最新内能 热力学第一定律
热力学第一定律:内能、热量与功的转化关系
热力学中的能量转化关系热力学第一定律是能量守恒定律的体现,它描述了系统内能、热量和功之间的转化关系。
在热力学中,内能、热量和功是系统中能量的三种形式,它们之间的转化关系可以通过热力学第一定律来描述。
下面将详细介绍内能、热量和功在系统中的转化关系。
内能系统的内能是系统包含的所有微观粒子的总能量,包括其热能、动能和势能等各种形式。
内能通常用符号U表示,是系统的一个基本属性,与系统的热力学状态有关。
内能取决于系统的组成、温度和压强等因素。
热量热量是能量的一种传递方式,其传递方式是由高温物体向低温物体传递能量。
通常用符号Q表示,是系统与外界进行热交换时的能量变化。
热量是系统的一个重要属性,它可以改变系统的温度和内能。
功功是系统对外界做的有序能量转移,是能量的一种形式。
通常用符号W表示,是系统的一个重要属性,它可以改变系统的体积、形状和位置等特性。
功可以通过系统对外界的压力和体积变化来进行计算。
能量转化关系根据热力学第一定律,系统的内能、热量和功之间存在一定的转化关系,可以表示为:$$\\Delta U = Q - W$$其中,$\\Delta U$表示系统内能的变化量,Q表示系统吸收的热量,W表示系统对外界做的功。
这个方程描述了系统内能、热量和功之间的平衡关系,体现了能量守恒定律在热力学中的应用。
在一定条件下,热量可以使系统内能增加,从而提高系统温度;而功可以使系统内能发生变化,改变系统的位形、位置等性质。
系统内能、热量和功之间的相互转化关系,是热力学研究中的重要内容。
总结热力学第一定律描述了系统内能、热量和功之间的转化关系,在能量守恒的基础上,揭示了系统能量的平衡和转移规律。
通过了解内能、热量和功之间的相互作用,可以更好地理解系统的热力学性质,为热力学研究提供基础。
以上是关于热力学中内能、热量和功之间转化关系的介绍,希望对您有所帮助。
热力学第一定律和第二定律
热力学第一定律和第二定律热力学第一定律1. 内容:一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么外界对物体做的功W,与物体从外界吸收的热量Q之和,等于物体的内能的增加量2. 数学表达式:W+Q=ΔU(1)Q取决于温度变化:温度升高,Q>0;温度降低,Q<0.(2)W取决于体积变化:V增大时,气体对外做功,W<0;V减小时,外界对气体做功,W>0.(3)特例:如果气体向真空扩散,那么W=0.(4)绝热过程Q=0,关键词是“绝热材料”或“变化迅速”。
3. 热力学第1定律的理解(1)做功改变物体的内能:外界对物体做功,物体内能增加;物体对外做功,物体内能减少。
在绝热过程,物体做多少功,改变多少内能。
(2)热传递改变物体的内能:外界向物体传递热量,即物体吸热,物体的内能增加;物体向外界传递热量,即物体放热,物体的内能减少。
传递多少热量,内能就改变多少。
(3)做功和热传递的实质,做功改变内能是能量的变化,用功的数值来度量;热传递改变内能是能量的转移,用热量来度量。
热力学第二定律1.热传导的方向性:热传导的过程可以自发地由高温物体向低温物体进行,但相反方向却不能自发地进行,即热传导具有方向性,是一个不可逆过程。
2.补充说明:(1)“自发地”过程就是不受外界干扰的条件下进行的自然过程;(2)热量可以自发地从高温物体向低温物体传递,却不能自发的从低温物体传向高温物体;(2)热力学第二定律的能量守恒表达式:ds≥δQ/T(3)热量可以从低温物体传向高温物体,必须有“外界的影响或帮助”,就是要由外界对其做功才能完成。
3.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传向高温物体。
(2)开尔文表述:不可能从单一热源吸收热量,使之完全变为有用功,而不引起其他变化。
第三章热力学第一定律内能
如果是等温膨胀,则
A M RT ln V2 1 8.31 300 ln 10 1.44 103(J )
V1 4
25
P
P1
P2
a
T1
b
T2
V1
V2
V
26
例2. 两个绝热的体积分别为V1和V2的容器, 用一个 带有活塞的管子连起来,打开活塞前,第一个容器
盛有氮气,温度为T1,第二个容器盛有氢气,温度
(Q )V
M
CV dT
从热力学第一定律
用于热力学第一定律则有:
M
dU CV dT
已知理想气体内能
可得
U M i RT
2
从分子运动论
定容摩尔热容 与自由度有关
气体的定压摩尔热容
定压过程:P=常量, d P =0 过程方程: V/T=常量
Q P=恒量
根据
PV M RT
P
Ⅰ
II
P
得 dA PdV M RdT
氧 28.9
21.0
7.9 1.40
三原子 水蒸气 36.2
27.8
8.4 1.31
乙 醇 87.5
79.2
8.2
1.11
例题 一气缸中有氮气,质量为1.25kg,在标准大气
压下缓慢加热,使温度升高1K.试求气体膨胀时所做
的功A、气体内能的增量U及所吸收的热量Q.(活
塞的质量及它与汽缸壁的摩擦均可忽略.)
第一类永动机
§2 热力学第一定律对理想气体等值过程的应用
2.1 理想气体的热容量 气体的定容摩尔热容
定容过程: V=常量, d V =0 过程方程:
Q
P
V=恒量
P2
功、热、内能及热力学第一定律
做功和热传递的区别与联系
(1)做功改变内能的实质: 其它形式的能和内能之间的转化
(2)热传递改变内能的实质: 各系统间内能的转移
(3)做功和热传递在改变内能的效果: 效果相同
(不同能量形式的转化) (同种能量形式的转移)
改变内能的两种方式
做功
热传递
对内
对外
吸热
放热
(外界对系统做功) (系统对外界做功) (系统从外界吸热) (系统对外界放热)
自主学习:能量守恒定律
1.各科学家对能量守恒的贡献? 2.热力学第一定律与能量守恒定律的关系?
解:取1 g水为研究对象,大气视为外界,1 g 沸腾的水变成同温度的 水蒸气需要吸收热量,同时由于体积膨胀,系统要对外做功,所以有 ΔU<Q吸.
气体在等压下膨胀做功: W=p(V2-V1)=1.013×105×(1 676-1.043)×10-6 J=169.7 J.
气体吸热:Q=mL=1×2 263.8 J=2 263.8 J. 根据热力学第一定律:
功是能量转化的量度
内能U :只依赖于系统自身状态的物理量
内能与状态参量温度、体积有关,即由它的状态决定
系统由状态1经过绝热过程到状态2内能的增加量△U=U2-U1
等于外界对系统所做的功 即 △U=W(注意W的正负)
1.系统指的是什么?
实验研究的对象是瓶中的气体与打气筒中的气体, 那么我们的系统也就是这二部分气体。
实验结论:只要重力所做的功相同,容器内水温上 升的数值都是相同的,即系统状态的变化是相同的。
焦耳二个代表性实验:焦耳热功当量实验装置—电功
实验结论:只要所做的电功相等,则系统温度上升 的数值是相同的,即系统的状态变化是相同的。
在热力学系统的绝热过程中,外界对系统所做的功仅由过程的始末 两个状态决定,不依赖于做功的具体过程和方式。
10热力学第一定律
由气体分子动理论,对刚性分子理想气体:
d E i RdT
2 d E CV,m dT
CV,m
i 2
R
C p,m CV,m
i RR
2 iR
2
i2 i
5
3
1.67
7
5
1.40
8 6
1.33
(单 ) (双) (多)
热容量是可以实验测量的。
过程进行的任一时刻系统的状态并非平衡态。
始平衡态
一系列非 平衡态
末平衡态
热力学中,为能利用平衡态的性质,引入
准静态过程的概念。
准静态过程:系统的每一状态都无限接近于 平衡态的过程。即准静态过程是由一系列平衡 态组成的过程。
准静态过程是一个理想化的过程,是实际 过程的近似。
←快
←缓慢
非平衡态 非准静态过程
①
d Q dA dE
pV RT pdV V d p RdT ②
R C p,m CV,m
③
① ② ③: d p C p,m dV dV
p
CV,m V
V
常温下 const.
dp p
dV V
ln
p
lnV
C
ln( pV ) C ln C 令
绝热过程: 系统和外界没有热量交换的过程。 例如:
良好绝热材料包围的系统发生的过程; 进行得较快而来不及和外界交换热量的
过程。 特点: d Q 0
由 dQ d E d A dE dA
热力学第一定律与内能
热力学第一定律与内能热力学是研究能量转化和守恒的物理学分支。
作为热力学的基本原理,热力学第一定律与内能密不可分。
本文将探讨热力学第一定律与内能的关系及其在能量转化中的应用。
一、热力学第一定律的概念与原理热力学第一定律又称能量守恒定律,是指在系统内部能量转化过程中,能量的增加或减少等于系统对外界做功加上或减去系统所吸收或放出的热量。
热力学第一定律可以用公式表示为:ΔU = Q - W其中,ΔU代表系统内能的变化量,Q代表系统所吸收或放出的热量,W代表系统对外界做的功。
二、内能的定义与内能变化内能是指系统的微观粒子的能量之和,包括粒子的动能和势能。
内能的变化可以通过系统吸收或放出的热量和对外界做的功来描述。
根据热力学第一定律的表达式,内能的变化可以表示为:ΔU = Q - W当系统吸热时,Q为正值,表示系统从外界吸收热量,增加内能;当系统放热时,Q为负值,表示系统向外界释放热量,减少内能。
对于做功过程,当系统对外界做功时,W为正值,表示系统做功减少内能;当外界对系统做功时,W为负值,表示系统对外界做功增加内能。
三、热力学第一定律与能量转化的应用热力学第一定律与内能密切相关,广泛应用于各个领域的能量转化过程中。
以下是一些常见的应用场景。
1. 热机热力学第一定律在热机中有重要应用。
热机是指通过吸收热量将热能转化为机械能的装置。
根据热力学第一定律,热机的效率可以表示为:η = W/Qh其中,η表示热机的效率,W为热机对外界做的功,Qh为热机从高温热源吸收的热量。
热机的效率随热量转化的方式、工作温度等因素而变化,热力学第一定律为热机的设计和优化提供了理论基础。
2. 化学反应热力学第一定律也适用于化学反应的能量变化。
化学反应通常伴随着热量的吸收或放出,根据热力学第一定律的原理,化学反应的热效应可以通过内能变化来表示。
例如,当化学反应放出热量时,反应物的内能减少,产物的内能增加;当化学反应吸收热量时,反应物的内能增加,产物的内能减少。
热力学第一定律内能与热功的关系
热力学第一定律内能与热功的关系热力学第一定律是能量守恒定律,它表明能量在物理系统中的转化和传递是受限制的。
在热力学中,内能是描述热力学系统的重要物理量,而热功是与能量转化和传递过程有关的概念。
本文将探讨热力学第一定律下内能与热功之间的关系。
1. 内能的定义与性质内能是指热力学系统所包含的微观粒子的热运动和相互作用所具有的能量总和。
内能可以包括系统的分子振动能、分子间的相互作用能、分子运动的动能等。
内能的变化可以通过热量和功来实现。
2. 热功的定义与计算热功是指系统通过与外界的物理接触而交换的能量。
根据热力学第一定律,系统的内能变化等于系统所吸收的热量与对外做功的和。
热量和热功的单位都是焦耳(J),它们的数值可以正负。
当热量或功向系统传递能量时,其数值为正;当系统向外界传递能量时,其数值为负。
热量的计算一般可以通过温度差和物体的热容来确定。
而热功的计算则涉及到系统对外界施加的力以及物体的位移。
常见的热功包括机械功和电功。
3. 内能与热功的关系根据热力学第一定律,内能变化等于系统吸收的热量与对外做功的和。
即ΔU = Q - W,其中ΔU表示系统内能的变化量,Q表示系统吸收的热量,W表示系统对外界做的功。
当系统从外界吸收热量时,热量的值为正,表示系统增加了内能。
当系统向外界释放热量时,热量的值为负,表示系统减少了内能。
当系统对外界做正功时,功的值为正,表示系统减少了内能。
当系统从外界得到功时,功的值为负,表示系统增加了内能。
需要注意的是,内能的变化是系统状态函数,而热量和功都是过程函数。
这意味着内能的变化只与系统的初末状态有关,而与达到末态的过程无关。
4. 内能转化与热功的应用内能与热功的关系在许多实际应用中都有重要的意义。
在热机中,通过外界做功使系统从高温热源吸收热量,然后将热量以低温热源的形式释放出去。
根据热力学第一定律,系统的内能变化等于吸收的热量减去对外做的功。
因此,热机的效率可以通过内能变化和热量之间的关系来分析和计算。
热力学第一定律与内能
热力学第一定律与内能热力学是研究物质之间热和功的相互转化和传递关系的学科。
其中,热力学第一定律是指能量的守恒原理,即能量不会自行产生或消失,只能在不同形式之间互相转化。
而内能作为系统的一种宏观观察物理量,是体系内各种微观粒子的平均动能和相互作用能的总和。
一、热力学第一定律热力学第一定律是指在自然界中能量守恒的基本原理。
即在一个封闭系统中,能量的改变等于系统所接收的热量和所做的功之和。
数学表达式上,热力学第一定律可以表示为:ΔU = Q + WΔU代表系统内能量的变化,Q代表系统吸热量,W代表系统所做的功。
在这个公式中,内能的变化可以有两个方向:正向表示系统内能增加,负向则表示系统内能减少。
而系统吸热和做功对这个内能变化贡献的方向则与内能变化的方向相反。
二、内能的概念内能是热力学中一个重要的概念,指的是一个封闭系统中各种微观粒子的平均动能和相互作用能的总和。
内能的表达式可以表示为:U = E + E_int其中,E代表系统的宏观动能,E_int代表系统的微观相互作用能。
内能与系统之间的热量和功关系密切。
当一个系统吸收热量时,系统内能增加;当系统做功时,系统内能减少。
内能还与物质的性质和状态有关。
不同物质、不同状态下的物质具有不同的内能。
例如,在相同的温度和压强下,液体的内能一般比气体的内能小。
三、内能的转化根据热力学第一定律,内能可以通过吸热和做功来进行转化。
这种转化可以是系统内能增加或减少的过程。
1. 吸热转化当系统吸收热量时,热量会增加系统的内能。
这个过程可以用以下公式表示:ΔU = Q其中,ΔU代表内能的变化,Q代表系统吸收的热量。
当Q为正时,表示系统吸收热量增加了系统的内能;当Q为负时,表示系统放出热量,内能减少。
2. 做功转化当系统做功时,系统内能会减少。
这个过程可以用以下公式表示:ΔU = -W其中,ΔU代表内能的变化,W代表系统所做的功。
当W为正时,表示系统做功,内能减少;当W为负时,表示外界对系统做功,内能增加。
热力学第一定律的表达式
热力学第一定律的表达式热力学第一定律的表达式:ΔE=W+Q。
在热力学中,热力学第一定律通常表述为:热能和机械能在转化时,总能量保持不变。
其数学表达式为ΔE=W+Q,其中ΔE表示系统内能的改变,W表示系统对外所做的功,Q表示系统从外界吸收的热量。
这个定律表明,能量的转化和守恒定律是自然界的基本定律之一,它适用于任何与外界没有能量交换的孤立系统。
换句话说,在一个封闭系统中,能量的总量是恒定的,改变的只是能量的形式。
因此,热力学第一定律是能量守恒定律在热现象领域中的应用。
另外,对于一个封闭系统,如果系统内部没有发生化学反应或相变等过程,那么系统对外做的功等于系统从外界吸收的热量。
这是因为系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。
值得注意的是,热力学第一定律也适用于非平衡态系统。
即使系统处于非平衡态,热力学第一定律仍然适用。
因此,它不仅是热力学的基石之一,也是整个物理学的基石之一。
为了更好地理解热力学第一定律,我们可以考虑一些具体的应用场景。
例如,在汽车发动机中,汽油燃烧产生的热能转化为汽车的动能和废气中的内能。
在这个过程中,系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。
因此,根据热力学第一定律,我们可以计算出汽车发动机的效率,从而评估其能源利用效果。
此外,热力学第一定律还可以应用于电学、化学等领域。
例如,在电学中,当电流通过电阻时会产生热量,根据热力学第一定律可以计算出电阻产生的热量。
在化学中,反应热的计算也可以根据热力学第一定律来进行。
以下是一些具体例子,说明热力学第一定律的应用:1. 热电站:在热电站中,燃料燃烧产生的热能转化为蒸汽的机械能,再转化为电能。
根据热力学第一定律,热能被转化为机械能和电能,而总能量保持不变。
通过计算输入和输出的能量,我们可以评估热电站的效率。
2. 制冷机:制冷机是一种将热量从低温处转移到高温处的设备。
在制冷过程中,制冷剂在蒸发器中吸收热量并转化为气态,然后通过压缩机和冷凝器将热量释放到高温处。
工程热力学3 内能与热力学第一定律
第三章内能与热力学第一定律3.1 能量守恒-热力学第一定律的实质能量守恒原理——自然界一切物质都具有能量。
能量可从一种形式转变为另一种形式,但不能创造,也不能消灭,能量的总量是恒定的。
本质分析:运动是物质的固有属性,是物质的存在形式,没有运动的物质正如没有物质的运动一样不可思议。
能量是物质运动的度量,物质存在各种不同形态的运动,因而能量也具有不同的形式。
各种运动形态可以相互转化,这就决定了各种形式的能量也能够相互转换。
能量的转换反映了运动由一种形式转变为另一种形式的无限能力。
物质和能量相互依存。
既然物质不能创造和消灭,能量也就不能创造和消灭。
能量守恒反映的是物质世界运动不灭、生生不息这一事实。
目前,能量这一概念已贯穿了所有物理学科,并已成为物理学中统一的概念之一。
热力学第一定律--在任何发生能量传递和转换的热力过程中,传递和转换前后能量的总量保持恒定。
热力学第一定律实质上是能量转化与守恒原理在热现象中的运用。
它给出了热能传递以及与其它形式能量转化所遵从的原则,是对任何热力系、任何过程中的各种能量进行定量分析的基本依据。
它的建立同时宣告了那种不耗费任何能量,就可连续不断对外作功的所谓第一类永动机是造不成的。
3.2 内 能3.2.1 状态参数--内能我们在第一章介绍了热和功的概念,现在将它们联系起来。
让系统按一定的方式由初始平衡态1改变到终了平衡态2,过程中系统吸收的净热量⎰21Q δ为Q ,而系统所作之净功⎰21W δ为W 。
然后来计算W Q -。
再次让系统从同一个初态1开始而改变到同一个终态2,但是这一次是按另一方式而经历一条不同的路径。
多次进行这样的实验,但每次所取的路径不同。
我们就会发现,在每一情形中,W Q -都相同。
也就是说,虽然Q 与W 各自与所取路径有关,但W Q -与却与系统从初态1改变到终态2的路径完全无关,而只与初、终两个(平衡)状态有关。
图3-1 不同路径的热力过程结论:在热力学中,存在着一个状态函数,这个函数在系统终态时的数值减去它在系统初态时的数值就等于这个过程中的变化量W Q -。
热力学第一定律
P2V2
ln
V2 V1
7
又 ∵ 等温过程有
V2 P1 V1 P2
有
AT
P1V1 M
ln P1 P2 RT
ln
P2V2 P1
ln
P1 P2
M mol
P2
(3)强调QT=AT
即在等温过程中,系统的热交换不能直接计算,但可用等 温过程中的功值AT来间接计算。
8
※三种过程中气体做的功
等体过程
(1)特征:dT=0, ∴dE=0 热一律为 QT=AT
在等温过程中,理想气体所吸收 的热量全部转化为对外界做功,系 统内能保持不变。
(2)等温过程的功
PI
P1
P2
o
V1
II
V2 V
∵T=C(常数),
P RT 1
V
dAT PdV
AT
V2 RTdV RT ln V2
V V1
V1
P1V1
ln
V2 V1
T1)
M M mol R(T2 T1)
5
C p
C V
R i2R 2
──此即迈耶公式
(3)比热容比:
定义
Cp
Cv
i 2
RR iR
i2 i
2
对理想气体刚性分子有:
单原子分子:
双原子分子:
5 3 7 5
1.67 1.4
*: 经典理论的缺陷
多原子分子:
8 6
1.33
6
3、等温过程
1
符号规定
Q
吸热为正, 放热为负.
系统对外做功为正, A 外界对系统做功为负.
各物理量的单位统一用国际单位制。
热力学第一定律内能与热量
热力学第一定律内能与热量热力学第一定律:内能与热量的关系热力学第一定律是热力学的基本原理之一,它揭示了内能与热量之间的密切关系。
本文将详细讨论内能与热量的概念、内能变化与热量传递的关系,以及热力学第一定律的应用。
一、内能的概念及性质内能是热力学中的基本概念,它代表了系统的热运动能量和分子间势能的总和。
内能的记号为U,它与物质的物态、温度、压力等因素有关。
内能的性质一:内能是一个状态函数,即内能的变化只与初末状态有关,与路径无关。
这意味着在相同初末状态下,无论通过何种路径达到终态,内能的变化量是相同的。
内能的性质二:内能被定义为单位质量或单位摩尔物质的能量,通常以焦耳(J)或千焦(kJ)为单位。
二、内能变化与热量传递内能的变化可以通过两种方式实现:一是通过热量传递,二是通过做功。
根据热力学第一定律,系统的内能变化等于吸收的热量与对外界所作的功之和。
1. 热量传递热量(Q)是能量的一种传递形式,它是由于温度差而产生的能量传递。
根据热力学第一定律,当热量从高温物体传递到低温物体时,高温物体的内能减少,低温物体的内能增加。
2. 做功做功是指系统对外界做功的能力。
在内能变化中,若系统对外界做功,则内能减小;反之,若外界对系统做功,则内能增加。
做功的单位为焦耳(J)。
三、热力学第一定律的应用热力学第一定律在能量转化与守恒、热工学领域等方面有着广泛的应用。
1. 能量转化与守恒热力学第一定律指出能量守恒的基本原理,系统的能量不会凭空消失或产生,只能在不同形式之间相互转化。
通过合理利用内能变化与热量传递的关系,可以实现能量的高效转化。
2. 热工学领域热力学第一定律在热工学领域有广泛的应用,如热机、热泵、制冷器等设备。
通过热力学第一定律,可以优化设备的能量利用效率,并提高整体系统的性能。
结语热力学第一定律揭示了内能与热量之间紧密的关系,为能量转化与守恒提供了基本原理。
对于热力学的研究和应用具有重要意义。
通过深入理解内能和热量的概念,并将热力学第一定律运用于实际问题中,我们可以更好地利用能量资源,提高能源利用效率。
热力学第一定律内能和热量的转化关系
热力学第一定律内能和热量的转化关系热力学是研究物体能量转化和能量传递规律的学科,而热力学第一定律是热力学的基本原理之一。
该定律表明,在能量转化和传递过程中,能量既不能被创造也不能被消灭,只能转化成其他形式。
其中,热能作为一种常见的能量形式,在能量转化和传递中发挥着重要的作用。
本文将介绍热力学第一定律的内能和热量的转化关系。
一、热力学第一定律的基本原理热力学第一定律又被称为能量守恒定律,它表明一个封闭系统的能量总量是恒定的。
简单来说,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
根据该定律,封闭系统内能的变化是通过热量和功来实现的。
二、内能的概念和表示内能是一个物体所具有的热能和势能的总和,是一个系统所固有的能量。
它反映了系统中粒子之间相互作用和微观粒子的运动状态。
内能通常用符号U表示,单位是焦耳(J)。
三、热量的概念和表示热量是一种能量的传递方式,指的是由于温度差异而传递的能量。
例如,当两个物体的温度不同时,高温物体向低温物体传递能量的过程就是热传递。
热量通常用符号Q表示,单位也是焦耳(J)。
四、内能和热量的转化关系根据热力学第一定律,内能和热量存在着一种转化关系。
当系统吸收热量时,系统的内能会增加;相反,当系统释放热量时,系统的内能会减少。
内能和热量的转化关系可以用以下公式表示:ΔU = Q - W其中,ΔU表示系统内能的变化量,Q表示系统吸收或释放的热量,W表示系统对外界做功。
根据正负号的不同,可以分为以下几种情况:- 当ΔU > 0时,表示系统吸收了热量,内能增加,系统作功;- 当ΔU < 0时,表示系统释放了热量,内能减少,系统从外界获得了功;- 当ΔU = 0时,表示系统既不吸收也不释放热量,内能保持不变,系统既不作功也不接受功。
五、热力学第一定律的应用热力学第一定律可以广泛应用于各个领域,尤其在能源转化和利用中具有重要意义。
通过热力学第一定律,我们可以分析和计算能量转化和传递的效率,为能量的合理利用提供依据。
热力学第一定律能量守恒
热力学第一定律能量守恒热力学第一定律:能量守恒热力学第一定律是能量守恒原理在热力学中的体现。
它表明,在一个封闭系统中,能量不能被创造或销毁,只能从一种形式转化为另一种形式。
本文将介绍热力学第一定律,并探讨其在能源转化和可持续发展中的重要性。
在热力学中,能量被分为几种形式,包括内能、机械能和热能等。
热力学第一定律指出,系统的能量变化等于系统所吸收的热量和做功之和。
这可以用以下方程式来表示:ΔU = Q - W其中,ΔU表示系统内能的变化,Q代表系统吸收的热量,W表示系统对外界所做的功。
根据这个方程式,我们可以看出,如果系统吸收的热量大于做的功,系统的内能将增加;而如果系统的做功大于吸收的热量,系统的内能将减少。
热力学第一定律的重要性体现在能源转化和可持续发展中。
能源转化是将一种形式的能量转化成另一种形式的过程。
热力学第一定律告诉我们,在能源转化中,能量是守恒的,不会凭空消失或增加。
这意味着我们需要合理利用现有能源资源,避免浪费和不必要的能量损失。
可持续发展是当今社会面临的一项重要任务。
热力学第一定律在可持续发展中发挥着重要作用。
对于能源的利用,我们需要追求高效能源转化,减少能量的浪费和环境的破坏。
通过优化能源系统的设计和运行,我们可以提高能源利用效率,减少对环境的负面影响。
另外,热力学第一定律也与能源管理密切相关。
对于工业生产和建筑设计等领域,合理利用能源是节约成本、提高效益的重要手段。
通过实施有效的能源管理措施,如能源审计、能源监测和能源优化等,可以更好地控制能源消耗,实现能源的可持续利用。
总结起来,热力学第一定律是能量守恒原理在热力学中的体现。
它告诉我们能量是不会凭空消失或增加的,只能从一种形式转化为另一种形式。
在能源转化和可持续发展中,热力学第一定律的重要性不可忽视。
我们需要合理利用能源资源,追求能源的高效转化,以实现能源的可持续利用。
通过有效的能源管理措施,我们可以减少能源消耗,降低环境污染,推动社会的可持续发展。
热力学第一定律 摩尔热容
热力学第一定律摩尔热容21()Q U U A U A =-+=∆+则有: — 热力学第一定律A QU 1U 2一、热力学第一定律热力学第一定律的实质就是包含热现象在内的能量守恒定律。
具有普适性,适用于一切系统,对固、液、气都成立;适用于一切过程,包括非平衡过程。
热力学第一定律是1942年迈耶提出来的,表明:系统从外界吸收的热量一部分用来增加自身的热力学能(内能),一部分用来对外界做功。
系统从状态1变化到状态2,内能从U1变为U2,对外作功A ,同时从外界吸收热量Q(1)定律中的热量、功和热力学能增量都是代数量,可正可负Q > 0 系统吸热 说明:规定:A > 0 表示系统对外正作功A<0 系统对外界作负功(或外界对系统做正功)Q <0 系统放热系统热力学能增加 系统热力学能减少0<U ∆0>U ∆(2)对任意元过程有: d d d Q U A=+V∆U= 0pA = QQ“第一类永动机” 不可能制成(3)循环过程:系统对外界所做的净功等于它从外界吸收的净热量第一类永动机:不用吸热就可以对外做功的机械循环过程:如果系统经过一系列变化又回到初始状态,这样的过程叫作循环过程。
是微小量,不是全微分,以示区别加横短线 d d Q A ,第一定律也可表述为:系统经过循环过程要做功而不吸热是 不可能的。
故放出热量为600J例:某一定量气体由状态a 沿路径m 变化到状态b ,吸热800J ,对外作功500J ,问气体内能改变了多少?如果气体沿路径n 由状态b 回到状态a ,外界对气体作功300J ,问气体放出多少热量?a b P VO m n bV aV对于路径n 有 = -300-300= -600J800500300b a amb amb U U U Q A J J J ∆=-=-=-=解: bna bna a b bnaQ U A U U A '=∆+=-+二、 气体的摩尔热容量比热: 单位质量物质温度升高 所吸收的热量,用 表示 K 1c 摩尔热容量:物质温度升高1度所吸收的热量,用 表示mol 1C cM TM QM T M M Q TQC mol mol mol====∆∆∆ν等体过程:2V mQ i C R T ν==∆,——定体摩尔热容量2iQ U R Tν=∆=∆,m V V Q C T ν=∆等体过程吸热:等压过程: ,22P mQ i C R T ν+==∆ ——定压摩尔热容量)(212T T R iU -=ν∆212121()()VV A PdV P V V R T T ν==-=-⎰212()2i Q U A R T T ν+=∆+=-等压过程吸热: ,m P P Q C Tν=∆,,P mV m C C R=+使 理想气体温度升高 经过等压过程比等体过程多吸收的热量,这一部分热量转化成等压过程气体对外界的功了 K 18.31R J =mol 1,2V mi C R =,22P m i C R+=⎪⎪⎪⎩⎪⎪⎪⎨⎧====)(33.168)(40.157)(67.135多双单 m m222p V i R RC i i C i Rγ++===,,比热容比:将表所列气体的热容量和γ值的理论值与实验值对比,可以看出单原子、双原子分子气体二者符合较好,而对于多原子分子气体二者有较大差别。
热力学第一定律内能变化与热量的关系
热力学第一定律内能变化与热量的关系热力学是研究物质能量转换和传递规律的科学,而热力学第一定律是其核心内容之一。
热力学第一定律描述了能量守恒的原理,即能量不会凭空消失或产生,只会在系统内进行转换和传递。
在热力学中,内能是一个非常重要的概念,它是物质微观粒子的动能和势能之和。
本文将探讨热力学第一定律与内能变化以及热量之间的关系。
一、热力学第一定律的表达式热力学第一定律可以通过一个简洁而常见的公式表达,即:ΔU = Q - W其中,ΔU代表系统内能的变化量,Q代表系统吸收的热量,W代表系统对外界做的功。
这个公式直观地表达了内能、热量和功之间的关系。
根据这个公式,系统内能的变化量等于系统吸收的热量减去系统对外界做的功。
二、内能变化与热量传递的关系从热力学第一定律的表达式可以看出,内能的变化量与吸收的热量直接相关。
如果系统吸收的热量为正值,那么内能的变化量也为正值;反之,如果系统吸收的热量为负值,那么内能的变化量也为负值。
内能的变化是由于系统吸收或释放热量,而热量的传递方式多种多样。
热量可以通过传导、辐射和对流等方式传递。
无论是哪种方式,系统吸收的热量都会导致内能的变化。
当系统吸收热量时,系统的内能会增加;当系统释放热量时,系统的内能会减少。
三、内能变化与功的关系热力学第一定律中的W代表系统对外界做的功。
功可以看作是能量的传递方式之一,能量从一个系统传递给另一个系统或外界时,就发生了功的转移。
系统对外界做功时,内能的变化与吸收的热量之间存在一定的关系。
如果系统对外界做正功,即系统向外界传递能量,那么内能的变化量就会减小。
这是因为一部分能量通过功的形式从系统转移到外界,导致系统内能的减少。
反之,如果系统对外界做负功,即外界向系统传递能量,那么内能的变化量就会增加,系统内能会增加。
四、内能的守恒根据能量守恒定律,在一个封闭系统中,内能的总和保持不变。
即使存在内能的变化,系统的初始内能与最终内能的总和仍然相等。
热力学第一、二定律
二、能量守恒定律
内容:能量既不会凭空产生, 1、内容:能量既不会凭空产生,也不会凭 空消失,它只能从一种形式转化为另一种形式, 空消失,它只能从一种形式转化为另一种形式, 或者从一个物体转移到另一个物体, 或者从一个物体转移到另一个物体,在转化或 转移的过程中其总量不变. 转移的过程中其总量不变.
热力学第一定律 能量守恒定律 热力学第二定律
思考:改变物体内能的方式有做功和热传递 两种,如果物体在跟外界同时发生做功和热 传递,内能的变化与热量Q及做的功W之间 又有什么关系呢?
一、热力学第一定律
1、热力学第一定律的内容 ——物体内能的增量等于外界向它传递的热量与外 物体内能的增量等于外界向它传递的热量与外 界对它所做的功的和。 界对它所做的功的和。这个关系叫做热力学第一定 律。 2、热力学第一定律的表达式
2、能量守恒定律的意义: 、能量守恒定律的意义:
①能的转化和守恒定律是普遍的定律,是分析解决问题的重要 能的转化和守恒定律是普遍的定律, 能的转化和守恒定律是普遍的定律 的方法,能量守恒定律是认识自然 改造自然的有力武器。 能量守恒定律是认识自然、 的方法 能量守恒定律是认识自然、改造自然的有力武器。 ②能的转化和守恒定律庄严宣告了永动机幻想的彻底破灭,即第 能的转化和守恒定律庄严宣告了永动机幻想的彻底破灭, 能的转化和守恒定律庄严宣告了永动机幻想的彻底破灭 一类永动机(不消耗能量却能源源不断地对外做功的机器) 一类永动机(不消耗能量却能源源不断地对外做功的机器)不可 能制成(原因:违背了能量守恒定律)。 能制成(原因:违背了能量守恒定律)。
两种表述是等价的。 2、两种表述是等价的。
3、热力学第二定律的意义: 热力学第二定律的意义:
——揭示了自然界中涉及热现象(即有大量分子参 揭示了自然界中涉及热现象( 揭示了自然界中涉及热现象 的宏观过程的方向性, 与)的宏观过程的方向性,是独立于热力学第一定 律的一个重要自然规律。 律的一个重要自然规律。
热力学第一定律
负号表明内能减少了220J
课堂练习
1、关于物体内能的变化情况,下列说法正 确的 是( CD ) A 吸热的物体,其内能一定增加 B 体积膨胀的物体,其内能一定减少 C 放热的物体,其内能也可能增加 D 绝热压缩的物体,其内能一定增加
2、汽车关闭发动机后恰能沿斜坡匀速运动, 在这一过程中( ) D A 汽车的机械能守恒 B 汽车的动能和势能相互转化 C 机械能逐渐转化为内能,总能量逐渐减小 D 机械能逐渐转化为内能,总能量不变
(2005全国理综)如图所示,绝热隔板K把绝热 的气缸分隔成体积相等的两部分,K与气缸壁的 接触是光滑的,两部分中分别盛有相同质量、 相同温度的同种气体a和b,气体分子之间相互作 用势能可忽略。现通过电热丝对气体a加热一段时 间后,a、b各自达到新的平衡( BCD ) A a的体积增大了,压强变小了 B b的温度升高了 C 加热后a的分子热运动比b的分子热运动更剧烈 D a增加的内能大于b增加的内能
内容2:第一类永动机不可能制成
的功 是135J,同时向外放热85J,气体内能的变化量 是多少?内能是增加了还是减少了?
解:⑴体积膨胀是气体对外做功 ⑵由热力学第一定律得:△U=W+Q
△ U (135 J ) (85 J ) 220 J
10-1 热力学第一定律
一.改变内能的两种方式: 1.做功 2.热传递: ①传导②对流③辐射 3.特点:做功与热传递在改变物体内能 上是等效的
二.热力学第一定律: 1.内容:系统从外界吸收的热量与外界对系统做 功的和,等于系统内能的增加量 2.公式:△U=W+Q 3.符号法则:△U:增正减负;Q:吸正放负; W:对内做功取正,对外做功取负 二.能量守恒定律: 内容1:能量既不会凭空产生,也不会凭空消 失,它只能从一种形式转化为另一种形式,或 者从一个物体转移到另一个物体,在转化和转 移的过程中能的总量保持不变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、改变物体内能的两种方式
内能和其他形 式能的转化
做功
是不同物体或同一物体 不同部分内能的转移
Hale Waihona Puke 热传递对内(外界对物体 做功)
对外
(物体对外界 做功)
吸热
(物体从外界 吸热)
放热
(物体对外界 放热)
内能增加
内能减少
内能增加
做功和热传递在改变物体的内能上是等效的
内能减少
热七力、学热第力一学定第律一定律
2020/12/3
5、热传递具有方向性。 热量从高温物体传递到低温物体,或从物体的高温 部分传递到低温部分,不会自发的从低温物体传递 到高温物体或从物体的低温部分传递到高温部分。
2020/12/3
五、热和内能
1、在外界对系统没有做功的情况下, 内能和热量之间有什么样的关系呢?
△U=Q
即在外界对系统不做功 的情况下,外界传递给系 统的热量等于系统内能的 改变量
ΔU
+
系统内能 增加
-
系统内能 减少
四个理想气体热学过程
物理量 热学过程
压强P 体积V 温度T 内能U 热量Q 功W
等温过程 增大 减小 不变 不变 放热 +
增大
升高 增加 吸热 0
等容过程
不变
等压过程 不变 减小 降低 减少 放热 +
增大 减小 升高 增加 绝热过程
0
+
1836年俄国 化学家盖斯
(3)若过程的始末状态物体的内能不变,即ΔU=0,则W +Q=0或W=-Q,外界对物体做的功等于物体放出的 热量。
热力学第一定律 △U=W+Q
定律中各量的正、负号及含义
物理量 W Q
符号 + +
意义
符 号
外界对系统做 功(系统的体
-
积减小)
系统吸收 热量
-
意义
系统对外界做功 (系统的体积增大)
系统放出热 量
三、内能
在热力学系统的绝热过程中,外界对系统所做的功 仅由过程的始末两个状态决定,不依赖于做功的具体 过程和方式。
功是能量转化的量度
内能U :任何一个热力学系统都必定存在一
个只依赖于系统自身状态的物理量, 这个物理量在两个状态间的差别与外 界在绝热过程中对系统所做的功相联 系。我们把这个物理量称为系统的内 能。
内能 热力学第一定律
结论:做功使得物体(密闭气体)温度升高
二、焦耳的实验
焦耳
1818年12月24日生于英国曼彻斯 特 ,起初研究电学和磁学。 1840年 在英国皇家学会上宣布了电流通过 导体产生热量的定律,即焦耳定律 。焦耳测量了热与机械功之间的当 量关系——热功当量,为热力学第 一定律和能量守恒定律的建立奠定 了实验基础。
一个物体,如果跟外界同时发生做功和热传 递的过程物体内能的增加为
U=W+Q
一个热力学系统的内能增量等于外界向它传 递的热量与外界对它所做功的和
上式在物理学中叫做热力学第一定律。
几种特殊情况
(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体 做的功等于物体内能的增加。
(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收 的热量等于物体内能的增加。
热传导--热沿着物体传递的方式。不同物质传到热 的能力各不相同。
热对流--靠液体或气体的流动来传递热的方式 ,热对流是液体和气体所特有的热传递方式。
热辐射--热从高温物体向周围以电磁波的形 式沿直线辅射出去的方式,热辐射不依赖媒介 质,可在真空中进行,温差越大,表面颜色越 深,物体向外的热辐射能力越强。
实验结论:只要所做的电功相等,则系统温度上升 的数值是相同的,即系统的状态变化是相同的。
从焦耳的实验中可以得出什么结论?
1、在各种不同的绝热过程中,系统状态的改变与做 功方式无关,仅与做功数量有关。
2.测出了热功当量(热与机械功之间的当量 关系),为热力学第一定律和能量守恒定律 的建立奠定了实验基础。
(3)物体的内能大,并不意味着做功多.在绝 热过程中,只有内能变化较大时,对应着做功较 多.
四、热传递
1 、两个温度不同的物体互相接触时温度高的物体要降温, 温度低的物体要升温,并将持续到系统间达到热平衡即温度 相等为止,这个过程称之为热传递。
2、热传递的三种方式:热传导、热对流、热辐射
2020/12/3
3.以焦耳的实验为基础的热力学第一定律,实际上就 是内能与其它能量发生转化时的能量守恒定律
能量守恒定律发现的意义
1.在20世纪30年代初,W.泡利和E.费米根据能 量守恒定律预言了中微子的存在并在后来得到证实。
对能量守恒定律的理解
1.每一种物质运动形式对应一种能量。 2.当发生能量从一种形式转化为另一种形式时,是通
过__做__功____实现的。这种转化意味着物质运动可由一
种形式转化成其他形式。
大量事实证明,任何形式的能转化为别种形式的 能时,总的能量都是守恒的。
在物质运动形式不变时,能量只从物体间转 移,能的形式不会改变。
2020/12/3
3.热传递的实质:
热传递实质上传递的是能量,结果是改变了系 统的内能。传递能量的多少用热量来量度。 4.传递的热量与内能改变的关系
①在单纯热传递中,系统从外界吸收多少热量 ,系统的内能就增加多少。即ΔU= Q吸
②在单纯热传递中,系统向外界放出多少热量, 系统的内能就减少多少。即Q放= -ΔU
绝热过程:
系统只由于外界对它做功而与外界交换能量,它不从 外界吸热,也不向外界放热,这样的过程叫绝热过程。
焦耳实验是一个需要在绝热过程中完成的实验
焦耳二个代表性实验:焦耳热功当量实验装置—机械功
实验结论:只要重力所做的功相同,容器内水温上 升的数值都是相同的,即系统状态的变化是相同的。
焦耳二个代表性实验:焦耳热功当量实验装置—电功
(1)系统的内能与状态参量温度、体积有关, 即由它的状态决定。
(2)内能的增加量△U=U2-U1等于外界对系统
所做的功
△U=W
b
K
c 气体A a 气体C
d
外界对物体做多少功,就有多少其他形10-1式-2 的能转 化为内能,物体的内能就增加多少;物体对外界 做多少功,就有多少内能转化为其他形式的能, 物体的内能就减少多少.
1841—1842 年德国医生
J.R.迈尔
德国科学家 H.亥姆霍兹
八、能量守恒定律
1.定律内容:
能量既不能凭空产生,也不能凭空消失,它只 能从一种形式转化为另一种形式,或从一个物 体转移到别一个物体,在转化和转移的过程中 其总量保持不变。
2.物理意义:
首先是各种形式能量间的转化,其次是转化中 的守恒。