八年级数学培优作业

合集下载

八年级数学上学期培优作业2试题

八年级数学上学期培优作业2试题

八年级上册数学培优作业2制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。

一、细心选一选〔每一小题2分,一共16分〕 1、25的平方根是 A .5B .-5C .±5D . 52、 在实数..12.4,π,-2,722,16,38.0,1.732,3271-中,无理数的个数是A .1个B .2个C .3个D .4个 3、 以下各组数,可以作为直角三角形的三边长的是A. 8,12,20B. 2,3,4C. 8,10,6D. 5,13,154、410⨯,以下说法正确的选项是A. 有两个有效数字,准确到百分位B.有三个有效数字,准确到千位C. 有三个有效数字,准确到百位D.有三个有效数字,准确到万位5、 ,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,那么△ABE 的面积为2222题号 1 2 3 4 5 6 7 8 答案6、如图,在数轴上表示实数8的点可能是A.点PB.点QC.点MD.点N7、一直角三角形的木版,三边的平方和为1800cm 2,那么斜边长为.A. 80cmB. 30cmC. 90cmD. 20cm.8、五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的选项是二、填空题〔每空2分,一共20分〕9、 写出一个介于4和5之间的无理数: .10、用“<〞或者“>〞填空:415- 41。

11.、 一个正数的两个平方根为m +1和m -3,那么该正数=12、直角三角形斜边长为12㎝,周长为30㎝,那么此三角形的面积为______________。

13、210-的算术平方根是 ,16的平方根是 ;14、地球上七大洲的总面积约为149480000km 2,这一面积保存三个有效数字后得到的近似数为 ___________________km 2。

八年级数学上学期培优作业18试题

八年级数学上学期培优作业18试题

卜人入州八九几市潮王学校八年级上册数学培优作业18根本概念㈠、勾股定理:1.勾股定理2.勾股定理的逆定理㈡、平方根立方根:1.平方根方2.算术平方根3.立方根㈢、实数:1.无理数2.实数的分类一、选择题1、实数-32,2π,722,34…,01.0-中,无理数的个数有〔〕. A.2个B.3个C.4个D.5个 2、有以下四个说法:①1的算术平方根是1,②81的立方根是±21,③-27没有立方根,④互为相反数的两数的立方根互为相反数,其中正确的选项是〔〕.A .①②B .①③C .①④D .②④3、以下语句中正确的选项是〔〕A 、9的平方根是-3B 、-5是-25的平方根C 、-12是144的平方根D 、()23-的平方根是-34、三角形的三条边分别为22b a +、22b a -、2ab ,那么这个三角形是〔〕A 、钝角三角形B 、锐角三角形C 、直角三角形D 、不能确定5、有以下几组数据:①6、8、10②12、13、5③17、8、15④4、11、9其中能构成直角三形的有:〔〕 A、4组B、3组C、2组D、1组6、如图,假设数轴上的点A ,B ,C ,D 表示数-2,1,2,3,那么表示74-的点P 应在线段〔〕A .线段AB 上;B .线段BC 上;C .线段CD 上;D .线段OB 上7、如图小方格都是边长为1的正方形,那么四边形ABCD 的面积是()A.25B.1C.9北8、,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,那么△ABE 的面积为〔〕A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 29、,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,分开港口2小时后,那么两船相距〔〕A 、25海里B 、30海里C 、35海里D 、40海里二、填空题×105准确到位,有个有效数字。

八下数学培优( 含答案)

八下数学培优( 含答案)

数学培优 (一)1. 如果x x >,且0<kp ,那么,在自变量x 的取值范围内,正比例函数kx y =和反比例函数xp y =在同一直角坐标系中的图象示意图正确的是( )BA B C D2.在同一坐标系内,表示函数b kx y +=与()0,0≠≠=b k xkb y 的图象只可能是下图中的( )BA B C D3. 如图,在直角坐标系中,直线x y -=6与)0(4>=x xy 的图像相交于点A 、B ,设点A 的坐标为),(11y x ,那么长为x 1,宽为y 1的矩形面积和周长分别为( )A 、4,12B 、8,12C 、4,6D 、8,64. 已知点()a P ,1在反比例函数()0≠=k xk y 的图象上,其中322++=m m a (m 为实数),则这个函数的图象在第_____象限.一、三5.已知3=b ,且反比例函数xb y +=1的图象在每个象限内,y 随x 的增大而增大,如果点()3,a 在双曲线上x b y +=1,则_____=a .32-=a 6. 如果不等式0<+n mx 的解集是4>x ,点()n ,1在双曲线xy 2=上,那么一次函数()m x n y 21+-=的图象不经过第__ _象限. 一、三、四 7.如图,反比例函数xk y 2=和一次函数12-=x y ,其中一次函数的图象经过()b a ,、()k b a ++,1两点.(1)求反比例函数的解析式;(2)若点A 坐标是()1,1,请问:在x 轴上是否存在点P ,使AOP ∆为等腰三角形?若存在,把符合条件的点P 的坐标都求出来;若不存在,请说明理由.解:(1)根据题意,得()⎩⎨⎧-+=+-=.112,12a k b a b 两式相减,得2=k .所以所求的反比例函数的解析式是xy 1=. (2)由勾股定理,得21122=+=OA ,OA 与x 轴所夹的角为︒45.①当OA 为AOP ∆的腰时,由OP OA =,得()0,21P ,()0,22-P ; 由AP OA =,得()0,23P .②当OA 为AOP ∆的底时,得()0,14P .所以,这样的点有4个,分别是()0,2、()0,2-、()0,2、()0,1. 8.如图,已知点()3,1在函数()0>=x x k y 的图象上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数()0>=x xk y 的图象经过A 、E 两点,若︒=∠45ABD ,求E 点的坐标. 解:由点()3,1在函数x k y =的图象上,则3=k .又E 也在函数xk y =的图象上,故设E 点的坐标为⎪⎭⎫ ⎝⎛m m 3,.过E 点作x EF ⊥轴于F ,则m EF 3=. 又E 是对角线BD 的中点,所以m EF CD AB 62===. 故A 点的纵坐标为m 6,代入x y 3=中,得A 点坐标为⎪⎭⎫ ⎝⎛m m 6,2. 因此22m m m OB OF BF =-=-=. 由︒=∠45ABD ,得︒=∠45EBF ,所以EF BF =. 即有m m 32=.解得6±=m .而0>m ,故6=m . 则E 点坐标为⎪⎪⎭⎫ ⎝⎛26,6. 9.如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数()0,0>>=x k xk y 的图象上,点()n m P ,为其双曲线上的任一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S .(1)求B 点坐标和k 的值;(2)当29=S 时,求P 点坐标; (3)写出S 关于m 的函数关系式. 解:(1)设B 点坐标为()y x ,.则由条件,得⎩⎨⎧>==.0,9y x xy解上述方程组,得⎩⎨⎧==.3,3y x 所以点B 的坐标是()3,3. 又由xk y =,得9==xy k .甲 乙(2)因点P 的坐标为()n m ,. 当3≥m 时,如图甲,m n E P m AE 9,31==-= . 所以当29=S 时,有291=•E P AE , 即()2993=•-m m .解得6=m . 故1P 点的坐标为⎪⎭⎫ ⎝⎛23,6. 当30<<m 时,如图乙,393,2-=-==mn FC m F P . 所以当29=S 时,有292=•FC F P . 即2939=⎪⎭⎫ ⎝⎛-•m m .解得23=m . 即2P 点的坐标为⎪⎭⎫ ⎝⎛6,23. (3)参照第(2)题可知,当3≥m 时,如图甲,()mm m E P AE S 279931-=•-=•=; 当30<<m 时,如图乙,m m m FC F P S 39392-=⎪⎭⎫ ⎝⎛-•=•=.。

初二下数学培优试卷答案

初二下数学培优试卷答案

一、选择题(每题3分,共15分)1. 下列各数中,有理数是()A. √2B. πC. -1/2D. 无理数答案:C解析:有理数是可以表示为两个整数比的数,因此选项C正确。

2. 若a、b、c是等差数列,且a+b+c=0,则下列等式中正确的是()A. a+c=2bB. a+b=2cC. a-b=2cD. b-c=2a答案:A解析:等差数列的性质是相邻两项之差相等,所以a+c=2b。

3. 已知函数f(x)=2x-1,则函数g(x)=f(x+1)的解析式是()A. g(x)=2x+1B. g(x)=2x-3C. g(x)=2x+3D. g(x)=2x-1答案:B解析:将f(x)中的x替换为x+1,得到g(x)=2(x+1)-1=2x+2-1=2x+1。

4. 在直角坐标系中,点A(2,3)、B(4,5)、C(6,7)构成的三角形是()A. 等腰直角三角形B. 等边三角形C. 直角三角形D. 不等边三角形答案:C解析:计算AB、BC、AC的长度,发现它们分别是√5、√5、√5,因此三角形ABC是直角三角形。

5. 已知等腰三角形ABC的底边AB=8,腰AC=BC=6,则底角B的度数是()A. 30°B. 45°C. 60°D. 90°答案:B解析:等腰三角形的底角相等,因此底角B的度数为45°。

二、填空题(每题5分,共25分)1. 若x^2-5x+6=0,则x的值为__________。

答案:2,3解析:因式分解x^2-5x+6=(x-2)(x-3),所以x的值为2或3。

2. 若sinα=√2/2,则cosα的值为__________。

答案:√2/2解析:在单位圆上,sinα=√2/2对应的角度是45°,所以cosα的值也是√2/2。

3. 若一个正方形的边长为a,则它的面积是__________。

答案:a^2解析:正方形的面积是边长的平方,所以面积为a^2。

数学八年级上册 全册全套试卷(培优篇)(Word版 含解析)

数学八年级上册 全册全套试卷(培优篇)(Word版 含解析)

数学八年级上册全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析【解析】【分析】(1)先利用ASA判定△BGD≅CFD,从而得出BG=CF;(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.【详解】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵DBG DCFBD CDBDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.【点睛】本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明3.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC =α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA,∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.5.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,如图1,求t的值;(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.【答案】(1)4;(2)∠OA ′B 的度数不变,∠OA ′B =45︒,理由见解析;(3)点M 的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP 为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA =PA '=PB ,由∠PAB +∠PBA =90°,结合三角形内角和定理即可求得∠OA 'B =45°;(3)分类讨论:分别讨论当△ABP ≌△MBP 、△ABP ≌△MPB 、△ABP ≌△MPB 时,点M 的坐标的情况;过点M 作x 轴的垂线、过点B 作y 轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M 的坐标即可.【详解】(1)∵AB ∥x 轴,△APB 为等腰直角三角形,∴∠PAB =∠PBA =∠APO =45°,∴△AOP 为等腰直角三角形,∴OA =OP =4.∴t =4÷1=4(秒),故t 的值为4.(2)如图2,∠OA ′B 的度数不变,∠OA ′B =45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等,①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠, ∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.二、八年级数学轴对称解答题压轴题(难)6.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB ,作B 关于y 轴的对称点D ,由已知可得,BD =4,AD =2.∴在Rt △ABD 中,AB =25(2)如图,①以A 为直角顶点,过A 作l 1⊥AB 交x 轴于C 1,交y 轴于C 2 .②以B 为直角顶点,过B 作l 2⊥AB 交x 轴于C 3,交y 轴于C 4.③以C 为直角顶点,以AB 为直径作圆交坐标轴于C 5、 C 6、 C 7.(用三角板画找出也可) 由图可知,C 2(0,7),C 4(0,-4),C 5(-1,0)、 C 6(1,0).(3)不存在这样的点P .作AB 的垂直平分线l 3,则l 3上的点满足PA =PB ,作B 关于x 轴的对称点B ′,连结AB ′,由图可以看出两线交于第一象限.∴不存在这样的点P .【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.7.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC和△ADE均为等边三角形(如图1),∴ AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS)∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n ,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ ∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n . ∴∠AEC=90°+12n ︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.8.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP,证得AOP∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC∆≅∆得到AOE DOC∠=∠,通过角的关系得到60AOP COE∠=∠=°,即可证得AOP∆是等边三角形.【详解】(1)∵ABC∆为等边三角形∴60BAC∠=︒∵O为BC中点∴1302CAO BAC∠=∠=︒且,90AO BC AOC⊥∠=︒∵OA OD=∴AOD∆中,30D CAO∠=∠=︒∴180120AOD D CAO∠=︒-∠-∠=︒∴30COD AOD AOC∠=∠-∠=︒(2)过O作//OE AB,OE交AD于E∵//OE AB∴60EOC ABC∠=∠=︒60CEO CAB∠=∠=︒∴COE∆为等边三角形∴OE OC CE==180120AEO CEO∠=︒-∠=︒180120DCO ACB∠=︒-∠=︒又∵OA OD=∴EAO CDO∠=∠在AOE∆和COD∆中AOE DOCEAO CDOOA OD∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS∆≅∆∴CD EA=∵EA AC CE=-BO BC CO=-∴EA BO=∴BO CD=,∵AB AC=,AD AC CD=+∴AD AB BO=+(3)AOP∆为等边三角形证明过程如下:连接,PC PD,延长OC交PD于F ∵P D、关于OC对称∴,90 PF DF PFO DFO=∠=∠=︒在ODF∆与OPF∆中,PF DFPFO DFOOF OF=⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS∆≅∆∴OP OD=,POC DOC∠=∠∵OA OD=∴AO=OP∴AOP∆为等腰三角形过O作//OE AB,OE交AD于E 由(2)得AOE DOC∆≅∆∴AOE DOC∠=∠又∵POC DOC∠=∠∴AOE POF∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形. 【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.9.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC 中,当B 只有一个度数时,A ∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC 中,∠A=100°,∴∠A 为顶角,∠B 为底角,∴∠B =1801002-=40°; 变式2: ∵等腰三角形ABC 中,∠A= 45° ,∴当AB=BC 时,∠B =90° ,当AB=AC 时, ∠B =67.5° ,当BC=AC 时 ∠B =45° ;(2)等腰三角形ABC 中,设A x ∠=,当90°≤x <180°,∠A 为顶角,此时,B 只有一个度数,当x=60°时,三角形ABC 是等边三角形,此时,B 只有一个度数,综上所述:90°≤x <180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.10.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:22222111111251151151124112422242222x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++-+=+-=+++- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭根据以上材料,解答下列问题:(1)用配方法将281x x +-化成2()x m n ++的形式,则281=x x +- ________; (2)用配方法和平方差公式把多项式228x x --进行因式分解;(3)对于任意实数x ,y ,多项式222416x y x y +--+的值总为______(填序号).①正数②非负数 ③ 0【答案】(1)2(4)17x +-;(2)(2)(4)x x +-;(3)①【解析】【分析】(1)根据材料所给方法解答即可;(2)材料所给方法进行解答即可;(3)局部进行因式分解,最后写成非负数的积的形式即可完成解答.【详解】解:(1)281x x +-=2816116x x ++--2(4)17x +-.(2)原式=22118x x -+--=2(1)9x --=(13)(13)x x -+--=(2)(4)x x +-.(3)222416x y x y +--+=()()22214411x x y y -++-++=()()221211x y -+-+>11故答案为①.【点睛】本题考查了配方法,根据材料学会配方法并灵活运用配方法解题是解答本题的关键.12.若一个正整数x 能表示成22a b -(,a b 是正整数,且a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解. 例如:因为22532=-,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:22222222()M x xy x xy y y x y y =+=++-=+-(,x y 是正整数),所以M 也是“明礼崇德数”,()x y +与y 是M 的一个平方差分解.(1)判断:9_______“明礼崇德数”(填“是”或“不是”);(2)已知2246N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的一个k 值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m 既是“七喜数”,又是“明礼崇德数”,请求出m 的所有平方差分解.【答案】(1)是;(2)k=-5;(3)m=279,222794845=-,222792011=-.【解析】【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N 应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 平方差分解,得到答案;(3)确定“七喜数”m 的值,分别将其平方差分解即可.【详解】(1)∵9=52-42,∴9是“明礼崇德数”,故答案为:是;(2)当k=-5时,N 是“明礼崇德数”,∵当k=-5时,22465N x y x y =-+--,=224649x y x y -+-+-,=22(44)(69)x x y y ++-++,=22(2)(3)x y +-+,=(23)(23)x y x y ++++--=(5)(1)x y x y ++--.∵,x y 是正整数,且1x y >+,∴N 是正整数,符合题意,∴当k=-5时,N 是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=22a b -=(a+b )(a-b ),当m=178时,∵178=2⨯89,∴892a b a b +=⎧⎨-=⎩,得45.543.5a b =⎧⎨=⎩(不合题意,舍去); 当m=279时,∵279=3⨯93=9⨯31,∴①933a b a b +=⎧⎨-=⎩,得4845a b =⎧⎨=⎩,∴222794845=-, ②319a b a b +=⎧⎨-=⎩,得2011a b =⎧⎨=⎩,∴222792011=-, ∴既是“七喜数”又是“明礼崇德数”的m 是279,222794845=-,222792011=-.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.13.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积: 方法1: 方法2:(2)观察图②请你写出下列三个代数式:(m+n )2,(m ﹣n )2,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决:已知:a ﹣b=5,ab=﹣6,求:(a+b )2的值;【答案】(1)(m-n)2;(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(3)1.【解析】【分析】(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式;方法2:利用大正方形的面积减去四周四个矩形的面积列式;(2)根据不同方法表示的阴影部分的面积相同解答;(3)根据(2)的结论整体代入进行计算即可得解.【详解】解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形,∴阴影部分的面积=(m-n)2方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积∴阴影部分的面积=(m+n)2-4mn;(2)根据(1)中两种计算阴影部分的面积方法可知(m-n)2=(m+n)2-4mn;(3)由(2)可知(a+b)2=(a-b)2+4ab,∵a-b=5,ab=-6,∴(a+b)2=(a-b)2+4ab=52+4×(-6)=25-24=1.【点睛】本题考查几何图形与完全平方公式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.14.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么形如a+bi (a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=5﹣3i.(1)填空:i3=,2i4=;(2)计算:①(2+i)(2﹣i);②(2+i)2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.(4)试一试:请你参照i2=﹣1这一知识点,将m2+25(m为实数)因式分解成两个复数的积.【答案】(1)i;2(2)①5②3+4i(3)x=5,y=﹣3(4)m2+25=(m+5i)(m﹣5i)【分析】(1)根据同底数幂的乘法法则及2i 的概念直接运算;(2)利用平方差、完全平方公式把原式展开,根据21i =-计算即可;(3)根据虚数定义得出方程组,解方程组即可;(4)根据21i =- 将25转化为2(-5)i ,再利用平方差公式进行因式分解即可。

八年级上数学培优及答案(可以直接打印)

八年级上数学培优及答案(可以直接打印)

一、填空题1、设∆ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a , 则第三边的长c 的取值范围是 .2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。

3、在△ABC 中,∠B 和∠C 的平分线相交于O ,若∠BOC=α,则∠A=_________。

4、直角三角形两锐角的平分线交角的度数是 。

5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。

6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为__ _________。

7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。

其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题1、等腰三角形腰上的高与底边的夹角为Cm °则顶角度数为( )) A.m ° B.2m ° C.(90-m)° D.(90-2m)°2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( ) A . 8 3≤y ≤ 64 11 B . 64 11≤y ≤8 C . 8 3≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④4、将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同 的截法有( )A.5种B. 6种C. 7种D.8种5、在△ABC 中,适合条件C B A ∠=∠=∠4131,则△ABC 中是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-27、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( ) A.23y x =-- B.26y x =-- C.23y x =-+ D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )A.32B.23C.32-D.23-9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作c k 1x +bx2y =-A .B .C .量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( ) A.甲的效率高 B.乙的效率高 C.两人的效率相等 D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )A.5个B.6个C.7个D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、 排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。

人教版八年级数学培优题精选18例(含答案)

人教版八年级数学培优题精选18例(含答案)

A、1.5B、2C、2.25D、2.5爬到点 B ,如果它运动的路径是最短,则 AC 的长度是多少?少?车是否超速?例题6、对实数 a , b ,定义新运算☆如下: a ☆ b =八年级数学培优题精选18例(含答案)例题7、计算八年级数学培优题精选18例(含答案)例题9、点 A(3x + 2y , -2)关于 y 轴的对称点为 B(-1 ,2x + 4y), 则点 M (x , y)关于 x 轴的对称点的坐标为多少?答案:(1,1)。

例题10、如图所示,在平面直角坐标系中有 A , B 两点:八年级数学培优题精选18例(含答案)(1)写出 A , B 两点的坐标;(2)若线段 AB 各顶点的横坐标不变,纵坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A1 ,B1 ,并连接 A1B1 ,所得的线段 A1B1 与线段 AB 有怎样的位置关系?(3)在(2)的基础上,纵坐标不变,横坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A2,B2 ,并连接这两个点,所得的线段 A2B2 与线段 AB 有怎样的位置关系?解:(1)点 A 的坐标为(1,2),点 B 的坐标为(3,1);(2)如图所示,线段 A1B1 与线段 AB 关于 x 轴对称;(3)如图所示,线段 A2B2 与线段 AB 关于原点对称。

例题11、甲乙两人赛跑,所跑路程与时间的关系如图所示。

根据图像得到如下四个信息,其中错误的是(C )八年级数学培优题精选18例(含答案)A、这是一次 1500 m 赛跑B、甲、乙两人中先到达终点的是乙C、甲、乙同时起跑D、甲在这次赛跑中的速度为 5 m/s例题12、如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点 G ,∠BDC = 140°,∠BGC = 110°,则∠A 的度数为(C)八年级数学培优题精选18例(含答案)A、70°B、75°C、80°D、85°例题13、如图所示,已知 AB∥DE ,一个弯形管道 ABCDE 的拐角∠EDC = 140°,∠CBA = 150°,则∠C = ?八年级数学培优题精选18例(含答案)答案:∠C = 70°。

(整理版)八年级数学培优练习(一)

(整理版)八年级数学培优练习(一)

八年级数学培优练习〔一〕
1 .如图,DE 是ABC 的中位线,F 是DE 的中点,CF 的延长线交AB 于点G,那么AG:GD 等于
A. 2:1
B.3:1
C. 3:2
D.4:3
2 .如图,四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么以下结论成立的是( )
EFEF 的长逐渐减小
EFEF 的长与点P 的位置有关
3.如图,矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是PA 、PRDR =3,AD =4,
那么EF 的长为________.
第15题图P R
F E
A B C
D
4 .如图,D 、
E 、
F 分别是ABC 各边的中点,AH 是高,如果5ED cm =,那么HF 的长为( ) (A )5cm (B )6cm (C )4cm (D )不能确定
5 .如图,四边形ABCD 的对角线AC 与BD 相交于点O,且AC BD =,M 、N 分别是AB 、CD 的中点,MN 分别交BD 、AC 于点E 、F .你能说出OE 与OF 的大小关系并加以证明吗?
R P D C
B A E F。

初二数学培优试卷

初二数学培优试卷

初二数学试卷6题图A 班级 考场 考号 姓名11.一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( ) A.⎩⎨⎧=+-=18050y x y x B.⎩⎨⎧=++=18050y x y x C.⎩⎨⎧=+-=9050y x y x D.⎩⎨⎧=++=9050y x y x12.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 13.将五边形纸片ABCDE 按如图所示方式折叠,折痕为AF ,点E 、D 分别落在E ′,D ′,已知∠AFC=76°,则∠CFD ′等于( )A .31°B .28°C .24°D .22°14.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0,4-x >1的整数解共有5个,则a 的取值范围是( ).A .-3<a <-2B .-3<a ≤-2C .-3≤a ≤-2D .-3≤a <-215.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板 的一条直角边重合,则∠1的度数为( )A.45°B.60°C.75°D.85°16. 如图,△ABC 中,AD 是∠BAC 的平分线且AB=AC+CD .若∠BAC=60°,则∠ABC 的大小为( )A.40°B.60°C.80°D.100°17.如图所示中的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+•∠7=( )A .245° B .300° C .315° D .330°15题图 17题图 16题图 12题图13题图18. 如图,在△ABC 中,∠A=52°,∠ABC 与∠ACB 的角平分线交于D 1,∠ABD 1与∠ACD 1的角平分线交于点D 2,依次类推,…∠ABD 4与∠ACD 4的角平分线交于点D 5,则∠BD 5C 的度数是( )A 、56°B 、60°C 、68°D 、94°19. ABC ∆的三边,,a b c 都是正整数,且满足a b c ≤≤,如果4c =, 那么这样的三角形共有( ) 个A.4B.6C.8D.1020.锐角三角形的三个内角是∠A ,∠B ,∠C ,如果α=∠A+∠B ,β=∠B+∠C ,γ=∠C+∠A ,那么α,β,γ这三个角中( )A.没有锐角B.有一个锐角C.有2个锐角D.有3个锐角 二、提空题(每题4分,共20分) 21.计算:. = . 22.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.23.如图,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .24.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB,OD⊥BC 于D ,且OD=3,则△ABC 的面积是 .25. △ ABC 中,∠A=50°,高BE 、CF (或其延长线)交于点O ,则∠BOC= . 三、解答题(共80分) 26. (10分)已知方程组⎩⎨⎧-=++=+12123m y x m y x ,当m 为何值时,x>y.18题图 P 2P 1N M O P B A 24题图 22题图 23题图27.(10分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.28.(10分)如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数?29.(10分)如图,射线OX ⊥OY,A 、B 为OX 、OY 上两动点,∠OAB 的平分线与∠ABO 的外角平分线所在直线交于点C.试问:∠C 的度数是否随点A 、B 的运动而发生变化?若变化,请说明理由;若不变化,求出∠C 的值班级 考场 考号 姓名30.(13分)建华小区准备新建50个停车位,以解决小区停车难的问题,已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元。

八年级数学培优练习

八年级数学培优练习

八年级数学培优练习八年级数学培优练习八年级数学培优练习1.下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形有4个,图2中以格点为顶点的等腰直角三角形有个,图3中以格点为顶点的等腰直角三角形有个,图4中以格点为顶点的等腰直角三角形有个.图1图2图3图42.电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=6.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P202*与点P202*之间的距离为_________.BP3P0第2题图CP2AP13.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为__________°(只需写出0°~90°的角度).4.(1)如图,已知在Rt△ABC中,ACBRt,AB4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.(2)已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.ACS1AS2BHECBF第12题图5.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得ABC为等腰三角形,则点C的个数是.....A.6B.7C.8D.9BA第5题图6.如图,若数轴上的点A,B,C,D表示数-2,1,2,3,则表示47的点P应在线段A.线段AB上B.线段BC上C.线段CD上D.线段OB上7.有一个触壁游戏。

规则如下:球从P点出发,先触OA壁,反弹后再触壁,再次反弹,┅┅若(至少经过两次)反弹,球能返回P点,则胜利。

八年级数学培优试卷答案

八年级数学培优试卷答案

一、选择题(每题5分,共50分)1. 若x=3,则下列各式中正确的是()A. 2x+1=7B. 2x-1=7C. 2x+1=5D. 2x-1=5答案:B2. 下列各数中,有理数是()A. √16B. √-9C. πD. √4/9答案:D3. 已知a、b、c为等差数列,且a=2,b=4,则c的值为()A. 6B. 8C. 10D. 12答案:C4. 下列各式中,正确的是()A. a^2 + b^2 = (a+b)^2B. a^2 + b^2 = (a-b)^2C. (a+b)^2 = a^2 + 2ab + b^2答案:C5. 下列各函数中,一次函数是()A. y = 2x + 3B. y = 2x^2 + 3C. y = 3/xD. y = √x答案:A6. 若等腰三角形的底边长为8,腰长为6,则其面积为()A. 24B. 32C. 36D. 48答案:A7. 下列各数中,无理数是()A. √25B. √-16C. √0.25D. √16答案:B8. 下列各式中,等式成立的是()A. (a+b)^2 = a^2 + b^2B. (a-b)^2 = a^2 - b^2D. (a-b)^2 = a^2 - 2ab + b^2答案:D9. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-2,3),则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A10. 下列各数中,偶数是()A. √16B. √-9C. πD. √4/9答案:A二、填空题(每题5分,共50分)11. 若x=2,则2x-1的值为______。

答案:312. 下列各数中,绝对值最小的是______。

答案:013. 已知等差数列的前三项分别为2,5,8,则该数列的公差为______。

答案:314. 下列各式中,正确的是______。

答案:C15. 若y = 3x - 2,则x的值为______。

八年级数学培优作业

八年级数学培优作业

八年级数学培优作业八年级数学培优作业:整式的乘除与因式分解选择题1、化简的结果是()A. B. C. D.2、下列计算错误的是()A.2m+3n=5mnB.C.D.3、下列各式从左到右的变形中,是因式分解的为().A、;B、;C、;D、.4、下面是某同学在一次作业中的计算摘录:①;②;③;④;⑤;⑥其中正确的个数有()A.1个B.2个C.3个D.4个5、下列多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)6、下列各式能用完全平方公式分解因式的是()A、4x2+1B、4x2-4x-1C、x2+xy+y2D、x2-4x+47、△ABC的三边长分别a、b、c,且a+2ab=c+2bc,△ABC是A.等边三角形B等腰三角形C直角三角形D等腰直角三角形2cm,面积相增加了32cm2,则这个正方形的边长为()A、6cmB、5cmC、8cmD、7cm二、填空题1、分解因式:.2、计算:=________;=________.时,代数式的值为.4、若|a-2|+b2-2b+1=0,则a=__________,b=__________.已知a+=3,则a2+的值是__________.从边长为的大正方形纸板中挖去一个边长为的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.则____________8、一个长方形的面积是(x2-)平方米,其长为(x+)米,用含有x 的整式表示它的宽为__________.如果多项式x3-x2+mx+6有一个因式是(x-2),则m=-______10.=_______。

11.___________12、已知,求 =13、观察下列各式,探索发现规律:-==×3;-=15=3×5;-==5×7;-==7×9;-=99=9×11;……用含正整数n的等式表示你所发现的规律为.,因式分解的结果是,若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式,取x=10,y=10时,用上述方法产生的密码是:__________(写出一个即可).三、解答题1、计算:(1)a3b2c÷a2b(2)(3)(-4x-3y)2(4)(5)(a+2b-c)2.2、因式分解(1)(2)(3)(x-1)(x+4)-36(4)(m2+n2)2-4m2n2(5)-2a3+12a2-18a;()9a2(x-y)+4b2(y-x);()(x+y)2+2(x+y)+1.4、先化简,再求值:,其中.5、若a2+2a+b2-6b+10=0,求a2-b2的值.6、若△ABC三边a、b、c满足a2+b2+c2=ab+bc+ca.判断△ABC的形状。

初二数学培优试卷及答案

初二数学培优试卷及答案

一、选择题(每题5分,共50分)1. 已知方程x^2 - 4x + 3 = 0,那么它的解是()A. x1 = 1,x2 = 3B. x1 = 2,x2 = 2C. x1 = 3,x2 = 1D. x1 = -1,x2 = -32. 若a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列函数中,自变量x的取值范围是全体实数的是()A. y = √(x - 1)B. y = √(x^2 - 1)C. y = √(x + 1)D. y = √(x^2 + 1)4. 已知一次函数y = kx + b,其中k ≠ 0,若函数图象经过点(2, 3),则k和b 的值分别为()A. k = 2,b = 1B. k = 1,b = 2C. k = -2,b = 1D. k = -1,b = 25. 已知等腰三角形ABC中,AB = AC,且∠BAC = 40°,则∠B和∠C的度数分别为()A. ∠B = ∠C = 50°B. ∠B = ∠C = 70°C. ∠B = ∠C = 40°D. ∠B = ∠C = 30°6. 下列各数中,能被3整除的是()A. 729B. 256C. 1234D. 9877. 已知直角三角形ABC中,∠C = 90°,AB = 5cm,BC = 12cm,那么AC的长度为()A. 13cmB. 15cmC. 17cmD. 19cm8. 若一个数x满足不等式2x - 1 < 5,那么x的取值范围是()A. x < 3B. x ≤ 3C. x > 3D. x ≥ 39. 已知二次函数y = ax^2 + bx + c(a ≠ 0),若函数图象开口向上,则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 010. 在平面直角坐标系中,点P(2, 3)关于x轴的对称点Q的坐标是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)二、填空题(每题5分,共50分)1. 若方程2x - 3 = 5的解为x = 3,则方程3x + 4 = 11的解为x = _______。

初二数学培优试题及答案

初二数学培优试题及答案

初二数学培优试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 42. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -23. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 134. 计算下列式子的结果:\(\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \ldots \times \frac{9}{10}\)A. 2B. 3C. 4D. 55. 一个圆的直径是10厘米,那么它的面积是:A. 25π平方厘米B. 50π平方厘米C. 100π平方厘米D. 200π平方厘米6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 107. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 08. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -29. 一个直角三角形的两个直角边长分别是3和4,那么它的斜边长是:A. 5B. 6C. 7D. 810. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 0二、填空题(每题4分,共20分)1. 一个数的立方是27,那么这个数是______。

2. 一个数的倒数是\(\frac{1}{4}\),那么这个数是______。

3. 一个数的绝对值是10,那么这个数可以是______或______。

4. 一个圆的半径是5厘米,那么它的直径是______厘米。

5. 一个数的平方根是3,那么这个数是______。

三、解答题(每题10分,共50分)1. 已知一个矩形的长是10厘米,宽是5厘米,求这个矩形的面积。

2. 已知一个直角三角形的两个直角边长分别是6厘米和8厘米,求这个直角三角形的斜边长。

最新最全八年级数学培优十三套试题(因式分解,分式,二次根式,一元二次方程)

最新最全八年级数学培优十三套试题(因式分解,分式,二次根式,一元二次方程)

ED 八年级数学培优试题一一、填空1. 因式分解:(1)2235294x xy y x y +-++-= . (2)2236x x xy y y +---=___________________ (3)41x +=____________________________________ (4)3234x x -+=_______________________________2..若对于任何实数x ,分式214x x c-+总有意义,则c 的取值范围是___________________3.若a b a c b ck c b a+++===,则k =______________ 4.已知:115a b a b +=+,则b aa b+=_______。

5.已知22431(1)(1)x x a x b x c -+=-+-+对任意数x 成立,则4a +2b +c =_______6.多项式22687x y x y +-++的最小值为_________。

7.已知实数,,a b c 满足10a b c ++=,且,则的值是______________ 8.已知实数,x y 满足224242x y x y +=+-,则2x y +=______________________9.已知2510m m --=,则22125m m m-+=__________________ 10.方程组:2222007x y z xy yz xzx y z ⎧++=++⎨++=⎩的解为_________________11.设100,x ==______________12.如图,已知五边形ABCDE 中,90ABC AED ∠=∠=,2AB CD AE BC D E ===+=,则五边形ABCDE 的面积为_____ 二、选择题 13.设199819992000,,199920002001a b c ===,则下列不等关系中正确的是( ) A 、a b c << B 、a c b << C 、b c a << D 、c a b <<1714111=+++++a c c b b a ba ca cbc b a +++++14.已知0,0a b ≠≠且1a +1b =4 则434323a ab b a ab b++-+-等于( ) A .114- B. 1910- C. 0 D. 191015.对于非负数a 1、a 2…a 5满足M=(a 1+a 2+a 3+a 4)(a 2+a 3+a 4+a 5),N=(a 1+a 2+a 3+a 4+a 5)(a 2+a 3+a 4),则( )A. M >NB. M ≥NC. M <ND. M ≤N 三、解答题 16.若a cb a bc b a c c b a ++-=+-=-+,求abcc b c a b a ))()((+++的值 17.已知:3x y z a ++=(0a ≠,且,,x y z 不全相等),求()()()()()()()()()222a z a y a x a x a z a z a y a y a x -+-+---+--+--的值 18.已知2222014,2015,2018,a x b x c x +=+=+=且24=abc , 求111a b c bc ca ab a b c++---的值。

数学初二培优试题及答案

数学初二培优试题及答案

数学初二培优试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.33333…D. 2/3答案:B2. 一个等腰三角形的两边长分别为5和8,那么第三边的长度可能是:A. 3B. 5C. 8D. 10答案:C3. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或1答案:D4. 以下哪个表达式的结果是一个完全平方数?A. (x+3)(x-3)B. (x+2)^2C. x^2 - 4x + 4D. x^2 + 2x + 1答案:D5. 一个二次方程ax^2 + bx + c = 0(a ≠ 0)的根的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A6. 一个正比例函数y = kx(k ≠ 0)的图像经过点(1,2),则k的值是:A. 2B. 1/2C. -2D. -1/2答案:A7. 一个反比例函数y = k/x(k ≠ 0)的图像经过点(2,3),则k的值是:A. 6B. 1/6C. -6D. -1/6答案:A8. 以下哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 圆答案:D9. 一个四边形的对角线互相垂直且平分,那么这个四边形是:A. 平行四边形B. 菱形C. 矩形D. 正方形答案:B10. 一个二次函数y = ax^2 + bx + c(a ≠ 0)的顶点坐标是:A. (-b/2a, 4ac - b^2/4a)B. (-b/2a, -4ac + b^2/4a)C. (-b/2a, 4ac + b^2/4a)D. (b/2a, 4ac - b^2/4a)答案:A二、填空题(每题4分,共20分)11. 一个直角三角形的两直角边长分别为3和4,那么斜边的长度是_________。

答案:512. 一个二次函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,-4),那么a的取值范围是_________。

初二培优习题含答案

初二培优习题含答案

初二培优试题1.已知,如图,把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠2,∠3的度数.(2)求长方形ABCD的纸片的面积S.20.解:(1)∵AD∥BC,∴∠2=∠1=60°;又∵∠4=∠2=60°,∴∠3=180°﹣60°﹣60°=60°.(2)在直角△ABE中,由(1)知∠3=60°,∴∠5=90°﹣60°=30°;∴BE=2AE=4,∴AB=2;∴AD=AE+DE=AE+BE=2+4=6,∴长方形纸片ABCD的面积S为:AB•AD=2×6=12.2.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.解(1)∵A(8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).3.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?(1)证明:∵点D、E分别是边BC、AC的中点,∴DE∥AB,∵AF∥BC,∴四边形ABDF是平行四边形,∴AF=BD,则AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形;(2)当△ABC是直角三角形时,四边形ADCF是菱形,理由:∵点D是边BC的中点,△ABC是直角三角形,∴AD=DC,∴平行四边形ADCF是菱形.4.如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE于P,若AE=AP (1)求证:△ABE≌△ADP;(2)求证;BE⊥DE;(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AE⊥AP,∴∠EAP=90°,∴∠EAB=∠PAD,在△ABE和△ADP中,,∴△ABE≌△ADP;(2)证明:∵△ABE≌△ADP,∴∠APD=∠AEB,又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴BE⊥DE;5.A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?解根据题意得:(1)W=300x+500(6﹣x)+400(10﹣x)+800[12﹣(10﹣x)]=200x+8600.(2)因运费不超过9000元∴W=200x+8600≤9000,解得x≤2.∵0≤x≤6,∴0≤x≤2.则x=0,1,2,所以有三种调运方案.(3)∵0≤x≤2,且W=200x+8600,∴W随x的增大而增大∴当x=0时,W的值最小,最小值为8600元,此时的调运方案是:B市运至C村0台,运至D村6台,A市运往C市10台,运往D村2台,最低总运费为8600元.6.在平面直角坐标系中,已知点A(a,0),C(0,b),且a、b满足(a+1)2+=0.(1)直接写出:a= ,b= ;(2)如图,点B为x轴正半轴上一点,过点B作BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,此时,OB与OC有怎样的大小关系?证明你的结论.(3)在(2)的条件下,求直线BE的解析式.解:(1)∵(a+1)2+=0,∴a+1=0,b+3=0,∴a=﹣1,b=﹣3,(2)OB=OC,证明如下:如图,过O作OF⊥OE,交BE于F,∵BE⊥AC,OE平分∠AEB,∴△EOF为等腰直角三角形,∴∠EOC+∠DOF=∠DOF+∠FOB=90°,∴∠EOC=∠FOB,且∠OEC=∠OFB=135°,在△EOC和△FOB中,,∴△EOC≌△FOB(ASA),∴OB=OC;(3)∵△EOC≌△FOB,∴∠OCE=∠OBE,OB=OC,在△AOC和△DOB中,,∴△AOC≌△DOB(ASA),∴OD=OA,∵A(﹣1,0),C(0,﹣3),∴OD=1,OC=3,∴D(0,﹣1),B(3,0),设直线BE解析式为y=kx+b,把B、D两点坐标代入可得,解得.∴直线BE的解析式为y=x﹣1.7.如图,A是∠MON边OM上一点,AE∥ON.(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.【考点】L9:菱形的判定;KB:全等三角形的判定.【专题】13 :作图题.【分析】(1)角平分线的作法:用圆规以顶点为圆心,任意长为半径画一个弧(要保证有两个交点,不要太小),再以刚才画出的交点为顶点,以大于第一次的半径为半径画弧(左右各画一个弧),再取两道弧的交点,并连接这个交点的一开始最上面的顶点,这就是角平分线.(2)本题可根据“一组邻边相等的平行四边形是菱形”,先证明OABC是个平行四边形,然后证明OA=AB即可.【解答】解:(1)如图,射线OB为所求作的图形.(2)证明:∵OB平分∠MON,∴∠AOB=∠BOC.∵AE∥ON,∴∠ABO=∠BOC.∴∠AOB=∠ABO,AO=AB.∵AD⊥OB,∴BD=OD.在△ADB和△CDO中∵∴△ADB≌△CDO,AB=OC.∵AB∥OC,∴四边形OABC是平行四边形.∵AO=AB,∴四边形OABC是菱形.【点评】本题考查尺规作图、全等三角形的判定,性质及特殊四边形的判定问题,解决本题的关键是熟悉基本作图,熟悉特殊平行四边形的判定方法.8.如图,直线l1,l2交于点A,直线l2与x轴、y轴分别交于点B(﹣4,0)、D(0,4),直线l1所对应的函数关系式为y=﹣2x﹣2.(1)求点C的坐标及直线l2所对应的函数关系式;(2)求△ABC的面积;(3)P是线段BD上的一个动点(点P与B、D不重合).设点P的坐标为(m,n),△PBC的面积为S,写出S与m的函数关系式及自变量m的取值范围.【考点】FF:两条直线相交或平行问题.【分析】(1)设出直线l2的函数关系式,因为直线过B(﹣4,0),D(0,4)两点利用代入法求出k,b,从而得到关系式.(2)A点坐标是l1与x轴的交点坐标,A点坐标是把l1,l2联立,求其方程组的解再求三角形的面积.(3)设点P的坐标为(m,n),△PBC的面积为S得出解析式解答即可.【解答】解:(1)由y=﹣2x+2,令y=0,得﹣2x+2=0,∴x=1,∴C(1,0),设直线l2所对应的函数关系式为y=kx+b,由图象知:直线l2经过点B(﹣4,0),D(0,4)∴,解得,∴直线l2所对应的函数关系式为y=x+4;=×3×2=3;(2)由,解得,∴A(﹣2,2),∵BC=3,∴S△ABC(3)设点P的坐标为(m,n),△PBC的面积为S,可得:S=,自变量的取值范围为:﹣4<m<0.【点评】此题主要考查了两条直线相交或平行问题,求函数与坐标轴的交点,与两个函数的交点问题,题目综合性较强,难度不大,比较典型.9.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质;LC:矩形的判定.【专题】14 :证明题.【分析】(1)先由已知平行四边形ABCD得出AB∥DC,AB=DC,⇒∠ABF=∠ECF,从而证得△ABF≌△ECF;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠ABF=∠ECF,∵EC=DC,∴AB=EC,在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF(AAS).(2)∵AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴FA=FE,FB=FC,∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点评】此题考查的知识点是平行四边形的判定与性质,全等三角形的判定和性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.10.如图1,将边长为1的正方形ABCD 压扁为边长为1的菱形ABCD .在菱形ABCD 中,∠A 的大小为α,面积记为S .(1)请补全下表:(2)填空:由(1)可以发现单位正方形在压扁的过程中,菱形的面积随着∠A 大小的变化而变化,不妨把单位菱形的面积S 记为S (α).例如:当α=30°时,1(30)2S S =︒=;当α=135°时,(135)2S S =︒=.由上表可以得到(60)S S ︒=( ______°);(150)S S ︒=( ______°),…,由此可以归纳出(180)()S S α︒-=.(3) 两块相同的等腰直角三角板按图2的方式放置,AD AOB =α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).图2(1)2;12。

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B CS S∆∆===<2020第三次操作333222377343A B C A B CS S∆∆===<2020第四次操作4443334772401A B CA B CS S∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.2.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.【答案】30°【解析】【分析】延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.【详解】解:延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,∵BD是∠ABC的平分线在△BDE与△BDF中,ABD CBDBD BDAED DFC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE≌△BDF(ASA),∴DE=DF,又∵∠BAD+∠CAD=180°∠BAD+∠EAD=180°∴∠CAD=∠EAD,∴AD为∠EAC的平分线,过D点作DG⊥AC于G点,在Rt△ADE与Rt△ADG中,AD AD DE DG=⎧⎨=⎩,∴△ADE≌△ADG(HL),∴DE=DG,∴DG=DF.在Rt△CDG与Rt△CDF中,CD CD DG DF=⎧⎨=⎩,∴Rt△CDG≌Rt△CDF(HL),∴CD为∠ACF的平分线,∠ACB=74°,∴∠DCA=53°,∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°.故答案为:30°【点睛】本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.3.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______°.【答案】65【解析】如图,∵AE平分∠DAC,CE平分∠ACF,∴∠1=12∠DAC,∠2=12∠ACF,∴∠1+∠2=12(∠DAC+∠ACF),又∵∠DAC+∠ACF=(180°-∠BAC)+(180°-∠ACB)=360°-(∠BAC+∠ACB),且∠BAC+∠ACB=180°-∠ABC=180°-50°=130°,∴∠1+∠2=12(360°-130°)=115°,∴在△ACE中,∠E=180°-(∠1+∠2)=180°-115°=65°.4.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD至M使DM=AD,连接CM在△ABD和△CDM中,AD MDADB MDCBD CD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△MCD(SAS),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.5.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。

八年级数学培优练习题及答案大全

八年级数学培优练习题及答案大全

八年级数学培优练习题及答案大全1.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=?14,?AC=19,则MN的长为.A. B.2.C.D.3.2.如图,在周长为20cm的□ABCD 中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE 的周长为4cm 6cm8cm 10cmAEOBCAFMDQ3题oBCN3、如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45,且AE+AF=ABCD的周长是4、如图,已知正方形纸片ABCD,M,N分别是AD,BC 的中点,把BC向上翻折,使点C恰好落在MN上的F点处,BQ为折痕,则∠FBQ= A 0° B 5° C 0° D 15°5、如图所示,在正方形ABCD中,点E、F、G、H均在其内部,且DE=EF=FG=GH=HB=2,∠E=∠F=∠G=∠H=60°,则正方形ABCD的边长为 A.B.2C.D.326、如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是.7、已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是.8、如图OA、AB分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线BA表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④秒钟后,甲超过了乙,其中正确的说法是。

9、所谓的勾股数就是指使等式a+b=c成立的任何三个自然数。

我国清代数学家罗士林钻研出一种求勾股数的方法,即对于任意正整数m、n,取a=m-n,b=2mn,c=m+n,则a、b、c就是一组勾股数。

请你结合这种方法,写出85、84和组成一组勾股数。

10.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2008次,点P依次落在点2222222P,P12,P3,,P2008的位置,则点P2008的横坐标为.11、12、已知4x2+y2-4x-6y+10=0,则xy=13、正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3和点C1,C2,C3,…分别在直线y?kx?b和x轴上,已知点B1,B2,则Bn的坐标是______________.14、如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为B.3C. D.15、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC 于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是 A.1 B.2C.3D.4⑤HFCG16.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH.若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为8cm36cm24cm18cm17.如图,三个边长均为2的正方形重叠在一起,O1、O是其中两个正方形的中心,则阴影部分的面积是 .18.如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省固始县第三中学八年级数学培优作业
(考查内容:整式的乘除与因式分解)
命题人:吴全胜
一、 选择题
1、化简23()a -的结果是( )
A .5a -
B .5a
C .6a -
D .6
a 2、下列计算错误的是 ( )
A .2m + 3n=5mn
B .4
26a a a =÷
C .632)(x x =
D .32a a a =⋅ 3、下列各式从左到右的变形中,是因式分解的为( ).
A 、2222)1(xy y x x xy -=-;
B 、)3)(3(92-+=-x x x ;
C 、222)1)(1(1y x x y x ++-=+-;
D 、c b a x c bx ax ++=++)(.
4、下面是某同学在一次作业中的计算摘录:
①ab b a 523=+; ②n m mn n m 33354-=-; ③5
236)2(4x x x -=-⋅; ④a b a b a 2)2(423-=-÷; ⑤523)(a a =; ⑥2
3)()(a a a -=-÷-
其中正确的个数有( )
A.1个
B.2个
C.3个
D.4个
5、下列多项式中能用平方差公式分解因式的是( )
(A )22)(b a -+ (B )mn m 2052- (C )22y x -- (D )92+-x 6、 下列各式能用完全平方公式分解因式的是( )
A 、4x 2+1
B 、4x 2-4x -1
C 、x 2+xy +y 2
D 、x 2
-4x +4 7、△ABC 的三边长分别a 、b 、c ,且a+2ab =c+2bc ,△ABC 是( )
A.等边三角形
B.等腰三角形
C.直角三角形
D.等腰直角三角形
8、 把(-2)2009+(-2)2010分解因式的结果是( ).
A. 22008
B. -2 2008
C. -2 2009
D. 22009
9、一个正方形的边长增加了2cm ,面积相增加了32cm 2
,则这个正方形的边长为( )
A 、6cm
B 、5cm
C 、8cm
D 、7cm
二、填空题
1、分解因式:3+2x x= .
2、计算: ⎪⎭⎫ ⎝⎛-⋅23913x x =________;24(2)a --=________.
3、当时,代数式
的值为 . 4、若|a -2|+b 2-2b +1=0,则a =__________,b =__________.
5、已知a +1a =3,则a 2+21a
的值是__________. 6、从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.
7、已知102103m n ==,,则3210
m n +=____________ 8、一个长方形的面积是(x 2-16)平方米,其长为(x +4)米,用含有x 的整式表示它的宽为__________
9、. 如果多项式x 3-x 2+mx +6有一个因式是(x -2),则m=-______
10.()()43
52a a -⋅-=_______。

11.()=⨯⎪⎭⎫ ⎝⎛-200320025.132___________
12、已知a b ab +=-=31,,求 a b 22+ =
13、观察下列各式,探索发现规律:
22-1=3=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102
-1=99=9×11;……用含正整数n 的等式表示你所发现的规律为 .
14、在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生密码,方便记忆.原理是:如对于多项式44y x -,因式分解的结果是))()((22y x y x y x ++-,若取x=9,y=9时,则各个因式的值是:(x -y)=0,(x+y)=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式234xy x -,取x=10,y=10时,用上述方法产生的密码是: __________ (写出一个即可). 三、解答题
1、计算:(1)
32a 3b 2c ÷2
1a 2b (2)3223)()(x x -⋅- (3)(-4x -3y )2
(4))32)(32(+--+y x y x (5) (a +2b -c )2.
2、因式分解
(1))(3)(2x y b y x a --- (2)1222-+-b ab a (3)(x -1)(x +4)-36
(4)(m 2+n 2)2-4m 2n 2 (5)-2a 3+12a 2-18a ;(6)9a 2(x -y )+4b 2(y -x ); (7)(x +y )2+2(x +y )+1.
3、用简便方法计算:
⑴20042-2005×2003 ⑵2
2293⎛⎫ ⎪⎝⎭
4、先化简,再求值:
,其中.
5、若a2+2a+b2-6b+10=0,求a2-b2的值.
6、若△ABC三边a、b、c满足a2+b2+c2=ab+bc+ca.判断△ABC的形状。

相关文档
最新文档