常用体积及表面积计算公式

合集下载

常用图形周长面积体积计算公式

常用图形周长面积体积计算公式

常⽤图形周长⾯积体积计算公式常⽤图形周长⾯积体积计算公式:1、正⽅形C周长S⾯积a边长周长=边长×4⾯积=边长×边长C=4aS=a×a S=a22、正⽅体V体积a棱长(1)表⾯积=棱长×棱长×6 (2)体积=棱长×棱长×棱长S表=a×a×6 表=6a2 V=a×a×a V= a33、长⽅形C周长S⾯积a边长周长=(长+宽)×2C=2(a+b)⾯积=长×宽S=ab4、长⽅体V体积S⾯积a长b宽h⾼(1)表⾯积=(长×宽+长×⾼+宽×⾼)×2(2)体积=长×宽×⾼S=2(ab+ah+bh)V=abh5、三⾓形S⾯积a底h⾼⾯积=底×⾼÷2S=ah÷2三⾓形⾼=⾯积×2÷底三⾓形底=⾯积×2÷⾼6、平⾏四边形S⾯积a底h⾼⾯积=底×⾼S=ah7、梯形S⾯积a上底b下底h⾼⾯积=(上底+下底)×⾼÷2S=(a+b)×h÷28、圆形S⾯积C周长π圆周率d直径r半径周长=直径×π周长=2×π×半径⾯积=半径×半径×πC=πd C=2πrS=πr2 d=C÷πd=2r r=d÷2r=C÷2÷πS环=π(R2-r2)9、圆柱体V体积h⾼S底⾯积r底⾯半径C底⾯周长侧⾯积=底⾯周长×⾼(2)表⾯积=侧⾯积+底⾯积×2(3)体积=底⾯积×⾼S侧=ChS侧=πdhV=Sh V=πr2h圆柱体积=侧⾯积÷2×半径10、圆锥体V体积h⾼S底⾯积r底⾯半径体积=底⾯积×⾼÷3V=Sh÷3长度单位换算1千⽶=1000⽶;1⽶=10分⽶;1分⽶=10厘⽶;1⽶=100厘⽶;1厘⽶=10毫⽶⾯积单位换算1平⽅千⽶=100公顷;1公顷=10000平⽅⽶;1平⽅⽶=100平⽅分⽶;1平⽅分⽶=100平⽅厘⽶;1平⽅厘⽶=100平⽅毫⽶;1平⽅⽶=0.0015亩;1万平⽅⽶=15亩;1公顷=15亩=100公亩=10000平⽅⽶;1公亩等于100平⽅⽶;1(市)亩等于666.66平⽅⽶体(容)积单位换算1⽴⽅⽶=1000⽴⽅分⽶;1⽴⽅分⽶=1000⽴⽅厘⽶;1⽴⽅分⽶=1升;1⽴⽅厘⽶=1毫升;1⽴⽅⽶=1000升重量单位换算1吨=1000千克;1千克=1000克;1千克=1公⽄⼈民币单位换算1元=10⾓;1⾓=10分;1元=100分时间单位换算1世纪=100年;1年=12⽉;⼤⽉(31天)有:1\3\5\7\8\10\12⽉;⼩⽉(30天)的有:4\6\9\11⽉平年2⽉28天,闰年2⽉29天;平年全年365天,闰年全年366天1⽇=24⼩时1时=60分;1分=60秒1时=3600秒总数÷总份数=平均数和差问题的公式:(和+差)÷2=⼤数;(和-差)÷2=⼩数和倍问题:和÷(倍数-1)=⼩数⼩数×倍数=⼤数(或者和-⼩数=⼤数)差倍问题:差÷(倍数-1)=⼩数⼩数×倍数=⼤数(或⼩数+差=⼤数)植树问题1、⾮封闭线路上的植树问题主要可分为以下三种情形:⑴如果在⾮封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在⾮封闭线路的⼀端要植树,另⼀端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在⾮封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(⼤盈-⼩盈)÷两次分配量之差=参加分配的份数(⼤亏-⼩亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间顺流速度=静⽔速度+⽔流速度逆流速度=静⽔速度-⽔流速度静⽔速度=(顺流速度+逆流速度)÷2⽔流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌⾦额=本⾦×涨跌百分⽐折扣=实际售价÷原售价×100%(折扣<1)利息=本⾦×利率×时间税后利息=本⾦×利率×时间×(1-20%)定义定理公式(⼀)三⾓形的⾯积=底×⾼÷2。

体积与表面积的关系

体积与表面积的关系

体积与表面积的关系体积与表面积是几何学中的两个重要概念,它们在数学和物理学等领域中具有广泛的应用。

本文将探讨体积与表面积之间的关系,并分析其中的数学原理和物理应用。

一、体积的定义与计算公式体积是三维物体所占据的空间大小。

对于规则几何体,我们可以使用特定的公式来计算其体积:1. 正方体和长方体的体积公式:正方体的体积公式为V = a³,其中a表示正方体的边长。

长方体的体积公式为V = l × w × h,其中l、w和h分别表示长方体的长、宽和高。

2. 圆柱体和圆锥体的体积公式:圆柱体的体积公式为V = πr²h,其中r表示底面半径,h表示高度。

圆锥体的体积公式为V = (1/3)πr²h,其中r表示底面半径,h表示高度。

3. 球体的体积公式:球体的体积公式为V = (4/3)πr³,其中r表示球体的半径。

二、表面积的定义与计算公式表面积是三维物体外部所占据的面积大小。

同样地,对于规则几何体,我们可以使用特定的公式来计算其表面积:1. 正方体和长方体的表面积公式:正方体的表面积公式为A = 6a²,其中a表示正方体的边长。

长方体的表面积公式为A = 2lw + 2lh + 2wh,其中l、w和h分别表示长方体的长、宽和高。

2. 圆柱体和圆锥体的表面积公式:圆柱体的表面积公式为A = 2πr² + 2πrh,其中r表示底面半径,h表示高度。

圆锥体的表面积公式为A = πr² + πrl,其中r表示底面半径,l表示斜高线(母线)的长度。

3. 球体的表面积公式:球体的表面积公式为A = 4πr²,其中r表示球体的半径。

三、体积与表面积的关系体积和表面积之间存在一定的关系,特别是对于某些几何体而言。

以立方体为例,我们可以观察到体积和表面积之间的关系:对于边长为a的正方体来说,它的体积和表面积分别为V = a³、A = 6a²。

小学六年级常用表面积、体积公式

小学六年级常用表面积、体积公式

常用表面积、体积公式2019、4、29改编图形 表面积体积正方体六个面的总面积 S=6a ² 体积=棱长×棱长×棱长 =底面积×高V= a 3= S h长方体六个面的总面积 S=2(ab+bh +ah) =2h(a+b)+2ab体积=长×宽×高=底面积×高 V= abh = S h S =V ÷h h =V ÷S S =ab 圆柱侧面积=底面周长×高S 侧=Ch C=πd=2πr C= S 侧÷h 表面积=侧面积+两底面积 h = S 侧÷ C S 表=Ch +2S 底=Ch +2πr ² C=πd=2πr体积=底面积×高 V=S h=πr ²h r = C ÷π÷2 S =V ÷h h =V ÷S S =πr ²圆锥圆锥的体积=底面积×高×13V= 13Sh = 13πr 2h S =V ÷13÷hh =V ÷13÷S S =πr ² r = C ÷π÷2半圆柱侧面积=底面周长×高 S 侧=Ch C=5.14r表面积=侧面积+一个底面积 S 表=Ch +S 底=Ch +πr ² C=5.14r 体积=底面积×高 底面积是半圆的面积 V=S h=πr ²h ÷2圆管体积=底面积×高 底面积是环形的面积 V=S h=π(R ²-r 2) h圆柱变化 1、将一个圆柱截成两个圆柱,增加两个底面积;将两个圆柱拼成一个圆柱,减少两个底面积。

2、将一个圆柱从直径处沿着高剖开成为两个半圆柱,增加两个完全一样的长方形面积;将两个完全一样的半圆柱拼成一个圆柱,减少两个完全一样的长方形面积。

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表1.多面体的面积和体积公式2.旋转体的面积和体积公式1、圆柱体:表面积:2πRr+2πRh 体积:πR²h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:πR²+πR[(h²+R²)的平方根]体积:πR²h/3 (r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a² ,V=a³4、长方体a-长,b-宽,c-高S=2(ab+ac+bc) V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr²,S侧=Ch ,S表=Ch+2S底,V=S底h=πr²h 10、空心圆柱R-外圆半径,r-圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R²+Rr+r²)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a²+h²)/6 =πh²(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r1²+r2²)+h²]/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr²=π2Dd²/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)1.直线在平面的判定(1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面.(2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.(5)如果一条直线与一个平面平行,那么过这个平面一点与这条直线平行的直线必在这个平面,即若a∥α,A∈α,A∈b,b∥a,则bα.2.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.5.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面,则它们所成的角是0°的角.(2)取值围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.③最小角定理斜线和平面所成的角,是这条斜线和平面经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面任何直线所成的角.6.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法(Ⅳ)根据特殊图形的性质(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离(1)定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.8.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.③作辅助垂直平面,把求线面距离转化为求点线距离.9.平行平面的距离(1)定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.10.异面直线的距离(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法公理1:如果一条直线上的两点在一个平面,那么这条直线上的所有的点都在这个平面.公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3:过不在同一条直线上的三个点,有且只有一个平面.推论1: 经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.公理4 :平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面的两条直线或既不平行也不相交.异面直线判定定理:用平面一点与平面外一点的直线,与平面不经过该点的直线是异面直线.两异面直线所成的角:围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面、与平面相交、与平面平行①直线在平面——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面的射影所成的锐角.esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面,所成的角为0°角由此得直线和平面所成角的取值围为[0°,90°]最小角定理: 斜线与平面所成的角是斜线与该平面任一条直线所成角中的最小角三垂线定理及逆定理: 如果平面的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面.直线与平面垂直的判定定理:如果一条直线和一个平面的两条相交直线都垂直,那么这条直线垂直于这个平面.直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行.直线和平面平行的判定定理:如果平面外一条直线和这个平面的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线.a、平行两个平面平行的判定定理:如果一个平面有两条相交直线都平行于另一个平面,那么这两个平面平行.两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行.b、相交二面角(1)半平面:平面的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面.(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的取值围为[0°,180°] (3)二面角的棱:这一条直线叫做二面角的棱.(4)二面角的面:这两个半平面叫做二面角的面.(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(6)直二面角:平面角是直角的二面角叫做直二面角.esp. 两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直.记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面垂直于交线的直线垂直于另一个平面.Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。

常用图形周长面积体积计算公式

常用图形周长面积体积计算公式

常用图形周长面积体积计算公式1、正方形C周长S面积a边长周长=边长X 4面积=边长X边长C=4aS=a X a S=a 2、正方体V 体积a 棱长(1)表面积=棱长X棱长X 6 (2)体积=棱长X棱长X棱长S表=a X a X 6 表=6a3V=a X a X a V= a 33、长方形C周长S面积a边长周长=(长+宽)X 2C=2(a+b)面积=长乂宽S=ab4、长方体V 体积S 面积a 长b 宽h 高(1)表面积=(长X宽+长X高+宽X高)X 2⑵体积=长乂宽X高S=2(ab+ah+bh)V=abh5、三角形S面积a底h高面积=底乂高* 2S=ah* 2三角形高=面积X 2十底三角形底=面积X 2十高6、平行四边形S面积a底h高面积=底乂高S=ah7、梯形S 面积a 上底b 下底h 高面积=(上底+下底)X咼* 2S=(a+b)X h —28、圆形S面积C周长n圆周率d 直径r 半径周长=直径X n周长=2 X n X半径面积=半径X半径X nC=n d C=2 n rS=n r2 d=C 十nd=2r r=d 十2r=C* 2 —n S 环=n (R2-r2)9、圆柱体V 体积h 高S 底面积r 底面半径C 底面周长侧面积=底面周长X高(2)表面积=侧面积+底面积X 2⑶体积=底面积X高S 侧=ChS 侧=n dhV=Sh V= n r2h圆柱体积=侧面积十2X半径10 、圆锥体V体积h高S 底面积r 底面半径体积=底面积X高十3V=Sh- 3长度单位换算1 千米=1000米;1 米=10分米;1 分米=1 0厘米;1 米=100厘米;1 厘米=10毫米面积单位换算1 平方千米= 1 00公顷;1 公顷= 1 0000平方米;1 平方米=100 平方分米;1 平方分米=100 平方厘米;1平方厘米=100平方毫米;1平方米=0.0015亩;1 万平方米=15 亩;1公顷=15亩=100公亩=10000平方米;1 公亩等于100平方米;1(市)亩等于666.66 平方米体(容)积单位换算1 立方米=1000 立方分米;1 立方分米=1000 立方厘米;1 立方分米=1 升; 1 立方厘米=1 毫升;1 立方米=1000 升重量单位换算1 吨=1000千克;1 千克=1000克;1 千克=1公斤人民币单位换算1 元=10角;1 角=10分;1 元=100分时间单位换算1 世纪=100 年;1 年=12月;大月(31 天)有:1\3\5\7\8\10\12 月;小月(30 天)的有:4\6\9\11 月平年2月28天,闰年 2 月29天;平年全年365 天, 闰年全年366 天1 日=24小时1 时=60分;1 分=60秒1 时=3600秒总数十总份数=平均数和差问题的公式:(和+差)十2 =大数;(和一差)十2 =小数和倍问题:和十(倍数一1)=小数小数X倍数=大数(或者和—小数=大数)差倍问题:差十(倍数一1)=小数小数X倍数=大数(或小数+差=大数)植树问题1 、非封闭线路上的植树问题主要可分为以下三种情形⑴如果在非封闭线路的两端都要植树,那么:株数=段数+ 1 =全长十株距—1 全长=株距X (株数—1)株距=全长* (株数一1)⑵如果在非封闭线路的一端要植树, 另一端不要植树, 那么:株数=段数=全长*株距全长=株距X株数株距=全长*株数⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数一 1 =全长十株距一 1 全长=株距X (株数+ 1)株距=全长* (株数+ 1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长*株距全长=株距X株数株距=全长*株数盈亏问题(盈+亏)十两次分配量之差=参加分配的份数(大盈-小盈)十两次分配量之差=参加分配的份数(大亏-小亏)十两次分配量之差=参加分配的份数相遇问题相遇路程=速度和X相遇时间相遇时间=相遇路程*速度和速度和=相遇路程*相遇时间追及问题追及距离=速度差X追及时间追及时间=追及距离十速度差速度差=追及距离十追及时间顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)十2 水流速度=(顺流速度—逆流速度)十2 浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量十溶液的重量X 100%=浓度溶液的重量X浓度=溶质的重量溶质的重量十浓度=溶液的重量利润与折扣问题利润=售出价一成本利润率=利润十成本X100%=(售出价十成本一1)X 100% 涨跌金额=本金X涨跌百分比折扣=实际售价十原售价X 100%(折扣v 1)利息=本金X利率X时间税后利息=本金X利率X时间X (1 —20%)定义定理公式(一)三角形的面积=底乂高* 2。

常用图形周长面积体积计算公式

常用图形周长面积体积计算公式

常用图形周长面积体积计算公式:1、正方形C周长 S面积 a边长周长=边长×4面积=边长×边长C=4aS=a×a S=a22、正方体V体积 a棱长(1)表面积=棱长×棱长×6 (2)体积=棱长×棱长×棱长S表=a×a×6 表=6a2V=a×a×a V= a33、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、长方体V体积 S面积 a长 b宽 h高(1)表面积=(长×宽+长×高+宽×高)×2(2)体积=长×宽×高S=2(ab+ah+bh)V=abh5、三角形S面积 a底 h高面积=底×高÷2S=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形S面积 a底 h高面积=底×高 S=ah7、梯形S面积 a上底 b下底 h高面积=(上底+下底)×高÷2S=(a+b)× h÷28、圆形S面积 C周长π圆周率d直径 r半径周长=直径×π周长=2×π×半径面积=半径×半径×πC=πd C=2πrS=πr2 d=C÷πd=2r r=d÷2r=C÷2÷π S环=π(R2-r2)9、圆柱体V体积 h高 S底面积 r底面半径 C底面周长侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高S侧=ChS侧=πdhV=Sh V=πr2h圆柱体积=侧面积÷2×半径10、圆锥体V体积 h高S底面积 r底面半径体积=底面积×高÷3V=Sh÷3长度单位换算1千米=1000米;1米=10分米;1分米=10厘米;1米=100厘米;1厘米=10毫米面积单位换算1平方千米=100公顷;1公顷=10000平方米;1平方米=100平方分米;1平方分米=100平方厘米;1平方厘米=100平方毫米;1平方米=0.0015亩;1万平方米=15亩;1公顷=15亩=100公亩=10000平方米;1公亩等于100平方米;1(市)亩等于666.66平方米体(容)积单位换算1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升;1立方厘米=1毫升;1立方米=1000升重量单位换算1吨=1000千克;1千克=1000克;1千克=1公斤人民币单位换算1元=10角;1角=10分;1元=100分时间单位换算1世纪=100年;1年=12月;大月(31天)有:1\3\5\7\8\10\12月;小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天;平年全年365天,闰年全年366天1日=24小时1时=60分;1分=60秒1时=3600秒总数÷总份数=平均数和差问题的公式:(和+差)÷2=大数;(和-差)÷2=小数和倍问题:和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)定义定理公式(一)三角形的面积=底×高÷2。

常用面积体积公式大全

常用面积体积公式大全

常用面积体积公式大全在日常生活和学习中,我们经常会遇到需要计算面积和体积的问题。

掌握常用的面积和体积公式可以帮助我们更快、更准确地解决这些问题。

下面是一些常见的面积和体积公式:1.矩形的面积公式:矩形的面积=长×宽2.正方形的面积公式:正方形的面积=边长×边长3.三角形的面积公式:三角形的面积=底边长×高÷24.梯形的面积公式:梯形的面积=(上底+下底)×高÷25.平行四边形的面积公式:平行四边形的面积=底边长×高6.圆的面积公式:圆的面积=π×半径×半径7.正圆锥的体积公式:正圆锥的体积=圆锥的底面积×高÷3=π×半径×半径×高÷38.球体的体积公式:球体的体积=4/3×圆的面积×半径9.直角梯形的体积公式:直角梯形的体积=(上面积+下面积+上底×下底)×高÷310.圆柱体的体积公式:圆柱体的体积=圆的面积×高=π×半径×半径×高11.弧长公式:弧长=θ×半径其中,θ为弧度(以弧长所对的圆心角所对应的弧长)12.扇形面积公式:扇形的面积=θ×π×半径×半径÷360°其中,θ为弧度(以弧长所对的圆心角所对应的弧度)13.椭圆的面积公式:椭圆的面积=π×长轴×短轴14.菱形的面积公式:菱形的面积=对角线1×对角线2÷215.立方体的体积公式:立方体的体积=边长×边长×边长16.正方体的表面积公式:正方体的表面积=6×边长×边长17.圆柱体的侧面积公式:圆柱体的侧面积=π×直径×高18.圆锥的侧面积公式:圆锥的侧面积=π×半径×斜高19.球体的表面积公式:球体的表面积=4×π×半径×半径20.圆锥的全面积公式:圆锥的全面积=圆锥的侧面积+圆锥的底面积通过掌握上述面积和体积公式,我们可以在实际问题中快速准确地进行求解。

多面体的表面积和体积公式

多面体的表面积和体积公式

多面体的表面积和体积公式
多面体是指由多个面组成的立体图形,常见的多面体有正方体、正六面体(立方体)、正四面体等。

对于多面体的表面积(S)和体积(V),它们的计算公式如下:
1. 表面积的计算公式:
对于任意一个多面体,其表面积等于各个面积之和。

多面体的面积可以按照不同的划分方式来计算。

例如,对于正方体和正六面体,可以分别计算每个面的面积,然后将其相加。

2. 体积的计算公式:
多面体的体积计算公式会根据不同的多面体而有所不同。

以下是一些常见多面体的体积计算公式:
- 正方体的体积公式:V = a^3,其中a为正方体的边长。

- 正六面体的体积公式:V = a^3,其中a为正六面体的边长。

- 正四面体的体积公式:V = (√2/12) * a^3,其中a为正四面体
的边长。

需要注意的是,这些公式仅适用于特定形状的多面体。

对于其他形状的多面体,可能需要使用不同的公式来计算表面积和体积。

数学高中所有体积,表面积的计算公式

数学高中所有体积,表面积的计算公式

数学高中所有体积,表面积的计算公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b) S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6 =πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形)。

常用形体体积、面积计算公式大全

常用形体体积、面积计算公式大全


交 叉 圆 柱 体
梯 形 体
常用图形求面积公式
图形
尺寸符号
面积(F) 表面积(S)
-
-
-优质专业-
-
正 方 形
长 方 形
三 角 形 平 行 四 边 形 任 意 四 边 形
正 多 边 形
菱 形
梯 形
-
-
-
ቤተ መጻሕፍቲ ባይዱ
-优质专业-
-
圆 形
椭 圆 形
扇 形
弓 形
圆 环
部 分 圆 环
新 月 形
-
-
a·b-主轴
F= (π/4) a·b
-
-优质专业-
-
L d/10
P 0.40
抛 物 线 形
等 多 边 形
-
2d/10 3d/10 4d/10
5d/10 6d/10 7d/10
0.79 1.18 1.56
1.91 2.25 2.55
-
-
-优质专业-
-
-
常用形体的体积、表面积计算公式
图形
立 方 体
长 方 体 ∧ 棱 柱 ∨
三 棱 柱
尺寸符号
棱 锥
棱 台
圆 柱 和 空 心 圆 柱 ∧ 管
-
-
-优质专业-
-
斜 线 直 圆 柱
直 圆 锥
圆 台

球 扇 形 ∧ 球 楔 ∨
球 缺
圆 环 体 ∧ 胎 ∨
-
-
-
-优质专业-
-
-
球 带 体
桶 形


a,b,c-半轴
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用体积及表面积计算公式
长方形的周长=(长宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底下底)×高÷2 直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积= (长×宽长×高+宽×高)×2 长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)的体积=底面积×高
平面图形
名称符号周长C和面积S
正方形 a—边长 C=4a S=a2
长方形 a和b-边长 C=2(a b) S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-角
其中s=(a b c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形 d,D-对角线长
α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长
h-a边的高
α-两边夹角 S=ah
=absinα
菱形 a-边长
α-夹角
D-长对角线长
d-短对角线长 S=Dd/2 =a2sinα
梯形 a和b-上、下底长
h-高
m-中位线长 S=(a b)h/2 =mh
圆 r-半径
d-直径 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 bh/2
≈2bh/3
圆环 R-外圆半径
r-圆半径
D-外圆直径
d-圆直径 S=π(R2-r2)
=π(D2-d2)/4
椭圆 D-长轴
d-短轴 S=πDd/4
立方图形
名称符号面积S和体积V 正方体 a-边长 S=6a2
V=a3
长方体 a-长
b-宽
c-高 S=2(ab ac bc)
V=abc
棱柱 S-底面积
h-高 V=Sh
棱锥 S-底面积
h-高 V=Sh/3
棱台 S1和S2-上、下底面积
h-高 V=h[S1 S2 (S1S1)1/2]/3 拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h-高 V=h(S1 S2 4S0)/6
圆柱 r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积 C=2πr
S底=πr2
S侧=Ch
S表=Ch 2S底
V=S底h
=πr2h
空心圆柱 R-外圆半径
r-圆半径
h-高 V=πh(R2-r2)
直圆锥 r-底半径
h-高 V=πr2h/3
圆台 r-上底半径
R-下底半径
h-高 V=πh(R2+Rr+r2)/3 球 r-半径
d-直径 V=4/3πr3=πd2/6 球缺 h-球缺高
r-球半径
a-球缺底半径 V=πh(3a2 h2)/6 =πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h-高 V=πh[3(r12+r22) h2]/6 圆环体 R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径 V=2π2Rr2
=π2Dd2/4
桶状体 D-桶腹直径
d-桶底直径
h-桶高 V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形)。

相关文档
最新文档