2017年山东春季高考数学试题及答案

合集下载

最新山东春季高考数学模拟试卷及答案(四)

最新山东春季高考数学模拟试卷及答案(四)

题目简单2017年山东春季高考数学模拟试卷及答案(四)第Ⅰ卷(选择题、填空题共45分)一、选择题:(下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第II 卷上指定的位置. 本大题共10小题,每小题3分,计30分)1. 图中物体的形状类似于(). (A )棱柱(B )圆柱(C )圆锥(D )球(第1题)2.化简20的结果是().(A)25 (B)52 (C) 210. (D)543. 如图所示,BC =6,E 、F 分别是线段AB 和线段AC 的中点,那么线段EF 的长是().(A )6 (B )5 (C )4.5 (D )3 4.有6张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8,9.若将这六张牌背面朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为().(A)23(B)12(C)13(D)165.在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是().(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格6. 三峡大坝坝顶从2005年7月到9月共92天将对游客开放,每天限接待1000人,在整个开放期间最多能接待游客的总人数用科学记数法表示为()人.(A )92×103(B )9.2×104(C )9.2×103(D )9.2×1057.如图,希望中学制作了学生选择棋类、武术、摄影、刺绣四门校本课程情况的扇形统计图. 从图中可以看出选择刺绣的学生为().(A)11% (B)12% (C) 13% (D)14%8.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有人提出了4种地砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不能进行密铺的地砖的形状是().(A) ① (B) ② (C) ③ (D) ④9.实数m 、n 在数轴上的位置如图所示,则下列不等关系正确的是().(A )n <m(B )n 2<m2(C )n 0<m 0(D )| n |<| m |(第9题)10.如图所示的函数图象的关系式可能是().(A )y = x (B )y =x1(C )y = x 2(D) y =1x二、填空题:(请将答案填写在第II 卷上指定的位置.本大题共5小题,每小题3分,计15分)-1mn-2(第12题)21ODCBA11.如果收入15元记作+15元,那么支出20元记作元.12.如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2= .13.已知,在Rt △ABC 中∠C =90°,∠BAC =30°,AB =10,那么BC=.14.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:15.如图,时钟的钟面上标有1,2,3,……,12共12个数,一条直线把钟面分成了两部分.请你再用一条直线分割钟面,使钟面被分成三个不同的部分且各部分所包含的几个数的和都相等,则其中的两个部分所包含的几个数分别是和. 。

2017年山东春季高考数学模拟试卷及答案(五)(DOC)

2017年山东春季高考数学模拟试卷及答案(五)(DOC)

山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 2017年山东春季高考数学模拟试卷及答案(五)一、选择题(让你算的少,要你想的多,只选一个可要认准啊!每小题3分,共24分)1.下列说法正确的是 ( ) A .-1的倒数是1 B. -1的相反数是-1 C. 1的算术平方根是1 D. 1的立方根是±12.下列运算错误的是 ( )A .3252a 3a 5a +=B .236a a ()= C .235a a a = D .24215a 5a a÷= 3.地球赤道长约为4410⨯千米,我国最长的河流——长江全长约为36.310⨯千米,赤道长约 等于长江长的 ( ) A .7倍 B .6倍 C .5倍 D .4倍 4.如图1,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠, B 点恰好落在AB 的中点E 处,则∠A 等于 ( ) A .25° B .30° C .45° D .60° 5.不等式组x 5332x 1⎧⎨⎩+≥-≥-的解集表示在数轴上正确的 ( )6.如图2,已知EF 是梯形ABCD 的中位线,若AB =8,BC =6, CD =2,∠B 的平分线交EF 于G ,则FG 的长是( )C ABD E(图1)CDFGEA B(图2)山东春季高考模拟试题---- 根据历年春季高考考试大纲出题OA B(图∵∠AOB=∠∴=.A.OABCD(图∵=∴AB=CD.B.OA B(图∵的度数为40°,∴∠AOB=80°.C.DOA BEMN(图∵MN垂直平分AD,∴=.D.A.1 B.1.5 C.2 D.2.57.观察图3-图6及相应推理,其中正确的是()8.一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图7所示,那么甲、乙两人单独完成这件工作,下列说法正确的是()A.甲的效率高 B.乙的效率高C.两人的效率相等 D.两人的效率不能确定二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共36分)9.在实数-2,13,0,-1.2,2中,无理数是。

2017年高考山东卷数学(理)【答案加解析】

2017年高考山东卷数学(理)【答案加解析】

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数A ,函数y=ln(1-x)的定义域为B,则A B =(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.(2)已知a R ∈,i是虚数单位,若,4z a z z =⋅=,则a= (A )1或-1 (B(C )(D【答案】A【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.(3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是(A ) p q ∧ (B )p q ⌝∧ (C ) p q ⌝∧ (D )p q ⌝⌝∧ 【答案】B(4)已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6【答案】C【解析】由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C.(5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为(A )160 (B )163 (C )166 (D )170【答案】C【解析】22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.(6)执行两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,0【答案】D【解析】第一次227,27,3,37,1x b a =<=>= ;第二次229,29,3,39,0x b a =<===,选D.(7)若0a b >>,且1ab =,则下列不等式成立的是 (A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b <+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【解析】221,01,1,log ()log 1,2a ba b a b ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. (8)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A )518 (B )49 (C )59(D )79【答案】C【解析】125425989C C =⨯ ,选C. (9)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.(10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞(C )()23,⎡+∞⎣(D )([)3,+∞【答案】B二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】()1C 3C 3rr r r r r n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.(12)已知12,e e 12-e 与12λ+e e 的夹角为60,则实数λ的值是 .【解析】)()221212112122333e e e e e e e e e λλλλ-⋅+=+⋅-⋅-=,()2221233232e e e e e e e -=-=-⋅+=,()22221221e e e e e e e e λλλλ+=+=+⋅+=+,2cos601λ==+λ=. (13)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .【答案】22π+【解析】该几何体的体积为21V 112211242ππ=⨯⨯⨯+⨯⨯=+. (14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】2y x =±(15)若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+【答案】①④【解析】①()22xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xxxxe ef x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x e x =⋅,令()3xg x e x =⋅,则()()32232xxxg x e x e x x ex '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22x x e f x e x =+,令()()22xg x ex =+,则()()()2222110xx x g x e x e x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.三、解答题:本大题共6小题,共75分。

2017年普通高等学校招生全国统一考试数学试题理(山东卷,含解析)

2017年普通高等学校招生全国统一考试数学试题理(山东卷,含解析)

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数x 2y=4-的定义域A ,函数y=ln(1-x)的定义域为B,则A B =(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.(2)已知a R ∈,i 是虚数单位,若3,4z a i z z =+⋅=,则a= (A )1或-1 (B )7-7或 (C )-3 (D )3 【答案】A【解析】由3,4z a i z z =+⋅=得234a +=,所以1a =±,故选A.(3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是 (A ) pq∧ (B )p q⌝∧ (C )p q ⌝∧ (D )p q ⌝⌝∧【答案】B(4)已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6 【答案】C【解析】由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C. (5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225ii x==∑,1011600i i y ==∑,ˆ4b=.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170 【答案】C【解析】22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.(6)执行两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,0【答案】D【解析】第一次227,27,3,37,1x b a =<=>= ;第二次229,29,3,39,0x b a =<===,选D. (7)若0a b >>,且1ab =,则下列不等式成立的是(A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b<+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【解析】221,01,1,log ()log 21,2aba b a b ab ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. (8)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 (A )518 (B )49 (C )59(D )79 【答案】C【解析】125425989C C =⨯ ,选C. (9)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A. (10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y x m =+的图象有且只有一个交点,则正实数m的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞ (C )()0,223,⎤⎡+∞⎦⎣(D )([)0,23,⎤+∞⎦【答案】B二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】()1C 3C 3rr r r rr n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.(12)已知12,e e 123-e e 与12λ+e e 的夹角为60,则实数λ的值是 .3【解析】()()2212121121223333e e e e e e e e e e λλλλ-⋅+=+⋅-⋅-=,()22212121122333232e e e e e e e e -=-=-⋅+=,()222221212112221e e e e e e e e λλλλλ+=+=+⋅+=+22321cos601λλλ=+=+,解得:33λ=. (13)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .【答案】22π+【解析】该几何体的体积为21V 112211242ππ=⨯⨯⨯+⨯⨯=+. (14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】22y x =±(15)若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+【答案】①④【解析】①()22xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x e x =⋅,令()3xg x e x =⋅,则()()32232xxxg x e x e x x ex '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22x x e f x e x =+,令()()22x g x e x =+,则()()()2222110xx x g x ex e x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.三、解答题:本大题共6小题,共75分。

2017届山东省高考模拟(一)数学试卷及答案 精品

2017届山东省高考模拟(一)数学试卷及答案 精品

2017年春季高考第一次模拟考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第I 卷(选择题,共60分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在小答题卡上。

2.每小题选出答案后,用铅笔把小答题卡上对应题目的答案标号涂黑,如需改动,用橡皮 擦干净后,再选涂其它答案,不能答在试题卷上。

一、单项选择题(本大题共20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.满足{1}⊂≠A ⊆{1,2,3,4} 的集合有( )A 、5个B 、6个C 、7个D 、8个 2、若点(,9)a 在函数3x y =的图象上,则tan 6πa 的值为( )A.0B.3. 一元二次不等式220xx -++>的解集是( )A 、{}/12x x x <->或B 、{}/12x x -<<C 、{}/21x x x <->或 D.{}/21x x -<< 4.函数()22lg 12y xx =-+-的定义域是 A.()(),11,-∞-+∞ B.()1,1- C.()(),11,2-∞- D.()()(),11,22,-∞-+∞5、若直线x-y+m=0与圆x 2+y 2=2相切(m >0),则m=( ) A.2 B. -2 C. 2 D. ±26、下列说法正确的是( )A.a>b 是ac 2>bc 2的充要条件 。

B.b 2=ac 是a 、b 、c 成等比数列的充要条件。

C.1sin 2α=是30α=的充要条件。

D. ,m n m α∥⊥则n α⊥7、公差不为零的等差数列}{n a 的前n 项和为n S 。

2017年山东春季高考数学模拟试卷及答案(二)

2017年山东春季高考数学模拟试卷及答案(二)

山东春季高考模拟试题---- 根据历年春季高考考试大纲出题2017年山东春季高考数学模拟试卷及答案(二)一、选择题(本大题共5小题,每小题3分,共15分。

每小题给出四个答案,其中只有一个是正确的,请你把正确答案的字母代号用2B铅笔填涂在答题卡相应的位置上)。

1.如果向前运动5m记作+5m,那么向后运动3m,记作A.8mB.2mC.-3mD.-8m2.马大哈同学做如下运算题:①x5+ x5=x10②x5-x4=x ③x5•x5= x10④x10÷x5=x2⑤(x5)2=x25其中结果正确的是A.①②④B.②④C.③D.④⑤3.一个塑料袋丢弃在地上的面积约占0.023m2,如果100万个旅客每人丢一个塑料袋,那么会污染的最大面积用科学记数法表示是A.2.3×104m2B. 2.3×106m2C. 2.3×103m2山东春季高考模拟试题---- 根据历年春季高考考试大纲出题D. 2.3×10-2m2相交,则函数y=k/ x的图象所在的象限是4.若函数y=2 x +k的图象与y轴的正半轴...A.第一、二象限B.第三、四象限C.第二、四象限D.第一、三象限5.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是A.2B.4C.8D.10山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 题 号二三四五小 计本卷总得 分1819 20 21 22 23 得 分(说明:由于本试卷第15小题另加3分,以上小计若超过105分,则作105分计算填入本卷总得分栏中)第 二 卷(非选择题。

共8页,满分105分)二、填空题(本大题共7小题,每小题3分,共21分。

请你把答案填在横线的上方)。

得分 评卷人山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 6.不等式组2>66<0x x ⎧⎨-⎩的解集是_____________________________________。

2017年山东春季高考数学模拟试卷及答案(五)

2017年山东春季高考数学模拟试卷及答案(五)

山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 2017年山东春季高考数学模拟试卷及答案(五)一、选择题(让你算的少,要你想的多,只选一个可要认准啊!每小题3分,共24分)1.下列说法正确的是 ( ) A .-1的倒数是1 B. -1的相反数是-1 C. 1的算术平方根是1 D. 1的立方根是±12.下列运算错误的是 ( )A .3252a 3a 5a +=B .236a a ()= C .235a a a = D .24215a 5a a÷= 3.地球赤道长约为4410⨯千米,我国最长的河流——长江全长约为36.310⨯千米,赤道长约 等于长江长的 ( ) A .7倍 B .6倍 C .5倍 D .4倍 4.如图1,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠, B 点恰好落在AB 的中点E 处,则∠A 等于 ( ) A .25° B .30° C .45° D .60° 5.不等式组x 5332x 1⎧⎨⎩+≥-≥-的解集表示在数轴上正确的 ( )6.如图2,已知EF 是梯形ABCD 的中位线,若AB =8,BC =6, CD =2,∠B 的平分线交EF 于G ,则FG 的长是( )C ABD E(图1)CD FGEA B(图2)山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 O A BA 'B '(图∵∠AOB =∠A OB ''∴ AB= A B ''. A.OABCD(图∵ AD= BC ∴AB =CD.B.OAB(图∵ AB的度数为40°, ∴∠AOB =80°.C.DOA BE M N(图∵MN 垂直平分AD , ∴ AM= ME . D.A .1B .1.5C .2D .2.5 7.观察图3-图6及相应推理,其中正确的是( )8.一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分 由乙继续完成,设这件工作的全部工作量为1,工作量与工作时 间之间的函数关系如图7所示,那么甲、乙两人单独完成这件工 作,下列说法正确的是 ( ) A .甲的效率高 B .乙的效率高 C .两人的效率相等 D .两人的效率不能确定二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共36分)9.在实数-2,13,0,-1.2,2中,无理数是。

2017年山东省春季高考数学真题答案

2017年山东省春季高考数学真题答案

山东省2017年普通高校招生(春季)考试数学试题答案及解析 卷Ⅰ(选择题 共60分)一、选择题(本大题20个小题,每小题3分,共60分)卷Ⅱ(选择题 共60分)二、填空题(本大题5个小题,每小题4分,共20分)21. 3π 22.43 23.24 24.51 25.(-2,31)三、解答题(本大题5个小题,共40分)26(本小题7分)(1)要使函数f (x )=log 2(3+x )﹣log 2(3﹣x )有意义,则⇒﹣3<x <3,⇒函数f (x )的定义域为(﹣3,3);⇒f (﹣x )=log 2(3﹣x )﹣log 2(3+x )=﹣f (x ) ⇒函数f (x )为奇函数. (2)令f (x )=1,即,解得x=1.⇒sinα=1,⇒Z k ∈+=k 22,ππα27.(本小题8分)若按方案⇒缴费,需缴费50×0.9=45万元;若按方案⇒缴费,则每天的缴费额组成等比数列,其中a1=,q=2,n=20,⇒共需缴费S20===219﹣=524288﹣≈52.4万元,⇒方案⇒缴纳的保费较低.28.(本小题8分)(1)证明:取AC的中点F,连结EF,DF,⇒D,E,F分别是AB,A1C1,AC的中点,⇒EF⇒CC1,DF⇒BC,又DF∩EF=F,AC∩CC1=C,⇒平面DEF⇒平面BCC1B1,又DE⇒平面DEF,⇒DE⇒平面BCC1B1.(2)解:⇒EF⇒CC1,CC1⇒平面BCC1B1.⇒EF⇒平面BCC1B1,⇒⇒EDF是DE与平面ABC所成的角,设三棱柱的棱长为1,则DF=,EF=1,⇒tan⇒EDF=.29.(本小题8分)解:(1)⇒=3sin(2x﹣),⇒函数的最小正周期T==π.(2)⇒令2kπ+≤2x﹣≤2kπ+,k⇒Z,解得:kπ+≤x≤kπ+,k⇒Z,⇒函数的单调递减区间为:[kπ+,kπ+],k⇒Z,(3)列表:x0π2π2x﹣y030﹣30描点、连线如图所示:30.(本小题9分)(1)根据题意,得F(1,0),⇒c=1,又e=,⇒a=2,⇒b2=a2﹣c2=3,故椭圆的标准方程为:(2)抛物线的准线方程为x=﹣1由,解得,,由A位于第二象限,则A(﹣1,),过点A作抛物线的切线l的方程为:即直线l:4x﹣3y﹣4=0由整理得:ky2﹣4y+4k+6=0,当k=0,解得:y=,不符合题意,当k≠0,由直线与抛物线相切,则⇒=0,⇒(﹣4)2﹣4k(4k+6)=0,解得:k=或k=﹣2,当k=时,直线l的方程y﹣=(x+1),则,整理得:(x+1)2=0,直线与椭圆只有一个交点,不符合题意,当k=﹣2时,直线l的方程为y﹣=﹣2(x+1),由,整理得:19x2+8x﹣11=0,解得:x1=﹣1,x2=,则y1=,y2=﹣,由以上可知点A(﹣1,),B(,﹣),⇒丨AB丨==,综上可知:线段AB长度为。

2017年山东春季高考数学模拟试题及答案III

2017年山东春季高考数学模拟试题及答案III

2017年某某春季高考数学模拟试题及答案III一、精心选一选(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在括号内. 相信你一定会选对!)1、函数24-=x y 中自变量x 的取值X 围是( ) A 、2>x B 、2≥x C 、2≠x D 、2<x 2、某物体的三视图如下,那么该物体形状可能是( )A 、长方体B 、圆锥体C 、立方体D 、圆柱体 3、下列图形中,既是轴对称,又是中心对称图形的是( )4、如图1,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值X 围,在数轴上可表示为( )5、把分式方程12121=----xx x 的两边同时乘以(x-2), 约去分母,得( )正视图左视图俯视图0 12B 0AA图10 1 2A2 1 C 0 1D 2A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-26、在一副52X 扑克牌中(没有大小王)任意抽取一X 牌,抽出的这X 牌是方块的机会是( )A 、21B 、41C 、31D 、07.将函数762++=x x y 进行配方正确的结果应为( ) A 2)3(2++=x y B 2)3(2+-=x y C 2)3(2-+=x y D 2)3(2--=x y8、一个形式如圆锥的冰淇淋纸筒,其底面直径为cm 6,母线长为cm 5,围成这样的冰淇淋纸筒所需纸片的面积是 ( ) A 、 266cm π B 、 230cm π C 、 228cm π D 、 215cm π9、某村的粮食总产量为a (a 为常量)吨,设该村粮食的人均产量为y (吨),人口数为x ,则y 与x 之间的函数图象应为图中的( )10、在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存. 现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1∶2∶3∶5. 若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是( )A 、甲B 、乙C 、丙D 、丁二、细心填一填(本大题共有5小题,每空4分,共20分.)甲乙丙丁Oxy AOxy BOxy COxyD11、分解因式:3x 2-12y 2=.12.如图9,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件,使△ADE 与△ABC 相似.你添加的条件是.13.如下图所示,摆第一个“小屋子”要5枚棋子, 摆第二个要11枚棋子,摆第三个要17枚棋子,则摆 第30个“小屋子”要枚棋子14、如图是2005年6月份的日历,如图中那样,用一个圈竖着圈住3个数.如果被圈的三个数的和为39,则这三个数中最大的一个为.15.如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O的直径为__________cm.三、认真答一答(本大题共10小题,满分100分. 只要你认真思考, 仔细运算, 一定会解答正确的!)16、(本题满分8分)计算:解方程组:{4,2 5.x y x y -=+=日 一 二 三 四 五 六1 2 345678910 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30(1)(2)(3)第13题17.(本题满分8分)(3)先将⎪⎭⎫⎝⎛-⋅-+x x x x 11122化简,然后请自选一个你喜欢的x 值,再求原式的值.18.(本题满分8分) 在如图的方格纸中(每个小方格的边长都是1个单位)有一点O 和△ABC.(1)请以点O 为位似中心,把△ABC 缩小为原来的一半(不改变方向),得到△A ′B ′C ′.(2)请用适当的方式描述△A′B′C′的顶点A′、B′、C′的位置.19.(本题满分10分)(1)如图,在□ABCD中,对角线AC、BD相交于点O. 请找出图中的一对全等三角形,并给予证明. AB C DO ·OAB C20(本小题满分10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶.图11是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点? (2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不娈的情况下,请你提出合理的整修建议.21.(本题满分10分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?22.(本题满分10分)小明和小亮进行百米赛跑,小明比小亮跑得快,如果两人同时起跑,小明肯定赢,现在小明让小亮先跑若干米,两人的路程y(米)分别与小明追赶时间x(秒)的函数关系如图所示。

2017年山东省春季高考数学试卷及参考答案

2017年山东省春季高考数学试卷及参考答案

14. (3 分)如果 A.﹣18
B.﹣6 C.0
15. (3 分)已知角 α 的终边落在直线 y=﹣3x 上,则 cos(π+2α)的值是( A. B. C. D. )
16. (3 分)二元一次不等式 2x﹣y>0 表示的区域(阴影部分)是(
A.
B.
C.
D.
17. (3 分)已知圆 C1 和 C2 关于直线 y=﹣x 对称,若圆 C1 的方程是(x+5)2+y2=4, 则圆 C2 的方程是( A. (x+5)2+y2=2 ) B.x2+(y+5)2=4 C. (x﹣5)2+y2=2 D.x2+(y﹣5)2=4
5. (3 分)等差数列{an}中,a1=﹣5,a3 是 4 与 49 的等比中项,且 a3<0,则 a5 等于( A.﹣18 ) B.﹣23 C.﹣24 D.﹣32 的单位向量的坐标是( D. ) )
6. (3 分)已知 A(3,0) ,B(2,1) ,则向量 A. (1,﹣1) B. (﹣1,1) C. 7. (3 分)“p∨q 为真”是“p 为真”的( A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
A.72 B.120 C.144 D.288 12. (3 分)若 a,b,c 均为实数,且 a<b<0,则下列不等式成立的是( A.a+c<b+c B.ac<bc C.a2<b2 D. )
13. (3 分)函数 f(x)=2kx,g(x)=log3x,若 f(﹣1)=g(9) ,则实数 k 的值 是( A.1 ) B.2 C.﹣1 D.﹣2 , ,那么 D.18 ) 等于( )
3. (3 分)下列函数中,在区间(﹣∞,0)上为增函数的是( A.y=x B.y=1 C. D.y=|x|

2017年山东春季高考数学试题

2017年山东春季高考数学试题

山东省2017年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间为120分钟。

考生请在答题卡上答题。

考试结束后,去诶能够将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的字母选项代号选出,并填涂在答题卡上。

) 1.已知全集{}1,2U =,集合{}1M =,则U C M 等于 ( ) (A )∅ (B ) {}1 (C ) {}2 (D ){}1,2 2.函数y =的定义域是( )(A )[2,2]- (B ) (,2][2,,2)-∞-+∞- (C )(2,2)- (D )(,2)(2,,2)-∞-+∞- 3.下列函数中,在区间(,0)-∞上为增函数的是( ) (A )y x = (B ) 1y = (C )1y x=(D )y x = 4.已知二次函数()f x 的图像经过两点(0,3),(2,3),且最大值是5,则该函数的解析式是 ( )(A )2()2811f x x x =-+ (B ) 2()281f x x x =-+- (C )2()243f x x x =-+ (D )2()243f x x x =-++5. 在等差数列{}n a 中, 15a =-,3a 是4和49的等比中项,且30a <,则5a 等于( ) (A )18- (B ) 23- (C )24- (D )32-6. 已知(3,0),(2,1)A B ,则向量AB的单位向量的坐标是 ( ) (A )(1,1)-(B ) (1,1)-(C)(22-(D)22- 7. 对于命题,p q ,“p q ∨”是真命题是“p 是真命题”的 ( ) (A )充分比必要条件 (B ) 必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 8.函数2cos 4cos 1y x x =-+的最小值是( )(A )3- (B ) 2- (C )5 (D )6 9.下列说法正确的是( )(A )经过三点有且只有一个平面 (B ) 经过两条直线有且只有一个平面(C )经过平面外一点有且只有一个平面与已知平面垂直 (D )经过平面外一点有且只有一条直线与已知平面垂直10. 过直线10x y ++=与240x y --=的交点,且一个方向向量(1,3)v =-的直线方程是( )(A )310x y +-= (B ) 350x y +-= (C )330x y +-= (D )350x y ++=11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是( ) (A )72 (B ) 120 (C )144 (D )288 12.若,,a b c 均为实数,且0a b <<,则下列不等式成立的是( ) (A )a c b c +<+ (B )ac bc < (C )22a b < (D<13. 函数3()2,()log kx f x g x x ==,若(1)(9)f g -=,则实数k 的值是( ) (A )1 (B )2 (C )-1 (D )-214. 如果3,2a b a ==-,那么a b ⋅ 等于( ) (A )-18 (B )-6 (C )0 (D )1815. 已知角α终边落在直线3y x =-上,则cos(2)πα+的值是( )(A )35 (B )45 (C )35± (D )45±16. 二元一次不等式20x y ->表示的区域(阴影部分)是( )(A ) (B ) (C ) (D )17. 已知圆1C 和2C 关于直线y x =-对称,若圆1C 的方程是22(5)4x y ++=,则2C 的方程是( ) (A )22(5)2x y ++= (B )22(5)4x y ++= (C )22(5)2x y -+= (D )22(5)4x y +-=18. 若二项式1)n x-的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是( )(A )20 (B )-20 (C )15 (D )-1519. 从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在相同条件下经过多轮测试测试,成绩分析如表1—1所示,根据表中数据判断,最佳人选为( )表1—1 成绩分析表(A )甲 (B )乙 (C )丙 (D )丁20. 已知12,A A 为双曲线22221x y a b-=(0,0)a b >>的两个顶点,以12,A A 为直径的圆与双曲线的一条渐近线交于,M N 两点,若△1A MN 的面积为22a ,则该双曲线的离心率是( )(A )(B (C (D卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2017年普通高校招生(春季)考试
数学试题
注意事项:
1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间为120分钟。

考生请在答题卡上答题。

考试结束后,去诶能够将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题,共60分)
一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的字母选项代号选出,并填涂在答题卡上。


1.已知全集{}1,2U =,集合{}1M =,则U C M 等于 ( )
(A )∅ (B ) {}1 (C ) {}2 (D ){}1,2
2.函数
y =的定义域是( )
(A )[2,2]- (B ) (,2][2,,2)-∞-+∞- (C )(2,2)- (D )(,2)(2,,2)-∞-+∞-
3.下列函数中,在区间(,0)-∞上为增函数的是( )
(A )y x = (B ) 1y = (C )1y x
= (D )y x = 4.已知二次函数()f x 的图像经过两点(0,3),(2,3),且最大值是5,则该函数的解析式是
( )
(A )2()2811f x x x =-+ (B ) 2()281f x x x =-+-
(C )2()243f x x x =-+ (D )2()243f x x x =-++
5. 在等差数列{}n a 中, 15a =-,3a 是4和49的等比中项,且30a <,则5a 等于( )
(A )18- (B ) 23- (C )24- (D )32-
6. 已知(3,0),(2,1)A B ,则向量AB 的单位向量的坐标是 ( )
(A )(1,1)-
(B ) (1,1)-
(C )( (D ) 7. 对于命题,p q ,“p q ∨”是真命题是“p 是真命题”的 ( )
(A )充分比必要条件 (B ) 必要不充分条件
(C )充要条件 (D )既不充分也不必要条件
8.函数2cos 4cos 1y x x =-+的最小值是( )
(A )3- (B ) 2- (C )5 (D )6
9.下列说法正确的是( )
(A )经过三点有且只有一个平面
(B ) 经过两条直线有且只有一个平面
(C )经过平面外一点有且只有一个平面与已知平面垂直
(D )经过平面外一点有且只有一条直线与已知平面垂直
10. 过直线10x y ++=与240x y --=的交点,且一个方向向量(1,3)v =-的直线方程是 ( )
(A )310x y +-= (B ) 350x y +-=
(C )330x y +-= (D )350x y ++=
11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是( )
(A )72 (B ) 120 (C )144 (D )288
12.若,,a b c 均为实数,且0a b <<,则下列不等式成立的是( )
(A )a c b c +<+ (B )ac bc < (C )22a b < (D )a b -<- 13. 函数3()2,()log kx f x g x x ==,若(1)(9)f g -=,则实数k 的值是( )
(A )1 (B )2 (C )-1 (D )-2
14. 如果3,2a b a ==-,那么a b ⋅等于( )
(A )-18 (B )-6 (C )0 (D )18
15. 已知角α终边落在直线3y x =-上,则cos(2)πα+的值是( )
(A )35 (B )45 (C )35± (D )45± 16. 二元一次不等式20x y ->表示的区域(阴影部分)是( )
(A ) (B ) (C ) (D )
17. 已知圆1C 和2C 关于直线y x =-对称,若圆1C 的方程是22(5)4x y ++=,则2C 的方程是( )
(A )22(5)2x y ++= (B )22(5)4x y ++=
(C )22(5)2x y -+= (D )22(5)4x y +-=
18. 若二项式1()n x x
的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是( )
(A )20 (B )-20 (C )15 (D )-15
19. 从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在相同条件下经过多轮测试测试,成绩分析如表1—1所示,根据表中数据判断,最佳人选为( )
表1—1 成绩分析表
(A )甲 (B )乙 (C )丙 (D )丁
20. 已知12,A A 为双曲线22
221x y a b
-=(0,0)a b >>的两个顶点,以12,A A 为直径的圆与双曲线的一条渐近线交于,M N 两点,若△1A MN 的面积为2
2
a ,则该双曲线的离心率是( ) (A )
22 (B )23 (C 25 (D 26
卷二(非选择题,共60分)
二、填空题(本大题5个小题,每小题4分,共20分。

请将答案填在答题卡相应题号的横线上)
21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于________.
22. 在△ABC 中,2,3,a b ==∠B =∠2A ,则cos A 等于________.
23. 已知12,F F 是椭圆22
11636
x y +=的两个焦点,过1F 的直线交椭圆于,P Q 两点,则△2PQF 的周长等于________。

24.某博物馆需要志愿者协助工作,若从6名志愿者中任选出3名,则其中甲、乙两名志愿者恰好同时被选中的概率是________。

25.对于实数,m n ,定义一种运算:,,m m n m n n m n ≥⎧*=⎨<⎩
,已知函数()x f x a a =*,其中01a <<,若(1)(4)f t f t ->,则实数t 的取值范围是________。

三、解答题:(本大题共5个小题,共40分)
26.(本小题7分)
已知函数22()log (3)log (3)f x x x =+--。

(1)求函数()f x 的定义域,并判断函数()f x 的奇偶性;
(2)已知(sin)1
fα=,求α的值。

相关文档
最新文档