高中数学选修4-5不等式选讲的重要思想资料讲解
选修4-5__不等式选讲_(1)
【规律方法总结】
1.运用不等式的性质时,应注意不等式成立的条件,切不可用似乎很显然的理
由代替不等式的性质.
2.解绝对值符号里是一次式的不等式,常用零点分段法,其一般步骤是: (1)令每个绝对值符号里的一次式为零,并求出相应的根; (2)把这些根由小到大排序,并把实数集分为若干个区间; (3)由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出它们
①|ax+b|≤c,c<0,x∈∅;c≥0,-c≤ax+b≤c;
-b-c≤ax≤c-b.a>0,x∈ ;a<0,x∈
②|ax+b|≥c,c<0,x∈R;c≥0,ax+b≥c或ax+b≤-c. a>0,x∈ a<0,x∈ ;
1.实数的大小顺序与运算性质之间的关系
a>b⇔a-b > 0,a<b⇔a-b < 0,a=b⇔a-b = 0.
(4)解法一:当 x<-2 时,原不等式即 1-x-2-x<5,解得-3<x<-2; 当-2≤x≤1 时,原不等式即 1-x+2+x<5,因为 3<5 恒成立,则-2≤x≤1; 当 x>1 时,原不等式即 x-1+2+x<5,解得 1<x<2.综上,原不等式的解集为 {x|-3<x<2}. 解法二:不等式|x-1|+|x+2|<5 的几何意义为数轴上到-2,1 两个点的距离之和小于 5 的 点组成的集合,而-2,1 两个端点之间的距离为 3,由于分布在-2 与 1 之间以外的点到 -2,1 的距离在-2,1 外部的距离要计算两次,而在-2,1 内部的距离则只计算一次,因 5-3 5-3 此只要找出-2 左边到-2 的距离等于 =1 的点-3, 以及 1 右边到 1 的距离等于 2 2 =1 的点 2,这样就得到原不等式的解集为{x|-3<x<2}.
人教A版高中数学选修4-5_不等式选讲全册教案
选修4--5 不等式选讲一、课程目标解读选修系列4-5专题不等式选讲,容包括:不等式的根本性质、含有绝对值的不等式、不等式的证明、几个著名的不等式、利用不等式求最大〔小〕值、数学归纳法与不等式。
通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是根本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。
二、教材容分析作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材容仍以初中知识为起点,在容的呈现上保持了相对的完整性.整个专题容分为四讲,构造如以下图所示:第一讲是“不等式和绝对值不等式〞,为了保持专题容的完整性,教材回忆了已学过的不等式6个根本性质,从“数与运算〞的思想出发,强调了比拟大小的根本方法。
回忆了二元根本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。
对于绝对值不等式,借助几何意义,从“运算〞角度,探究归纳了绝对值三角不等式,并用代数方法给出证明。
通过讨论两种特殊类型不等式的解法,学习解含有绝对值不等式的一般思想和方法,而不是系统研究。
第二讲是“证明不等式的根本方法〞,教材通过一些简单问题,回忆介绍了证明不等式的比拟法、综合法、分析法,反证法、放缩法。
其中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的容。
这些方法大多在选修2-2“推理与证明〞已经学过,此处再现也是为了专题的完整性,对于新增的放缩法,应通过实际实际例子,使学生明确不等式放缩的几个简单途径和方法,比方舍掉或加进一些项,在分式中放大或缩小分子或分母,应用根本不等式进展放缩等〔见分节教学设计〕。
本讲容也是本专题的一个根底容。
第三讲是“柯西不等式和排序不等式〞。
高中数学 : 选修4-5 不等式选讲
解析 原不等式等价于
x 1,
1
(x 1) (2x 2) 17
或
1 x 1, (x 1) (2x 2) 1
或
x 1, (x 1) (x 2) 1,
解得x≥2或x≤-1.
5
故原不等式的解集为{x|x≤-1或x≥2}.
考法2 与绝对值有关的恒成立、存在性等求参数范 围的问题
4.设不等式|x+1|-|x-2|>k 的解集为 R,则实数 k 的取值范围 为____________.
4-5 不等式选讲
1
聚焦核心素养
理科数学选修4-5:不 等式选讲
1.命题分析预测 从近五年的考查情况来看,选修4-5是
高考题中的选做部分,主要考查绝对值不等式的求解、
恒成立问题、存在性问题以及不等式的证明,多以解答
题的形式呈现,难度中等,分值10分.
2.学科核心素养 本章通过绝对值不等式的解法和不等 式的证明考查考生的数学运算素养,以及对分类讨论思 想和数形结合思想的应用.
上述定理还可以推广到以下两个不等式:
(1)|a1+a2+…+an|≤|a1|+|a2|+…+|an|;
(2)||a|-|b||≤|a±b|≤|a|+|b|.
2.绝对值不等式的解法
(1)含绝对值的不等式|x|<a 与|x|>a 的解法:
不等式
a>0
a=0
a<0
|x|<a
__{x_|_-__a_<__x_<_a__} _
解析
原不等式等价于
x 1, (x 1)
(x
2)
5
x 1, (x 1) (2x 2) 7
选修4-5_不等式选讲(教材解读与教学建议)
• 一、本章的地位和作用 • 二、考纲和课程标准解读 • 三、教材分析 • 四、教学建议
9.通过一些简单问题了解证明不等式的基本方法: 比较法、综合法、分析法、反证法、放缩法.
10.完成一个学习总结报告.
课
具体内容
要求
说明
标
不等式的基本性质
理解 回顾和复习不等式的基本性质和基本不等
不
式,掌握二元和三元 平均不等式证明和应
等
基本不等式
掌握 用,理解二元和三元 平均不等式几何背
式
景,理解这些不等式的实质。会求一些特
明
本、最重要的方法。它所依据是实数大小的基本事实,
不 等
综合法与分 析法
掌握
证明不等式时关键有较强的恒等变换技巧。比较法两种 中差值法是最基本而重要的一种方法。综合法是由因导
式
果,而分析法是执果索因,命题时总是交替出现。直接
的 基 反证法
由条件推结论困难时用反证法。放缩法证明题时,把握 理解 好放缩的度。证明不等式是一定注意“逻辑方法”、“思
不 不等 解 证明思路,对具有明确大小顺序、数目相同的两列数,考虑它
等式
们对应乘积之和的大小关系时,排序不等式是很有用的工具。
式
课 标
具体内容
要 求
说明
了解数学归纳法的原理及其使用范围,会用
数 学
了
数学归纳法 解 数学归纳法证明一些简单问题。
选修4-5——不等式选讲知识点归纳
选修4-5——不等式选讲知识点概括选修 4-5 ——不等式选讲知识点
《选修 4-5不等式选讲》
1、绝对值不等式的性质
4、解含绝对值不等式的思路:化去绝对值符号,转变为不含绝对值的不等式,解法以下:(6)含有多个绝对值符号的不等式,如
| x a | | x b | c
或
| x a | | x b |c(c 0)
型不等
式有以下三种解法 :
方法 1:利用“零点分段法”求解,表现了分类议论的思想.
方法 2:利用绝对值不等式的几何意义求解,表现了数形联合
的思想.。
对于形如
| x a | | x b | c(c 0)
或
| x a | | x b | c( c0) 的不等式,利用实数绝对值的几何意
义求解较简易 . ,即不等式能够理解为数轴上到定点A(a )
、
B (b )
的距离之和大于(或小于) c 的点M ( x)的全体.
方法 3:经过结构函数f (x) | x a | | x b|
和
g( x )c , 利用函
数的图象求解 , 表现了函数与方程的思想
5、一元二次不等式的解法
(1)将不等式的右端化为0,左端化为二次项系数大于零的不等式
ax2bx c 0 ( a0 )或ax2bx c 0 ( a0)
(2)确立对应方程ax2bx c0 的根;
(3)画出对应函数y ax2bx c 的图像的简图;
(4)由图像得出不等式的解集.
( a0 )的图象
两异根
x1x2有两相等实根无实数根( a0)的解集大于在两边
( a0)的解集小于夹中间。
选修4—5 不等式选讲
不等式选讲【基础知识详解】一、不等式的概念和基本性质1.两个实数大小关系的基本事实 a >b ⇔a -b >0 a =b ⇔a -b =0 a <b ⇔a -b <0 2.不等式的基本性质(1)对称性:如果a >b ,那么b <a ;如果b <a ,那么a >b . 即a >b ⇔b <a . (2)传递性:如果a >b ,b >c ,那么a >c . (3)可加性:如果a >b ,那么a +c >b +c .(4)可乘性:如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc . (5)乘方:如果a >b >0,那么a n >b n (n ∈N ,n >1).(6)开方:如果a >b >0n ∈N ,n >1). 3.基本不等式 (Ⅰ)二元不等式(1)定理:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(2)定理(基本不等式):如果a ,b >0a =b 时,等号成立.也可以表述为:两个正数的算术平均不小于(即大于或等于)它们的几何平均. (3)利用基本不等式求最值 对两个正实数x ,y ,①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值; ②如果它们的积P 是定值,则当且仅当x =y 时,它们的和S 取得最小值.(Ⅱ)三个正数的算术—几何平均不等式(1)定理 如果a ,b ,c 均为正数,当且仅当a =b =c 时,等号成立.即三个正数的算术平均不小于它们的几何平均. (2)基本不等式的推广对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a nn当且仅当a 1=a 2=…=a n 时,等号成立.(Ⅲ)柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.二、绝对值不等式1.绝对值三角不等式(1)性质1:|a +b |≤|a |+|b |.当且仅当0ab ≥时,等号成立; (2)性质2:|a |-|b |≤|a +b |;性质3:|a |-|b |≤|a -b |≤|a |+|b |.当且仅当0ab ≥时,左边等号成立,当且仅当0ab ≤时,右边等号成立;(3)性质4: |a -c |≤|a-b |+|b-c |,当且仅当(a-b )(b-c )≥0 2.绝对值不等式的解法(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法 ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 三、证明不等式的方法 (1)比较法 ①求差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明a -b >0即可,这种方法称为求差比较法.②求商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明ab >1即可,这种方法称为求商比较法. (2)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法. (3)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法. (4)反证法的证明步骤第一步:作出与所证不等式相反的假设;第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立. (5)放缩法所谓放缩法,即要把所证不等式的一边适当地放大或缩小,以利于化简,并使它与不等式的另一边的不等关系更为明显,从而得到欲证不等式成立. (6)数学归纳法设{P n }是一个与自然数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切自然数成立.【例1】(2012·课标全国)已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集; (2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 解 (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4. 所以f (x )≥3的解集为{x |x ≤1或x ≥4}. (2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a . 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为[-3,0]. 思维升华 解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解. 【举一反三】 已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.( 恒成立最值解决问题)解 方法一 (1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3. 又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5), 于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5;当-3≤x ≤2时,g (x )=5;当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5]. 方法二 (1)同方法一.(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].【例2】已知3x 2+2y 2≤6,求证:2x +y ≤11.证明 由于2x +y =23(3x )+12(2y ),由柯西不等式(a 1b 1+a 2b 2)2≤(a 21+a 22)(b 21+b 22)得(2x +y )2≤[(23)2+(12)2](3x 2+2y 2)≤(43+12)×6=116×6=11,∴|2x +y |≤11,∴2x +y ≤11.【规律总结】使用柯西不等式时,关键是将已知条件通过配凑,转化为符合柯西不等式条件的式子,二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.若3x +4y =2,试求x 2+y 2的最小值.解 由柯西不等式(32+42)·(x 2+y 2)≥(3x +4y )2,① 得25(x 2+y 2)≥4,所以x 2+y 2≥425.不等式①中当且仅当x 3=y4时等号成立,x 2+y 2取得最小值,由方程组⎩⎪⎨⎪⎧3x +4y =2,x 3=y 4,解得⎩⎨⎧x =625,y =825.因此当x =625,y =825时,x 2+y 2取得最小值,最小值为4.【例3】已知a ,b ,c ∈(0,+∞),且a +b +c =1,求证:(1)(1a -1)·(1b -1)·(1c -1)≥8;(2)a +b +c ≤ 3.证明 (1)∵a ,b ,c ∈(0,+∞),∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca ,(1a -1)·(1b -1)·(1c-1) =(b +c )(a +c )(a +b )abc≥2bc ·2ac ·2ab abc =8.(2)∵a ,b ,c ∈(0,+∞),∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , 2(a +b +c )≥2ab +2bc +2ca ,两边同加a +b +c 得3(a +b +c )≥a +b +c +2ab +2bc +2ca =(a +b +c )2.又a +b +c =1,∴(a +b +c )2≤3, ∴a +b +c ≤ 3.思维升华 用综合法证明不等式是“由因导果”,分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3;(2) a bc + b ac + cab ≥3(a +b +c ).证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3. 即证:a 2+b 2+c 2+2(ab +bc +ca )≥3, 而ab +bc +ca =1,故需证明:a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ).即证:a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得. ∴原不等式成立.(2) a bc + bac+c ab =a +b +cabc. 在(1)中已证a +b +c ≥ 3. 因此要证原不等式成立,只需证明1abc≥a +b +c .即证a bc +b ac +c ab ≤1, 即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤bc +ac2.∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =33时等号成立). ∴原不等式成立.绝对值不等式的解法典例:(10分)解不等式|x +1|+|x -1|≥3.思维启迪 本题不等式为|x -a |+|x -b |≥c 型不等式,解此类不等式有三种方法:几何法、分区间(分类)讨论法和图象法. 规范解答解 方法一 如图所示,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1,到A ,B 两点的距离和为3,A 1对应数轴上的x .[4分]∴-1-x +1-x =3,得x =-32.同理设B 点右侧有一点B 1到A ,B 两点距离之和为3,B 1对应数轴上的x ,∴x -1+x -(-1)=3.∴x =32.从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都大于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3.[8分] 所以原不等式的解集是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.[10分]方法二 当x ≤-1时,原不等式可化为-(x +1)-(x -1)≥3,解得:x ≤-32.[3分]当-1<x <1时,原不等式可以化为 x +1-(x -1)≥3,即2≥3.不成立,无解. [6分]当x ≥1时,原不等式可以化为x +1+x -1≥3.所以x ≥32.[9分] 综上,可知原不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-32或x ≥32.[10分]方法三 将原不等式转化为|x +1|+|x -1|-3≥0. 构造函数y =|x +1|+|x -1|-3, 即y =⎩⎪⎨⎪⎧-2x -3,x ≤-1;-1,-1<x <1;2x -3,x ≥1.[3分]作出函数的图象,如图所示:函数的零点是-32,32.从图象可知,当x ≤-32或x ≥32时,y ≥0,[8分]即|x +1|+|x -1|-3≥0.所以原不等式的解集为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.[10分] 温馨提醒 这三种方法是解|x +a |+|x +b |≥c 型不等式常用的方法,方法一中关键是找到特殊点,方法二中的分类讨论要遵循“不重不漏”的原则,方法三则要准确画出函数图象,并准确找出零点.方法与技巧1.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x -a |+|x -b |>m 或|x -a |+|x -b |<m (m 为正常数),利用实数绝对值的几何意义求解较简便. 2.不等式的证明方法灵活,要注意体会,要根据具体情况选择证明方法.3.柯西不等式的证明有多种方法,如数学归纳法,教材中的参数配方法(或判别式法)等,参数配方法在解决其它问题方面应用比较广泛.柯西不等式的应用比较广泛,常见的有证明不等式,求函数最值,解方程等.应用时,通过拆常数,重新排序、添项,改变结构等手段改变题设条件,以利于应用柯西不等式. 失误与防范1.理解绝对值不等式的几何意义. 2.掌握分类讨论的标准,做到不重不漏.3.利用基本不等式必须要找准“对应点”,明确“类比对象”,使其符合几个著名不等式的特征.4.注意检验等号成立的条件,特别是多次使用不等式时,必须使等号同时成立.。
专题七第2讲选修45不等式选讲课件共41张PPT
【变式训练2】 已知函数f (x)=x+m2 +|x-m|(m>0)。 (1)当m=1时,求函数f (x)的最小值; (2)若存在x∈(0,1),使得不等式f (x)≤3成立,求实数m的取值范围。
解 (1)当m=1时,f (x)=|x+2|+|x-1|, 因为|x+2|+|x-1|≥|(x+2)-(x-1)|=3, 当且仅当(x+2)(x-1)≤0,即-2≤x≤1时等号成立, 所以f (x)的最小值为3。
方法悟通
解决不等式恒成立、能成立、恰成立问题的策略
不等式 恒成立
问题
不等式f (x)>A在区间D上恒成立,等价于在区间D 上f (x)min>A。 不等式f (x)<B在区间D上恒成立,等价于在区间D 上f (x)max<B
不等式 能成立 问题
不等式 恰成立 问题
在区间D上存在实数x使不等式f (x)>A成立,等价 于在区间D上f (x)max>A。 在区间D上存在实数x使不等式f (x)<B成立,等价 于在区间D上f (x)min<B 不等式f (x)>A在区间D上恰成立,等价于不等式f (x)>A的解集为D。 不等式f (x)<B在区间D上恰成立,等价于不等式f (x)<B的解集为D
(2)由题意得存在x∈(0,1),使得x+m2 +|x-m|≤3成立, ①当m≥1时,x+m2 +|x-m|≤3等价于m2 +m≤3,所以1≤m≤2。
②当0<m<1时,f
(x)=x+
2 m
+|x-m|= 2m2x++mm2,-0m<,x<mm≤,x<1,
则f
(x)min=
2 m
+
m,所以m2 +m≤3,所以1≤m≤2,与“0<m<1”矛盾,此时m无解。 综上,实数m的取值范围为[1,2]。
选修4-5《不等式选讲》知识点详解
1、不等式的基本性质(对称性) (传递性)④ a2+b 2+ db +bc +ca (a , b 迂 R )(当且仅当a=b=c 时取到等号) ⑤ a ' + b3+cPabc (a AO,b A O,C >0)(当且仅当a=b=c 时取到等号).b a⑥ 若ab >0,则—>2 (当仅当a=b 时取等号)a b b a若abc 0,贝y —+ —<-2 (当仅当a=b 时取等号)a b… b b +m a +n a ⑦ 一吒 ------ v 1 V ----- <-,(其中 a 》b >0, m >0, n >0) a a +m b +n b规律:小于 1同加则变大,大于 1同加则变小.⑧ 当a >0时,I X >au X 2 :>a 2u x c-a 或x >a;高中数学选修4--5知识点a >b 二 a +c 〉b +c> b , e >d = a + c >b +d (异向可减性)a ;>b,c<;d = a-c>b-d (可积性)(可加性)(同向可加性)a(同向正数 a > b ,c a >b , e 可乘性) 》0 = ac > bec 0 = ae < bea >b >0,c >_d >0= ac >bd(异向正数 可除性) (平方法则) (倒数法则)a >b >0= a n>b n(n 迂 N,且n >1)a >b ;>0 =(n 亡N,且n >1)1 1 1a Ab > 0= — v-;a V b <0= — a b a2、 几个重要不等式 ①a2+b 2>2ab (a, b 亡R ),(当且仅当a =b 时取"="号).2丄」2a +b变形公式:ab「②(基本不等式)节卫>庙(a , b 壬R +),(当且仅当a=b 时取到等号)变形公式: a +b >2j abab <f a +b 丫 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件 “一正、二定、三相等”③(三个正数的算术一几何平均不等式)a +b +c 3 '沫® bC 当且仅当a =b = C 时取到等号)2a+ b f a 2 +&22珂h ,( a E R+当且仅当"b 时取J 号).X ca =<a = 「a<xca. ⑨绝对值三角不等式 —b<a±b<a + b.3、几个著名不等式 (即调和平均 <几何平均 <算术平均 变形公式: 乞平方平均). f a +b Y a 2 +b 2 ab < D -- ( < -----I 2丿 2 ②幕平均不等式: a+rS2 2 2 1 2a i +a 2 +... +a n >-(a i +a 2+... +a n ).n ③二维形式的三角不等式: J x j 中y i 2 + J X 22+y 22 二 J (x i —X 2)2 +(y i — y 2)2 (X i ,y i ,X 2,y^ R).④二维形式的柯西不等式: (a 2+b 2)(c 2+d 2) >(ac + bd)2(a,b,c,d 亡 R).当且仅当 ad =bc 时,等号成立. ⑤三维形式的柯西不等式: (a i 2 +a 22 +a 32)(b 2 +b 22 +b 32)>(qh +a 2b 2 +a 3b 3)2. ⑥一般形式的柯西不等式: (aj + a 22 +...+ a n 2)(b,2 +b 22 +...+ g 2) >(aib i +&2匕2 +... + a^n )2. ⑦向量形式的柯西不等式: 设;卫是两个向量,则,当且仅当?是零向量,或存在实数 k ,使;=k ?时,等号成立.⑧排序不等式(排序原理)设6 <&2兰…兰ang <...<b n 为两组实数.c 1,c 2,...,c n 是t i ,b 2,...,b n 的任一排列,则 aA +a 2b n 彳+...+a n b i <aiG 中4262 +... + &.4 兰ab +&2匕2 +... +a nb n .(反序和 <乱序和 <顺序和),当且仅当 a =&2 =... =a n 或b] =»2 =...=b n 时,反序和等于顺序和 ⑨琴生不等式:(特例:凸函数、凹函数) 若定义在某区间上的函数 f (X ),对于定义域中任意两点X 1,X 2(X^ ^X 2),有 f (X i +X 2)兰f (X i ) +f (X 2)2 ~ 2 4、不等式证明的几种常用方法 卄人也)二f (X i )+ f (X 2)则称f (X )为凸(或凹)函数. 2 _ 2 常用方法有:比较法(作差,作商法)、综合法、分析法; 其它方法有:换元法、反证法、放缩法、构造法,函数单调性法, 常见不等式的放缩方法:数学归纳法等. ①平均不等式:2 a^+b21①舍去或加上一些项,如(a+-)22 2 1— ———_2振扳 + 7?1 T k J k +J k -1 '(^ N ,k >1)等.元二次不等式的解法 求一元二次不等式 ax2+ bx + C > 0(或c 0)(a H 0,A =b 2—4acA0)解集的步骤:一化:化二次项前的系数为正数 . 二判:判断对应方程的根.三求:求对应方程的根. 四画:画出对应函数的图象 . 五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边 6、高次不等式的解法:穿根法 . 分解因式,把根标在数轴上,从右上方依次往下穿( 奇穿偶切),结合原式不等号的方向,写出不等式的解集 7、分式不等式的解法:先移项通分标准化,则A 0二 f (x ) g (xb>0"x ) ■ (“ <或兰”时同理) f (X )"1 1 f (X ),g (x ) >0—0 二 5g (x ) l g (x )H 0规律:把分式不等式等价转化为整式不等式求解 .lf(x)<[g(x)]②将分子或分母放大 (缩小)3 + 4>(a+2)2; 如—k 2k(k-1)1 1k^^k(k +1)8、 无理不等式的解法:转化为有理不等式求解J f(X)Aa(a A 0)Uj f(x ^0l f(x)》a 2J f(X)<a(a 》0) u7(x) >0I f (x)J f(x) >g(x)u f(X)A 0g(x)>0一f(x)A[g(x)]2叫 g(x):0fX)cg(x)uf(X)>0“ g(x)>0f(x^0g(x)>0f(xb>g(x)规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解 9、指数不等式的解法: ⑴当 a >1 时,af (x);>a g(x)= f (x) >■ g(x)⑵当 0cav1 时,af(XS-a g(X ^ f(x)vg(x)规律:根据指数函数的性质转化 10、对数不等式的解法I f(x)》0⑴当 a >1 时,log a f(X)Alog a g(x)u <g(x)A0[f(x)》g(x)f(x) A 0⑵当 0cac1 时,log a f(X)>log a g(x)u *g(x)>0 l f(x) vg(x) 规律:根据对数函数的性质转化11、含绝对值不等式的解法:f(x) < g(x) u f 2(x) <g 2(x).⑶同解变形法,其同解定理有:X <au -a <x <a(a >0); X >au X >&或X < -a(a >0);f(x)兰 g(x)二—g(x)兰 f(X)兰g(x) (g(x) >0)④ I f(x)|>g(x)二 f(x) >g(x)或f(x) <-g(x) (g(x) >0)规律:关键是去掉绝对值的符号 12、含有两个(或两个以上)绝对值的不等式的解法:不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分 ⑶利用线性规划求目标函数z = Ax + By (A, B 为常数)的最值:法一:角点法:如果目标函数z=Ax +By ( X 、y 即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区⑸ J f(X)> Jg(x) u ⑴定义法:[a (a>0) [-a (a <0)⑵平方法:规律:找零点、划区间、分段讨论去绝对值 、每段中取交集,最后取各段的并集 13、含参数的不等式的解法 ⑴讨论a 与0的大小;⑵讨论A 与0的大小;⑶讨论两根的大小.14、恒成立问题2⑴不等式ax +bx+c>0的解集是全体实数(或恒成立)的条件是:2⑵不等式ax +bx +c <:0的解集是全体实数(或恒成立)的条件是:f (X )<a 恒成立 u f (X )max 兰a ;⑷ f(x) >a 恒成立=f(x)min Aa;f(X)>a 恒成立二 f (x)min Xa.15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线Ax + By +C =0的同一侧的所有点的坐标代入Ax + By +C 后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点化,y 0)(如原点),由Ax 0 + By 0 +C 的正负即可判断出 Ax + By + C a 0 (或<0)表示直线哪一侧的平面区域即:直线定边界,分清虚实;选点定区域,常选原点法二:根据Ax + By+C:>0(或c 0),观察B 的符号与不等式开口的符号, 若同号,Ax + By+C>0(或c 0)表示直线上方的区域;若异号,则表示直线上方的区域①当 a = 0 时二 b = 0,c > 0;②当^0时二?>0仏<0.①当a =0时=b =0,c <0;②当a 工0时二■A <0. ⑶f (x ) c a 恒成立Uf (X)max Va ;域的边界角点处取得, 将这些角点的坐标代入目标函数,得到一组对应 Z 值,最大的那个数为目标函数 Z 的最大值,最小的那个数为目标函数 Z 的最小值法二:画一一移一一定一一求:行移动)确定最优解;第三步,求出最优解 (X,y );第四步,将最优解(X, y )代入目标函数z=Ax + By 即可求出最大值或最小值.第二步中最优解的确定方法:利用Z 的几何意义:y = -Ax + ?,-为直线的纵截距.B B B①若B >0,则使目标函数Z = Ax +By 所表示直线的纵截距最大的角点处, 角点处,Z 取得最小值;②若B cO,则使目标函数Z = Ax + By 所表示直线的纵截距最大的角点处, 角点处,Z 取得最大值. ⑷常见的目标函数的类型:②“斜率”型:ZJ 或 zA; x X -aZ =(x —a)2+(y —b)2或z = J (x -a)2+(y-b)2.在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化2解形如ax +bx+c>0且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:①“截距”型:Z=Ax + By;③“距离”型: Z=x 2 +y2或 z = J x2+y 2;第一步,在平面直角坐标系中画出可行域;第二步,作直线l 0:Ax +By = O ,平移直线1。
数学选修4-5不等式选讲教案
选修4-5 不等式选讲课 题: 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。
怎么证呢? 二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
选修4-5 不等式选讲
选修4-5不等式选讲第一节绝对值不等式一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一 绝对值不等式的解法[典例] (2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5.[题组训练]1.解不等式|x +1|+|x -1|≤2. 解:当x <-1时,原不等式可化为-x -1+1-x ≤2, 解得x ≥-1,又因为x <-1,故无解; 当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立; 当x >1时,原不等式可化为x +1+x -1≤2, 解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1]. 2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R . (1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0, 当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解; 当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|, 两边平方,化简整理得x 2+2x ≤0, 解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎪⎨⎪⎧ x ≥a ,4x -a ≤0或⎩⎪⎨⎪⎧x <a ,2x +a ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2. 由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤a 4.由a4=-1,得a =-4. 综上,a =2或a =-4.考点二 绝对值不等式性质的应用[典例] (2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R . (1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R ,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解] (1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,即⎩⎪⎨⎪⎧ x ≥12,2x -1<x +1或⎩⎪⎨⎪⎧0<x <12,1-2x <x +1或⎩⎪⎨⎪⎧x ≤0,1-2x <-x +1,得12≤x <2或0<x <12或无解. 故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法] 绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2 019|-|x -2 018|的最大值.解:因为f (x )=|x +2 019|-|x -2 018|≤|x +2 019-x +2 018|=4 037, 所以函数f (x )=|x +2 019|-|x -2 018|的最大值为4 037. 2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三 绝对值不等式的综合应用[典例] (2018·合肥质检)已知函数f (x )=|2x -1|. (1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围. [解] (1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,则⎩⎪⎨⎪⎧ x ≥12,2x -1-2x -1≤1或⎩⎪⎨⎪⎧ -12<x <12,1-2x -2x -1≤1或⎩⎪⎨⎪⎧x ≤-12,1-2x +2x +1≤1, 解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为⎣⎡⎭⎫-14,+∞. (2)由条件知,不等式|2x -1|+|2x +1|<m 有解, 则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈⎣⎡⎦⎤-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞). [解题技法] 两招解不等式问题中的含参问题 (1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种: ①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||; ③利用零点分区间法. [题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x <-1,2,-1≤x ≤2,-2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1,当-1≤x ≤2时,显然满足题意, 当x >2时,由-2x +6≥0,解得2<x ≤3, 故f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且⎣⎡⎦⎤34,2⊆A ,求实数m 的取值范围.解:∵⎣⎡⎦⎤34,2⊆A ,∴当x ∈⎣⎡⎦⎤34,2时,不等式f (x )≤|2x +1|恒成立, 即|x +m |+|2x -1|≤|2x +1|在x ∈⎣⎡⎦⎤34,2上恒成立, ∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是⎣⎡⎦⎤-114,0. [课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:原不等式可化为⎩⎪⎨⎪⎧ x <-12,1-2x -2x -1≤6或⎩⎪⎨⎪⎧-12≤x ≤12,1-2x +2x +1≤6或⎩⎪⎨⎪⎧x >12,2x -1+2x +1≤6.解得-32≤x ≤32,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-32≤x ≤32. 2.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立; 当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤112. 3.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a , 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2]. 4.设函数f (x )=|3x -1|+ax +3. (1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围. 解:(1)当a =1时,f (x )=|3x -1|+x +3≤4, 即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f (x )≤4的解集为⎣⎡⎦⎤0,12. (2)因为f (x )=⎩⎨⎧(3+a )x +2,x ≥13,(a -3)x +4,x <13,所以f (x )有最小值的充要条件为⎩⎪⎨⎪⎧a +3≥0,a -3≤0,解得-3≤a ≤3,即实数a 的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f (x )=|x -2|-|x +1|. (1)解不等式f (x )>-x ;(2)若关于x 的不等式f (x )≤a 2-2a 的解集为R ,求实数a 的取值范围. 解:(1)原不等式等价于f (x )+x >0,不等式f (x )+x >0可化为|x -2|+x >|x +1|, 当x <-1时,-(x -2)+x >-(x +1),解得x >-3,即-3<x <-1; 当-1≤x ≤2时,-(x -2)+x >x +1,解得x <1,即-1≤x <1; 当x >2时,x -2+x >x +1,解得x >3,即x >3,综上所述,不等式f (x )+x >0的解集为{x |-3<x <1或x >3}. (2)由不等式f (x )≤a 2-2a 可得|x -2|-|x +1|≤a 2-2a ,∵|x -2|-|x +1|≤|x -2-x -1|=3,当且仅当x ∈(-∞,-1]时等号成立, ∴a 2-2a ≥3,即a 2-2a -3≥0,解得a ≤-1或a ≥3. ∴实数a 的取值范围为(-∞,-1]∪[3,+∞). 6.已知函数f (x )=|x -a |+|x +1|.(1)若a =2,求不等式f (x )>x +2的解集;(2)如果关于x 的不等式f (x )<2的解集不是空集,求实数a 的取值范围. 解:(1)当a =2时,f (x )=⎩⎪⎨⎪⎧-2x +1,x <-1,3,-1≤x <2,2x -1,x ≥2,不等式f (x )>x +2等价于⎩⎪⎨⎪⎧ x <-1,-2x +1>x +2或⎩⎪⎨⎪⎧ -1≤x <2,3>x +2或⎩⎪⎨⎪⎧x ≥2,2x -1>x +2,解得x <1或x >3,故原不等式的解集为{x |x <1或x >3}.(2)∵f (x )=|x -a |+|x +1|≥|(x -a )-(x +1)|=|a +1|,当(x -a )(x +1)≤0时取等号. ∴若关于x 的不等式f (x )<2的解集不是空集,只需|a +1|<2, 解得-3<a <1,即实数a 的取值范围是(-3,1). 7.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2. 所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3⇔⎩⎪⎨⎪⎧ x <1,3-2x ≤3或⎩⎪⎨⎪⎧1≤x ≤2,1≤3或 ⎩⎪⎨⎪⎧x >2,2x -3≤3, 解得0≤x <1或1≤x ≤2或2<x ≤3, 所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3]. (2)因为⎝⎛⎭⎫1,32⊆M , 所以当x ∈⎝⎛⎭⎫1,32时,f (x )≤f (x +1)-|x -a |恒成立,而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|, 因为x ∈⎝⎛⎭⎫1,32,所以|x -a |≤1,即x -1≤a ≤x +1, 由题意,知x -1≤a ≤x +1对于任意的x ∈⎝⎛⎭⎫1,32恒成立, 所以12≤a ≤2,故实数a 的取值范围为⎣⎡⎦⎤12,2.第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b .(2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy . 考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立. 2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ;(2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}. (2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞).t 2+1-3t -3t =t 3-3t 2+t -3t =(t -3)(t 2+1)t ,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴(t -3)(t 2+1)t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号。
高考数学专题不等式、推理与证明及不等式选讲(选修4-5)
第六章不等式、推理与证明及不等式选讲(选修4-5)第一节不等关系与不等式1.实数大小顺序与运算性质之间的关系a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.不等式的基本性质1.在应用传递性时,注意等号是否传递下去,如a≤b,b<c⇒a<c.2.在乘法法则中,要特别注意“乘数c的符号”,例如当c≠0时,有a>b⇒ac2>bc2;若无c≠0这个条件,a>b⇒ac2>bc2就是错误结论(当c=0时,取“=”).[试一试]1.(2013·北京高考)设a,b,c∈R,且a>b,则()A .ac >bc B.1a <1b C .a 2>b 2D. a 3>b 3解析:选D 由性质知选D. 2.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<1.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b ;(2)a <0<b ⇒1a <1b ;(3)a >b >0,0<c <d ⇒a c >bd ;(4)0<a <x <b 或a <x <b <0⇒1b <1x <1a .2.不等式的分数性质 (1)真分数的性质:b a <b +m a +m ;b a >b -m a -m (b -m >0); (2)假分数的性质:a b >a +m b +m ;a b <a -m b -m (b -m >0). [练一练]若0<a <b ,c >0,则b +c a +c 与a +cb +c 的大小关系为________.答案:b +c a +c >a +c b +c的大小1.已知a 121212,则M 与N 的大小关系是( ) A .M <NB .M >NC.M=N D.不确定解析:选B M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1=a1(a2-1)-(a2-1)=(a1-1)(a2-1),又∵a1∈(0,1),a2∈(0,1),∴a1-1<0,a2-1<0.∴(a1-1)(a2-1)>0,即M-N>0.∴M>N.2.若实数a≠1,比较a+2与31-a的大小.解:a+2-31-a=-a2-a-11-a=a2+a+1a-1∴当a>1时,a+2>31-a;当a<1时,a+2<31-a.[类题通法]比较大小的常用方法(1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论.(3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.注意:用作商法时要注意商式中分母的正负,否则极易得出相反的结论.不等式的性质[典例]>b且c>d”的A.充分不必要条件B.既不充分也不必要条件C .充分必要条件D .必要不充分条件(2)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[解析] (1)由“a +c >b +d ”不能得知“a >b 且c >d ”,反过来,由“a >b 且c >d ”可得知“a +c >b +d ”,因此“a +c >b +d ”是“a >b 且c >d ”的必要不充分条件,选D.(2)法一:∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确. ∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. 法二:取特殊值. [答案] (1)D (2)C [类题通法]判断多个不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质,常见的反例构成方式可从以下几个方面思考:(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等. [针对训练](2014·北京东城区综合练习)若a >b >0,则下列不等式不成立的是( ) A.1a <1bB .|a |>|b |C .a +b <2abD.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:选C ∵a >b >0,∴1a <1b,且|a |>|b |,a +b >2ab ,又2a >2b ,∴⎝⎛⎭⎫12a <⎝⎛⎭⎫12b ,选C. 不等式性质的应用[典例] ,2≤f (1)≤4.求 [解] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].解:由本例知f (-2)=f (1)+3f (-1). 又∵1<f (-1)≤2,2≤f (1)<4, ∴5<3f (-1)+f (1)<10, 故5<f (-2)<10.故f (-2)的取值范围为(5,10). [类题通法]利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.[针对训练]若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2.∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].第二节一元二次不等式及其解法一元二次不等式与相应的二次函数及一元二次方程的关系1.二次项系数中含有参数时,则应先考虑二次项是否为零,然后再讨论二次项系数不为零时的情形,以便确定解集的形式.2.当Δ<0时,易混ax 2+bx +c >0(a >0)的解集为R 还是∅. [试一试]1.(2013·浙江高考)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1]D .[1,+∞)解析:选C T = {x |-4≤x ≤1},根据补集定义, ∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1},选C.2.不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b 的值是( ) A .10 B .-10 C .14D .-14解析:选D 由题意知-12、13是ax 2+bx +2=0的两根.则a =-12,b =-2.a +b =-14.故选D.3.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析:∵不等式x 2+ax +4<0的解集不是空集, ∴Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.答案:(-∞,-4)∪(4,+∞)1.由二次函数图像与一元二次不等式的关系得到的两个常用结论(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0,或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0,或⎩⎪⎨⎪⎧a <0,Δ<0.2.分类讨论思想解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.[练一练]若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是________. 解析:①当m =0时,1>0显然成立. ②当m ≠0时,由条件知⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0.得0<m <1, 由①②知0≤m <1. 答案:[0,1)一元二次不等式的解法[典例] (1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0). [解] (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3. (2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0. 由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a 或x >-a ;a >0时,解集为{}x |x >5a 或x <-a . [类题通法]1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图像,写出不等式的解集.2.解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.[针对训练] 解下列不等式: (1)-3x 2-2x +8≥0; (2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以a ⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1.一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.对于一元二次不等式恒成立问题,常根据二次函数图像与x 轴的交点情况确定判别式的符号,进而求出参数的取值范围.归纳起来常见的命题角度有:(1)形如f (x )≥0(x ∈R )确定参数的范围; (2)形如f (x )≥0(x ∈[a ,b ])确定参数范围; (3)形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围.角度一 形如f (x )≥0(x ∈R )确定参数的范围1.(2013·重庆高考)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________.解析:根据题意可得(8sin α)2-4×8cos 2α≤0,即2sin 2α-cos 2α≤0,2sin 2α-(1-2sin 2α)≤0,即-12≤sin α≤12.因为0≤α≤π,故α∈06π⎡⎤⎢⎥⎣⎦,∪56ππ⎡⎤⎢⎥⎣⎦, 答案:06π⎡⎤⎢⎥⎣⎦,∪56ππ⎡⎤⎢⎥⎣⎦, 角度二 形如f (x )≥0(x ∈[a ,b ])确定参数范围2.对任意x ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,求a 的取值范围. 解:函数f (x )=x 2+(a -4)x +4-2a 的对称轴为x =-a -42=4-a2.①当4-a2<-1,即a >6时,f (x )的值恒大于零等价于f (-1)=1+(a -4)×(-1)+4-2a >0, 解得a <3,故有a ∈∅;②当-1≤4-a2≤1,即2≤a ≤6时,只要f ⎝ ⎛⎭⎪⎫4-a 2=⎝ ⎛⎭⎪⎫4-a 22+(a -4)×4-a 2+4-2a >0,即a 2<0,故有a ∈∅; ③当4-a 2>1,即a <2时,只要f (1)=1+(a -4)+4-2a >0,即a <1,故有a <1.综上可知,当a <1时,对任意x ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零. 角度三 形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围3.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,求x 的取值范围. 解:由f (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4, 令g (a )=(x -2)a +x 2-4x +4.由题意知在[-1,1]上,g (a )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0,解得x <1或x >3.故当x <1或x >3时,对任意的a ∈[-1,1],函数f (x )的值恒大于零. [类题通法]恒成立问题及二次不等式恒成立的条件(1)解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.一元二次不等式的应用[典例] 件,年销量是a 件.现经销商计划在2014年将该商品的价格降至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下降后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k .该商品的成本价为3元/件.(1)写出该商品价格下降后,经销商的年收益y 与实际价格x 的函数关系式;(2)设k =2a ,当实际价格最低定为多少时,仍然可以保证经销商2014年的收益比2013年至少增长20%?[解] (1)设该商品价格下降后为x 元/件,则由题意可知年销量增加到⎝ ⎛⎭⎪⎫k x -4+a 件,故经销商的年收益y =⎝ ⎛⎭⎪⎫k x -4+a (x -3),5.5≤x ≤7.5.(2)当k =2a 时,依题意有⎝ ⎛⎭⎪⎫2a x -4+a (x -3)≥(8-3)a ×(1+20%),化简得x 2-11x +30x -4≥0,解得x ≥6或4<x ≤5.又5.5≤x ≤7.5,故6≤x ≤7.5,即当实际价格最低定为6元/件时,仍然可以保证经销商2014年的收益比2013年至少增长20%.[类题通法]构建不等式模型解决实际问题不等式的应用问题常常以函数为背景,多是解决实际生活、生产中的最优化问题等,解题时,要仔细审题,认清题目的条件以及要解决的问题,理清题目中各量之间的关系,建立恰当的不等式模型进行求解.[针对训练]某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解:(1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.第三节绝对值不等式(选修4-5)1.绝对值三角不等式(1)定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法有以下几种:①利用绝对值不等式的几何意义求解的思想;②利用“零点分段法”求解;③通过构造函数,利用函数的图象求解.1.对于绝对值三角不等式,易忽视等号成立的条件.对|a+b|≥|a|-|b|,当且仅当a>-b>0时,等号成立,对|a|-|b|≤|a-b|≤|a|+|b|,如果a<-b<0当且仅当|a|≥|b|且ab≥0时左边等号成立,当且仅当ab≤0时右边等号成立.2.形如|x-a|+|x-b|≥c(c>0)的不等式解法在讨论时应注意分类讨论点处的处理及c的符号判断,若c<0则不等式解集为R.[试一试]1.(2013·广东高考)不等式|x2-2|<2的解集是()A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1) D.(-2,0)∪(0,2)解析:选D由|x2-2|<2得-2<x2-2<2,即0<x2<4,所以-2<x<0或0<x<2.2.不等式|x -2|-|x -1|>0的解集为( ) A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎭⎫-∞,-32 C.⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-32,+∞ 解析:选A 原不等式等价于|x -2|>|x -1|, 则(x -2)2>(x -1)2,解得x <32.含绝对值不等式的常用解法1.基本性质法:对a ∈R +,|x |<a ⇔-a <x <a ,|x |>a ⇔x <-a 或x >a . 2.平方法:两边平方去掉绝对值符号.3.零点分区间法(或叫定义法):含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.4.几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解. 5.数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.[练一练]1.已知不等式|2x -t |+t -1<0的解集为(-12,12),则t =( )A .-1B .0C .1D .2解析:选B |2x -t |<1-t ,t -1<2x -t <1-t , 2t -1<2x <1,t -12<x <12,∴t =0.2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:利用绝对值不等式的性质求解. ∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]绝对值不等式的解法1.在实数范围内,不等式|x -12|+|x +12|≤3的解集为____________.解析:法一:分类讨论去绝对值号解不等式.当x >12时,原不等式转化为2x ≤3⇒x ≤32;当-12≤x ≤12时,原不等式转化为1≤3,恒成立;当x <-12时,原不等式转化为-2x ≤3⇒x ≥-32.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.法二:利用几何意义求解.不等式⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12≤3,其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x =32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.答案:⎩⎨⎧x ⎪⎪⎭⎬⎫-32≤x ≤32 2.(2013·西安质检)若关于x 的不等式|x -a |<1的解集为(1,3),则实数a 的值为________. 解析:原不等式可化为a -1<x <a +1,又知其解集为(1,3),所以通过对比可得a =2. 答案:23.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,则实数a 的取值范围是________.解析:法一:令y 1=|x -3|-|x -4| =⎩⎪⎨⎪⎧1, x >4,2x -7, 3≤x ≤4,-1,x <3.y 2=a . 如图要使|x -3|-|x -4|<a 的解集不是空集,则a 的取集范围是a >-1.法二:注意到||x -3|-|x -4||≤|(x -3)-(x -4)|=1,-1≤|x -3|-|x -4|≤1.若不等式|x -3|-|x -4|<a 的解集是空集,则有|x-3|-|x -4|≥a 对任意的x ∈R 都成立,即有(|x -3|-|x -4|)min ≥a ,a ≤-1.因此,由不等式|x -3|-|x -4|<a 的解集不是空集可得,实数a 的取值范围是a >-1.答案:(-1,+∞) [类题通法]利用零点分类讨论法解绝对值不等式时,注意分类讨论时要不重不漏.绝对值不等式的证明[典例] ,不等式f (x )<4M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. [解] (1)f (x )=|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1,2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2,∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0,∴4(a +b )2<(4+ab )2,∴2|a +b |<|4+ab |.解:由f (x )≥0知a ≤|x +1|+|x -1|, 又|x +1|+|x -1|≥|(x +1)-(x -1)|=2,∴a ≤2. 故a 的取值范围为(2,+∞). [类题通法]证明绝对值不等式主要有三种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明; (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明; (3)转化为函数问题,数形结合进行证明. [针对训练](2014·乌鲁木齐高三诊断性测验)设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1; (2)若f (x )=a 2+2a 2+1成立,求x 的取值范围.解:(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1. (2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,∴要使f (x )=a 2+2a 2+1成立,需且只需|x -1|+|x -2|≥2, 即⎩⎪⎨⎪⎧ x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧ 1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2,解得x ≤12或x ≥52,故x 的取值范围是⎝⎛⎦⎤-∞,12∪⎣⎡⎭⎫52,+∞.绝对值不等式的综合应用[|2x +a |,g (x )=(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. [解] (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎨⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x<2}.(2)当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈⎣⎡⎭⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝⎛⎦⎤-1,43. [类题通法]1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.[针对训练](2013·辽宁模拟)已知f (x )=|x +a |+|x -2|. (1)当a =-1时,解关于x 的不等式f (x )>5;(2)已知关于x 的不等式f (x )+a <2 014(a 是常数)的解集是非空集合,求实数a 的取值范围. 解:(1)构造函数g (x )=|x -1|+|x -2|-5, 则g (x )=⎩⎪⎨⎪⎧-2x -2(x ≤1),-4(1<x <2),2x -8(x ≥2).令g (x )>0,则x <-1或x >4,∴原不等式的解集为(-∞,-1)∪(4,+∞). (2)∵f (x )+a =|x +a |+|x -2|+a ≥|a +2|+a ,又关于x 的不等式f (x )+a <2 014的解集是非空集合, ∴|a +2|+a <2 014,解得a <1 006.第四节二元一次不等式(组)及简单的线性规划问题1.二元一次不等式(组)表示的平面区域2.1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax +by +c >0(a >0).2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.[试一试]1.(2013·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最小值是( ) A .-7 B .-6 C .-5D .-3解析:选B 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x -3y 过点C 时,z 取得最小值.由⎩⎪⎨⎪⎧ x =3,x -y +1=0,得⎩⎪⎨⎪⎧x =3,y =4,∴z min =2×3-3×4=-6,故选B. 2.如图所示的平面区域(阴影部分)满足不等式________.答案:x +y -1>01.确定二元一次不等式表示平面区域的方法二元一次不等式所表示的平面区域的确定,一般是取不在直线上的点(x 0,y 0)作为测试点来进行判定,满足不等式的则平面区域在测试点所在的直线的一侧,反之在直线的另一侧.2.求二元一次函数z =ax +by (ab ≠0)的最值的方法将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.(1)当b >0时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;(2)当b <0时,截距z b 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.[练一练](2013·陕西高考)若点(x ,y )位于曲线y =|x -1|与y =2所围成的封闭区域,则2x -y 的最小值为________.解析:由题意知y =⎩⎪⎨⎪⎧x -1(x ≥1),1-x (x <1),作出曲线y =|x -1|与y =2所围成的封闭区域,如图中阴影部分所示,即得过点A (-1,2)时,2x -y 取最小值-4.答案:-41.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43D.34解析:选C 平面区域如图所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4得A (1,1), 易得B (0,4),C ⎝⎛⎭⎫0,43, |BC |=4-43=83.∴S △ABC =12×83×1=43.2.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0解析:选C 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点,故选C.3.如图阴影部分表示的区域可用二元一次不等式组表示为________.解析:两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 答案:⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0[类题通法]二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,测试点常选取原点.求目标函数的最值线性规则问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题角度有:(1)求线性目标函数的最值; (2)求非线性目标的最值; (3)求线性规划中的参数. 角度一 求线性目标函数的最值1.(1)(2013·湖南高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53D.52(2)如果函数x 、y 满足条件⎩⎪⎨⎪⎧x -y +1≥0,y +1≥0,x +y +1≤0,那么z =2x -y 的最大值为( )A .2B .1C .-2D .-3解析:(1)选C 不等式组表示的平面区域为图中阴影部分.平行移动y =-12x +12z ,可知该直线经过y =2x 与x +y =1的交点A ⎝⎛⎭⎫13,23时,z 有最大值为13+43=53.(2)选B 如图作出可行域,当z 经过直线y +1=0与x +y +1=0的交点(0,-1)时,z max=1.角度二 求非线性目标的最值2.(1)(2013·山东高考)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12解析:选C 已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.(2)(2014·长春调研)若实数x ,y 满足⎩⎪⎨⎪⎧12≤x ≤1,y ≥-x +1,y ≤x +1,则y +1x的取值范围是________.解析:由题可知y +1x =y -(-1)x -0,即为求不等式所表示的平面区域内的点与(0,-1)的连线斜率k 的取值范围,由图可知k ∈[1,5].答案:[1,5]角度三 求线性规划中的参数3.(1)(2013·浙江高考)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.解析:画出可行域,根据线性规划知识,目标函数取最大值12时,最优解一定为(4,4),这时12=4k +4,k =2.答案:2(2)(2014·江西七校联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +2y -8≤0,x ≤3.若点⎝⎛⎭⎫3,52是使ax -y 取得最小值的唯一的可行解,则实数a 的取值范围为________.解析:记z =ax -y ,注意到当x =0时,y =-z ,即直线z =ax -y 在y 轴上的截距是-z .在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,满足题意的实数a 的取值范围为a <-12.答案:⎝⎛⎭⎫-∞,-12 [类题通法]1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a .注意:转化的等价性及几何意义.线性规划的实际应用[典例] (2013·两种型号的客车安排名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元[解析] 设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,y -x ≤7,y +x ≤21,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36800(元).[答案] C [类题通法]求解线性规划应用题的注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件中是否能够取到等号. (2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否是整数、非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式.[针对训练]某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1 800元B .2 400元C .2 800元D .3 100元解析:选C 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,则⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点A (4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元.第五节基本不等式与柯西不等式(选修4-5)1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)4.平均值不等式(1)定理:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.我们称a +b +c 3为正数a ,b ,c 的算术平均值,3abc 为正数a ,b ,c 的几何平均值,定理中的不等式为三个正数的算术—几何平均值不等式,简称为平均值不等式.(2)一般形式的算术—几何平均值不等式:如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a nn≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.5.柯西不等式(1)柯西不等式的代数形式:设a 1,a 2,b 1,b 2均为实数,则(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2(当且仅当a 1b 2=a 2b 1时,等号成立).(2)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|. (3)二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,那么 x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.(4)柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立.1.求最值时要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件. 2.多次使用基本不等式时,易忽视取等号的条件的一致性. 3.使用柯西不等式或平均值不等式时易忽视等号成立的条件. [试一试]1.“a >0且b >0”是“a +b2≥ab ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A2.已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13B.12C.34D.23解析:选B 由0<x <1,故3-3x >0,则x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.3.已知x 2+y 2=10,则3x +4y 的最大值为( ) A .510 B .410 C .310D .210解析:选A ∵(32+42)(x 2+y 2)≥(3x +4y )2, 当且仅当3y =4x 时等号成立, ∴25×10≥(3x +4y )2, ∴(3x +4y )max =510.1.活用几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab ≥2(a ,b 同号).ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ). 2.巧用“拆”“拼”“凑”在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.[练一练] 若x >1,则x +4x -1的最小值为________. 解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5利用基本不等式求最值[典例] (1)(2013·四川高考)已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.[解析] f (x )=4x +ax ≥24x ·a x =4a (x >0,a >0),当且仅当4x =ax,即a =4x 2时取等号,则由题意知a =4×32=36.[答案] 36(2)(2014·长春调研)若两个正实数x ,y 满足2x +1y =1,并且x +2y >m 2+2m 恒成立,则实数m 的取值范围是________.[解析] x +2y =(x +2y )⎝⎛⎭⎫2x +1y =2+4y x +x y +2≥8,当且仅当4y x =xy ,即x =2y =4时等号成立.由x +2y >m 2+2m 恒成立,可知m 2+2m <8,m 2+2m -8<0,解得-4<m <2.[答案] (-4,2)(3)(2013·山东高考改编)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则zxy 的最小值为________.[解析] z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x-3≥2x y ·4yx-3=1. 当且仅当x y =4yx ,即x =2y =4时“=”成立.[答案] 1解:由(3)知当zxy取最小值时x =2y .∴z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2. ∴当y =1时,x +2y -z 取最大值2. [类题通法]两个正数的和与积的转化基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.[针对训练](1)当x >0时,则f (x )=2xx 2+1的最大值为________. (2)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x ,即x =1时取等号.(2)由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a+9b=3a+32b≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时取等号).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号), ∴3a +9b ≥2×32=18.即当a =2b 时,3a +9b 有最小值18.(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.答案:(1)1 (2)18 (3)10基本不等式的实际应用[典例] 经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-k m +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2013年生产该产品的固定投入为8万元.每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2013年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大? [解] (1)由题意知,当m =0时,x =1(万件), ∴1=3-k ⇒k =2,∴x =3-2m +1,。
选修4-5——不等式选讲 知识点归纳教学提纲
1 选修4-5——不等式选讲 知识点《选修4-5 不等式选讲》 1、 绝对值不等式的性质||||||||||a b a b a b -≤±≤+1212||||||||L L n n a a a a a a +++≤+++ 4、解含绝对值不等式的思路:化去绝对值符号,转化为不含绝对值的不等式,解法如下:(6)含有多个绝对值符号的不等式,如 ||||x a x b c -+-≥或||||(0)x a x b c c -+-≤>型不等式有以下三种解法: 方法1:利用“零点分段法”求解,体现了分类讨论的思想. 方法2:利用绝对值不等式的几何意义求解,体现了数形结合的思想.。
对于形如||||(0)x a x b c c -+->>或||||(0)x a x b c c -+-<>的不等式,利用实数绝对值的几何意义求解较简便.,即不等式可以理解为数轴上到定点()A a 、()B b 的距离之和大于(或小于)c 的点()M x 的全体. 方法3:通过构造函数()||||f x x a x b =-+-和()g x c =,利用函数的图象求解,体现了函数与方程的思想 5、一元二次不等式的解法 (1)将不等式的右端化为0,左端化为二次项系数大于零的不等式20ax bx c ++>(0a >)或20ax bx c ++<(0a >) (2)确定对应方程20ax bx c ++=的根; (3)画出对应函数2y ax bx c =++的图像的简图; (4)由图像得出不等式的解集. 24b ac ∆=- 0∆> 0∆= 0∆< 2y ax bx c =++ (0a >)的图象 20ax bx c ++= 两异根12x x < ,122b x a -±∆= 有两相等实根 122b x x a ==- 无实数根 20ax bx c ++> (0a >)的解集 {}12或x x x x x <> 大于在两边 {|}2b x x a ≠- R 20ax bx c ++< (0a >)的解集 {}12x x x x << 小于夹中间 ∅ ∅。
选修4-5不等式选讲
根据课程标准,本专题介绍一些重 要的不等式和它们的证明、数学归纳法 和它的简单应用。
本专题的内容是在初中阶段掌握了 不等式的基本概念,学会了一元一次不 等式、一元一次不等式组的解法,多数 学生在学习高中必修课五个模块的基础 上展开的.作为一个选修专题,教科书 在内容的呈现上保持了相对的完整性.
第二部分讨论了有关绝对值不等式的性质及 绝对值不等式的解法.绝对值是与实数有关 的一个基本而重要的概念,讨论关于绝对值 的不等式具有重要的意义.
• 绝对值三角不等式是一个基本的结论,教 科书首先引导学生借助于实数在数轴上的 表示和绝对值的几何意义,探究归纳出绝 对值三角不等式,接着联系向量形式的三 角不等式,得到绝对值三角不等式的几何 解释,最后用代数方法给出证明.这样, 数形结合,引导学生多角度认识这个不等 式,逐步深化对它的理解.利用绝对值三 角不等式可以解决一种特殊形式的函数的 极值问题,教科书安排了一个这样的实际 问题。
• 课程标准对于本专题的几个教学内容都明 确的教学要求,如:对于解含有绝对值的 不等式,只要求能解几种特殊类型的不等 式,不要求学生会解各种类型的含有绝对 值的不等式。对于数学归纳法证明不等式 的要求也只要求会证明一些简单问题。只 要求通过一些简单问题了解证明不等式的 基本方法,会利用所学的不等式证明一些 简单不等式,等等。
数学归纳法证明一些简单问题。 7.会用数学归纳法证明贝努利不等式:
(1+x)n >1+nx(x>-1,n为正整数)。
了解当n为实数时贝努利不等式也成立。
• 8.会用上述不等式证明一些简单问 题。能够利用平均值不等式、柯西 不等式求一些特定函数的极值。
• 9.通过一些简单问题了解证明不等 式的基本方法:比较法、综合法、 分析法、反证法、放缩法。
选修4-5-不等式选讲 课件
(2)由函数 y=f(x)与函数 y=ax 的图象可知,当且仅当 a≥12或 a<-2 时,函数 y=f(x)与函数 y=ax 的图象有交点.故不等式 f(x)≤ax 的解集 非空时,a 的取值范围为(-∞,-2)∪12,+∞.
3.设函数f(x)=|x-1|+|x-2|. (1)画出函数y=f(x)的图象; (2)若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,
当 x<-7 时,原不等式为
-(x+7)+(3x-4)+ 2-1>0,
得 x>6- 22,与 x<-7 矛盾;
综上,不等式的解为-12-
42<x<5+
2 2.
考[例向2二] (2绝012对年值高不考等江苏式卷的)已证知明实数 x,y 满足:|x+y|<13,|2x-y|<16,
求证:|y|<158.
综上所述得x<1且x≠-1,故选D.
答案:D
3.(2013年青岛模拟)若不等式x2+|2x-6|≥a对于一切实 数x均成立,则实数a的最大值是( )
A.7
B.9
C.5
D.11
解析:令f(x)=x2+|2x-6|,当x≥3时,f(x)=x2+2x-6= (x+1)2-7≥9;当x<3时,f(x)=x2-2x+6=(x-1)2+ 5≥5.综上可知,f(x)的最小值为5,故原不等式恒成立只 需a≤5即可,从而a的最大值为5.
1.(2013 年南京模拟)解不等式|x+7|-|3x-4|+ 3-2 2>0. 解析:原不等式化为|x+7|-|3x-4|+ 2-1>0, 当 x>43时,原不等式为 x+7-(3x-4)+ 2-1>0, 得 x<5+ 22,即43<x<5+ 22; 当-7≤x≤43时,原不等式为 x+7+(3x-4)+ 2-1>0, 得 x>-12- 42, 即-12- 42<x≤43;
选修4-5不等式选讲讲义祥解
选修4-5不等式选讲讲义河南省三门峡市卢氏县第一高级中学山永峰不等式选讲是新课标的新增内容,也是选考内容。
从题型上看小题、大题都有,难度不大。
从能力要求上看,主要考查学生了解不等式、应用不等式的能力,分析问题和解决问题的能力。
(1)在填空题或解答题中考查含绝对值不等式的解法与含绝对值符号的函数的最值、恒成立问题。
(2)直接运用柯西不等式、排序不等式或证明不等式,往往难度不大。
加以适当的训练是完全可以掌握的。
预计在2015年高考中:(1)本专题仍为选考部分内容,且以绝对值不等式的解法和证明内容为主,把不等式的综合应用放在次重点位置上,把不等式的证明放在一般位置上。
从题型上看,仍为填空题或解答题,难度不大。
现结合考纲要求和本人多年教学经验整理如下,以餙读者!第一节绝对值不等式[备考方向要明了]考什么怎么考1.理解绝对值不等式的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:(1)|a+b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|.2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c. 从近两年的高考试题可以看出,本节重点考查含绝对值不等式的解法(可能含参)或以函数为背景证明不等式,题型为解答题,如2012年新课标T24等.[归纳·知识整合]1.绝对值不等式的解法(1)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c.②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(2)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法法一:利用绝对值不等式的几何意义求解,体现了数形结合思想;法二:利用“零点分段法”求解,体现了分类讨论思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.[探究] 1.解含绝对值不等式或含绝对值方程的关键是什么?提示:关键是根据绝对值的定义或性质去掉绝对值.2.绝对值三角不等式(1)定理1:如果a,b是实数,则|a|-|b|≤|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.[探究] 2.绝对值的三角不等式的向量形式及几何意义是什么?提示:当a,b不共线时,|a+b|<|a|+|b|,它的几何意义是三角形的两边之和大于第三边.[自测·牛刀小试]1.求不等式|2x-1|≥3的解集.2.已知函数f(x)=|x+2|-|x-1|,求f(x)的值域.3.(2011·江西)对于x∈R,求不等式|x+10|-|x-2|≥8的解集.4.已知关于x的不等式|x-1|+|x|≤k无解,求实数k的取值范围.5.如果关于x的不等式|x-a|+|x+4|≥1的解集是全体实数,求实数a的取值范围.考点一:绝对值不等式性质的应用[例1]确定“|x-a|<m且|y-a|<m”是“|x-y|<2m(x,y,a,m ∈R)”的什么条件.———————————————————两数和与差的绝对值不等式的性质|a|-|b|≤|a±b|≤|a|+|b|(1)对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.(2)该定理可强化为||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.变式训练:1.若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,求a的取值范围.考点二:绝对值不等式的解法[例2](2012·新课标全国卷)已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.———————————————————绝对值不等式的解法(1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法,数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.变式训练:2.设函数f(x)=|x-1|+|x-a|(1)若a=-1,解不等式f(x)≥3;(2)如果∀x∈R,f(x)≥2,求a的取值范围.3.(2011·辽宁高考)已知函数f(x)=|x-2|-|x-5|.(1)证明:-3≤f(x)≤3;(2)求不等式f(x)≥x2-8x+15的解集.3种方法——求解绝对值不等式的方法形如|x-a|+|x-b|≥c(或≤c)型的不等式主要有如下解法:(1)零点分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a,b],(b,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)几何法:利用|x-a|+|x-b|>c(c>0)的几何意义:数轴上到点x1=a和x2=b的距离之和大于c的点的集合.(3)图象法:作出函数y1=|x-a|+|x-b|和y2=c的图象,结合图象求解.创新交汇——含参数的绝对值不等式的恒成立问题1.含参数的绝对值不等式的恒成立问题是高考的热点内容之一,此类问题常与二次函数、对数函数、三角函数结合命题,需要有一定的综合知识的能力.2.解答此类问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后利用数形结合解决,是常用的思想方法.[典例](2012·辽宁高考)已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.(1)求a的值;(2)若⎪⎪⎪⎪⎪⎪f (x )-2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范围. [名师点评]1.本题有以下创新点把绝对值不等式与集合、函数知识、恒成立问题紧密结合起来研究,尽管难度不大,但需要有一定的知识综合能力.2.解决本题的关键点解答本题的关键点:(1)先求解不等式|ax +1|≤3,并将解集与已知解集对照求出a 的值;(2)利用零点分段讨论去掉绝对值,将问题转化为恒成立问题.3.在解决恒成立问题时应注意C ≥f (x )恒成立⇔C ≥f (x )max , C ≤f (x )恒成立⇔C ≤f (x )min .[变式训练]1.(2014·陕西高考改编)若存在实数x 使|x -a |+|x -1|≤3成立,求实数a 的取值范围.2.(2014·苏北四市调研)已知函数f (x )=|x -1|+|x -2|.若不等式|a +b |+|a -b |≥|a |f (x )对a ,b ∈R ,且a ≠0恒成立,求实数x 的范围.模拟测试题:1.(2014·青岛模拟)若不等式x 2+|2x -6|≥a 对于一切实数x 均成立,求实数a 的最大值.2.(2013·江西高考)在实数范围内,求不等式|2x -1|+|2x +1|≤6的解集.3.若不等式⎪⎪⎪⎪⎪⎪x +1x >|a -2|+1对于一切非零实数x 均成立,求实数a 的取值范围.4.解不等式x +|2x -1|<3..5.设函数f (x )=|2x +1|-|x -4|.(1)解不等式f (x )>2; (2)求函数y =f (x )的最小值.备选习题:1.若不等式|3x -b |<4的解集中整数有且仅有1,2,3,求实数b 的取值范围.2.已知关于x 的不等式|ax -2|+|ax -a |≥2(a >0).(1)当a =1时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围.3.已知f (x )=|6x +a |.(1)若不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≥12或x ≤-56,求实数a 的值; (2)在(1)的条件下,若f (x +1)+f (x -1)>b 对一切实数x 恒成立,求实数b 的取值范围.第二节 不等式证明的基本方法[备考方向要明了] 考 什 么 怎 么 考1.了解下列柯西不等式的几种不同形式.理解它们的几何意义,并会证明.①柯西不等式的向量形式:|α|·|β|≥|α·β|.②(a2+b2)(c2+d2)≥(ac+bd)2.③(x1-x2)2+(y1-y2)2+(x2-x3)2+(y2-y3)2≥(x1-x3)2+(y1-y3)2(通常称为平面三角不等式).2.会用向量递归方法讨论排序不等式.3.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.4.会用数学归纳法证明贝努利不等式:(1+x)n>1+nx(x>-1,x≠0,n为大于1的正整数),了解当n 为大于1的实数时贝努利不等式也成立.5.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.6.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 1.该部分是对必修5中“不等式”的补充和深化,属选学选考内容.单独命题时,以解答题形式出现,属中等难度题目.2.高考考查的重点是不等式的证明、基本不等式、柯西不等式、数学归纳法的应用,利用基本不等式、柯西不等式求函数的最值等,如2012年新课标T24等.[归纳·知识整合]1.比较法:作差比较法与作商比较法的基本原理:方法原理作差法a-b>0⇔a>b作商法ab>1⇔a>b(a>0,b>0)2.综合法与分析法方法特征综合法证明不等式时,从已知条件出发,利用定义、公理、定理、性质等,经过推理论证而得出命题成立,综合法又叫顺推证法或由因导果法.分析法证明命题时,从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这是一种执果索因的思考和证明方法.[探究] 1.在证明不等式时综合法和分析法有怎样的关系?提示:综合法:由条件出发推导出所要证明的不等式成立.分析法:从结论出发寻找使结论成立的充分条件,综合法与分析法是对立统一的两种方法.在实际解题时,常常用分析法探求解题思路,用综合法表达.2.在什么条件下用分析法证明不等式?提示:如果不适合用反证法、归纳法,而综合法又不易操作时,通过分析又容易找到使要证明结论成立的已知条件,这时用分析法.3.反证法:先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法.4.放缩法:证明不等式时,有时要把所证不等式的一边适当地放大或缩小,以利于化简,并使它与不等式的另一边的不等关系更为明显,从而得出原不等式成立这种方法称为放缩法.5.数学归纳法:数学归纳法证明不等式的一般步骤(1)验证:当n取第一个值n0(例如n0=1,2等)时结论正确;(2)假设当n =k 时结论正确,证明当n =k +1时结论也正确. 综合(1)(2)可知,结论对于任意n ≥n 0,且n 0,n ∈ N *都成立.6.柯西不等式:设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2等号当且仅当ad =bc 时成立.[自测·牛刀小试]1.设t =b a ,s =b +1a +1(b >a >0),确定s 与t 的大小关系. 2.求函数y =x +3-x 的最大值.3.已知a ,b 为正数,求证:1a +4b ≥9a +b. 4.设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2.5.数列{a n }的通项公式为a n =n (n +2).求证:1a 1+1a 2+…+1a n <34.考点一:比较法证明不等式[例1] 设a ,b 是非负实数,求证:a 3+b 3≥ab (a 2+b 2). ———————————————————作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.变式训练:1.设a >b >0,求证:a 2-b 2a 2+b 2>a -b a +b. 考点二:用分析法和综合法证明不等式[例2] 设a >0,b >0,c >0,求证:a b +c +b a +c +c a +b≥32. ———————————————————分析综合法分析法与综合法常常结合起来使用,称为分析综合法,其实质是既充分利用已知条件,又时刻瞄准解题目标,即不仅要搞清已知什么,还要明确干什么,通常用分析法找到解题思路,用综合法书写证题过程.变式训练 2.已知a ,b ,c 均为正实数.求证:b 2a +c 2b +a 2c ≥c ba +a cb +b ac .考点三:用反证法证明不等式[例3] 已知f (x )=x 2+px +q ,求证|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.互动探究 若本例已知中的q =1,求证:f (1)与f (-1)中至少有一个不小于2.———————————————————反证法的适用情形(1)当要证明的结论与条件之间的联系不明显,直接由条件推出结论很困难时,常用反证法.(2)如果从正面入手证明需分多种情况进行分类讨论,则从反面进行证明,即“正难则反”的思想.变式训练:3.如果a ,b ,c ,d 均为实数,a +b =1,c +d =1,且ac +bd >1.试证明a ,b ,c ,d 中至少有一个负数..考点四:用放缩法证明不等式[例4]已知:a n =1×2+2×3+3×4+…+n (n +1)(n ∈N+),求证:n (n +1)2<a n <n (n +2)2.———————————————————用放缩法证明不等式的基本方法及常用技巧(1)用放缩法证明不等式的基本方法是:欲证A ≥B ,可通过适当放大或缩小,借助一个或多个中间变量,使得B ≤B 1,B 1≤B 2,…,B i ≤A ,或A ≥A 1,A 1≥A 2,…,A i ≥B ,再利用传递性,达到目的.(2)放缩法的常用技巧:(1)舍去一些正项或负项如a 2+a +1=⎝⎛⎭⎪⎫a +122+34>⎝ ⎛⎭⎪⎫a +122等;(2)在和或积中换大(或换小)某些项;(3)扩大(或缩小)分式的分子或分母,如a b >a +m b +m(a ,b ,m ∈R +且a >b ),1k 2<1k (k -1),1k <2k +k +1等;(4)绝对值不等式的性质,如|a +b |≤|a |+|b |等. 变式训练:4.设m 是|a |,|b |和1中最大的一个,当|x |>m 时,求证:⎪⎪⎪⎪⎪⎪a x +b x 2<2. 考点五:柯西不等式的应用[例5] 若3x +4y =2,试求x 2+y 2的最小值.———————————————————使用柯西不等式的一般形式求最值时,关键是结合已知条件构造两个适当的数值,变形为柯西不等式的形式.变式训练:5.求函数f (x )=21-2x +4x +3的最大值.3个方面——证明不等式的方法和技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、惟一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是化去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.(3)在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.易误警示——不等式证明中的易错误区[典例] (2013·西安)设a ∈R ,函数 f (x )=ax 2+x -a (-1≤x ≤1),(1)若|a |≤1,求证:|f (x )|≤54;(2)求a 的值,使函数f (x )有最大值178.[易误辨析](1)因不能正确利用绝对值三角不等式定理、配方法、放缩法等进行证明而致错.(2)因忽视对a 的讨论而致第(2)问出错.(3)对较简单的绝对值不等式证明,不会灵活运用平方法、换元法等去掉绝对值符号转化为常见的不等式证明题,或不能恰当运用||a |-|b ||≤|a ±b |≤|a |+|b |,通过适当地添项、拆项进行放缩证明,也是造成此类问题失分的原因.[变式训练]: (2014·江苏高考)已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.检测训练题1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,求实数a 的最小值.2.(2013·沈阳模拟)已知a +b +c =1,求证:a 2+b 2+c 2≥13. 3.(2012·南京模拟)已知x 、y 、z 均为正数,求证: 33⎝ ⎛⎭⎪⎫1x +1y +1z ≤ 1x 2+1y 2+1z 2.4.(2013·福建高考)已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值; (2)若a ,b ,c ∈R +,且1a +12b +13c =m ,求证:a +2b +3c ≥9.5.求证:1n +1+1n +2+…+13n >12(n ≥2,n ∈N *). 备选习题1.已知a >0,1b -1a >1,求证:1+a >11-b. 2.已知函数f (x )是(-∞,+∞)上的增函数,a 、b ∈R .(1)若a +b ≥0,求证:f (a )+f (b )≥f (-a )+f (-b );(2)判断(1)中命题的逆命题是否成立,并证明你的结论.2014年高考不等式选讲真题专练1.[2014·福建卷] (Ⅲ)选修4-5:不等式选讲已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a. (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.2.[2014·广东卷] 设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .1303.[2014·广东卷] 不等式|x -1|+|x +2|≥5的解集为________.4.[2014·湖南卷] 若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x -53<x <13,则a =________. 5.[2014·江西卷] (1)(不等式选做题)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( )A .1B .2C .3D .46.[2014·辽宁卷] 选修4-5:不等式选讲设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N . (1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.7.[2014·新课标全国卷Ⅰ] 选修4-5:不等式选讲若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值.(2)是否存在a ,b ,使得2a +3b =6?并说明理由.8.[2014·新课标全国卷Ⅱ] 选修4-5:不等式选讲设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(1)证明:f (x )≥2; (2)若f (3)<5,求a 的取值范围.9.[2014·陕西卷] A .(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.10.[2014·浙江卷] (1)解不等式2|x -2|-|x +1|>3;(2)设正数a ,b ,c 满足abc =a +b +c ,求证:ab +4bc +9ac ≥36,并给出等号成立条件.11.[2014·重庆卷] 若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.第一节 绝对值不等式参考答案1.解:|2x -1|≥3等价于2x -1≥3或2x -1≤-3,解得x ≥2或x ≤-1. 所以解集为(-∞,-1]∪[2,+∞).2.解:函数可化为f (x )=⎩⎪⎨⎪⎧ -3,x <-2,2x +1,-2≤x ≤1,3,x >1,所以f (x )∈[-3,3].3.解:由题得⎩⎨⎧ x ≤-10,-x -10+x -2≥8,或⎩⎨⎧ -10<x ≤2,x +10+x -2≥8,或⎩⎨⎧ x >2,x +10-x +2≥8.解得x ∈[0,+∞).4.解:∵|x -1|+|x |≥|x -1-x |=1,∴当k <1时,不等式|x -1|+|x |≤k 无解,故k <1.5.解:在数轴上,由实数绝对值的几何意义知a ≤-5或a ≥-3.[自主解答] ∵|x -y |=|(x -a )-(y -a )|≤|x -a |+|y -a |<m +m =2m ,∴|x -a |<m 且|y -a |<m 是|x -y |<2m 的充分条件.取x =3,y =1,a =-2,m =2.5,则有|x -y |=2<5=2m ,但|x -a |=5,不满足|x -a |<m =2.5, 故|x -a |<m 且|y -a |<m 不是|x -y |<2m 的必要条件.故为充分不必要条件变式训练 解:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需a ≤3即可.[自主解答] (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧ -2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].变式训练 解:(1)当a =-1时,f (x )=|x -1|+|x +1|,f (x )=⎩⎪⎨⎪⎧ -2x ,x <-1,2,-1≤x ≤1,2x ,x >1.作出函数f (x )=|x -1|+|x +1|的图象.由图象可知,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-32,或x ≥32. (2)若a =1,f (x )=2|x -1|,不满足题设条件:若a <1,f (x )=⎩⎪⎨⎪⎧ -2x +a +1,x ≤a ,1-a ,a <x <1,2x -a -1,x ≥1f (x )的最小值为1-a ; 若a >1,f (x )=⎩⎪⎨⎪⎧ -2x +a +1,x ≤1,a -1,1<x <a ,2x -a -1,x ≥a ,f (x )的最小值为a -1.所以对于∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,所以a 的取值范围是(-∞,-1]∪[3,+∞).3.解:(1)证明:f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧ -3,x ≤2,2x -7,2<x <5,3,x ≥5.4.当2<x <5时,-3<2x -7<3. 所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集; 当2<x <5时,f (x )≥x 2-8x +15的解集为 {x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为 {x |5-3≤x ≤6}. 例:[解] (1)由|ax +1|≤3得-4≤ax ≤2. 又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a ,得a =2.(2)记h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2,则h (x )=⎩⎪⎨⎪⎧ 1,x ≤-1,-4x -3, -1<x <-12,-1,x ≥-12,所以|h (x )|≤1,因此k ≥1.1.解:|x -a |+|x -1|≥|a -1|,则只需要|a -1|≤3,解得-2≤a ≤4.2.解:由|a +b |+|a -b |≥|a |f (x ),且a ≠0,得|a +b |+|a -b ||a |≥f (x ). 又因为| a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ). 解不等式|x -1|+|x -2|≤2,得12≤x ≤52.即实数x 的范围是⎣⎢⎡⎦⎥⎤12,52. 检测训练题答案1.解:令f (x )=x 2+|2x -6|,当x ≥3时,f (x )=x 2+2x -6=(x +1)2-7≥9;当x <3时,f (x )=x 2-2x +6=(x -1)2+5≥5.综上可知,f (x )的最小值为5,故原不等式恒成立只需a ≤5即可,从而a 的最大值为5.2.解:当x >12时,原不等式可化为2x -1+2x +1≤6,解得x ≤32,此时12<x ≤32;当x <-12时,原不等式可化为-2x +1-2x -1≤6,解得x ≥-32,此时-32≤x <-12;当-12≤x ≤12时,原不等式可化为1-2x+2x +1≤6,解得x ∈R ,此时-12≤x ≤12;综上,原不等式的解集为⎣⎢⎡⎦⎥⎤-32,32,故解集为⎣⎢⎡⎦⎥⎤-32,32. 3.解: ∵⎪⎪⎪⎪⎪⎪x +1x ≥2,∴|a -2|+1<2,即|a -2|<1,解得1<a <3. 4.解:原不等式可化为⎩⎪⎨⎪⎧ 2x -1≥0,x +(2x -1)<3,或⎩⎪⎨⎪⎧2x -1<0,x -(2x -1)<3. 解得12≤x <43或-2<x <12.所以原不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2<x <43. 5.解:(1)f (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧ -x -5⎝ ⎛⎭⎪⎫x <-12,3x -3⎝ ⎛⎭⎪⎫-12≤x <4,x +5(x ≥4).6.当x <-12时,由f (x )=-x -5>2得,x <-7. 故x <-7;当-12≤x <4时,由f (x )=3x -3>2,得x >53. 故53<x <4; 当x ≥4时,由f (x )=x +5>2, 得x >-3,故x ≥4.故原不等式的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-7或x >53. (2)画出f (x )的图象如图: 所以f (x )min =-92.备选1.解:∵|3x -b |<4,∴-4<3x -b <4. ∴b -43<x <b +43.(*)若原不等式的整数解只有1,2,3, 由(*)式,知0≤b -43<1且3<b +43≤4. 解之得4≤b <7且5<b ≤8,∴5<b <7.备选2解:(1)当a =1时,不等式为|x -2|+|x -1|≥2由绝对值的几何意义知,不等式的意义可解释为数轴上的点x 到1、2的距离之和大于等于2,所以x ≥52或x ≤12.所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤12或x ≥52. (2)∵|ax -2|+|ax -a |≥|a -2|, ∴原不等式的解集为R 等价于|a -2|≥2,∴a ≥4或a ≤0,又a >0,∴a ≥4.备选3.解:(1)由f (x )≥4得|6x +a |≥4,解得x ≥4-a 6或x ≤-4-a 6,依题意,⎩⎪⎨⎪⎧ 4-a 6=12,-4-a 6=-56,∴a =1.(2)当a =1时,f (x )=|6x +1|,f (x +1)=|6x +7|,f (x -1)=|6x -5|f (x +1)+f (x -1)=|6x +7|+|6x -5|≥|(6x +7)-(6x -5)|=12,∴b <12.第二节 不等式证明的基本方法[自测·牛刀小试]1.解:∵t -s =b a -b +1a +1=ab +b -ab -a a (a +1)=b -a a (a +1)>0, ∴t >s ,即s <t .2.解:由柯西不等式得x +3-x ≤ (12+12)(x +3-x )=6.3.证明:∵a >0,b >0,∴(a +b )⎝ ⎛⎭⎪⎫1a +4b =5+b a +4a b ≥5+2b a ×4a b =9. ∴1a +4b ≥9a +b .4.证明:3a 3+2b 3-(3a 2b +2ab 2)=3a 2(a -b )+2b 2(b -a )=(3a 2-2b 2)(a -b ).因为a ≥b >0,所以a -b ≥0,3a 2-2b 2>0. 从而(3a 2-2b 2)(a -b )≥0.故3a 3+2b 3≥3a 2b +2ab 2成立.5.证明:∵1a 1+1a 2+…+1a n =11×3+12×4+13×5+…+1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎪⎫1+12-1n +1-1n +2<12⎝ ⎛⎭⎪⎫1+12=34.∴1a 1+1a 2+…+1a n<34. 例1:[自主解答] 由a ,b 是非负实数,作差得a 3+b 3-ab (a 2+b 2)=a 2a (a -b )+b 2b (b -a )=(a -b )((a )5-(b )5).当a ≥b 时,a ≥b ,从而(a )5≥(b )5,得(a -b )((a )5-(b )5)≥0;当a <b 时,a <b ,从而(a )5<(b )5,得(a -b )((a )5-(b )5)>0.所以a 3+b 3≥ab (a 2+b 2).变式训练1.设a >b >0,求证:a 2-b 2a 2+b 2>a -b a +b. 证明:法一:a 2-b 2a 2+b 2-a -b a +b =a 3-b 3-ab 2+a 2b -a 3+b 3+a 2b -ab 2(a 2+b 2)(a +b )=2a 2b -2ab 2(a 2+b 2)(a +b )=2ab (a -b )(a 2+b 2)(a +b ) ∵a >b >0,∴a -b >0,ab >0,a 2+b 2>0,a +b >0.∴a 2-b 2a 2+b 2-a -b a +b >0,∴a 2-b 2a 2+b 2>a -b a +b. 法二:∵a >b >0,∴a +b >0,a -b >0.∴a 2-b 2a 2+b 2a -b a +b=a 2-b 2a 2+b 2·a +b a -b =(a +b )2a 2+b 2 =a 2+b 2+2ab a 2+b 2=1+2ab a 2+b 2>1. ∴a 2-b 2a 2+b 2>a -b a +b.例2[自主解答] 要证a b +c +b a +c +ca +b≥32, 只需证a b +c +1+b a +c +1+c a +b+1≥92, 只需证a +b +c b +c +a +b +c a +c +a +b +c a +b≥92,只需证 (a +b +c )⎝ ⎛⎭⎪⎪⎫1b +c +1a +c +1a +b ≥92.∵(a +b +c )⎝ ⎛⎭⎪⎪⎫1b +c +1a +c +1a +b =12[(b +c )+(a +c )+(a +b )]·⎝ ⎛⎭⎪⎪⎫1b +c +1a +c +1a +b ≥12×33(b +c )(a +c )(a +b )×3×31(b +c )(a +c )(a +b )=92, 当且仅当a =b =c 时“=”成立,故原不等式成立.变式训练:证明:∵a ,b ,c 均为正实数,∴b 2a +c 2b ≥ 2b 2a ·c 2b =2c b a , 同理,c 2b +a 2c ≥2ac b ,a 2c +b 2a ≥2b a c , 三式相加可得b 2a +c 2b +a 2c ≥c b a +a cb +b ac . 例3 [自主解答] 假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥|f (1)+f (3)-2f (2)| =|(1+p +q )+(9+3p +q )-(8+4p +2q )|=2,与|f (1)|+2|f (2)|+|f (3)|<2矛盾,所以|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.互动探究:证明:∵q =1,∴f (x )=x 2+px +1假设f (1)与f (-1)都小于2,则f (1)+f (-1)<4.而f (1)+f (-1)=(2+p )+(2-p )=4,出现矛盾,∴f (1)与f (-1)中至少有一个不小于2.变式训练:证明:假设a ,b ,c ,d 均为非负数,即a ≥0,b ≥0,c ≥0,d ≥0. ∵a +b =1,c +d =1,∴(a +b )(c +d )=(ac +bd )+(bc +ad )=1.∵a ,b ,c ,d 均为非负数,则bc +ad ≥0,故ac +bd ≤1.这与已知条件ac +bd >1矛盾.故假设不成立,因此a ,b ,c ,d 中至少有一个为负数.例4 [自主解答] ∵n (n +1)=n 2+n , ∴n (n +1)>n , ∴a n =1×2+2×3+…+n (n +1)>1+2+3+…+n =n (n +1)2.∵n (n +1)<n +(n +1)2, ∴a n <1+22+2+32+3+42+…+n +(n +1)2=12+(2+3+…+n )+n +12=n (n +2)2.综上得,n (n +1)2<a n <n (n +2)2.变式训练:证明:由已知m ≥|a |,m ≥|b |,m ≥1.又|x |>m ,∴|x |>|a |,|x |>|b |,|x |>1,∴⎪⎪⎪⎪⎪⎪a x +b x 2≤⎪⎪⎪⎪⎪⎪a x +⎪⎪⎪⎪⎪⎪b x 2 =|a ||x |+|b ||x |2<|x ||x |+|x ||x |2=1+1|x |<1+|x ||x |=2. ∴⎪⎪⎪⎪⎪⎪a x +b x 2<2. 例5:[自主解答] 由柯西不等式(32+42)(x 2+y 2)≥(3x +4y )2,①得25(x 2+y 2)≥4,所以x 2+y 2≥425. 不等式①中当且仅当x 3=y 4时等号成立,x 2+y 2取得最小值,需解方程组:⎩⎪⎨⎪⎧ 3x +4y =2,x 3=y 4,解得⎩⎪⎨⎪⎧ x =625,y =825.因此当x =625,y =825时,x 2+y 2取得最小值,最小值为425.:5.解:由柯西不等式得⎝ ⎛⎭⎪⎫21-2x +2·2x +322≤ [22+(2)2]⎣⎢⎡⎦⎥⎤(1-2x )2+⎝ ⎛⎭⎪⎫ 2x +322=6×⎝ ⎛⎭⎪⎫1-2x +2x +32=6×52=15.当且仅当1-2x2=2x +322时取等号, 即f (x )的最大值是15,此时x =-13.典例:[解] (1)∵-1≤x ≤1,∴|x |≤1.又∵|a |≤1,∴|f (x )|=|a (x 2-1)+x |≤|a (x 2-1)|+|x |≤|x 2-1|+|x |=1-|x |2+|x |=-⎝ ⎛⎭⎪⎫|x |-122+54≤54. (2)当a =0时,f (x )=x ,当-1≤x ≤1时,f (x )的最大值为f (1)=1,不满足题设条件,∴a ≠0. 又f (1)和f (-1)均不是最大值,∴f (x )的最大值178应在其对称轴上的顶点位置取得.∴命题等价于⎩⎪⎨⎪⎧ a <0,-1<-12a<1,f ⎝ ⎛⎭⎪⎫-12a =178,解得⎩⎪⎨⎪⎧ a <-12,a =-2或a =-18,∴a =-2.变式训练:证明:因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x-y |,由题设知|x +y |<13,|2x -y |<16,从而3|y |<23+16=56,所以|y |<518.检测训练题答案1.解:∵2x +2x -a =2(x -a )+2x -a +2a ≥2 2(x -a )2x -a +2a=2a +4≥7,∴a ≥32.2.证明:法一:∵a 2+b 2+c 2=(a +b +c )2-(2ab +2bc +2ac )≥(a +b +c )2-2(a 2+b 2+c 2),∴3(a 2+b 2+c 2)≥(a +b +c )2=1,∴a 2+b 2+c 2≥13.法二:∵a 2+b 2+c 2-13 =a 2+b 2+c 2-(a +b +c )23=13(2a 2+2b 2+2c 2-2ab -2bc -2ac )=13[(a -b )2+(b -c )2+(a -c )2]≥0 ∴a 2+b 2+c 2≥13.法三:∵(12+12+12)(a 2+b 2+c 2)≥(a +b +c )2=1,即3(a 2+b 2+c 2)≥1,∴a 2+b 2+c 2≥13. 3.证明:由柯西不等式得 (12+12+12)⎝ ⎛⎭⎪⎫1x 2+1y 2+1z 2≥⎝ ⎛⎭⎪⎫1x +1y +1z 2, 则3× 1x 2+1y 2+1z 2≥1x +1y +1z ,即33⎝ ⎛⎭⎪⎫1x +1y +1z ≤ 1x 2+1y 2+1z 2.4.解:(1)因为f (x +2)=m -|x |,所以f (x +2)≥0等价于|x |≤m , 由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1.(2)证明:由(1)知1a +12b +13c =1,又a ,b ,c ∈R +,由柯西不等式得a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c ≥ ⎝ ⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9. 5.证明:法一(利用数学归纳法):(1)当n =2时,左边=13+14+15+16>12,不等式成立. (2)假设当n =k (k ≥2,k ∈N *)时不等式成立.即1k +1+1k +2+…+13k >12. 则当n =k +1时, 1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13k +3=1k +1+1k +2+…+13k +⎝ ⎛⎭⎪⎪⎫13k +1+13k +2+13k +3-1k +1> 12+⎝ ⎛⎭⎪⎪⎫3×13k +3-1k +1=12. 所以当n =k +1时不等式也成立, 由(1),(2)知原不等式对一切n ≥2,n ∈N *均成立.法二(利用放缩法):∵n ≥2,∴1n +1+1n +2+…+13n >13n +13n +…+13n =23>12.即1n +1+1n +2+…+13n >12(n ≥2,n ∈N *). 备选习题1:要证1+a >11-b ,可证1+a ·1-b >1,即证1+a -b -ab >1,只需证a -b -ab >0, 即a -b ab >1,即1b -1a >1,∵1b -1a >1已知 ∴原不等式1+a >11-b 成立.:备选习题2解:(1)证明:∵a +b ≥0,∴a ≥-b .由已知f (x )的单调性得:f (a )≥f (-b ).又a +b ≥0⇒b ≥-a ⇒f (b )≥f (-a ).两式相加即得: f (a )+f (b )≥f (-a )+f (-b ).(2)命题(1)的逆命题为:若f (a )+f (b )≥f (-a )+f (-b ),求证: a +b ≥0. 逆命题成立.下面用反证法证之. 假设a +b <0,那么:⎭⎬⎫a +b <0⇒a <-b ⇒f (a )<f (-b )a +b <0⇒b <-a ⇒f (b )<f (-a )⇒f (a )+f (b )<f (-a )+f (-b ). 这与已知矛盾,故a +b ≥0.逆命题得证.2014年高考真题答案1. (Ⅲ)解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2)由(1)知p +q +r =3,又p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.2.D [解析] 本题考查排列组合等知识,考查的是用排列组合思想去解决问题,主要根据范围利用分类讨论思想求解.由“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”考虑x 1,x 2,x 3,x 4,x 5的可能取值,设集合M ={0},N ={-1,1}.当x 1,x 2,x 3,x 4,x 5中有2个取值为0时,另外3个从N 中取,共有C 25×23种方法;当x 1,x 2,x 3,x 4,x 5中有3个取值为0时,另外2个从N 中取,共有C 35×22种方法;当x 1,x 2,x 3,x 4,x 5中有4个取值为0时,另外1个从N 中取,共有C 45×2种方法.故总共有C 25×23+C 35×22+C 45×2=130种方法,3.(-∞,-3]∪[2,+∞) 4.-3 5.(1)C6.(1)M =⎩⎨⎧⎭⎬⎫x 0≤x ≤43. (2)由g (x )=16x 2-8x +1≤4得16⎝ ⎛⎭⎪⎫x -142≤4,解得-14≤x ≤34,因此N =⎩⎨⎧⎭⎬⎫x -14≤x ≤34, 故M ∩N =⎩⎨⎧⎭⎬⎫x 0≤x ≤34. 当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝ ⎛⎭⎪⎫x -122≤14. 7.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,当且仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥4 2,当且仅当a =b = 2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3. 由于43>6,从而不存在a ,b ,使2a +3b =6.8.解:(1)证明:由a >0,有f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a -(x -a )=1a+a ≥2,所以f (x )≥2. (2)f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212. 当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+212. 9.A.5 [解析] A .由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,代入数据,得m 2+n 2≥5,当且仅当an =bm 时,等号成立,故m 2+n 2 的最小值为 5.10.解:(1)当x ≤-1时,2(2-x )+(x +1)>3,得x <2,此时x ≤-1;当-1<x ≤2时,2(2-x )-(x +1)>3,得x <0,此时-1<x <0;当x >2时,2(x -2)-(x +1)>3,得x >8,此时x >8.综上所述,原不等式的解集是(-∞,0)∪(8,+∞). (2)证明:由abc =a +b +c ,得1ab +1bc +1ca =1.由柯西不等式,得(ab +4bc +9ac )⎝ ⎛⎭⎪⎫1ab +1bc +1ca ≥(1+2+3)2,所以ab +4bc +9ac ≥36,当且仅当a =2,b =3,c =1时,等号成立.31 11..⎣⎢⎡⎦⎥⎤-1,12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、
a) 恒等关系是义务教育数学学习中的一种基本的关系。
在义务教育的学习过程中,有哪些恒等关系是重要的?是需要学生掌握的?决定这些恒等关系的基本数学思想是什么?这些数学思想是怎么发挥作用的?
b) 在义务教育阶段也引入了事物之间的不等关系,同时也引出了一些重要的不等关系,例如,实数中的不等关系。
我们还引出了一些不等关系的性质,例如,a>b>0,b>c>0就可以得出,a>c。
建议同学们梳理一下在义务教育阶段所学的不等关系,体会不等关系与恒等关系的区别。
c) 在高中的必修5,我们设置了不等式的内容。
它大体上由四部分内容组成。
我们同学们梳理复习这四部分内容。
第一部分是,一些基本不等式的性质,例如,a>b,c>0得出,ac>bc等。
第二部分是,在学会解一元一次不等式的基础上,引入了一元二次不等式。
第三部分是,介绍了我们一个经常使用的不等式,
这个重要的不等式有许多不同的呈现形式,值得一提的是,它还有很多重要的几何形式。
第四部分是,简单的线性规划问题。
解决线性规划问题是按照以下基本步骤实现的:
1)确定目标函数
2)确定目标函数的约束条件,即讨论这个目标函数的可行区域。
利用不等式刻画目标函数的约束条件。
3)观察目标函数在可行区域内的变化趋势。
4)确定使得目标函数达到最大或最小值的解。
同学们应该思考的是,在讨论这些不等式的过程中什么思想发挥了作用。
d) 在我们上面分析的这些内容的学习中,我们可以体会到由运算思想所体现的恒等变换的能力。
这种能力在研究不等式中发挥了重要的作用。
建议同学们在教师的帮助下更好的发挥这种能力。
e) 由运算思想所体现的恒等变换的能力,是一种重要的逻辑推理的能力。
在本专题中,提高这种能力是本专题的基本定位。
建议教师思考在本专题中,如何体现这样一个基本定位。
f) 我们知道基本不等式,a2+b2≥2ab,它有着重要的几何背景。
如图所示:
令AF=a,BF=b,则AB2=a2+b2,而S正方形ABCD≥4S⊿ABF
即,所以,a2+b2≥2ab,
当AF=BF时,正方形EFGH缩为一点,S正方形ABCD=44S⊿ABF
实际上每一个好的不等式都有重要的数学背景,特别是重要的几何背景。
教师应思考这样的问题,如何引导学生体会和认识不等式的几何背景,以及这些几何背景在证明不等式的过程中发挥的几何意义?
g) 本专题我们主要介绍以下内容
(1)不等式的基本性质和基本不等式;
(2)绝对值不等式及其几何意义,并能利用绝对值不等式的几何意义证明和求解一些绝对值不等式;
(3)认识柯西不等式的几种不同形式及其几何意义,用参数配方法讨论柯西不等式的一般情况;
(4)用向量递归方法讨论排序不等式;
(5)了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题;
(6)会用数学归纳法证明贝努利不等式;
(7)会用上述不等式证明一些简单问题。
能够利用平均值不等式、柯西不等式求一些特定函数的极值;
(8)通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法。
教师应该思考,如何让学生构架起本专题的知识结构。
教师还应该思考,如何帮助学生总结、概括高中阶段有关不等关系的内容,并能写出一个好的读书报告与学生进行交流,总结在不等关系学习中的重要的数学思想。
h) 教师应了解学生学习不等式选讲的基础,并思考如何根据学生的起点设计本专题的教学方案。