35+1ⅹ6+4ⅹ4
②.支线截面积型号的选择:(根据掘进机强度选择)
Lz11 (面积范围:35-50mm²,取s=50mm²)
选用UCP-1000-3ⅹ50+1ⅹ10+7ⅹ4
Lz12(面积范围:16-35mm²,取s=35mm²)
选用UP-1000-3ⅹ50+1ⅹ6+4ⅹ4
Lz13 (面积范围:16-25mm²,取s=25mm²)
Lz23 (面积范围:4-6mm²,取s=6mm²)
选用UP-1000-3ⅹ6+1ⅹ6
Lz24(面ⅹ4+2ⅹ6
Lz31(面积范围:16-25mm²,取s=25mm²)
选用UP-1000-3ⅹ25+1ⅹ6
Lz32 (面积范围:4-6mm²,取s=6mm²)
选用UP-1000-3ⅹ6+1ⅹ6
Lz33(面积范围:4-6mm²,取s=6mm²)
选用UP-1000-3ⅹ6+1ⅹ6
Lz34(面积范围:4-6mm²,取s=4mm²)
选用Uz-500-3ⅹ6+2ⅹ4
Lz41(面积范围:4-6mm²,取s=6mm²)
选用UP-1000-3ⅹ6+1ⅹ6
Lz42(面积范围:4-6mm²,取s=6mm²)
Lg33=(50+15+450)×1.1+18=584.5m(煤电钻与变压器,随工作面每隔80-100m移动一次的最远长度)
Lg34=100m(电钻电缆长度)
④第四配电点干线电缆的选择:Lg4=(20+20)×1.1=44m
支线电缆长度选择:
Lg41=10m(局部通风机电缆长度)
Lg42=450 ×1.1+18=513m(电钻变压器电缆长度
g1截面的选择:Ig1=∑Ig·kx=(p1+25.8ⅹ2+19.7
2.19) ⅹ0.7=115A
经查表可知:s=35mm²取s=50mm²故选用UP-100-3ⅹ50+1ⅹ10
g2截面的选择:Ig2=∑Ig·kx=(25.8ⅹ2
25.8ⅹ2+8.7+2.19) ⅹ0.8=91.3A
经查表可知:s=25mm²取s=50 mm²故选用UP-1000-3ⅹ50+1 ⅹ10
Lg43=100m(电钻电缆长度)
⑤顺槽带运输机干线供电电缆才长度
Lg5=(210+20+180)×1.1=242m
式中180——顺槽运输机的长度。
⑥上山运输机干线式供电电缆长度
Lg6=(20+260)×1.1=308m
⑦变电所照明变压器电缆长度
Lg7=10m
(2)截面型号的选择:
①干线截面的选择(负荷电流法)
(2)设于顶,底板坚固且无淋水及通风良好的地方,以保证变电所硐室内的温度不超过附近巷道温度的5°。
(3)便于变电所设备运输
此外,采区变电所不能设在工作面的顺槽中,一般设于采区与部署斜巷轨道巷之间的联络巷内
掘进工作面的供电一般由采区变电所承担,不易设变电所。
2,采区用电设备的负荷统计,确定采区动力变压器的容量、台数。(确定1台)
g5截面的选择:Ig5=∑Ig·kx=23.2+23.2=46.4A
经查表可知:s=6.1mm²取s=10mm²故选用UP-1000-3ⅹ10+1ⅹ10
g6截面的选择:Ig6=∑Ig·kx=23.2+2.2=46.4A
查表可知:s=6.1mm²取s=10 mm²故选用UP-1000-3ⅹ10+1ⅹ10
(一个接线盒两端各加一3m,450m电缆要设3个接线盒,故应加18 m电缆)
支线电缆长度选择:
Lg11=(50+130)×1.1=198m(露点点长机组的支线长度)
Lg12=50×1.1=55m(工作面运输机尾电动机的支线长度)
Lg13=10m(回柱绞车)
Lg14=(130÷2+50)×1.1=126.5m(电钻电缆长度)
TM=(80+44×3+15+11.4+11×2+2.5×6+30×4+7.5) ×0.44÷0.7=253.25KVA
经过查表可知:故选用一台KSJ3-320/6型低压为690v矿用变压器
3,拟定采区供电图。
4,选择采区低压电缆。
(1)电缆长度的选择
①第一配电点干线电缆选择:Lg1=(20+20+130+450-50) ×1.1+18=645m
②第二配电点干线电缆长度:Lg2=(20+20+45050)×1.1+18=502m(一个接线盒两端各加一3m,450m电缆要设3个接线盒,故应加18 m电缆)
支线电缆长度选择)
支线电缆长度选择:
Lg21=(90-50)×1.1=44m(顺槽运输机支线长度)
Lg22=50×55m(工作面运输机尾电动机的支线长度)
选用UP-1000-3ⅹ6+1ⅹ6
Lg23=10m(移动溜齿轮油泵电缆长度)
Lg24=(130/2+50)×1.1=126.5m(电钻电缆长度)
③第三配电点干线电缆长度:Lg3=(20+20+130+50+15)×1.1=258.5m
支线电缆长度选择:
Lg31=50+15+10=75m(材料绞车电缆长度)
Lg332=10+15+50=75m(局部通风机电缆长度)
g3截面的选择:Ig3=∑Ig·kx=(12.9+12.6+2.19+2.19)ⅹ0.6=17.9A
经查表可知:s=4mm²取s=10mm²故选用UP-1000-3ⅹ10+1ⅹ10
g4截面的选择:Ig4=∑Ig·kx=(12.6+2.19)ⅹ0.6=8.87A
经查表可知:s=4mm²取s=10 mm²故选用UP-1000-3ⅹ10+1ⅹ10
相关文档
最新文档