耗散结构简介(精)
耗散结构理论
耗散结构理论
耗散结构的有序表现为宏观上的有序, 是一种处于运动变化中的活结构, 体 系的状态和性能都向着优化方向转变, 因此耗散结构具有广泛应用性。
耗散结构理论与地理系统
现代科技革命的巨浪越来越有力地冲击着任何 学科的研究领域。作为基础学科之一的地理学 应浪而起, 不失时机地把诸如“ 老三论” 、 “ 新三论” 等新理论和新方法引入自身的研 究领域。随着“ 新鲜血液” 的不断注入, 地 理学内部产生了两个基本模式: 地理系统论与 建设地理学。 地理系统论把地球表层及其组成部分的概念系 统化为多因素、多级次、多功能、多过程的相 互作用为非加法的开放系统, 系统内所有的自 然、人文地理要素间均存在着错综复杂的有机 联系和非线性作用。
耗散结构理论
在耗散结构理论中, 普利高津为了说明系统是 如何与外界相互作用进而从无序转变为有序的, 因而引入了熵的概念。 熵在热力学中是指系统有序程度大小的量度,熵 越大,系统的无序程度越高。 热力学第二定律指出, 对于一个非平衡的孤立 系统, 它的熵总是自发地趋于极大, 最终达到 一个具有最大熵值的平衡态【一个宏观静止、 分子排列最混乱的状态】。
在地理系统中,耗散结构的所谓地理时空有序, 就是地理时空对称的破缺,所谓地理组织和结构 性的产生,实质上是地理对称员的减少。完全的 地理系统就意味着没有任何地理秩序,没有任何 地理结构和信息,这正是孤立的地理系统处在平 衡态的特点。 地理系统内地理力的存在,就意味着“ 非平 衡” , 地理系统维持着这种促使其有序的非平 衡,并在不断打彼内部各头“ 平衡” 的基础上 创造新的非平衡。
地理系统是要素间有非线性相互作用的系统
地理系统是一个具有整体性和倏忽性等重要特 性的复杂系统, 因此在地理系统中, 作为输出 能显物质的“ 营养源” 的自然地理系统和作 为输入营养的“ 营养汇” 的人文池理系统之 间相互促进又相互制约, 彼此间存在着极复杂 的非线性相互作用( 反馈、自催化、自组织、 自我复制等) , 同时自然、人文地理系统内部 的各要素间的非线性联系更为密切。
举例说明耗散结构论
举例说明耗散结构论
耗散结构论是一种描述复杂系统演化的理论框架,它涉及物理、化学、生物、社会等多个领域。
下面以不同领域的例子来说明耗散结构论的应用。
1. 自然系统:
- 飓风的形成和演化过程是一个耗散结构,它通过吸收热量和水汽等能量,形成了一个自我维持的系统。
- 河流的形成和发展也是一个耗散结构,水流通过侵蚀和沉积等过程,形成了一个稳定的河道系统。
2. 生物系统:
- 生物进化是一个耗散结构,通过自然选择和遗传变异等机制,物种逐渐适应环境并演化出新的特征和功能。
- 生物群落的形成和发展也是一个耗散结构,不同物种之间通过竞争和合作等关系,形成了一个相对稳定的生态系统。
3. 社会系统:
- 市场经济是一个耗散结构,通过供需关系和竞争等机制,形成了一个动态的经济系统。
- 社会网络是一个耗散结构,人们通过交流和合作等方式,形成了一个复杂的社会关系网络。
4. 物理系统:
- 火焰的燃烧过程是一个耗散结构,通过燃烧产生的热量和化学反应等机制,维持了火焰的存在和演化。
- 自然界中的化学反应也是一个耗散结构,通过反应物之间的相互作用,形成了新的化合物和物质。
以上是一些耗散结构论的例子,它们展示了在不同领域中,复杂系统是如何通过吸收能量和物质等资源,形成自我维持的结构并演化的。
耗散结构论为我们理解自然和社会系统的演化过程提供了一种框架和思维工具。
通过研究耗散结构,我们可以更好地理解复杂系统的行为和特征,为解决实际问题提供指导和思路。
耗散结构
在远离平衡的非线性区形成的新的稳定有序的结构,由于需要与外界环境交换实物和能量才能维持,所以叫做耗散结构。
所谓假说,就是对于一定范围内的事物、现象的本质、规律或原因的一种推测性的说明方式。
科学假说有两个显著的特点:(1)有一定的科学根据。
它建立在已有的科学理论和实验材料的基础上,并且经过了一定的科学论证,因而它与毫无事实根据的迷信、臆测不同,也与缺乏理论论证的猜测、幻想有别科学假说与主观妄想和凭空臆断是有原则区别的;(2)带有推测和假定的性质,有待于实验检验和理论论证,因而与确实可靠的理论不同。
技术创新,是指企业应用创新的知识和新技术、新工艺,采用新的生产方式和经营管理模式,提高产品质量,开发生产新的产品,提供新的服务,占据市场并实现市场价值。
”在这里技术创新已经不是单纯技术概念,而是技术与经济结合的经济学范畴的概念,涵盖企业运行的全过程。
技术创新是指经济实体为了适应技术进步和市场竞争的变化,借助内外力量引进某种新技术的过程,它包括产品的创新、工艺创新、组织创新、市场创新和材料创新等。
技术创新是一个经济概念而不是一个技术概念;技术上的某一新的发明若不被应用于经济活动之中,不能称为技术创新。
技术创新是一个从创新思想的形成到创新成果被广泛应用的全过程。
通常一个技术创新过程包括选题、研究、开发、设计、实验、生产、销售、服务、信息反馈和技术扩散等多个环节,而且只有各个环节之间紧密衔接,才能保证技术创新的成功。
19世纪末、20世纪初的美籍奥地利经济学家约瑟夫.阿罗斯.熊彼特的动态发展理论就是以创新(技术创新),概念为特色的。
他认为,经济本身存在着一种破坏均衡而又恢复均衡的力量,那就是创新活动,而且正是这种创新活动引起了经济的发展。
他所说的创新活动是指:"企业家实行对生产要素的新的组合。
"包括五种情况:(1)引入一种新的产品或提供一种产品的新质量;(2)采用一种新的生产方法;(3)开辟一个新的市场;(4)获得一种原料或半成品的新的供给来源;(5)实行一种新的企业组织形式,如建立一种垄断地位或打破一种垄断地位。
热力学系统的耗散结构
热力学系统的耗散结构热力学是研究宏观物质运动和相互作用的学科。
热力学系统是一个封闭的物质集合,它受到温度、压力、能量等方面的限制。
热力学系统是一种介于分子级别和宏观级别之间的物理学模型,它可以解释物质的宏观行为。
热力学系统是一个耗散结构。
耗散结构是指一个开放系统,它可以维持稳定态,即使系统内部的热量和物质不断消耗和改变。
耗散结构是复杂系统中的一种,具有自组织行为和紧密联系的状态。
在热力学中,系统会发生热量、物质和能量的交换。
这些过程可以用热力学方程来描述。
其中,热力学第一定律描述了能量的守恒,热力学第二定律描述了热量的流动性质。
热力学第二定律阐述了熵增原理,即热力学系统的熵增加总是不可逆的。
熵增原理是热力学系统的重要特点之一。
它是指任何一个热力学系统,其熵都必须增加,因为随着热力学系统向稳定状态迈进,内部结构的不规则性和无序性也会增加。
这种增加不是在宏观上,而是在于分子水平上的。
在热力学系统中,熵增原理通常被描述成内部的无序程度增加,而这种无序程度又被称为热力学势。
热力学势是反映系统状态稳定程度的物理量。
热力学势的变化可以作为系统是否偏离稳态的依据。
耗散结构是热力学系统产生的一种稳定结构。
具体来说,是指一个复杂系统,它可以通过自组织行为来保持稳定状态。
耗散结构可以从无序中产生出来,可以维持一段时间,然后又回归到无序状态中。
在热力学系统中,耗散结构是由熵流产生的。
熵流是热力学系统中热量、能量、物质等在空间方向上的流动。
熵流可以为系统提供稳定性,因为它可以使系统的结构稳定。
例如,火车头的火焰可以产生熵流,为火车整个系统提供稳定性。
在耗散结构中,系统会消耗能量,但其结构不改变,因此其稳定性会得到保持。
一些基础物理学中的现象,如相变、超导、超流、液晶等,都与热力学系统中的耗散结构有关。
总之,热力学系统的耗散结构是一种复杂的系统结构,它经历了自组织和自适应行为,从而保持稳定状态。
这种结构在自然界和现代科技中都有着广泛应用,例如电脑制造、机械工程和药物等领域。
耗散结构-热寂论
在决定性理论方面,以化学反应系统为例,耗散结构理论是在等温、等压、稳定的边界条件和局域平衡四个假定下,考察复杂的开放系统,根据系统服从的统计力学规律建立相应的方程。
用微分方程的稳定性理论已经证明:复杂的开放系统在平衡态附近的非平衡区域不可能形成新的有序结构,在这个区域内系统的基本特征是趋向平衡态。在远离平衡态的非平衡区域,系统可以形成新的有序结构,即耗散结构。这种耗散结构只能通过连续的能量流或物质流来维持,它是在热力学不稳定性上的一种新型组织,具有时间和空间的相干特性。这是一种与平衡条件下出现的平衡结构完全不同的结构。
以前的物理理论认为,只有能量最低时,系统最稳定,否则系统将消耗能量,产生熵,而使系统不稳定。耗散结构理论认为在高能量的情况下,开放系统也可以维持稳定。例如生物体,以前按照热力学定律,是一种极不稳定的结构,不断地产生熵而应自行解体,但实际是反而能不断自我完善。其实生物体是一种开放结构,不断从环境中吸收能量和物质,而向环境放出熵,因而能以破坏环境的方式保持自身系统的稳定。城市也是一种耗散结构。
在物理学方面,耗散结构的概念扩大和加深了物理学中的有序概念。对不同物理体系中各种耗散结构的研究,丰富了热力学和统计物理学中关于相变的研究内容,开辟了新的研究领域,为物理学研究这些非平衡非线性问题提供了新概念和新方法。
在化学和生物学方面,化学反应系统和生物学系统中耗散结构的研究,为生命体的生长发育和生物进化过程提供了新的解释,提供了新的概念和方法。在系统科学方面,耗散结构理论利用数学和物理学的概念和方法研究复杂系统的自组织问题,成为系统学的一个重要组成部分。
耗散结构的研究揭示了一种重要的自然现象,并对复杂系统的研究提出了新的方向。在数学上描述复杂系统的方程通常是非线性的,一般包括分岔现象。耗散结构实质上对应于系统方程在远离平衡区的一个分岔解。因此,耗散结构的研究必然促进分岔理论的发展。
“耗散结构”的简介与分析
“耗散结构”的简介与分析耗散结构比利时的普里戈金从研究偏离平衡态热力学系统的输送过程入手,深入讨论离开平衡态不远的非平衡状态的热力学系统的物质、能量输送过程,即流动的过程,以及驱动此过程的热力学力,并对这些流和力的线性关系做出了定量描述,指出非平衡系统(线性区)演化的基本特征是趋向平衡状态,即熵增最小的定态。
这就是关于线性非平衡系统的“最小熵产生定理”,它否定了线性区存在突变的可能性。
普里戈金在非平衡热力学系统的线性区的研究的基础上,又开始探索非平衡热力学系统在非线性区的演化特征。
在研究偏离平衡态热力学系统时发现,当系统离开平衡态的参数达到一定阈值时,系统将会出现“行为临界点”,在越过这种临界点后系统将离开原来的热力学无序分支,发生突变而进入到一个全新的稳定有序状态;若将系统推向离平衡态更远的地方,系统可能演化出更多新的稳定有序结构。
普里戈金将这类稳定的有序结构称作“耗散结构”。
从而提出了关于远离平衡状态的非平衡热力学系统的耗散结构理论。
耗散结构理论指出,系统从无序状态过渡到这种耗散结构有几个必要条件,一是系统必须是开放的,即系统必须与外界进行物质、能量的交换;二是系统必须是远离平衡状态的,系统中物质、能量流和热力学力的关系是非线性的;三是系统内部不同元素之间存在着非线性相互作用,并且需要不断输入能量来维持。
在平衡态和近平衡态,涨落是一种破坏稳定有序的干扰,但在远离平衡态条件下,非线性作用使涨落放大而达到有序。
偏离平衡态的开放系统通过涨落,在越过临界点后“自组织”成耗散结构,耗散结构由突变而涌现,其状态是稳定的。
耗散结构理论指出,开放系统在远离平衡状态的情况下可以涌现出新的结构。
地球上的生命体都是远离平衡状态的不平衡的开放系统,它们通过与外界不断地进行物质和能量交换,经自组织而形成一系列的有序结构。
可以认为这就是解释生命过程的热力学现象和生物的进化的热力学理论基础之一。
在生物学,微生物细胞是典型的耗散结构。
材料物理学第耗散结构
材料物理学第耗散结构引言材料物理学是关于材料特性和行为的研究。
这个领域的一个重要方面是了解材料的耗散结构。
耗散结构是指材料中能量消耗的微观层面结构。
这篇文档将详细介绍材料物理学中的耗散结构及其作用。
耗散结构的定义耗散结构是一种材料内部的微观结构,是指能够耗散能量的材料中的各种微观结构和机制。
耗散结构的种类很多,例如材料中的晶粒界面、液体层、位错、空隙、杂质等等。
耗散结构的作用材料中的耗散结构在应变或应力作用下能够吸收和散播能量。
这对于材料的特性和行为具有重要影响。
这样的结构能够耗散弹性能(即形变能),因此有助于材料邮编塑性形变和良好的韧性。
此外,在受到外部应力时,由于耗散结构的存在,材料中不会出现过大的局部变形,这可以防止材料断裂。
耗散结构的种类晶粒界面晶粒界面是材料中不同晶粒之间的区域。
由于不同晶格的周期性不同,晶粒界面能消耗和散播大量的应变能量。
晶界阻尼是由于晶界的相互作用导致的,是内部摩擦所产生的摩擦力。
液态区域液态区域是由于材料中存在的液态相而存在的。
与晶粒界面类似,液态区域能够吸收和散播应变和能量。
材料中的液态区域能够提供良好的韧性和抵抗断裂的能力。
此外,液态区域还能在材料加工中起到润滑作用,降低材料的内部摩擦。
位错位错是材料中的微小晶粒错位。
由于位错的发生和遭受,材料能够产生局部的形变,并以松弛等方式吸收能量。
位错的存在影响了材料的宏观形变和机械性能。
空隙空隙是材料中的孔洞或裂缝,它们能够吸收和散播应变能量。
空隙通常会导致材料的疲劳强度降低。
耗散结构是材料物理学中的一个重要方面,对于材料的特性和行为都有着重要的影响。
材料中的晶粒界面、液态区域、位错和空隙等耗散结构,能够吸收和散播应变和能量,从而提供材料的韧性和各种机械性能。
耗散
耗散耗散结构(dissipative structure) 关于“耗散结构”的理论是物理学中非平衡统计的一个重要新分支,是由比利时科学家伊里亚·普里戈津(I.Prigogine)于20世纪70年代提出的,由于这一成就,普里戈津获1977年诺贝尔化学奖。
差不多是同一时间,西德物理学家赫尔曼·哈肯(H.Haken)提出了从研究对象到方法都与耗散结构相似的“协同学”(Syneraetics),哈肯于1981年获美国富兰克林研究院迈克尔逊奖。
现在耗散结构理论和协同学通常被并称为自组织理论。
我们首先从几个例子看一下究竟什么是耗散结构。
天空中的云通常是不规则分布的,但有时蓝天和白云会形成蓝白相间的条纹,叫做天街,这是一种云的空间结构。
容器装有液体,上下底分别同不同温度的热源接触,下底温度较上底高,当两板间温差超过一定阈值时,液体内部就会形成因对流而产生的六角形花纹,这就是著名的贝纳德效应,它是流体的一种空间结构。
在贝洛索夫—一萨波金斯基反应中,当用适当的催化剂和指示剂作丙二酸的溴酸氧化反应时,反应介质的颜色会在红色和蓝色之间作周期性变换,这类现象一般称为化学振荡或化学钟,是一种时间结构。
在某些条件下这类反应的反应介质还可以出现许多漂亮的花纹·,此即萨波金斯基花纹,它展示的是一种空间结构。
在另外一些条件下,萨波金斯基花纹会成同心圆或螺旋状向外扩散,象波一样在介质中传播,这就是所谓化学波,这是一种时间一一空间结构。
诸如此类的例子很多,它们都属于耗散结构的范畴。
为了从各不相同的耗散结构实例中找出其本质的特征和规律,普里戈津学派研究了非平衡热力学,继承和发展了前人关于物理学中相变的理论,运用了当代非线性微分方程以及随机过程的数学知识,揭示出耗散结构有如下几方面的基本特点。
首先,产生耗散结构的系统都包含有大量的系统基元甚至多层次的组分。
贝纳德效应中的液体包含大量分子。
天空中的云包含有由水分子组成的水蒸气、液滴,水晶和空气,因而是含有多组分多层次的系统。
耗散结构
美 有 人 研 究 东 西 部人口的空间分 布规律
加 拿 大 人 员 研 究 捕鱼的最佳时间 荷 兰 科 学 家 研 究 能源的最低消耗 方案
谢谢观看
小组成员:苗庆祎,庞玉冬,朱力炜, 董怡霄
耗散结构
耗散理论,即耗散结从无序到有序的 演化规律的一种理论。 耗 散结构是指处在远离平衡 态的复杂系统在外界能量 流或物质流的维持下 ,通 过自组织形成的一种新的 有序结构。“耗散”一词 起源于拉丁文 ,原意为消 散,在这里强调与外界有 能量和物质交流这一特性 。
创始人是伊里亚·普里戈金 (Ilya Prigogine) 教授,由 于对非平衡热力学尤其是 建立耗散结构理论方面的 贡献,他荣获了 1977 年诺 贝尔化学奖。
散结构理论提出后 ,在自 然科学和社会科学的很多 领域如物理学 、 天文学、 生物学、经济学、哲学等 都产生了巨大影响。
在生活中的应用
耗散结构
耗散结构的基础知识
(2011.10.14)
一、耗散结构的基本概念
远离平衡态的开系(open system,即与外界既交换能量也交换物质的系统),通过耗散过程自发地出现空间结构或时间结构、时空结构的现象。
属于空间结构的如贝纳尔(Benard)对流,地幔对流;属于时间结构的如化学震荡等。
耗散结构的出现,说明系统对称性减小,因而变得更有序。
这说明耗散结构是一种自发的由无序向有序的转变,很类似于从液体变为晶体的相变。
因而称之为非平衡相变(因其发生在远离平衡态);又因为这种有序结构是好像诸分子自发发生的宏观现象,故称其为自组织现象,相应地这种有序结构被称为自组织结构。
耗散结构的特点:
1)耗散结构一定发生在远离平衡态的开系中,而且一定出现在能量耗散系统中,它只能靠外界不断供应能量或物
质才能维持其存在。
而平衡相变产生的结构(如晶体中
的原胞结构),即便在封闭的孤立系统中仍能稳定存在。
2)耗散结构仅在控制参数(如温差、流速等)达到一定阈值而产生失稳时才突然出现。
3)耗散结构具有时间或空间结构,其对称性低于达到阈值前的状态,因而是一种非平衡相变。
4)耗散结构是一种非线性现象。
5)耗散结构虽是旧状态不稳定的产物,但它一旦产生,就
具有相当的稳定性,不会被任何小扰动所破坏。
耗散结构的上述特点,使人们认识到:不可逆过程虽然总是耗散能量,浪费有用功,但却可为有序的建立提供必要条件。
耗散结构
一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
己先查看一遍,把用不上的部分页面 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓
删掉哦,当然包括最后一页,最后祝 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。
你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏
识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使
耗散结构的必要条件:
1。 首先,产生耗散结构的系统都包含有大量的 系统基元甚至多层次的组分。基元间以及不同的 组分和层次间还通常 存在着错综复杂的相互作用
2。产生耗散结构的系统必须是开放系统,必定同 外界进行着物质与能量的交换。
耗散结构——精选推荐
耗散结构耗散结构是⾃组织现象中的重要部分,它是在开放的远离平衡条件下,在与外界交换物质和能量的过程中,通过能量耗散和内部⾮线性动⼒学机制的作⽤,经过突变⽽形成并持久稳定的宏观有序结构。
1969年,在⼀个理论物理学和⽣物学的国际会议上,普⾥⼽⾦在《结构、耗散和⽣命》①的论⽂⾥,正式提出了“耗散结构理论”。
1971年,他和格兰斯道夫合著的《结构的热⼒学理论,稳定性和涨落》②,更系统地阐述了他们得出的可能对事物随时间演化的⽅式做出判别的所谓“普适演化判据”。
在第⼀篇论⽂的开头,普⾥⼽⾦就指出: “⽣物学与理论物理学之间仍然存在着巨⼤的鸿沟,这是⾮常明显的。
按照某些著名⽣物学家的看法,在空间和功能两个⽅⾯的有序,乃是⽣命的基本特征。
⽣命问题当然是⼀个‘多体问题’。
因为有序的形成和维持包含着⼤量分⼦的联合作⽤。
但是,统计物理学在处理这种联合现象上,⽬前尚处于初期阶段。
…… 在⽣命系统中,新陈代谢和能量的耗散,很可能起着本质的作⽤。
” 普⾥⼽⾦说,他希望在热⼒学的唯象⽅法的基础上,去“讨论⽣物有序之源,还想说明⾮线性热⼒学的新近发展能够使⽣物学和物理学之间的鸿沟缩⼩。
” 普⾥⼽⾦区分了两种类型的结构,即“平衡结构”和“耗散结构”。
平衡结构是⼀种不与外界进⾏任何能量和物质交换就可以维持的“死”的有序结构;⽽耗散结构则只有通过与外界不断交换能量和物质才能维持其有序状态,这是⼀种“活”的结构。
普⾥⼽⾦-格兰斯道夫的判据指出,对于⼀个与外界有能量和物质交换的开放系统,在到达远离平衡态的⾮线性区时,⼀旦系统的某个参量变化到⼀定的阈值,稳恒态就变得不稳定了,出现⼀个“转折点”或称为“分叉点”,系统就可能发⽣突变,即⾮平衡相变,演化到某种其它状态。
⼀个重要的新的可能性是,在第⼀个转折点之后,系统在空间、时间和功能上可能会呈现⾼度的组织性,即到达⼀个⾼度有序的新状态。
例如在某些远离平衡的化学反应中,可以出现规则的颜⾊变化或者漂亮的彩⾊涡旋。
生物系统的耗散结构和自组织性质
生物系统的耗散结构和自组织性质生命的存在不仅仅是机械式的运作,而是一种充满活力的复杂体系。
生物体系中的耗散结构和自组织性质是生命系统的关键特征。
本文将重点探讨生物系统中的耗散结构和自组织性质,以及这些特征对生命体系的影响。
一. 什么是耗散结构?耗散结构是指生物体系的一种动态状态,它是通过消耗能量和物质,并将它们转化成生物体系所需的结构和功能的一种过程。
生物体系中的许多过程都需要耗散结构的支持,例如酶合成、代谢产物消耗和生长等生命过程。
耗散结构的产生是生物体系中不可缺少的过程,它保证了生命系统的正常运转。
二. 生物体系中的自组织性质自组织性是生物体系中的另一个重要特征。
自组织性是指生物体系中出现的结构和组织形式,是由于不同的生物体组件之间的相互作用和调节所形成的。
当生物体系中包含的成分相互作用的规律性达到一定的水平时,组织和结构中就会出现某种规律性。
生物体系中的自组织性质是一种较为普遍的现象,它有助于生物系统的功能完成和稳定性维持。
三. 耗散结构与自组织性的相互作用耗散结构和自组织性是生物体系中的两个重要特征,并且它们之间存在着相互关联和相互作用的关系。
首先,耗散结构可以促进自组织性。
由于耗散结构的存在,生物体系中每个组件的持续运动和代谢产生了相互之间的相互作用和调节。
这种相互作用和调节可以促进自组织性的产生。
例如,在一个生长的微生物群体中,每个微生物细胞之间都存在一定的相互作用,这些相互作用可以促使整个群体的生长和扩散。
其次,自组织性可以维持和调节耗散结构的运转。
由于自组织性的存在,生物体系中的各种组件可以相互协同和协调,这有助于保证耗散结构的完整和稳定。
例如,在一个细胞代谢网络中,各种代谢产物的转化和消耗需要通过复杂的调节控制才能保证正常进行。
最后,耗散结构和自组织性相互支持,维持了生物体系的动态平衡和稳定性。
生物体系中的组件之间的不断调节和适应可以使系统稳定,并能够应对外界变化。
同时,耗散结构的存在保证了生命体系中必需的物质和能量的不断供应。
耗散结构简介
有
d S di S de S 0
S
∴ 开放系统可能因负熵流足够强而实现自组织。
例如贝纳德实验中,流体是个开放系统, 随着热量的流进流出,系统的熵在变化。 若流进流出的热量记作dQ, 则 dQ dQ 流出的熵 — 流进的熵 — T2 T1 dQ dQ 因为 T1 > T2 , 所以 T1 T2 即流出的熵大于流进的熵 。
20
不是任何涨落都能得到放大,只有适应系统动 力学性质的那些涨落,才能得到系统中绝大多 数微观客体的响应,从而波及整个系统, 将系
统推向新的有序结构 —— 耗散结构。
耗散结构形成的条件: (a) 开放系统 (b) 远离平衡态 (c) 涨落
21
(d) 正反馈 (e) 非线性抑制因素素
例如,假设某时刻在某个平衡态有如图 所示的涨落(涨落总是存在的): 为简单起见,假设右图
c2 a1
b2
混 沌 状 态
∞
25
通过倍周期分叉走向混沌
当T 很大,且继续加大时, 如贝纳德实验中, 会出现多种花纹的更替, 最终走向湍流(混沌)。 高级分支现象说明在远离平衡态时系统可以 有多种可能的有序结构。 高级分支会积累起各
次分支中产生的自组织本领,从而使系统的功
能变得丰富和完备起来,现出复杂的时空行为。 生命的进化和整个世界的发展也可以用高级分 支行为来说明。
说明离子浓度出现了时间有序结构。
9
▲
生物界
中华鲟回游,侯鸟迁移,…
有生命界和无生命界都有共同规律可循。 自组织现象是与热力学第二定律的 从有序 无序的时间箭头不一致的!
要将它们用物理学规律统一起来,必须抓住 孤立系统与开放系统的区别。
10
耗散结构理论与教育
利用非线性构建自组织性
• 耗散结构理论显示在系统发展至临界点时 系统内外结构经历着前所未有的巨变。此 时系统内各组成部分也承受着着巨大压力。 以被管理者尤甚,此时被管理者必须摆脱 以往的就有规律的束缚,充分发挥主观能 动性,积极调试自己,不断为自己“充 电”。从而顺利度过危机,完成质变。
日常班级管理中的耗散结构理论
二、耗耗散结构与教育
与教育领域相关的耗散结构理论 概念
• • • • • 远离平衡态 非线性 开放系统 涨落 突变
利用非线性构建自组织性 建构开放性系统
教育系统的内部涨落
教育领域中量变引起质变的 观点
远离平衡态
• 普里高津将状态分为三种:远离平衡态、近平衡 普里高津将状态分为三种:远离平衡态、 平衡态。 态、平衡态。 • 远离平衡态是指系统内可测的物理性质极不均匀 的状态,此时系统貌似会走入崩溃的边缘, 的状态,此时系统貌似会走入崩溃的边缘,但恰 恰相反的是,系统走向一个高效能产生的、 恰相反的是,系统走向一个高效能产生的、宏观 上有序的状态。 上有序的状态。 • 耗散结构理论所对应的热力学现象发生时,系统 耗散结构理论所对应的热力学现象发生时, 必需处于远离平衡态。 必需处于远离平衡态。
非线性
• 在系统面临崩溃的临界点时,正是系统的 非线性作用通过一系列复杂反应控制系统 安然越过临界点,使系统稳定到新的耗散 结构上。
开放系统
• 耗散结构理论将系统分为两种:开放系统 和封闭系统。封闭系统在面临崩溃时不能 引入新的能量和物质,最后只能消亡。而 对于开放系统来说,系统可以通过吸收外 界新的物质和能量,自发地从无序进入有 序的耗散结构状态。
抓住系统的内部涨落契机
• 耗散结构理论告诉我们系统时刻处于涨落的运动之中。教 育系统的发展实质是内部涨落发生并发的过程。因此,进 行教育系统的管理时,必须认真研究涨落,特别注意在当 教育系统处于临界点、关键点时,必须及时创造条件,促 进和扩 某种涨落,因势利导,促使其向健康的方向跃进。 首先,管理主体应有敏锐的观察力,从 被管理者的生活、 学习、工作各方面收集信息、分析信息,了解他们的综合 状况,这是引导的前提。在目前要特别关注 被管理者因 为个性因素、人际交往障碍、生活贫困、等原因造成的各 方面的任何意外和变化,深入把握其变化的脉搏。其次, 学会做过细的工作,不放过任何蛛丝马迹,不忽视 被管 理者所发生的任何意外和变化。再次,管理主体应科学研 究和预测被管理者变化的发展趋势或事态可能发展的方向, 有针对性地做好防范于未然的工作,从而有效地避免系统 发生“巨涨落”。
耗散结构理论及其在企业管理中的运用
耗散结构理论及其在企业管理中的运用一、耗散结构理论简介耗散结构理论是诺贝尔奖获得者、比利时科学家普里高津所创立的,与协同学、突变论统称为“新三论”,是对系统科学的丰富和发展。
虽然耗散结构理论最初来源与自然科学,但是其不仅仅运用于此,在社会科学方面也有着重要的指导意义。
该理论认为,一个远离平衡状态的开放系统,通过不断与外界进行物质、能量、信息的交换,以及系统内部一些涨落机制的非线性作用可以使系统自发地从低度无序到高度有序,形成一种新的稳定有序结构,这种结构即是耗散结构。
二、企业是一个耗散结构系统现代企业管理系统的产生与整个社会的大环境作用是分不开的,是由大量的人力、资本、设施等组合起来。
根据耗散结构理论,一旦耗散结构经济系统形成,系统及各个子系统甚至系统要素都是开放的,不断的与外界进行物质、能量、信息的交换,系统内外各要素处在非平衡状态,不断交替,不断进行新陈代谢,产生很大的非线性协同力,通过涨落机制促使经济系统不断发展,进化为一个越高级、生命力越旺盛、越兴旺发达的经济系统。
三、耗散结构理论在企业管理中的应用1.企业的熵流分析我们认为企业当中存在着独立的正熵流和负熵流,熵流理论对研究企业的发展具有重要理论意义。
企业中的正熵流代表着企业当中不利企业发展的因素,比如:企业当中一些正式的小团体,有些人称兄到弟,拉帮结派;企业管理松散和混乱,处于一种放纵状态;管理者肆无忌惮,乱用和挥霍管理权,使个人主义凌驾于公司规章制度之上,欺凌员工,造成两者之间产生巨大的隔阂,互不沟通,互相埋怨;企业各人心怀鬼胎,只顾个人利益,把企业利益弃之不顾,工作不认真,肆意拖延等。
这些不利因素滋生于企业的内部矛盾之中造成企业的不稳定,从而使其产生正熵。
负熵可以抵消企业正熵带来的不利影响,从而使企业管理回到一种有序的状态。
但是负熵并不是像正熵那样是随着企业发展过程中自然出现的,这种有利企业发展的影响因素是依赖人为因素强制实施的。
企业负熵的出现必须依靠企业强制实行的制度,来使企业重新回到正常发展的轨道上。
耗散结构的例子
耗散结构的例子耗散结构是指一个系统在不断地吸收能量和物质,同时也在不断地释放能量和物质,从而维持其稳定的状态。
这种结构在自然界中随处可见,例如生态系统、气候系统、经济系统等等。
下面列举一些耗散结构的例子。
1. 生态系统:生态系统是一个典型的耗散结构,它通过吸收太阳能和水分,同时释放二氧化碳和氧气,维持着生态系统的稳定状态。
生态系统中的各种生物之间相互依存,形成了一个复杂的生态网络。
2. 大气环流系统:大气环流系统是指地球上的大气层在不断地吸收和释放能量,从而形成了复杂的气候系统。
大气环流系统中的各种气候现象,如风、雨、雪等,都是由于能量和物质的耗散而产生的。
3. 经济系统:经济系统也是一个典型的耗散结构,它通过吸收资源和能源,同时释放产品和服务,维持着经济的稳定状态。
经济系统中的各种产业之间相互依存,形成了一个复杂的经济网络。
4. 社会系统:社会系统也是一个耗散结构,它通过吸收人力和物力,同时释放文化和价值观,维持着社会的稳定状态。
社会系统中的各种群体之间相互依存,形成了一个复杂的社会网络。
5. 生物体内代谢系统:生物体内代谢系统是指生物体内的化学反应过程,它通过吸收营养和氧气,同时释放废物和二氧化碳,维持着生物体的稳定状态。
生物体内的各种细胞之间相互依存,形成了一个复杂的代谢网络。
6. 水循环系统:水循环系统是指地球上的水循环过程,它通过吸收太阳能和水分,同时释放水蒸气和降水,维持着水循环的稳定状态。
水循环系统中的各种水文现象,如河流、湖泊、海洋等,都是由于能量和物质的耗散而产生的。
7. 交通运输系统:交通运输系统也是一个耗散结构,它通过吸收能源和人力,同时释放交通服务和运输产品,维持着交通运输的稳定状态。
交通运输系统中的各种交通工具之间相互依存,形成了一个复杂的交通网络。
8. 能源系统:能源系统是指人类利用自然资源来生产能源的过程,它通过吸收自然资源和能量,同时释放能源产品和废弃物,维持着能源系统的稳定状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
耗散结构简介
1自组织现象
热力学第二定律说明了孤立系统中进行的自然过程有方向性:
有序→ 无序(退化,克劳修斯提出)
自然界实际上也存在许多相反的过程:
无序→ 有序(进化,达尔文提出)
一个系统由无序变为有序的自然现象称为自组织现象。
例1:生命过程中的自组织现象
(1)蛋白质大分子链由几十种类型的成千上万个氨基酸分子按一定的规律排列起来组成。
大脑是150 亿个神经细胞有规律排列组成的极精密极有序的系统,是一切计算机所替代不了的。
——如看一张相片,分辨男?女?大约年龄?对带有输入“器官——眼睛”的大脑是很简单的事情,对计算机来说就非常复杂了。
假定蛋白质是随机形成的,而且每一种排列有相等的概率,那么即使每秒进行100 次排列,也要经过10109亿年才能出现一次特殊的排列。
这种有组织的排列决不是随机形成的
(2)树叶有规则的形状;动物毛皮有花纹,蜜蜂窝;龟背(空间有序)(3)候鸟的迁移;中华鲟的徊游(时间有序)
例2、无生命世界的自组织现象
(1)六角形的雪花;
(2)鱼鳞状的云;
(3)激光
(4)贝纳特现象(Benard)
当ΔT = T2 - T1 = 0 时平衡态
当ΔT > 0 但不太大时,稳定的非平衡态——单纯热传导
当ΔT> T c时,出现有序的宏观对流。
千千万万的分子被组织起来,参加一定方式的宏观定向运动,能量得以更有效的传递。
自组织现象是与热力学第二定律的 有序 → 无序 时间箭头相矛盾的!要将它们用物理学规律统一起来,必须抓住孤立系统与开放系统的区别。
2、开放系统的熵变
热力学第二定律:孤立系统中发生的过程 ΔS > 0;但对一个开放系统,熵有可能减少!
开放系统:与外界有能量交换(通过作功、传热)或物质交换的系统。
2、1 理论上的可逆过程
状态 1 到状态 2 熵的增量
()()21dQ
S T ∆=⎰ (可逆)
对孤立系统:因绝热 ΔS = 0,熵不变
对开放系统:若单调吸热 d Q > 0,ΔS > 0 熵增加;若单调放热 d Q < 0, ΔS < 0 熵减少。
2、2 对实际的不可逆过程(上式不能用!)
利用卡诺定理可以证明
()()()()2211dQ
dQ
T T >⎰⎰ 或 ()()21dQ
S T ∆>⎰
(可逆) (不可逆) (不可逆)
证明:
(1) 考虑工作在 T 1、T 2 两个热源间的不可逆热机,它的效率小于可逆热机(即卡诺热机)的效率:
ηη<不可逆可逆
()212121/1/0Q Q Q Q Q η=-=+<不可逆
211/T T η=-可逆
21211/1/Q Q T T ∴+<- 即:112//0Q T Q T +<
所以该不可逆热机的热温比之和小于零。
(2) 再考虑任意的不可逆循环,将它与无数个热源交换热量,可以得到:
0dQ T
<⎰ (克劳修斯不等式) (不可逆)
(3) 最后考虑如图 3 所示的不可逆循环过程:
()()()()()()()()212212110dQ dQ dQ
dQ
dQ T T T T T =+=-<⎰⎰⎰⎰⎰
不可逆 可逆 不可逆 可逆 不可逆
于是得证。
对孤立系统:若绝热 d Q = 0 , ΔS > 0 熵增加
对开放系统:若吸热 d Q > 0 , ΔS > 正数 熵增加
若放热 d Q < 0 , ΔS > 负数 三种可能:
ΔS 为正 熵增加; ΔS 为零 熵不变; ΔS 为负 熵减少
所以,对于开放系统(不论可逆或不可逆)熵是可以减少的。
通常引入“负熵流”的概念:
一个系统熵的变化:
由系统内部过程引起的 d i S ≥ 0
与系统外部交换物质或能量引起的 d e S ≥ 0
—— 称为“熵流”(可正可负)
整个系统的熵变即为
d S = d i S + d
e S
若 d e S < 0 (负熵流),而且 | d e S | > d i S ,则 d S < 0
系统熵减少则系统变得更有序,所以系统变得更有序是依靠开放系统的负熵流! 例如,贝纳特实验中流体系统是一个开放系统。
随着热量的流进流出,系统的熵在变化。
若流进流出的热量相等,记作 | d Q |
流进的熵为 | d Q | / T 1 ,流出的熵 | d Q | / T 2 。
因为 T 1 > T 2 ,
∴ | d Q | / T 1 < | d Q | / T 2
即流出的熵大于流进的熵。
若净流出的熵超过了系统内部的熵产生,系统的熵就减少,系统就从无序 → 有序。
人体是一个开放系统,吃饭是为了产生“负熵流”。
3、远离平衡态的分叉现象
三种热力学:
平衡态热力学(经典热力学)
主要研究平衡态的性质,例如贝纳特实验中 ΔT = 0 的情形
线性非平衡态热力学(近平衡态热力学)
外界的影响较小,外界的作用与系统状态的变化可以看成简单的线性关系。
例如贝纳特实验中,ΔT > 0 (但较小)的情形。
还不可能发生自组织的现象。
非线性非平衡态热力学(远离平衡态热力学)
外界的影响强烈,它引起系统状态的变化已不能看成简单的线性关系,有其特有的规律。
例如贝纳特实验中 ΔT > ΔT c 时的情形。
这时,就有可能出现自组织现象。
图 4 表示上述情况,其中 为外界对系统的控制参数,对贝纳特实验 λ→ ΔT 0λ→ ΔT = 0 c λλ>→ ΔT > T c
远离平衡态时出现分叉现象。
分叉现象:
非平衡的不稳定态在一个细小的扰动下,就可以引起系统状态的突变,状态离开(b)线沿着另外两个稳定的分叉(c),或(c')发展,这称为分叉现象。
分级分叉:
当控制参数进一步增大时,各稳定的分支又会变得不稳定,从而出现二级分叉或更高级分叉。
如图 5 所示。
混沌现象:
对于一个较大的λ,由于存在非常多种可能的耗散结构,系统究竟处于哪一种耗散结构完全无法预知,这称为混沌现象(图5)。
由于每一次分叉都会赋予系统一定的性质和功能,最后系统就有了较复杂的性质和功能(生物的进化树!)在贝纳特实验中,当ΔT很大而且继续加大时,将会出现多种花纹的更替,
最终走向混沌和湍流。
4、耗散结构
分叉(c )或(c')上,每一个点都对应着某种时空有序的概念。
开放系统在远离平衡态的稳定的有序结构称为耗散。
对称性的破缺:
在分叉点以前,系统是平衡态或近平衡态,在时间、空间上比较均匀对称;在分叉点以后,系统处于耗散结构状态,破坏了原的对称性,这称为对称性的破缺。
产生某种对称性破缺的直接原因是涨落。
1969 年,比利时科学家普里高津(Prigogine)提出耗散结构论,1977 年获诺贝尔化学奖。
5、通过涨落达到有序
形成一个耗散结构必须有以下五个条件:
(1)开放系统
(2)远离平衡态
(3)涨落突变
(4)正反馈
(5)非线性抑制因素
假设某个平衡态某时刻有如图6所示的
涨落(涨落点是存在的),为简单起见假设
它是一个复杂的波形(图 6 上图)。
可以认为它由许多不同频率的正弦波按一定比例叠加而成。
(付立叶分析)。
每一正弦分量称为一种涨落分量。
在远离平衡态的区域,涨落可以使系统的状态发生突变。
随着外界控制条件的变化,有的涨落分量很快衰减掉,有的涨落分量却得到放大,放大到了宏观尺度,就使系统进入某种有序状态。
某种医学理论认为,病人服务或注射某些药物,重要的不是起补偿作用,而是造成一种涨落。
人体中有不少ATP(三磷酸腺苷),但是冠心病人每次只要注射20mg ATP 就有明显疗效。
它是引起某种涨落,通过涨落使病人向健康人转化,建立一种新的有序状态。
白蚁建窝是自组织现象,有的筑得很大,且有立柱,有拱券。
建筑过程中,有涨落,也有正反馈,也有非线性抑制因素。
激光器出激光,要输入足够功率(开放系统)才能造成粒子数反转状态(远离平衡态)。
当能量hv = E2 - E1的一个光子入射时(涨落)引起受激辐射光放大,出来两个全同光子。
不是所有涨落都能得到足够放大,只有沿轴线方向的光子才行。
1 → 2 → 4 → 8 …… (正反馈)但激光的强度不会无限增大下去,在光强增大,粒子数反转的程度会减弱——它相应地使受激辐射的光强减小(非线性抑制因素)。
一个城市的形成与发展也是符合以上五个条件(略)。
6、结束语
耗散结构理论近年来有很大的发展,而且在实践中已经应用。
美国有人研究东西部人口的空间分布规律;
加拿大有人研究捕鱼的最佳方案。
荷兰有人研究能源的最低消耗方案。
定量的研究要提出物理模型,建立数学模型,解微分方程组(略)通过对退化和进化的矛盾的讨论,使我们对自然界有了一个更全面的认识。
如果我们能弄清自组织现象的规律,自觉控制一些参数,使事物(有生命,无生命,自然界,社会)朝着我们所希望的耗散结构的方向发展,那么我们这个世界将会更加美好!。