第五章频率特性法
频率特性法
§5-2
一、幅相频率特性
1、代数形式
频率特性表达方法
即极坐标图,也称为 Nyquist 图
G( j) P() jQ()
2、指数形式
由G ( j ) A( )e j ( )
3、幅相特性表示法 极坐标图形式
二、对数频率特性 即 Bode 图
G ( j ) A( )e j ( ) A( ) P 2 ( ) Q 2 ( ) Q ( ) P ( )
对数幅频特性绘在以 10 为底的对数坐标中,幅值的对数值用分贝(dB)表示
L() 20lg A()
纵轴是 L(w),横轴实际上是 lgw,由于是用 w 标注,所以又转化成 w 的值,这使得每一单位 的 w 增加量为 10 倍,这 10 倍频记为 dec。横轴的起点不为 0。.
§5-3
一、比例环节
2 2
1 T
1
L( ) 20 lg A( ) 20 log 1 20 lg (1 2T 2 ) (2T ) 2
六、时滞环节或延迟环节
传递函数 : G ( s) e s j 频率特性 : G ( j )e 幅频特性 : A( ) 1 相频特性 : ( ) G ( j ) cos j sin e j cos j sin G ( j ) 1
积分环节的对数频率特性
四、微分环节
G (s) s G ( j ) j 代数式 G ( j ) j 0 j 指数式 G ( j ) j 90
L( w) 20 lg | G( jw) | 20 lg w G( jw) 90
理想微分环节的副相频率特性
五、振荡环节(0<§<1)
第五章 频率特性法 (2)
斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .
第五章(5) 频域:用实验法确定系统的传递函数
第五节 用实验法确定系统传递函数
例
已知采用积分控制液位系统的结构 和对数频率特性曲线,试求系统的传 和对数频率特性曲线 试求系统的传 hr(t) 递函数。 递函数。 1 K h(t)
1 4
L(ω)/dB
20 0 -20 -20dB/dec
S
Ts+1
φ(ω)
0 -90 -180
返回 解: 将测得的对数 -40dB/dec 1 = 曲线近似成渐 0.25S2+1.25S+1) 近线: 近线 ω 1 φ(s)= (S+1) (S/4+1)
第五章 频率特性法
第五节 用实验法确定系统传递函数
频率特性具有明确的物理意义, 频率特性具有明确的物理意义,可 用实验的方法来确定它.这对于难以列 用实验的方法来确定它 这对于难以列 写其微分方程的元件或系统来说,具有 写其微分方程的元件或系统来说 具有 很重要的实际意义。 很重要的实际意义。
一、用实验法确定系统的伯德图 二、根据伯德图确定传递函数
1. ι= 0
系统的伯德图: 系统的伯德图:
x
L(ω)/dB
-20dB/dec
低频渐近线为
0
20lgK-40dB/源自ecL(ω)=20lgK=χ 即
χ
ωc
ω
K=10 20
第五节 用实验法确定系统传递函数
2. ι= 1
系统的伯德图: 系统的伯德图: ω=1 L(ω)=20lgK
L(ω)/dB 20lgK
0
-20dB/dec
ω0
1 ω1 ωc
-40dB/dec
ω
低频段的曲线与横 轴相交点的频率为 的频率为ω 轴相交点的频率为 0 20lgK 因为 =20 lgω0-lg1
第五章 频率特性分析法
由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、
第五章 频率特性法3
ωg = 3 ω g = 3.3
ϕ (3) = −1780 ϕ (3) = −181.40 ϕ (3) = −180.40
ωg ωc1 ωc2
取ωg =3.2
ω g = 3.2
k =5 k = 20
k g1 = 40(lg 3.2 − lg 2.24 ) = 6.2dB
ω
rad / s
2
26dB K=20 0dB 1
-40
40(lg ω c 2 − lg 1) = 26dB 40 lg ω c 2 = 26dB,
ω c 2 = 4.47
ωc2
ϕ (ω c1 ) = −900 − tg −1 (ω c1 ) − tg −1 (0.1ω c1 ) = −191.50
例5.5
k G0 ( s ) = s( s + 1 )( 0.1s + 1 )
K=5和k=20 =5和
判系统的稳定性, 判系统的稳定性,求相角裕量和幅值裕量 (1)低频段: (1)低频段: 低频段 ω=1
k=5 L(1) = 20lg5 = 14dB
-20dB/dec
k=20 L(1) = 20lg20 = 26dB
ω r = ω n 1 − 2ξ
2
M
r
=
1 2ξ 1 − 2ξ
0 -3 带宽
2
(5-24) 24)
2.截止频率和频带宽度 2.截止频率和频带宽度 当幅值下降到低于零频率值以下3dB 当幅值下降到低于零频率值以下3 对应的频率ω 称为截止频率。 时,对应的频率ωb称为截止频率。 频率范围0 频率范围0≤ω≤ ωb通常称为系统的 频带宽度。 频带宽度。
k g 2 = 40(lg 3.2 − lg 4.47 ) = −5.8dB
自动控制原理--第五章-频率特性法
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出
第五章 频率特性法
度 -30 -60 -90
0.1
1
10
③特点: a.由于缩小了比例尺,能够在较宽的频率范围内研 究频率特性. b.可以简化绘制工作. G1(jw)=A1(w)ej() C.将实验获得的频率特性数据画成对数频率特性曲 线,可简便地确定频率特性表达式 3.对数幅相特性. 又称尼柯尔斯图. 以w为参变量表示对数幅频特性与对数相频特性的 关系. 横坐标表示相频特性的函数值,单位为度 纵坐标表示幅频特性的函数值,单位为分贝 优点:能比较方便地确定闭环系统的稳定性和频域 性能指标。
1
C
1
U0(t)
Ui Ui
1+T22
U0(s)=
Ts+1
Ui(s)=
Ts+1 s2+2
拉氏变换得:U0(t)=
sin(t-arctanT)
=U0sin(t+)
可见,1、输出电压仍是正弦电压 2、输出与输入的频率相同 3、输出幅值为原幅值的U0/Ui倍 4、输出相角超前 而且:A()= U0/Ui 为幅频特性 ()=-arctanT为相角特性 图形如下
在低频段,因w τ <<1,故 L(w)≈0(dB) 在高频段,因w τ>>1,故 L(w)≈20lg w τ 可见,高频段是一条斜线。斜率为 +20dB/dec,该斜率在w=1/ τ处正好与低频渐 近线相衔接。 惯性环节和一阶微分环节的对数幅频特性, 两式相比较,仅仅是一个符号之差,其结果 是两种环节的低频渐近线完全相同,高频渐 近线则一个向下倾斜,另一个向上倾斜,且 斜率大小相等,方向相反。两种环节的特性 对称于横坐标w,即以w轴为基准,互为镜像。
L (w)/dB w/(rad·-1) s
点且斜率为每十频程下降20dB的斜线,见 图。 对数相频曲线φ(w)恒为-90°,故是 一条纵坐标为- 90°的水平线。 4、微分环节的伯德图 (1)纯微分环节 L(w)=20lgA(w)=20lgw 纯微分环节的对数幅频特性亦是一条 斜线,它的斜率20dB/dec,并与零分贝线 交于w=1处。 对数相频特性的描述,由于相角
频率特性分析方法
(2)放大环节
Im
G(s) K G( j) K
φ
方法② 直接用频率特性测试仪测取,直接在X-Y 记录仪上显示 x jy或者 B e j 。
A
例1:某系统的传递函数为G:(s)
2(s s2
2)
当输入信号为:r(t) sin(t 1000 )
求出它的稳态输出响应。
解:
G(
j
2( j j )2
如何求模和相角?
G( j
tg1 1800
sin e j e j
2j
t 2
r=Asinωt
K Ts 1
Yss
KA
1 T 2 2
sin(
t
2 )
稳态输出仍是一个正弦信号,输出幅值和相位发生 了变化,角频率ω没变。
稳态输出与输入 r Asint 比较可得:
幅值比 B
K
A 1 T 22
相位差 2 arctg(T )
2
KU 2 U2 V 2
整理:U 2
V
2
KU
经配方,
即:
U
K 2
2
U V 2
K 2
2
圆的方程。圆心 (K/2, j0),半径K/2。
G( j 与G( j 为共轭复数。
当ω: -∞→+∞,得到完整的频率特性。 顺时针方向是频率特性变化的方向,即ω增加的方向。
Im
K Re
G( j) 为频率特性,是一复数,模 K 为系统的幅
1 T 22
值比
B ,其相角 A
2 为系统的相位差。
推广到一般的情况,对于任何线性定常系统,只 要将传递函数中的变量s用jω代替,便得到了系统的 频率特性。
自动控制原理第5章_线性控制系统的频率特性分析法
5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处
第五章 频率特性法(5.4)——稳定判据
0dB
180o
1 z=1- 2 ) =2 不稳定 ( 2
270
对数判据例题2
最小相位系统开环对数相频特性曲线
()
180o90o0ຫໍສະໝຸດ oc 12
90
o
180o
c 1或 c 2时
系统稳定
270o
360o
试确定系统闭环稳定时截止频率ωc的范围。
一、奈氏稳定判据
闭环特征根在s右半平面的个数
z=
_2N p
开环极点在s右半平面的个数
开环幅相曲线穿越-1之左实轴的次数
-1
自上向下为正穿越,用N+表示;
G( j) H ( j)
-1
自下向上为负穿越,用N-表示;
G( j) H ( j)
N=N+-N-
Z 闭环特征根在右半s平面上的极点数:
5 o G( j ) 2 0 180 s
5 - 2a
2
-1
0
P=1 a<2.5时
1 5(1 ) Z 1 2(1 ) 0 G( j) 2 2 2 j[ j(2 a ) (a )]
系统稳定!
奈氏判据
对数频率稳定判据
对数频率稳定判据和奈氏判据本质相同,其区别仅在
对数判据例题3
最小相位系统开环对数相频特性曲线
()
360o
180o
0o
1
c
c 1时 系统稳定
经验:只要N为 负,不管P为几, 系统都不可能 稳定!
180o
360o
540o
试确定系统闭环稳定时截止频率ωc的范围。
自动控制原理第5章
8
二、图形表示法
1.极坐标图(幅相频率特性图;奈奎斯特图) 1.极坐标图(幅相频率特性图;奈奎斯特图) 极坐标图 随着频率的变化,频率特性的矢量长度和幅角也改变。 随着频率的变化,频率特性的矢量长度和幅角也改变。 当频率ω 变化到无穷大时, 当频率ω从0变化到无穷大时,矢量的端点便在平面上画出一 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。画 有这种曲线的图形称为极坐标图。 有这种曲线的图形称为极坐标图。
− j arctan 2 ζT ω 1−T 2ω 2
幅频特性 相频特性
A(ω ) =
ϕ (ω ) = − arctan
23
典型环节的频率特性
9
2.博德图(对数频率特性图) 博德图(对数频率特性图) 博德图 两张图构成 一张是对数幅频图 一张是对数相频图 构成: 对数幅频图, 对数相频图。 由两张图构成:一张是对数幅频图,一张是对数相频图。 两张图的横坐标都是采用了半对数坐标。 两张图的横坐标都是采用了半对数坐标。
10
对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 是频率特性幅值的对数值乘20 即 L(ω ) = 20 lg A(ω ) 表示,均匀分度,单位为db。 表示,均匀分度,单位为db db。 对数相频特性图的纵坐标是相移角φ(ω),均匀分度,单 对数相频特性图的纵坐标是相移角φ 是相移角 均匀分度, 位为“ 位为“度”。 对数幅频特性图绘的是对数幅频特性曲线, 对数幅频特性图绘的是对数幅频特性曲线, 对数相频特性图绘的是对数相频特性曲线。 对数相频特性图绘的是对数相频特性曲线。
第五章线性系统的频率分析法
一、频率特性的定义: 指线性系统或环节在正弦信号作用下,系统输入
量的频率由0变化到 时,稳态输出量与输入量的振 幅之比和相位差的变化规律,用G(jω) 表示。
xr (t) xrm sin(t)
xc(t) xcm sin(t ( ))
稳态输出量与输入量的频率相同,仅振幅和相位不同。
3)在ω轴上,十倍频程的长度相等;
4)可以将幅值的乘除化为加减L(ω)=20lgA(ω) ;
5)满足直线方程:斜率k
k L(2 ) L(1 ) lg2 lg1
例如:G ( s )
1 Ts
1
的(对数频率特性曲线)伯德图
1)频率特性: G( j ) 1
1
tg1T
jT 1 2T 2 1
微分方程、传递函数、频率特性之间的关系:
s d dt
传递函数
微分方程 系统
d j
dt
频率特性
s j
四、 频率特性的几何表示法
常用频率特性的三种表示法: 1)幅相频率特性曲线(又称:幅相曲线、奈奎斯
特图(Nyquist)、极坐标图) 2)对数频率特性曲线(又称:伯德图 (Bode))
频率对数分度,幅值/相角线性分度
2)对数频率特性:
0
Bode Diagram
Magnitude (dB)
L( ) 201g 1
-10
T 1 2 2
-20
-30
( ) tg1T
-40 0
Phase (deg)
3)画出伯德图:
-45
-90 10-1
100
101
Frequency (rad/sec)
102
五、典型环节的分解
机械控制工程基础-第5章-频率特性
G ( j ) arct an / T
2 20 lg G ( j ) 20 lg T 20 lg T 2
第五章 频率特性
在低频段误差
e( )
2 20 lg T 20 lg T 2
在高频段误差
e( )
2 20 lg 20 lg T 2
第五章 频率特性
系统的稳态响应
xo (t ) XiK 1 T
2 2
sin(t arctanT )
系统输出的幅值
X o ( )
XiK 1 T 2 2
系统输出的相位
( ) arct anT
频率响应只是时间响应的一个特例。当谐波频率不同时, 其输出的幅值与相位也不同。
第五章 频率特性 对数相频特性图
横坐标:与对数幅频特性图相同。
) 纵坐标:线性分度,频率特性的相角 ((度)
几点说明
1、在对数频率特性图中,w=0不可能在横坐标上表示
出来;此外,横坐标一般只标注w的自然数值; 2、在对数频率特性图中,角频率w变化的倍数通常采用 频率比的方法:
第五章 频率特性
1,20 lg G ( j ) 0
第五章 频率特性 3、微分环节
G ( j ) j G ( j ) G ( j ) 90 20 lg G ( j ) 20 lg
1,20 lg G ( j ) 0
第五章 频率特性
4、惯性环节
1 G ( j ) 1 jT T 1 / T G ( j ) G ( j )
m m 1
若系统无重极点
bm s bm1 s b1 s bo X i X o ( s) G( s) X i ( s) n 2 2 n 1 an s an1 s a1 s ao s
频率特性法
斜率
1 10
lg ω ω
-20dB/dec
10
ω
对数频率特性曲线又称伯德图.
第一节 频率特性的基本概念
作业习题:
5-1 (1)
返回
第五章 频率数学模型是频率特性 。通过对系统频率特性的分析来分析和 设计控制系统的性能。
一、频率特性的定义 二、频率特性的几何表示法
第一节 频率特性的基本概念
-j t j ω ωt r(t)=Asin+A e ω t c [t→∞ 系统的稳态响应为)|sin ω t+ G(j 1 e 系统结构图如图:s(t)=limc(t)=A 2 cs(t)=A|G(j ω R(s)ω)] C(s) G(S) ω A 设系统传递函数为 求待定系数: A1=G(s)s2+ 2 (s+j ω) s=-j ω 系统正弦信号作用下的稳态输出是与 U(s) ω A ω G(s)= (s-s )(s-s )·(s-s ) 特征方程的根 -j G(jω R(s)=s2)+ 2 · n 1 2 · ω 输入同频率的正弦信号,输出与输入的幅 ω)| A = A|G(j e =G(-j -2j ω) ω U(s) A -2j 值之比为|G(jω)|,稳态输出与输入间的相位 C(s)=G(s)R(s)= (s-s )(s-s )·(s-s ) · + 2 · j n ωs2 ω 1 2 · G(j ) 差为∠G(jAG(j AA =nA|G(j )|e ω)。 Bi ω ω) 2 A 同理: = 2= 1 + 2j +∑ 2j s+j s-jω i=1 s–siG(jω) ω -j ωt ω j[ω t+ωG(jω)] j-j[ n 根据 G(-j )=|G(j-j )|e ω tω t+ G(jω)] t 拉氏反 e e +A -ee +∑ B esi cs(t)=A|G(j c(t)=A1 ω)| i 2 2j 变换得: i=1
第五章 频率法
幅频特性为
相频特性为
可得极值点 r n 1 2 2
当0.707<ζ<1时,A(ω)从1单调增至∞;
当0<ζ<0.707时,A(ω)在ωr处有最小值 Ar 2 1,然2 后 单调增至∞。
Im
2
Ar
Re
O
1
5.2.8 延迟环节
(s
sn
)
R s2
2
A1
A2
n
Bi
s j s j i1 s si
用留数法计算系数
A1
lim (s s j
j)G(s) R s2 2
R G(j) R
2j
2j
G( j)
e jG( j)
A2
lim (s
s j
惯性环节的传递函数为 频率特性为 幅频特性为
相频特性为
Im
ω→∞
ω=0 O
Re
1
L / dB
0 0.1/T
20
0° 0.1/T
-90°
精确曲线
3.01dB
1/T
10/T
20dB/dec
1/T
10/T
一阶惯性环节的对数幅频特性曲线通常用两端直 线渐近线来近似,在转折频率以前与0dB线重合,在 转折频率以后是斜率为-20dB/dec的直线。
sC
3
ur (t) Rsint
当初始条件为0时,输出电压的拉氏变换为
Uc
(s)
1 Ts
1Ur
(s)
1 Ts
第五章频率特性分析法
146第5章 线性系统的频域分析与校正时域分析法具有直观、准确的优点。
如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。
然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。
而且,按照给定的时域指标设计高阶系统也不是容易实现事。
本章介绍的频域分析法,可以弥补时域分析法的不足。
频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故又称为频率响应法。
频率法的优点较多。
首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。
其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。
因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。
此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。
这对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。
因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。
5.1 频率特性的基本概念5.1.1 频率特性的定义为了说明什么是频率特性,先看一个R -C 电路,如图5-1所示。
设电路的输入、输出电压分别为()r u t 和()c u t ,电路的传递函数为 ()1()()1c r U s G s U s Ts ==+ 式中,RC T =为电路的时间常数。
若给电路输人一个振幅为X 、频率为ω的正弦信号 即: ()sin r u t X t ω= (5-1) 当初始条件为0时,输出电压的拉氏变换为图5-1 R C -电路1472211()()11c r X U s U s Ts Ts s ωω==⋅+++ 对上式取拉氏反变换,得出输出时域解为()22()arctan 1t T c XT u t e t T T ωωωω-=+-+ 上式右端第一项是瞬态分量,第二项是稳态分量。
自动控制原理第五章--频率法
G(s) T 2s2 2Ts 1
频率特性分别为:
G( j ) j G( j ) 1 jT G( j ) 1 T 2 2 j2T
① 纯微分环节: G( j ) j
A() , ()
2
P() 0, Q()
微分环节的极坐标图为 正虚轴。频率从0→∞ 特性曲线由原点趋向虚 轴的+∞。
当 o 时,误差为:2 20lg 1 T 22 20lgT
T L(),dB 渐近线,dB0.1 0.2来自0.5 1 2 510
-0.04 -0.2 -1 -3 -7 -14.2 -20.04
0
0
0 0 -6 -14
-20
最大误差发生在
o
处,为
1 T
误差,dB
0 -1
-0.04 -0.2 -1 -3 -1 -0.2
时:A() 0,() 90
P() 0,Q() 0
2. 对数频率特性
A( ) K 1 T 2 2
G(s) K Ts 1
G( j ) K jT 1
( ) tg1T
①对数幅频特性:L() 20lg A() 20lg K 20lg 1 T 2 2
为了图示简单,采用分段直线近似表示。
二、频率特性的表示方法:
工程上常用图形来表示频率特性,常用的有:
1.幅相频率特性图,极坐标图,也称乃奎斯特(Nyquist) 图。是以开环频率特性的实部为直角坐标横坐标,以其
虚部为纵坐标,以 为参变量的幅值与相位的图解表示
法。
它是在复平面上用一条曲线表示 由 0 时的频
率特性。即用矢量 G( j)的端点轨迹形成的图形。 是
R Ar0o ,C Ac
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容
1、频率特性的概念 2、典型环节频率特性
3、开环幅相曲线绘制方法,重点:开环对数频率特性曲线
4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念 6、闭环系统的频域指标
5-1 频率特性
频率特性法:用频率特性作为数学模型来分析和设 计系统的方法。 优点:①具有明确的物理意义; ②计算量很小,采用近似作图法,简单、直 观,易于在工程技术中使用; ③可以采用实验的方法求出系统或元件的频 率特性。
1 1 (T1 )
2
1 1 (T2 )
2
k
相频特性: ( ) tan1 T1 tan1 T2
1.确定开环幅相曲线的起点和终点
0时, G ( j 0) k (0) 0 时, G ( j 0) 0 (0) -180
式中, φ=-arctgωτ。
式(5.3)的等号右边 , 第一项是输出的暂态分量 , 第
二项是输出的稳态分量。 当时间t→∞ 时, 暂态分量趋 于零, 所以上述电路的稳态响应可以表示为
1 1 limuo (t ) sin( t ) U sin t (5.4) 2 2 t 1 j 1 j 1 U
0
ω 0 1/T ∞
∠G(jω ) 0º -90º -180º
│G(jω │ 1 1/2ζ 0
U(ω ) 1 0 0
V(ω )
-0.5
ζ =0.2— 0.8
0 -1/2ζ 0
-1.5 -0.5 0 0.5 1 1.5 -1
振荡环节的幅相曲线
: 0 , G ( j )曲 线 有 单 调 衰 减 和 谐 两 振种形式。
2 2
令虚部 j(T1+T2)ωx=0 求得: ωx=0 说明系统的开环幅相曲线仅在ωx=0 处与实 轴有交点。
Im 0 ω=∞ k ω ω=0 Re
3.由于惯性环节单调地从0°-90°,因为该系统有二个惯性环 节,所以曲线变化范围为第四、第三象限( -180°)。
综上所述,概略绘制幅相曲线的步骤为:
j 0
ω
积分环节频率特性的极坐标图是虚轴。
ω 0 1 ∞ ∠G(jω ) -90º -90º -90º │G(jω │ ∞ 1 0 U(ω ) 0 0 0 V(ω ) -∞ -1 0
积分环节的幅相曲线
3纯微分环节和一阶微分环节 ω 纯微分环节
G(s) s G(j ) j e
j
∠G(jω ) 90º 90º 90º ∠G(jω )
│G(jω │ 0 1 ∞ │G(jω │
U(ω ) 0 0 0 U(ω )
V(ω ) 0 1 ∞ V(ω )
0
2
1 ∞ ω
jarctan
一阶微分环节
G (s) s 1 G(j ) j 1 1e
2T 1 arctan 1 1 T 2 2 T G (j ) G (j ) 2 2 2 2 1 (1 T ) (2 T ) 180 arctan 2T 2 2 1 T T 1 T 2 2 2T U ( ) ; V ( ) (1 T 2 2 ) 2 (2T ) 2 (1 T 2 2 ) 2 (2T ) 2j
对于图5-1所示的电路,当ui(t)是正弦信号时, 我们已
知uo(t)也是同频率的正弦信号, 简单推导如下:
设ui(t)=U sinωt, 则其拉氏变换为
U Ui ( s) 2 s 2
+ ui(t) -
R
+ C uo(t) -Fra bibliotek而RC电路的传递函数为
U o (s) 1 /(Cs ) U i ( s ) R 1(Cs ) 1 s 1
极坐标图:在复数的直角坐标或极坐标平面上,ω由 0→∞时, G(jω) 的轨迹。又称Nyquist图,奈奎斯特图, 幅相特性图。 波德图 (对数频率特性曲线):由对数幅频特性和对数 相频特性组成。伯德图的横坐标按lgω分度, 即对数分度, 单位为弧度/秒(rad/s), 对数幅频曲线的纵坐标按线性分度, 单位是分贝(dB)。对数相频曲线的纵坐标按φ(ω)线性分 度, 单位是度(°)。 对数幅相特性(尼氏图):将对数幅频特性和对数相频 特性绘在一个平面上,以对数幅值作纵坐标(单位为分 贝)、以相位移作横坐标(单位为度)、以频率为参变 量。这种图称为对数幅—相频率特性,也称为尼柯尔斯 图,或尼氏图。
5.2.1极坐标图
1. 惯性 环节 G (s) 1 Ts 1 1
2 2
G (j )
1 jT 1 1
2 2
G ( j ) arct anT V ( ) T T 2 2 1
G ( j )
0 1/ T
T 1 G ( j ) G ( j ) 0
U ( ) U 1 1/ 2 0
T 1 V 0 1/ 2 0
1 1/ 2 0
2
j ω=∞
45 90
2
0
-45o ω=1/T
ω=0 K
1 1 2 U V 2 2
(b)
极坐标图是半圆。
惯性环节幅相曲线
2.积分环节
1 G (s) s 1 1 1 j2 G (j ) j e j
2.确定开环幅相曲线与实轴的交点
G ( j ) k (1 jT1 )(1 jT2 ) k (1 jT1 )(1 jT2 ) (1 jT1 )(1 jT1 )(1 jT2 )(1 jT2 )
k (1 2T1T2 ) j (T1 T2 ) (1 2T1 )(1 2T2 )
1 0.8 0.6 0.4 0.2 0
1
-0 .5
-1
1 /
2 /
3 /
4 /
5 /
-1 .5 0
1 /
2 /
3 /
4 /
5 /
图 5-2 RC电路的幅频和相频特性
系统的频率特性反映了在正弦输入信号作用下 , 系统的 稳态响应与输入正弦信号之间的关系。系统稳态输出信 号与输入正弦信号的幅值比 |G(jω)|称为幅频特性, 系统 稳态输出信号与输入正弦信号的相移φ(ω)称为相频特性。 线性定常系统的传递函数为零初始条件下, 输出和 C ( s) 输入的拉氏变换之比
数比, 称为频率特性。对比式(5.1)和式(5.5)可见, 将传
递函数中的s以jω代替, 即得频率特性。A(ω)是输出信
号的幅值与输入信号幅值之比, 称为幅频特性。φ(ω)是
输出信号的相角与输入信号的相角之差, 称为相频特性。
上述RC电路的幅频和相频特性如图5-2所示。
1
0
2 2
-arct g
(5.1)
图5-1 RC电路
式中, τ=RC。 则有
1 1 U U o ( s) U i ( s) 2 s 1 s 1 s 2
(5.2)
对式(5.2)进行拉氏反变换(p641-26), 可得
U t U (5.3) uo (t ) e sin( t ) 1 2 2 1 2 2
例5-2,绘制Ⅰ型系统幅相曲线
G( s)
k S (T1 S 1)(T2 S 1)
系统由比例、积分和二个惯性环节组成
幅频特性: G( j ) 1
1 1 (T1 )
d G ( j ) 1 0 r 1 2 2 n 1 2 2 d T 1 M r G ( j ) 0 0.707 2 2 1
5.延迟环节
延迟环节的传递函数: G (s) e s 频率特性是: G ( j ) e j G ( j ) rad 57.3 G ( j ) 1 当 由 0 时,G ( j)由 0 , 而 G ( j ) 1。 极坐标图是单位圆
G( s) R( s)
频率特性:幅频特性:C/ R G(j ) 相频特性: G(j ) 负相角称为相位滞后,正相角称为相位超前。
复量 G ( j ) 可以写成指数式、三角式或实部与虚部相加的代数 式 G( j ) G( j ) e j ( ) G( j ) [cos j sin ]
若把输出的稳态响应和输入正弦信号用复数表示, 可以得到:
1 j ( ) G( j ) A( )e 1 j
式中,
(5.5)
1 1 A( ) 2 2 1 j 1 1 ( ) arctg 1 j
G(jω)是上述电路的稳态响应与输入正弦信号的复
第五章 频率特性法
教学目的
频域分析法是经典控制理论中针对控制系统频域模型的分析方 法,讨论控制系统的频率特性,反映正弦信号作用下,系统响应的 性能。通过本章学习,使学生们掌握频率特性的基本概念,掌握控 制系统的频域分析方法,频率特性曲线的绘制方法,控制系统频率 稳定判据和频域指标的估算。
教学重点
1、振荡环节的频率特性曲线 2、开环幅相曲线绘制 3、开环对数频率特性曲线 4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念
求出ωx值后,代入实部表达式Im[G(j ωx)H(j ωx)]得到实轴的 交点。 c.判断开环幅相曲线的变化范围(象限、单调性)
k 例:5-1概略绘制0型系统幅相曲 G( s) (T1 S 1)(T2 S 1) 线 解:系统由一个比例环节、二个惯性环节组成。
幅频特性: G (s)
1.零型系统在ω=0时的幅值恰好是开环传递系统k。
2.本例中是由两个惯性环节组成,因为惯性环节当ω=∞时,幅 相曲线趋于0∠-90°。所以本例中当ω=∞时,幅相曲线趋于 0∠2×(-90°)= 0∠-180°。推而广之,若系统包含n个惯性环节, 则ω=∞时,幅相曲线必然趋向于0∠n×(-90°)。 3.如果系统还包含一阶微分环节(TS+1),因为ω→∞时,一阶微 分环节相频特性从0 → 90°,所以,总的相频特性有如下特点: ∠G(j ω)=(m-n) 90°,m:一阶微分环节个数;n:惯性环节个数。