第十一章 压杆稳定
第十一章压杆的稳定 - 工程力学
第十一章压杆的稳定承受轴向压力的杆,称为压杆。
如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。
直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。
然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。
杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。
本章研究细长压杆的稳定。
§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。
物体的平衡受到外界干扰后,将会偏离平衡状态。
若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。
如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。
(a) 稳定平衡图11.1 稳定平衡与不稳定平衡上述小球是作为未完全约束的刚体讨论的。
对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。
如二端铰支的受压直杆,如图11.2(a)所示。
当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。
若轴向压力F较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a),平衡是稳定的;若轴向压力F足够大,即使微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。
在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。
如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。
第11章压杆稳定
材料力学
第29页/共63页
二、折减因数法
s
F A
[s w ]
s cr
nst
scr、nst与压杆柔度有关,[sw]是的 函数。
[sw]=j [s ]
[s ]——强度许用应力 j —— 折减因数 j 1
稳定条件
与柔度有关
s FP j[s ] 工作应力不大于
A
稳定许用应力
注 不必由柔度判断压杆属何种性质的杆,简化计算。 意
强度 条件
sr
[s ]
s0
n
相当应力不大 于许用应力
极限应力
s0
s
{
s
sb
塑性材料 脆性材料
极限应力和安全因数只与材料有关,与实 际应力状态无关,即强度许用应力为常数。
材料力学
第27页/共63页
稳定 条件
s
F A
[s
w
]
s0
nst
s cr
nst
工作应力不大于稳定许用应力。
极限应力(临界应力)和稳定安全因数不仅 与材料有关,而且与实际压杆的长度、约束 条件、横截面尺寸和形状有关,即与实际压 杆的柔度有关,所以稳定许用应力不是常数。
z
ml
iz
1 940 14.43
65.1
第36页/共63页
F A
z
材料力学
l1 z
B l1
y Fx
z
h
b
F x
x-z 面内,两端固定
绕y轴发生失稳
m = 0.5
iy
b 23
20 23
5.77 mm
y
ml
iy
0.5 880 5.77
76.3
工程力学压杆稳定
MA=MA =0 相当长为2l旳两端简支杆
Fcr
EI 2
(2l ) 2
l
F
0.5l
两端固定 EI 2
Fcr (0.5l) 2
图形比拟:失稳时挠曲线 上拐点处旳弯矩为0,故可设想 此处有一铰,而将压杆在挠曲 线上两个拐点间旳一段看成为 两端铰支旳杆,利用两端铰支 旳临界压力公式,就可得到原 支承条件下旳临界压力公式。
两端铰支
= 1
一端固定,一端自由 = 2
一端固定,一端铰支 = 0.7
两端固定
= 0.5
§11-4中小揉度杆旳临界压力
一、临界应力与柔度
cr
Fcr A
对细长杆
cr
2 EI (l)2 A
2 Ei2 ( l ) 2
2E ( l )2
记 l
i
i
cr
2E 2
––– 欧拉公式
:柔度,长细比
[cr] = [] < 1,称为折减系数
[ cr ] [ ]
根据稳定条件
F Fcr nst
F A
Fcr Anst
cr
nst
[ cr : 工作压力
: 折减系数
A: 横截面面积
[]:材料抗压许用值
解:首先计算该压杆柔度,该丝杆可简化为图示
下端固定,上端自由旳压杆。
=2
F
l=0.375m
i I d A4
l l 2 0.375 75
i d 0.04 / 4 4
查表, = 0.72
F
A
80 103
0.72 0.042
88.5106 88.5MPa [ ] 160MPa
4
故此千斤顶稳定性足够。
静力学11、压杆稳定
Fcr
2 EI l2
μ= 1
2 EI Fcr (0.7l)2
μ= 0.7
2 EI Fcr (0.5 l ) 2
μ= 0.5
2EI Fcr (2l )2
μ= 2
2 EI Fcr l 2
μ= 1
§11.4 欧拉公式的适用范围.经验公式
一、欧拉临界应力公式及使用范围
1.细长压杆的临界应力:临界力除以压杆横截面面积
0
Pcr d EI
k
2d
将边界条件代入统一微分方程的通解得:
式 0
如 图
k 0
1 0 k2
0 1 0
1 0 0
0 0 k
2
C1
C C
2 3
0
sinkL
coskL L 1
k 2 sinkL k 2 coskL 0 0
1 0
Cd4
有非零解的充要条件为:系数行列式值为零;
解得压杆失稳特征方程为:coskL 0
解: (1) 2 E I
Pcr ( l)2
2E d4
64
( l)2
1 16
2E I正
(2)
Pcr 正 Pcr 圆
( l)2 2E I圆
d2 2
a4 4
I正 I圆
12
d4
12
d4
3
( l)2
64
64
例5:五根直径都为 d的细长圆杆铰接构
成平面正方形杆系ABCD,如各杆材料相 同,弹性模量为E。求图 (a)、(b)所示两种 载荷作用下杆系所能承受的最大荷载。
60
2. cr=S时: 强度破坏,采用强度公式。
≤ S—粗短杆(小柔度杆);
表 1 直线公式的系数 a 和 b
第十一章 压杆稳定
使Fcr最小的方向为实际弯曲方向,I为挠曲时横
截面对其中性轴的惯性矩。
如销孔类铰链,即所谓的柱状铰。约束特点为:
在垂直于轴销的平面内,轴销对杆的约束相当于铰支;
而在轴销平面内,轴销对杆的约束则接近于固定端。
第十一章 压杆稳定问题
思考:试判断下列压杆长度系数的取值范围
μ>2
0.7<μ<2
cr
2E 2
P
或
2E p
E
p
P
(10 10)
P值仅与弹性模量E及比例极限P 有关, P仅随材料
性质而异。柔度≥P的压杆称大柔度杆。
当 ≥P(大柔度压杆或细长压杆)时,才能应用欧
拉公式。
当<P时(中、小柔度压杆),不能应用欧拉公式。
第十一章 压杆稳定问题
P 的大小仅取决于压杆材料的 力学性能。例如,对于Q235 钢,E=206GPa, P=200MPa,得
0.7
0.5
欧拉临界压力公式的统一表达式:
Fcr
2EI (l)2
(10 6)
第十一章 压杆稳定问题
Fcr为维持微弯平衡状态最小的压力
各方向约束情况相同时:
Fcr
2EI (l)2
乘积l称为压杆的相当长度或有效长度。 为常数,称长度因素,代表支持方式对临界载荷的
影响。 I=Imin––– 最小形心主惯性矩
第十一章 压杆稳定问题
压杆的稳定(4学时)
教学内容:压杆稳定的概念,细长压杆的临界力和欧 拉公式,欧拉公式的适用范围,中、小柔度杆的临界 应力,压杆的稳定计算,提高压杆稳定性的措施。 教学要求: 1、了解丧失稳定、临界力的概念,中、小柔度杆的临 界应力,压杆的稳定条件,提高压杆稳定性的措施; 2、理解细长压杆的临界力和欧拉公式,临界应力、惯 性半径、柔度的概念,欧拉公式的适用范围。 重点:细长压杆的临界力和欧拉公式。 难点:细长压杆的临界力和欧拉公式。
材料力学09第十一章 压杆稳定问题
Fcr Fcr min
EI
2
l2
理想中心压杆的欧拉临界力
M(x)= Fcr(-w) =-Fcrw
EIw ' ' M ( x) Fcr w
x Fcr
A
Fcr 2 k 令 EI
w' ' k 2 w 0
与前面获得的结果相同。
w
w l 2 x
2)计算许可载荷[P]
1.5 y 0 : [ P ] P 2 0 [ P] 2.82( KN)
BC cr
§11-4 欧拉公式的应用范围 · 临界应力总图
1. 欧拉公式的应用范围
欧拉临界应力
I 2 EI 2 i Fcr 2 ( l ) A 2 2 2 E E EI Fcr cr 2 ( l ) A ( l ) 2 A ( l ) 2 A
约束越弱,μ系数越大, 临界力Fcr越低,稳定性越差。
其他支座条件下细长压杆的临界压力
由于边界条件不同,则:
2 EI Fcr ( l ) 2
I:最小惯性矩
称为长度系数。
一端固定一端自由:
2
1
两端铰支:
一端铰支一端固定:
临界应力
cr
Fcr A
0.7 0.5
压杆失稳的现象:
1. 轴向压力较小时,杆件能保持稳定的直线平衡状态; 2. 轴向压力增大到某一特殊值时,直线不再是杆件唯 一的平衡状态;
稳定:
理想中心压杆能够保持稳定的(唯一的)
直线平衡状态;
失稳(屈曲):理想中心压杆丧失稳定的(唯一的)直 线平衡状态; 临界力 压杆失稳时,两端轴向压力的特殊值
第11章 压杆稳定性问题
相等,则此压杆的临界压力又为多少?
(压杆满足欧拉公式计算条件)
h
动脑又动笔
解: 一端固定,一端自由,长度因数 μ=2 在应用欧拉公式时,截面的惯性
矩应取较小的I 值。
Iy 1 3 1 hb 90 403 mm 4 48 104 mm 4 12 12
b
F
l
1 3 1 I z bh 40 903 mm 4 243 104 mm 4 12 12
理解长细比、临界应力和临界应力总图的概念,熟 悉各类压杆的失效形式。
§11–1 压杆稳定性的基本概念
① 强度 衡量构件承载能力的指标 ② 刚度 ③ 稳定性 工程中有些构件具有足够的强度、刚度,却不一定能安全 可靠地工作。 杆件在各种基本变形下的强度和刚度问题在前述各章节中 已作了较详细的阐述,但均未涉及到稳定性问题。事实上, 杆件只有在受到压力作用时,才可能存在稳定性的问题。
屈曲曲线是偏离原直线轴线不远的微弯状态。
F F EI L
M d2w 2 EI dx
§11–2 细长压杆的临界荷载—欧拉临界力
一、两端铰支压杆的临界力
多大的轴向压力才会使压杆失稳?
d2w EI 2 Fw 0 dx
y
M EI x w L
记
F
k2
F EI
F
F
x
d2w 2 k w0 2 dx
§11–3长细比的概念 三类不同压杆的判断
三、临界应力总图
cr
S
P
cr s
cr a b
2E cr 2
粗短杆 s
s s a
b
中长杆
P
细长杆
第11章压杆稳定
压杆截面如图所示。两端为柱形铰链约束,
若绕 y 轴失稳可视为两端固定,若绕 z 轴失稳可视为 两端铰支。已知,杆长l=1m ,材料的弹性模量
E=200GPa,sp=200MPa。求压杆的临界应力。
解:
iy 1 3 ( 0 . 03 0 . 02 ) Iy 12 0.0058m A 0.03 0.02
3.压杆失稳:
弹性杆件 稳定直线平衡
F Fcr
F Fcr
F Fcr
F Fcr
微小扰动 恢复直线平衡 不稳定直线平衡
F Fcr
弯曲 除去扰动
v
弯曲
微小扰动
新的弯曲平衡 随遇平衡
除去扰动
F Fcr 除直线平衡形式外,无穷小邻域内,可能微弯平衡
压杆从直线平衡形式到弯曲平衡形式的转变,称为失稳
一、两端铰支的细长压杆:
x
Fcr
F M(x)=Fw
l m w B m
m
x
m
B y F
x
y
Fcr
压杆任一 x 截面沿 y 方向的位移 w f ( x ) 该截面的弯矩
M ( x ) Fw
杆的挠曲线近似微分方程
EIw '' M ( x ) Fw
2
( a)
m
F 令k 得 w '' k 2 w 0 (b) EI
16
4.压杆的临界压力: 稳 定 平 衡 临界状态
过 渡
临界压力:Fcr
不 即:使压杆保持在微 稳 弯状态下平衡的最小 定 轴向力。 平 衡
F Fcr —稳定平衡状态 F Fcr —临界平衡状态 F Fcr —不稳定平衡状态
材料力学-第11章 压杆稳定new
引言
压杆稳定的利用 - 柔性电子器件
材料力学-第11章 压杆稳定
引言
基本概念
F
压杆失稳(屈曲): 受压杆件由直线平衡状态变为弯曲平衡状态 临界载荷:
使得受压杆件由直线平衡态转为弯曲平衡态的临界力
材料力学-第11章 压杆稳定 受压杆件为什么会失稳?
F
引言
杆件压力超过临界载荷时,弯曲构型具有更 小的应变能
Fcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上正弦 半波的长度,称为有效长度(effective length);
为反映不同支承影响的系数,称为长度因数(coefficient of
1ength),可由屈曲后的正弦半波长度确定。
材料力学-第11章 压杆稳定
FPcr
π 2 EI
l
2
需要注意的是, 临界载荷公式只有在压杆的微弯 曲状态下仍然处于弹性状态时才是成立的。
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
例题
图示四根压杆,已知杆件横截面和材料完全相同。 试:将压杆按承载能力大小排序
5m
7m
(a)
(b)
3m
(c)
§11-3 两端非铰支细长压杆的临界载荷 长度因数 由屈曲后的正弦半波长度确定
欧拉公式可写为:
2 EI
正弦半波长
2
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
两端固定 =0.5
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
F
Fcr
第 11 章 压杆的稳定性问题
直线形状平衡 稳定的
第 11 章 压杆的稳定性问题 2.不稳定性
F F>Fpcr
压杆稳定性的基本概念
直线平衡平衡状态转变为弯曲平 衡状态,扰动除去后,不能够恢 复到直线平衡状态,则称原来的 直线平衡状态是不稳定的。
FP<FPcr :在扰动作用下,
直线形状平衡 不稳定的
第 11 章 压杆的稳定性问题
第 11 章 压杆的稳定性问题
P
A
(a )
三类不同压杆的判断
h
y
b
h
B
y
P 解:正视图平 面弯曲截面绕 z 轴转。 3 P
x
P
z
l
A bh 1.0
iz Iz A
bh Iz 12
h 2 3
z
l
iz
1 2300 2
60
3
132.8 P 100
σp σe σs
压杆稳定性的基本概念
三、三种类型压杆的不同临界状态
σ
σb
ε
第 11 章 压杆的稳定性问题 欧拉临界力 §11-2 细长压杆的临界载荷---欧拉临界力
一、两端铰支的细长杆
F x F x
F
l M w x w w
压杆
微弯下平衡
内力与变形
第 11 章 压杆的稳定性问题
x
欧拉临界力
M =F w EI w〞= - M =-F w
欧拉临界力
二、其他刚性支承细长压杆临界载荷的通用公式
方法1: 同欧拉公式, 微分方程 + 边界条件 方法2: 相当长度法 在压杆中找出长度相当于两端铰支的 一段(即两端曲率为零或弯矩为零),该 段失稳曲线为半波正弦曲线,该段临界力 即压杆的临界力。
山东建筑大学期末工程力学第11章压杆稳定
对于等直杆
F N max [ ] max A
例题:一长为300 mm的钢板尺,横截面尺寸为 20mm 1mm 。钢 的许用应力为[ ]=196 MPa。按强度条件计算得钢板尺所能承受的 轴向压力为
一, 两端为绞支(球形绞支),长为 l 的 细长 压杆。
当 F 达到 FCr 时,压杆的特点是:保持微弯形式的平衡。
x
F cr
x
w
l
l 2
m w m
F cr
M ( x) F cr w
m m
x
o w o
x
w
F cr
FCr
x
w
m
M ( x) F cr w
m
x
o w
FCr
压杆任一 x 截面沿 w 方向的位移为 w = f (x) 该截面的弯矩为
E F cr cr A ( l / i )
l
i
称为压杆的柔度(长细比)。集中地反映了压杆的长度,杆端约
束,截面尺寸和形状对临界应力的影响。
2 E 2
cr
cr
E 2
2
越大,相应的 cr 越小,压杆越容易失稳。
F Cr A Cr
x
y
2 EI F cr 2 ( l )
z
2 EI y ( F Cr ) y ( l )2 y
2 EI z ( F Cr ) z ( l )2 z
F Cr {( F Cr ) y,( F Cr ) z}min
第11章 压杆稳定
(Buckling of Columns)
3、图示矩形截面细长压杆,两端用圆柱铰连接。其约束在纸平 面内可视为两端铰接,在垂直于纸面的平面内可视为两端固定, 从稳定性考虑,截面合理的长、宽比为h/b= `
压杆在纸平面内的工作柔度为λ=μL/i=1.0L/h/(2×1.732); 在垂直于纸面的平面内的工作柔度为λ’=μL/i=0.5L/b/(2×1.732);
(Buckling of Columns) 1、一受压的圆截面杆件,已知材料的机械性质参数σ p, σ s,σ b,E,杆长L,直径D,长度系数u,并设已知压杆临界应 力的线性经验公式常数a、b为已知。欲计算压杆的临界压力, 写明计算过程,列出有关的公式。 (1)计算工作柔度λ =μ L/i,计算第一特征柔度 λ 1=(π 2E/σ P)1/2 σ
(Buckling of Columns) 7、两根细长压杆a与b的长度、横截面面积、约束状态及材料均 相同,若其横截面形状分别为圆形和正方形,则二压杆的临界压 力Pacr和Pbcr的关系为( )。 C A.Pacr=Pbcr;B.Pacr<Pbcr;C.Pacr>Pbcr;D.不确定 8、材料和柔度都相同的两根压杆( A. B. C. D. )。A 临界应力一定相等,临界压力不一定相等; 临界应力不一定相等,临界压力一定相等; 临界应力和压力都一定相等; 临界应力和压力都不一定相等。
(Buckling of Columns)
1、图示中的桁架结构,两细长杆的长为L,与铅垂线的夹角相 等,均为α。但EI1>EI2,则结构的临界载荷为 。
Fcr=2 cosαπ2EI2/L2
2、在一般情况下,稳定安全系数比强度安全系数要大,这是因 为实际压杆总是不可避免地存在 , ,以及 等不利因素。
第十一章 压杆稳定
§ 11—3 不同杆端约束下细长压杆临界轴力的欧拉公式
F
cr
1、两端铰支
F
A
cr
Fcr
EI
2
l2
l
B
2、一端固定另端自由 l 2 EI Fcr ( 2l ) 2
F
cr
A
B
l
F
A
cr
3、一端固定,一端 夹支(两端固定)
0.5l
A
4、一端固定 另端铰支
0 .7 l
l
Fcr
2 EI
Fcr,1 : Fcr,2 : Fcr,3 I min,1 : I min,2 : I min,3 1: 9.34:17.32
例11.2 两端球铰支的中心受压细长压杆,长1m,材料的弹性 模量E=200GPa,考虑采用矩形、等边角钢∟45×6、环形三种 不同截面,如图11.5所示。试比较这三种截面压杆的稳定性。
2、若F 2k l ,即 F 2kl,则在干扰解除后,杆不仅不 能自动返回其初始位置,而且将继续偏转。说明在该荷载作 用下,杆在竖直位置的平衡是不稳定的。
一、弹性系统平衡的稳定性 1、若 F 2k l ,即 F 2kl ,则在干扰解除后,杆将自
动恢复至初始位置,说明在该荷载作用下,杆在竖直位置的 平衡是稳定的。 2、若F 2k l ,即 F 2kl,则在干扰解除后,杆不仅不 能自动返回其初始位置,而且将继续偏转。说明在该荷载作 用下,杆在竖直位置的平衡是不稳定的。 δ
F F
3、若F 2k l ,即 F 2kl, 则杆既可在竖直位置保持平衡, 也可在微小偏斜状态保持平衡, 说明在该荷载作用下,杆处于临 界平衡状态或称为随遇平衡状态。 弹性系统在某位置的平衡性质不但 与外荷载的大小有关,而且与系统 的自身构成特性有关。
建筑力学 第11章 压杆稳定
第11章压杆稳定[内容提要]稳定问题是结构设计中的重要问题之一。
本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。
11.1 压杆稳定的概念工程中把承受轴向压力的直杆称为压杆。
前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。
但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。
杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。
我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。
所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。
为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。
图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。
当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。
因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。
P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值crP时,杆件虽位置上保持平衡。
但如果继续增加荷载,当轴向压力等于某个临界值,即P=cr然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。
因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。
P=cr(a) (b) (c)图11-1 图11-2继续增大压力P ,当轴向压力P 略大于cr P 时,由于外界不可避免地给予压杆侧向的干扰作用(例如轻微的振动,初偏心存在,材料的不均匀性,杆件制作的误差等),该杆件将立即发生弯曲,甚至折断,从而杆件失去承载能力。
材料力学第11章 压杆稳定
长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔
柔
度度
度
压压
压
杆杆
杆
可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800
材料力学(单辉祖)第十一章压杆稳定问题
Pcr
=
π 2EI
l2
若杆端在各个方向的约束情况相同(如球形 铰),I 应取最小的形心主惯矩,得到直杆 的实际临界力
若杆端在不同方向的约束情况不同, I 应取 挠曲时横截面对其中性轴的惯性矩。即此 时要综合分析杆在各个方向发生失稳时的 临界压力,得到直杆的实际临界力(最小值)。
25
欧拉公式
求解上述非线性微分方程,得挠曲线中
点挠度δ 与压力P之间的近似关系
δ = 2 2l π
其图形为
P Pcr
⎡ − 1⎢1 −
⎣
1 2
⎛⎜⎜⎝
P Pcr
−1⎞⎟⎟⎠⎤⎥⎦
P
A
Pcr
可见,只有当P ≥Pcr时,压杆 B 才可能存在非直线的平衡态,
即直杆发生失稳,并且挠度δ
与压力P之间存在一对一关系,
M (x) = Pcrv(x) − Q(l − x)
x Pcr
Q A
M(x)
m
m
l
x
BQ MB y Pcr
39
Example-1
x
代入挠曲线近似微分方程
Pcr
EI
d 2v dx 2
=
−M
(x)
=
− Pcr v( x)
+
Q(l
−
x)
令 k 2 = Pcr
EI
则控制微分方程化简为
d 2v dx 2
+
k 2v
28
欧拉公式
思考题
29
不同约束下压杆临界力的 欧拉公式 • 压杆长度系数
30
长度系数
问题:
考虑下端固定、上端 自由并在上端承受轴 向压力作用等截面细 长杆,几何尺寸见图 确定此压杆临界压力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 压杆稳定
是非判断题
1 压杆失稳的主要原因是由于外界干扰力的影响。
( )
2 同种材料制成的压杆,其柔度愈大愈容易失稳。
( )
3 细长压杆受轴向压力作用,当轴向压力大于临界压力时,细长压杆不可能保持平衡。
( )
4 若压杆的实际应力小于欧拉公式计算的临界应力,则压杆不失稳( )
5 压杆的临界应力值与材料的弹性模量成正比。
( )
6 两根材料、长度、截面面积和约束条件都相同的压杆,则其临界力也必定相同。
( )
7 若细长杆的横截面面积减小,则临界压力的值必然随之增大。
( )
8 压杆的临界应力必然随柔度系数值的增大而减小。
( )
9 对于轴向受压杆来说,由于横截面上的正应力均匀分布,因此不必考虑横截面的合理形状问题。
( )
填空题
10 在一般情况下,稳定安全系数比强度安全系数要大,这是因为实际压杆总是不可避免地存在 以及 等不利因素的影响。
11 按临界应力总图,1λλ≥的压杆称为 ,其临界应力计算公式为 ;1
2λλλ≤≤的压杆称为 ,其临界应力计算公式为 ;2λλ≤的压杆称为 ,其临界应力计算公式为 。
12 理想压杆的条件是① ;② ;③ 。
13 压杆有局部削弱时,因局部削弱对杆件整体变形的影响 ;所以在计算临界压力时,都采
用 的横截面面积A 和惯性矩I 。
14 图示两端铰支压杆的截面为矩形,当其失稳时临界压力F cr = ,挠曲线位于 平面
内。
z 题15图
15 图示桁架,AB 和BC 为两根细长杆,若EI 1>EI 2,则结构的临界载荷F cr = 。
16 对于不同柔度的塑性材料压杆,其最大临界应力将不超过材料的 。
17 提高压杆稳定性的措施有 , ,以及 和 。
18 细长杆的临界力与材料的 有关,为提高低碳钢压杆的稳定性,改用高强度钢不经济,
原因时 。
19 按图示钢结构(a )变换成(b )的形式,若两种情形下CD 为细长杆,结构承载能力将 。
B
P
A C
B D
P
(a)
(b) 20 图示材料相同,直径相等的细长杆中, 杆能承受压力最大; 杆能承受的压力最小。
F
(a (b) (c)
选择题
21 在稳定性计算中,若用欧拉公式算得压杆的临界压力为F cr ,而实际压杆属于中柔度杆,则( )。
(A )并不影响压杆的临界压力值;
(B )实际的临界压力大于F cr ,是偏于安全的;
(C )实际的临界压力大于F cr ,是偏于不安全的;
(D )实际的临界压力小于F cr ,是偏于不安全的;
22 方形截面压杆,2:1:=h b ;如果将b 改为h 后仍为细长杆,临界力cr P 是原来的多少倍?( )
(A )16倍; (B )8倍; (C )4倍; (D )2倍。
b
23 在横截面积等其他条件均相同的条件下,压杆采用图( )所示的截面形状,其稳定性最好。
F
(A) (B) (C) (D)
题23图 题24图
24 图示边长为1032⨯=a mm 的正方形截面大柔度杆,承受轴向压力F=4π2
KN ,弹性模量E=100GPa 。
则该杆的工作安全系数为( )。
(A )1=w n ; (B )2=w n ; (C )3=w n ; (D )4=w n 。
25 图示结构二杆材料和截面形状与尺寸相同,均为细长杆,若在平面内失稳而破坏,则结构的临界
载荷,沿( )方位作用时,其值最小;沿( )方位作用时,其值最大。
(A )00=θ; (B )0
90=θ;
(B )030=θ; (D )使二杆同时进入临界状态的θ值。
B
A 300 C
计算题
26 图示简单托架,其撑杆AB 为圆截面木杆,若架上受集度为q=24KN/m 的均布荷载作用,AB 两端为铰支,木材的E=10GPa ,p σ=20MPa ,规定的稳定安全系数st n =3,试校核AB 杆的稳定性。
27 一端固定一端铰支压杆的长度L=1.5m ,材料为A3钢,其弹性模量E=205GPa ,
p σ=200MPa ,S σ=240MPa 。
已知截面面积A=800mm 2
,若截面的形状分别为实心圆形和D d =0.8的空心圆管,试分别计算各杆的临界压力。
若用经验公式,A3钢计算临界应力的直线公式为λσ12.1304-=cr (单位Mpa )。
28 图示结构,1、2两杆长度、面积均相同,1杆为圆截面,2杆为圆环截面。
A=900mm 2,材料的E=200GPa ,p λ=100,s λ=61.4,临界应力经验公式为λσ12.1304-=cr (MPa),求两杆的临界力及结构失稳时的载荷F 。
取6.0/22=D d 。