小学五年级的奥数应用题.比例应用题.docx

合集下载

高斯小学奥数五年级上册含答案_比例应用题

高斯小学奥数五年级上册含答案_比例应用题

第十七讲比例应用题在研究两个量之间的关系时,经常用到和的关系、差的关系以及倍数关系.之前我们学过的和差倍问题就是关于这些关系的.而倍数关系还有一种比较常见的表现形式,就是比的关系.比如,甲有3个苹果,乙有2个苹果,我们可以说甲的苹果是乙的1.5倍,也可以说甲和乙的苹果数之比是3:2,读作3比2.如果甲有6个苹果,乙有4个苹果,甲的苹果仍然是乙的1.5倍,甲和乙的苹果数之比是6:4.我们发现,比的关系和倍数关系可以如下转化:由此可见,比的概念与除法的概念密切相关,我们定义:两个数相除又叫做这两个数的比.在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以比的后项所得的商叫做比值.例如:请你想一想:比的前项、后项和比值分别相当于除法算式和分数中的什么?比的后项可以是0吗?与除法和分数一样,比的前项和后项同时乘或除以相同的数(0除外),比值不变.利用这个性质,我们可以像约分一样,将比化简.比如6:4=3:2.像这种表示两个比相等的式子叫做比例(式).要判断两个比是否成比例,就要看它们的比值是否相等.两个比的比值相等,这两个比能组成比例,否则不能组成比例.比例有四个项,分别是两个内项和两个外项.在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项.比例的四个数均不能为0.在任意一个比例中,两个外项的积等于两个内项的积.即:3:7比的后项比号比的前项比值3377=÷=比值通常用分数表示,也可以用小数或整数表示.比的关系 3:2 6:4倍数关系 1.5倍 1.5倍64 1.5÷=在表示两个量之间的关系时,可以用到和的关系、差的关系、倍数关系和分数倍关系.除了这些之外,比例也可以用来表示两个量之间的倍数关系.知道了两个量之间的比,我们可以方便的按照比例将两个对象的数量分配好,这也是本讲要重点学习的:按比例分配.例题1.(1)水果店运来了西瓜和哈密瓜共234个.如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?(2)阿呆和阿瓜一起去买包子,两人买的包子数之比是13:6.又知道阿呆比阿瓜多买了21个包子,那么两人一共买了多少个包子?「分析」根据比例设份数,比如西瓜和哈密瓜的个数比是5:4,那么可设西瓜有5份,哈密瓜有4份.(1)卡莉娅和萱萱一共买了50块巧克力,卡莉娅的巧克力块数和萱萱的比是7:3,那么卡莉娅比萱萱多多少块巧克力?(2)小山羊和老山羊去吃草,小山羊和老山羊吃的草量比为5:9,并且老山羊比小山羊多吃了200克的草,那么小山羊吃了多少克的草?1. 求比值:2:5 =________;7:3 =________;10:4=________.2. 把比化成最简整数比:6:15 =________;8:12=________;0.2:0.5 =________.3. 如果34a b ,那么a :b =( ):( );4. 我国《国旗法》规定,国旗长宽之比为3:2,若国旗宽是128厘米,则长是________厘米.练一 练例题2.红旗小学共有师生1081人.其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?「分析」如何通过师生的人数比求出学生的总人数?又如何利用男、女比例,求出男、女生各有多少?把这两个问题搞清楚了,本题也就解决了.512名士兵分成龙、虎两个营,将龙营分成甲、乙两个连,再将乙连分成A 、B 两个排.如果每次都按5:3的人数比来分,那么A 排有多少名士兵?比例除了可以表示两个量之间的倍数关系,还可以表示多个量之间的倍数关系.我们把两个数之间的比称为简单比,多个数的比称为连比.简单比与连比之间可以互相转化.如果甲:乙=2:3,乙:丙=5:4,那么甲:乙:丙是多少?例题3.机器人制造厂一月份与二月份生产机器人的个数比为4:5.后来改进生产技术,三月份生产的机器人的个数与二月份的产量之比为5:3. (1)请写出三个月的产量的连比;(2)如果三月份比一月份多生产了78个机器人.请问,这家工厂第一季度共生产多少个机器人?「分析」题目中给出了两个比,这两个比之间存在什么样的关系呢?你能通过这两个比求出一月份、二月份和三月份这三个月产量的连比吗?育才小学五年级学生分成三批去参观博物馆.第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学甲 乙 丙 2 : 35 : 410 : 15 : 12甲:乙:丙=10:15:12五年级一共有多少人?对于数量发生变化的题,题目中比的每一份的含义往往也是不一样的,不能直接来计算.那么对于这类问题,我们通常要从题中找到不变量,根据它来统一份数.我们来看看下面这道题,题中的量是如何变化的?你能找到其中的不变量吗?例题4.慢羊羊村长开了一间学校,招了好多小羊和小狼,上学期小羊和小狼的数量比为1:3,新学期时又转来了20只小羊,导致开学的时候小羊和小狼的数量比变为3:5,那么开学时一共有多少只小羊?「分析」题目中也给出了两个比,这两个比之间存在什么样的关系?我们能像例1那样,把上学期的小羊和小狼设成1份和3份,这学期的设成3份和5份吗?史蒂文森高中去年男生和女生的人数比为5:3,今年转来了200名男生,使得女生和男生的人数比变为1:2,那么今年史蒂文森高中一共有多少名学生?例题5.如下图,甲、乙、丙三根木棒插在水池中,它们的长度之和是360厘米.甲木棒在水面上、下的长度之比为3:1,乙木棒在水面上、下的长度之比为4:3,丙木棒在水面上、下的长度之比为2:3.请问:水深是多少厘米?甲乙丙水面水深「分析」题目中的三个比涉及到了甲、乙、丙三根木棒的水上部分和水下部分,它们之间有公共的量吗?例题6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?「分析」甲包少了10克,乙包多了10克.什么没有变呢?黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

小学奥数教程:比例应用题(二)全国通用(含答案)

小学奥数教程:比例应用题(二)全国通用(含答案)

1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b = ⇒ y b x a =; x y a b =; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;④ x a y b =,y c z d= ⇒ x ac z bd =;::::x y z ac bc bd =; ⑤ x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad. 三、按比例分配与和差关系 ⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题 例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 知识点拨 教学目标比例应用题(二)四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

奥数专题训练之比和比例应用题

奥数专题训练之比和比例应用题

奥数专题训练之比和比例应用题例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?提示:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。

已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。

提示:根据已知条件可先求三种商品的数量比。

[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?例3、A、B、C是三个顺次咬合的齿轮。

当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。

习题:1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?。

(完整版)五年级比例计算题

(完整版)五年级比例计算题

(完整版)五年级比例计算题1. 题目描述在数学课上,五年级的小明遇到了一些比例计算题。

他希望你能帮助他解答以下问题。

2. 问题1小明想要知道一辆汽车前进了300千米,消耗了多少升汽油。

已知这辆汽车的油耗比例是1千米消耗0.05升。

3. 解答1根据题目给出的比例关系,我们可以使用比例求解的方法来计算汽车消耗的汽油量。

首先,我们需要确定比例的两个部分:汽车行驶的距离和相应的汽油消耗。

根据题目所述,汽车行驶了300千米,因此我们可以将这个值代入比例关系中进行计算。

根据比例关系1千米消耗0.05升,我们可以设x为汽车消耗的汽油量。

根据比例的性质,我们可以得到以下等式:300千米 : x升 = 1千米 : 0.05升通过交叉相乘并解方程,我们可以得出:300x = 1 * 0.05解方程,得到:x = 0.05 / 300因此,这辆汽车消耗的汽油量为0.升。

4. 问题2在一场比赛中,小红和小明参加了一个长跑比赛。

小红的速度是每分钟200米,小明的速度是每分钟250米。

他们一起比赛了10分钟,那么小红和小明的比例是多少?5. 解答2通过观察题目可以发现,小红和小明的速度比例就是他们每分钟行驶的距离比例。

根据题目给出的数据,小红的速度是每分钟200米,小明的速度是每分钟250米。

因此,小红和小明的比例可以表示为:200米 : 250米为了使比例更加简化,我们可以将这两个数除以他们的最大公约数。

通过计算,我们可以得到最大公约数为50。

因此,小红和小明的比例为:4 : 56. 总结通过以上解答,我们可以得出以下结论:- 在第一个问题中,汽车行驶300千米,消耗的汽油量为0.升。

- 在第二个问题中,小红和小明的速度比例为4:5。

希望以上解答对你有所帮助!如果你有任何其他问题,欢迎继续向我提问。

小学数学奥数测试题比例应用题_人教版

小学数学奥数测试题比例应用题_人教版

2019年小学奥数应用题专题——比例应用题1.已知甲、乙、丙三个数,甲等于乙、丙两数和的13,乙等于甲、丙两数和的12,丙等于甲、乙两数和的57,求::甲乙丙.2.已知甲、乙、丙三个数,甲的一半等于乙的2倍也等于丙的23,那么甲的23、乙的2倍、丙的一半这三个数的比为多少?3.如下图所示,圆B与圆C的面积之和等于圆A面积的45,且圆A中的阴影部分面积占圆A面积的16,圆B的阴影部分面积占圆B面积的15,圆C的阴影部分面积占圆C面积的13.求圆A、圆B、圆C的面积之比.4.某俱乐部男、女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3.求丙组中男、女会员人数之比.5.一项公路的修建工程被平均分成两份承包给甲、乙个工程队建设,两个工程队建设了相同多的一段时间后,分别剩下60%、40%的任务没有完成,已知两个工程队的工作效率(建设速度)之比3:1,求这两个工程队原先承包的修建公路长度之比.6.某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?7. (2019年华杯赛总决赛)A、B、C三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?8.某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?9.①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?10.一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?11.小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.12.在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐()元,乙捐()元,丙捐()元.13.有120个皮球,分给两个班使用,一班分到的13与二班分到的12相等,求两个班各分到多少皮球?14.一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数.第 1 页15.幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?16.参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?17.圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?18.甲、乙两只蚂蚁同时从A点出发,沿长方形的边爬去,结果在距B点2厘米的C点相遇,已知乙蚂蚁的速度是甲的1.2倍,求这个长方形的周长.19.甲乙两车分别从 A, B两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米.问:A,B两地相距多少千米?20.师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?21.师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工多少个零件?22.A、B、C三个水桶的总容积是1440公升,如果A、B两桶装满水,C桶是空的;若将A桶水的全部和B桶水的15,或将B桶水的全部和A桶水的13倒入C桶,C桶都恰好装满.求A、B、C三个水桶容积各是多少公升?23.学校四五六年级共有615名学生,已知六年级学生的12,等于五年级学生的25,等于四年级学生的37。

五年级奥数.应用题.比例应用题(一)

五年级奥数.应用题.比例应用题(一)

1.比例的基本性质2.熟练掌握比例式的恒等变形及连比问题3.能够进行各种条件下比例的转化,有目的的转化;4.方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d;性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数)性质4:若a: b=c:d,则a×d = b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例①x ay b=⇒y bx a=;x ya b=;a bx y=;②x ay b=⇒mx amy b=;x may mb=(其中0m≠);③x ay b=⇒x ax y a b=++;x y a bx a--=;x y a bx y a b++=--;L④x ay b=,y cz d=⇒x acz bd=;::::x y z ac bc bd=;⑤x的ca等于y的db,则x是y的adbc,y是x的bcad.考试要求知识结构比例应用题(一)三、 按比例分配与和差关系(1) 按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bxa b+个. (2) 已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为axa b-,B 的元素数量为bxa b-,所以解题的关键是求出()a b -与a 或b 的比值.【例 1】 公园里柳树和杨树的棵数比是5∶3,柳树和杨树共40棵,柳树和杨树各有多少棵?【巩固】 一种药水是把药粉和水按照1∶100配制而成,要配制这种药水5050千克,需要药粉多少千克?【例 2】 把300个苹果按4∶5∶6分给幼儿园的小、中、大三个班。

奥数题专题训练之比和比例应用题

奥数题专题训练之比和比例应用题

比和比例比和比例比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种如:a:b;比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同如:a:b=c:d;所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组和而成的;比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的是叫做比例;比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项;比和比例的意义也不同;比和比例应用题例1、生产队饲养的鸡与猪的只数比为26∶5,羊与马的只数比为25∶9,猪与马的只数比为10∶3;求鸡、猪、马和羊的只数比;分析该题给出了三个单比,要求写出它们的连比;将几个单比写成连比,关键是利用比的基本性质将各个比中表示同一个量的值化为相同的值;解由题设,鸡∶猪=26∶5,羊∶马=25∶9,猪∶马=10∶3,由比的基本性质可得:猪∶马=10∶3=30∶9,羊:马=25∶9,鸡:猪=26∶5=156∶30,从而鸡∶猪∶马∶羊=156:30∶9∶25;答:鸡、猪、马、羊的只数比为156∶30∶9∶25;注将单比化为连比时,还可先化为三个量的连比,再化为四个量的连比;如,鸡∶猪=26∶5,猪∶马=10∶3,由此可得,鸡∶猪∶马=52∶10∶3;再注意到羊∶马=25∶9可得,鸡∶猪∶马∶羊=156∶30∶9∶25;例2.下列各题中的两个量是否成比例若成比例,请说明成正比例还是成反比例;1路程一定时,速度与时间;2速度一定时,路程与时间;3播种面积一定时,总产量与单位面积的产量;4圆的面积与该圆的半径;5两个相互啮合的大小齿轮,它们的转速与齿数;分析利用正比例、反比例的概念进行判定与说明;解 1由于速度与时间的乘积等于路程,所以,当路程一定时,速度与时间成反比例;2由于路程与时间的比值为速度,所以,当速度一定时,路程与时间成正比例;3由于总产量与单位面积的产量的比值为播种面积,所以,当播种面积一定时,总产量与单位面积的产量成正比例;4设圆的半径为R,则圆的面积为∏R2,所以圆的面积与半径的积为∏R3,随半径的变化而变化,即圆的面积与半径不成反比例;而圆的面积与半径的比值为∏R,也随半径的变化而变化,即圆的面积与半径不成正比例;综上,圆的面积与半径不成比例;5由于齿轮的转速与齿数的积等于单位时间内齿轮转过的总齿数,而两个相互咬合的大小齿轮在单位时间内转过的总齿数相等,所以,它们的转速与齿数成反比例;注若两个相关联的量成正比例,则一个量变大小时,另一个量也变大小;若两个相关联的量成反比例,则一个量变大小时,另一个量反而变小大;因此,在上例的4中,注意到半径愈大,圆的面积也愈大,故只需判断圆的面积与半径不成正比例,就可断定圆的面积与半径不成比例;例3 某小学共有学生697人,已知低年级学生数的1/2等于中年级学生数的2/5,低年级学生数的1/3等于高年级学生数的2/7,求该校低、中、高年级各有多少名学生分析由题设条件可得低、中、高各年级的学生数的比,从而可按比例分配求得各年级的学生数;解设低年级的学生数为“1”,则中年级的学生数为1/2÷2/5=5/4,高年级的学生数为1/3÷2/7=7/6手:舌,从而,低、中、高年级的学生数的比为:低∶中∶高=1∶5/4∶7/6=12∶15∶14,按比例分配得,低年级学生数:697×12/12+15 +14=204人,中年级学生数:697×15/12+15 +14=255人,高年级学生数::697×14/12+15 +14=238人;答:该校低、中、高年级的学生数分别为204人、255人、238人;注按比例分配时,可先出每份对应的量,再求出相应的量;如:697÷12+15+17 =17人;从而,低年级有17×12=204人,中年级有17×15=255人,高年级有17×14=238人;例 4 雏鹰小分队为“希望小学”搞了一次募捐活动;她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元;已知购得的甲商品与乙商品的数量之比为5∶6,乙商品与丙商品的数量之比为4∶11,且购买丙商品比购买甲商品多花了210元,求这次募捐所得的钱数;分析根据已知条件可先求出甲、乙、丙三种商品的数量比;即甲、乙、丙三种商品的份数比,再根据甲、丙商品的份数关系及单价,求出每份商品的实际数量,从而求出甲、乙、丙商品的数量,由此可得募捐所得的钱数;解已知:甲商品数∶乙商品数=5:6,乙商品数∶丙商品数=4∶11;于是,甲商品数∶乙商品数∶丙商品数=10∶12∶33,即甲、乙、丙商品分别有10份、12份、33份;由于购买丙商品比购买甲商品多花210元,所以,每份的商品数为210÷10×33—30×10 =7件;于是,甲商品数为:7×10=70件,乙商品数为:7×12=84件,丙商品数为:7×33=231件;由此,募捐所得到的钱数为:30×70+15×84+10×231=5670元.答:募捐所得到的钱为5670元;“比和比例”应用题错解例析2008-05-07 作者:佚名来源:网友投稿例1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6;现在由三人共同加工,问完成任务时,三人各加工了多少个错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解;评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4;诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的;但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了不错,工作效率的比等于工作时间比的反比;从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5;这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的;正确的解答应当是:甲、乙、丙三人工作效率的比=容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10;例2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5;现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是1+1=2,水的重量是8+5=13;1+1∶8+5=2∶13答:在混合后的盐水中盐与水重量的比是2∶13;评析上述解答的主要错误是把两种物质重量的最简比,看成了就是两种物质具体重量的比;甲瓶盐水盐与水重量的比是1∶8,不等于说在这瓶盐水中盐的重量是1千克,水的重量是8千克,乙瓶的情况也是一样;从已知条件可以看出,在甲瓶盐水中,盐有1份,水有8份,盐和水一共有1+8=9份,在乙瓶盐水中,盐有1份,水有5份,盐和水一共有1+5=6份;因为两瓶盐水是“同样重”,但甲瓶有9份,乙瓶只有6份,所以,可见两瓶盐水中每“1份”的重量有多少是不相同的;上述解答简单地将两瓶盐水中每份重量不同的盐和水的份数分别相加,然后再将两个“和”组成一个比,便造成了解答的错误;正确的解答是:1∶8=2∶16,2+16=18;1∶5=3:15,3+15=10;2+3∶16+15=5:31答:在混合后的盐水中盐与水重量的比是5∶31;小学六年级奥数题:专题训练之比和比例应用题例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人提示:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1练习甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元;已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元;提示:根据已知条件可先求三种商品的数量比;练习一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克元,混合前的酥糖每千克是多少元例3、A、B、C是三个顺次咬合的齿轮;当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例;习题:1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个。

小学奥数五年级测试及答案(比例及应用题)

小学奥数五年级测试及答案(比例及应用题)
1、比例
如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。
第1题
第2题
第3题
第4题
第5题
第6题
试题答案
第1题:
正确答案:B
答案解析
第2题:
正确答案:D
答案解析
第3题:
正确答案:C
答案解析
第4题:
正确答案:B
答案解析
第5题:
正确答案:C
答案解析
第6题:
正确答案:B
答案解析
2、比例应用题1份数的应用
第1题
第2题
第3题
第4题
第5题
第6题
第7题
试题答案
第1题:
正确答案:B
答案解析
第2题:
正确答案:A
答案解析
第3题:
正确答案:B
答案解析
第4题:
正确答案:C
答案解析
第5题:
正确答案:D
答案解析
第6题:
正确答案:D
答案解析
第7题:
正确答案:Dห้องสมุดไป่ตู้
答案解析

小学五年级数学奥数题专项训练:比例问题

小学五年级数学奥数题专项训练:比例问题

小学五年级数学奥数题专项训练:比例问题(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的学习资料,如英语资料、语文资料、数学资料、物理资料、化学资料、生物资料、地理资料、历史资料、政治资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of learning materials for everyone, such as English materials, language materials, mathematics materials, physical materials, chemical materials, biological materials, geographic materials, historical materials, political materials, other materials, etc. Please pay attention to the data format and writing method!小学五年级数学奥数题专项训练:比例问题五年级数学,五年级奥数题。

小学奥数-比例应用题(二)

小学奥数-比例应用题(二)

比例应用题(二)教学目标1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a :b =c :d ,则(a +c ):(b +d )=a :b =c :d ;性质2:若a :b =c :d ,则(a -c ):(b -d )=a :b =c :d ;性质3:若a :b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a :b =c :d ,则a ×d =b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b =⇒y b x a =;x y a b=;a b x y =;②x a y b =⇒mx a my b =;x ma y mb=(其中0m ≠);③x a y b =⇒x a x y a b =++;x y a b x a--=;x y a b x y a b ++=--; ④x a y b =,y c z d =⇒x ac z bd=;::::x y z ac bc bd =;⑤x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad.三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个.⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

五年级奥数比和比例应用题

五年级奥数比和比例应用题

五年级奥数比和比例应用题五年级奥数比和比例应用题无论是在学校还是在社会中,我们最不陌生的就是试题了,通过试题可以检测参试者所掌握的知识和技能。

那么一般好的试题都具备什么特点呢?下面是店铺为大家整理的五年级奥数比和比例应用题,欢迎阅读与收藏。

五年级奥数比和比例应用题 1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6。

现在由三人共同加工,问完成任务时,三人各加工了多少个?错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解。

评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4。

诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的。

但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了!不错,工作效率的比等于工作时间比的反比。

从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5。

这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢?显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的。

容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10。

五年级奥数比和比例应用题 2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5。

现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少?错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是(1+1=)2,水的重量是(8+5=)13。

高斯小学奥数五年级上册含答案_比例应用题

高斯小学奥数五年级上册含答案_比例应用题

第十七讲比例应用题在研究两个量之间的关系时,经常用到和的关系、差的关系以及倍数关系.之前我们学过的和差倍问题就是关于这些关系的.而倍数关系还有一种比较常见的表现形式,就是比的关系.比如,甲有3个苹果,乙有2个苹果,我们可以说甲的苹果是乙的1.5倍,也可以说甲和乙的苹果数之比是3:2,读作3比2.如果甲有6个苹果,乙有4个苹果,甲的苹果仍然是乙的1.5倍,甲和乙的苹果数之比是6:4.我们发现,比的关系和倍数关系可以如下转化:由此可见,比的概念与除法的概念密切相关,我们定义:两个数相除又叫做这两个数的比.在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以比的后项所得的商叫做比值.例如:请你想一想:比的前项、后项和比值分别相当于除法算式和分数中的什么?比的后项可以是0吗?与除法和分数一样,比的前项和后项同时乘或除以相同的数(0除外),比值不变.利用这个性质,我们可以像约分一样,将比化简.比如6:4=3:2.像这种表示两个比相等的式子叫做比例(式).要判断两个比是否成比例,就要看它们的比值是否相等.两个比的比值相等,这两个比能组成比例,否则不能组成比例.比例有四个项,分别是两个内项和两个外项.在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项.比例的四个数均不能为0.在任意一个比例中,两个外项的积等于两个内项的积.即:3:7比的后项比号比的前项比值3377=÷=比值通常用分数表示,也可以用小数或整数表示.比的关系 3:2 6:4倍数关系 1.5倍 1.5倍64 1.5÷=在表示两个量之间的关系时,可以用到和的关系、差的关系、倍数关系和分数倍关系.除了这些之外,比例也可以用来表示两个量之间的倍数关系.知道了两个量之间的比,我们可以方便的按照比例将两个对象的数量分配好,这也是本讲要重点学习的:按比例分配.例题1.(1)水果店运来了西瓜和哈密瓜共234个.如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?(2)阿呆和阿瓜一起去买包子,两人买的包子数之比是13:6.又知道阿呆比阿瓜多买了21个包子,那么两人一共买了多少个包子?「分析」根据比例设份数,比如西瓜和哈密瓜的个数比是5:4,那么可设西瓜有5份,哈密瓜有4份.(1)卡莉娅和萱萱一共买了50块巧克力,卡莉娅的巧克力块数和萱萱的比是7:3,那么卡莉娅比萱萱多多少块巧克力?(2)小山羊和老山羊去吃草,小山羊和老山羊吃的草量比为5:9,并且老山羊比小山羊多吃了200克的草,那么小山羊吃了多少克的草?1. 求比值:2:5 =________;7:3 =________;10:4=________.2. 把比化成最简整数比:6:15 =________;8:12=________;0.2:0.5 =________.3. 如果34a b ,那么a :b =( ):( );4. 我国《国旗法》规定,国旗长宽之比为3:2,若国旗宽是128厘米,则长是________厘米.练一 练例题2.红旗小学共有师生1081人.其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?「分析」如何通过师生的人数比求出学生的总人数?又如何利用男、女比例,求出男、女生各有多少?把这两个问题搞清楚了,本题也就解决了.512名士兵分成龙、虎两个营,将龙营分成甲、乙两个连,再将乙连分成A 、B 两个排.如果每次都按5:3的人数比来分,那么A 排有多少名士兵?比例除了可以表示两个量之间的倍数关系,还可以表示多个量之间的倍数关系.我们把两个数之间的比称为简单比,多个数的比称为连比.简单比与连比之间可以互相转化.如果甲:乙=2:3,乙:丙=5:4,那么甲:乙:丙是多少?例题3.机器人制造厂一月份与二月份生产机器人的个数比为4:5.后来改进生产技术,三月份生产的机器人的个数与二月份的产量之比为5:3. (1)请写出三个月的产量的连比;(2)如果三月份比一月份多生产了78个机器人.请问,这家工厂第一季度共生产多少个机器人?「分析」题目中给出了两个比,这两个比之间存在什么样的关系呢?你能通过这两个比求出一月份、二月份和三月份这三个月产量的连比吗?育才小学五年级学生分成三批去参观博物馆.第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学甲 乙 丙 2 : 35 : 410 : 15 : 12甲:乙:丙=10:15:12五年级一共有多少人?对于数量发生变化的题,题目中比的每一份的含义往往也是不一样的,不能直接来计算.那么对于这类问题,我们通常要从题中找到不变量,根据它来统一份数.我们来看看下面这道题,题中的量是如何变化的?你能找到其中的不变量吗?例题4.慢羊羊村长开了一间学校,招了好多小羊和小狼,上学期小羊和小狼的数量比为1:3,新学期时又转来了20只小羊,导致开学的时候小羊和小狼的数量比变为3:5,那么开学时一共有多少只小羊?「分析」题目中也给出了两个比,这两个比之间存在什么样的关系?我们能像例1那样,把上学期的小羊和小狼设成1份和3份,这学期的设成3份和5份吗?史蒂文森高中去年男生和女生的人数比为5:3,今年转来了200名男生,使得女生和男生的人数比变为1:2,那么今年史蒂文森高中一共有多少名学生?例题5.如下图,甲、乙、丙三根木棒插在水池中,它们的长度之和是360厘米.甲木棒在水面上、下的长度之比为3:1,乙木棒在水面上、下的长度之比为4:3,丙木棒在水面上、下的长度之比为2:3.请问:水深是多少厘米?甲乙丙水面水深「分析」题目中的三个比涉及到了甲、乙、丙三根木棒的水上部分和水下部分,它们之间有公共的量吗?例题6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?「分析」甲包少了10克,乙包多了10克.什么没有变呢?黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

小学奥数教程∶比例和反比例 计算题(1)

小学奥数教程∶比例和反比例 计算题(1)

小学奥数教程∶比例和反比例计算题(1)一、比例和反比例1.工人铺一条路,用边长4分米的方砖铺需要500块,如果改用边长5分米的方砖铺,需要多少块?【答案】解:设需要x块,4×4×500=5×5×x25x=8000x=320答:如果改用边长5分米的方砖铺地,需要320块。

【解析】【分析】此题主要考查了反比例应用题,这条路的总面积是一定的,每块砖的面积与铺的块数成反比例,据此列比例解答.2.妈妈有一辆自行车,A和B是自行车的两个齿轮(如图),骑车时用脚驱动A带动B,从而使自行车前进。

(1)这辆自行车,齿轮A有50个齿,齿轮B有20个齿。

当齿轮A转动1圈时,齿轮B 转动多少圈?(2)这辆自行车的车轮直径约是60cm,妈妈每天上班的路程大约是3000m。

妈妈骑车上班大约要置多少圈(即齿轮A转动的圈数)?(计算时π取3,最后结果保留整数)【答案】(1)解:50×1÷20=2.5(圈)答:齿轮B转动2.5圈。

(2)解:60cm=0.6m3000÷(0.6×3×2.5)≈667(圈)答:妈妈骑车上班大约要置667圈。

【解析】【分析】(1)根据题意可知,用齿轮A的齿数×转动的圈数÷齿轮B的齿数=齿轮B转动的圈数,据此列式解答;(2)根据题意可知,先求出自行车齿轮B每圈走过的路程,用周长公式:C=πd,然后根据齿轮A转1圈,齿轮B转2.5圈,可以求出齿轮A每圈走过的路程,用齿轮B每圈走过的路程×齿轮B转动的圈数=齿轮A每圈走过的路程,最后用上班的总路程÷齿轮A每圈走过的路程=齿轮A转动的圈数,据此列式解答,结果保留整数.3.乐乐买了一个军舰模型,包装盒上写着“按1:400制作”,他量了一下,模型长45cm。

这艘军舰实际有多长?【答案】解:设这艘军舰实际长xcm.x=45×400x=1800018000cm=180m答:这艘军舰实际长180米.【解析】【分析】先设出未知数,然后根据1:400的比列出比例,解比例求出实际的长度,注意换算单位.4.用边长15厘米的方砖给房间铺地需要2000块,如果改用边长为25厘米的方砖铺地,需要多少块?【答案】解:设需要x块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ac : bc : bd;
y
,y
b z
d
z
bd

的等于的,则是的,是的.
三、按比例分配与和差关系
(1)按比例分配
例如:将x个物体按照a : b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量
与x的比分别为
a : a
b和b : a
b
,所以甲分配到
ax
个,乙分配到
bx
个.
ab
ab
(2)
11∶7,第一小组采集蓖麻籽36千克,第二、第三小组各采集蓖麻籽多少千克?
12∶
【巩固】 商店运来一批洗衣机,卖出24台,卖出的台数与剩下的台数的比是3∶5,这批洗衣机一共有多少台?
【例4】师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务
时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?
【巩固】 师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任
务时,师傅比徒弟多加工多少个零件?
【例5】 一些苹果平均分给甲、 乙两班的学生, 甲班比乙班多分到
16个,而甲、乙两班的人数比为
13:11,
求一共有多少个苹果?
【巩固】 甲、乙两个班共种树若干棵,已知甲班种的棵数的1等于乙班种的棵数的1,且乙班比甲班多种
性质1:若a:
b=c:d,则(a+
c):(b+
d)=a:b=c:d;
性质2:若a:
b=c:d,则(a-
c):(b-
d)=a:b=c:d;
性质3:若:
=

,则(
a
+
x c
):(
b
+
x d
)=
a
:=
: ;(
x
为常数)
a
b c
d
b c
d
性质4:若a:
b=c:d,则a×d=
b×c;(即外项积等于内项积
)
正比例:如果
653
圆B、圆C的面积之比.
课堂检测
【随练1】用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形
斜边上的高是多少厘米?
【随练2】把一根绳子按3∶2截成甲、乙两段,已知乙段比甲段短米,甲、乙两段各长多少米?
【随练3】地球表面的陆地面积和海洋面积之比是29∶71,其中陆地的四分之三在北半球,那么南、 北半球
【作业
3】小新、小志、小刚三人拥有的藏书数量之比为
藏书数量.
3: 4:6
,三人一共藏书
52本,求他们三人各自的
【作业
4】两地相距480千米,甲、乙两辆汽车同时从两地相向开出,
的比是5∶3。甲、乙两车每小时各行多少千米?
4小时后相遇,已知甲、乙两车速度
【作业5】用36米长的篱笆围成一个长方形菜地,要求长与宽的比是5∶4,这块菜地的面积是多少平方米?
【例
1】甲、乙两个工人上班,甲比乙多走
1的路程, 而乙比甲的时间少
1
,甲、乙的速度比是

5
11
【例2】某俱乐部男、女会员的人数之比是3: 2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是
10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3.求丙组
中男、女会员人数之比.
【巩固】 一种药水是把药粉和水按照1∶100配制而成,要配制这种药水5050千克,需要药粉多少千克?
【例2】把300个苹果按4∶5∶6分给幼儿园的小、 中、大三个班。 小班、中班、大班各分得多少个苹果?
【巩固】 已知A、B、C三个数的比是2∶3∶5,这三个数的平均数是90,这三个数分别是多少?
【例
3】雏鹰假日小队的同学分3组采集蓖麻籽, 第一小组、 第二小组、 第三小组的工作效率之比是
45
树24棵,甲、乙两个班各中,甲、乙、丙三人一共捐了
80元.已知甲比丙多捐
18元,甲、乙所捐资的
和与乙、丙所捐资的和之比是
10:7
,则甲捐
元,乙捐
元,丙捐
元.
【例7】参加植树的同学共有720人,已知六年级与五年级人数的比是3: 2,六年级比四年级多80人,
三个年级参加植树的各有多少人?
【巩固】某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数
之和一样多,各组男女会员人数之比依次为12:13、5:3、2 :1,那么丙组有多少名男会员?
【例3】如下图所示,圆B与圆C的面积之和等于圆A面积的4,且圆A中的阴影部分面积占圆A面积
5
的1,圆B的阴影部分面积占圆B面积的1,圆C的阴影部分面积占圆C面积的1.求圆A、
a÷b=k(k为常数),则称a、b成正比;
反比例:如果
a×b=k(k为常数),则称a、b成反比.
二、主要比例转化实例
xaab
①; ;;
ybxy

x
a
mx
a
x
ma
0);
y
b
my

y
(其中m
b
mb

x a
x
a

x y a b;x y a
b;L
y b
x y a b
x
a
x y a b

x
a
c
x
ac;x : y : z
已知两组物体的数量比和数量差,求各个类别数量的问题
例如:两个类别
A、B,元素的数量比为
a : b(这里
a
b),数量差为
x,那么
A的元素数量为
ax
,B
ab
的元素数量为
bx
,所以解题的关键是求出
ab与a或b的比值.
ab
例题精讲
【例1】公园里柳树和杨树的棵数比是5∶3,柳树和杨树共40棵,柳树和杨树各有多少棵?
海洋面积之比是()
A. 284∶29B. 284∶87C. 87∶29D. 171∶113
家庭作业
【作业1】右图是一个园林的规划图,其中,正方形的3是草地;圆的6是竹林;竹林比草地多占地450
47
平方米.问:水池占多少平方米?
【作业2】小伟和小英给希望工程捐款的钱数比是7∶8,两人共捐款75元。小伟和小英各捐款多少元?
比例应用题
考试要求
1.比例的基本性质
2.熟练掌握比例式的恒等变形及连比问题
3.能够进行各种条件下比例的转化,有目的的转化;
4.方程解比例应用题
知识框架
比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小
升初考试的重要内容.通过本讲需要学生掌握的内容有:
一、比和比例的性质
【巩固】甲、乙两人原有的钱数之比为6:5,后来甲又得到180元,乙又得到30元,这时甲、乙钱数之比
为18:11,求原来两人的钱数之和为多少?
【例8】已知甲、乙、丙三个数,甲的一半等于乙的2倍也等于丙的2,那么甲的2、乙的2倍、丙的一
33
半这三个数的比为多少?
【巩固】甲、乙、丙三个数,已知甲:(乙+丙)4:3,乙:丙2: 7,求甲:乙:丙。
【作业6】有120个皮球,分给两个班使用, 一班分到的1与二班分到的1相等,求两个班各分到多少皮球?
相关文档
最新文档