八年级数学下第一学期月考数学试卷
鲁教版八年级(下)第一次月考数学试卷(含解析)
2019-2020学年八年级(下)第一次月考数学试卷(五四学制)一、选择题(本大题共10小题,共30.0分)1.(3分)下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线互相垂直的矩形是正方形D.对角线相等的菱形是正方形2.(3分)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间3.(3分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OCD的度数为()A.35°B.40°C.45°D.50°4.(3分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2B.3C.4D.55.(3分)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB ⊥AB,交CD于点E.若DE=6,则AD的长为()A.6B.8C.10D.无法确定6.(3分)将a根号外的因式移到根号内,得()A.B.﹣C.﹣D.7.(3分)下列根式中,不能与合并的是()A.B.C.D.8.(3分)若x+1与x﹣1互为倒数,则实数x为()A.0B.C.±1D.±9.(3分)制造一种产品,原来的成本是每件200元,由于连续两次降低成本,现在每件产品的成本是162元,则平均每次降低成本()A.8%B.10%C.15%D.20%10.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°二、填空题(本大题共8小题,共32.0分)11.(4分)最简二次根式与是同类二次根式,则a=.12.(4分)方程(x﹣3)(x﹣9)=0的根是.13.(4分)已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为.14.(4分)若a是方程3x2+2x﹣1=0的解,则代数式3a2+2a﹣2019的值为.15.(4分)若有意义,则a的取值范围为16.(4分)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=4,则菱形ABCD的周长为.17.(4分)如图,四边形ABCD是平行四边形,AC与BD相交于点O,AB=AD,添加一个条件:,可使它成为正方形.18.(4分)一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:.三、计算题(本大题共2小题,共16.0分)19.(8分)(1);(2).20.(8分)解方程:(1)x2﹣7x﹣1=0;(2)x(2x﹣5)=4x﹣10四、解答题(本大题共5小题,共42.0分)21.(8分)如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=4时,求AF的长度.22.(8分)已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形;(2)求出此时菱形的边长.23.(8分)阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=024.(8分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的长方形花圃.(1)设花圃的一边AB为xm,则BC的长可用含x的代数式表示为m;(2)当AB的长是多少米时,围成的花圃面积为63平方米?25.(10分)观察下列运算过程:…请运用上面的运算方法计算:.参考答案一、选择题(本大题共10小题,共30.0分)1.(3分)下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线互相垂直的矩形是正方形D.对角线相等的菱形是正方形【分析】根据平行四边形、菱形、正方形的判定和性质一一判断即可.【解答】解:A.对角线互相平分的四边形是平行四边形,此选项正确;B.对角线互相垂直且平分的四边形是菱形,此选项错误;C.对角线互相垂直的矩形是正方形,此选项正确;D.对角线相等的菱形是正方形,此选项正确.故选:B.2.(3分)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间【分析】首先化简二次根式进而得出的取值范围进而得出答案.【解答】解:÷﹣1=﹣1=﹣1,∵7<<7.5,∴6<﹣1<6.5,故选:D.3.(3分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OCD的度数为()A.35°B.40°C.45°D.50°【分析】根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出∠DAB=90°,AB∥CD,求出∠OAB=∠DAB﹣∠OAD=35°,由平行线的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,AB∥CD,∴∠OAB=∠DAB﹣∠OAD=90°﹣55°=35°,∠OCD=∠OAB=35°,故选:A.4.(3分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2B.3C.4D.5【分析】作BF⊥DC于F,如图,易得四边形BEDF为矩形,再证明△ABE≌△CBF得到BE=BF,S△ABE=S△CBF,则可判断四边形BEDF为正方形,四边形BEDF的面积=四边形ABCD的面积,然后根据正方形的面积公式计算BE的长.【解答】解:作BF⊥DC于F,如图,∵∠CDA=90°,BE⊥AD,BF⊥DF,∴四边形BEDF为矩形,∴∠EBF=90°,即∠EBC+∠CBF=90°,∵∠ABC=90°,即∠EBC+∠ABE=90°,∴∠ABE=∠CBE,在△ABE和△CBF中,∴BE=BF,S△ABE=S△CBF,∴四边形BEDF为正方形,四边形BEDF的面积=四边形ABCD的面积,∴BE==4.故选:C.5.(3分)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB ⊥AB,交CD于点E.若DE=6,则AD的长为()A.6B.8C.10D.无法确定【分析】作BF⊥AD与F,就可以得出BF∥CD,就可以得出四边形BCDF是矩形,进而得出四边形BCDF是正方形,就有BF=BC,证明△BCE≌△BAF就可以得出AF=CE,进而得出结论.【解答】解:作BF⊥AD与F,∴∠AFB=BFD=90°,∵AD∥BC,∴∠FBC=∠AFB=90°,∵∠C=90°,∴∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=∠FBC,∴∠ABE﹣∠FBE=∠FBC﹣∠FBE,∴∠CBE=∠FBA.在△BCE和△BAF中,∴△BCE≌△BAF(ASA),∴CE=F A.∵CD=BC=8,DE=6,∴DF=8,CE=2,∴F A=2,∴AD=8+2=10.故选C.6.(3分)将a根号外的因式移到根号内,得()A.B.﹣C.﹣D.【分析】直接利用二次根式的性质得出a的符号,进而变形得出答案.【解答】解:a=﹣=﹣.故选:B.7.(3分)下列根式中,不能与合并的是()A.B.C.D.【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选:C.8.(3分)若x+1与x﹣1互为倒数,则实数x为()A.0B.C.±1D.±【分析】首先根据倒数定义可得:(x+1)(x﹣1)=1,再去括号,两边同时开平方即可.【解答】解:由题意得:(x+1)(x﹣1)=1,去括号得:x2﹣1=1,移项得:x2=2,两边直接开平方得:x=±,故选:D.9.(3分)制造一种产品,原来的成本是每件200元,由于连续两次降低成本,现在每件产品的成本是162元,则平均每次降低成本()A.8%B.10%C.15%D.20%【分析】设平均每次降低成本的百分率为x的话,经过第一次下降,成本变为200(1﹣x)元,再经过一次下降后成本变为200(1﹣x)(1﹣x)元,根据两次降低后的成本是162元列方程求解即可.【解答】解:设平均每次降低成本的百分率为x,根据题意得:200(1﹣x)(1﹣x)=162,解得:x=0.1或1.9(不合题意,舍去)即:x=10%故选:B.10.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.二、填空题(本大题共8小题,共32.0分)11.(4分)最简二次根式与是同类二次根式,则a=5.【分析】根据最简二次根式与同类二次根式的定义列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a=15,解得:a=5.故答案为:5.12.(4分)方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.13.(4分)已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为1.【分析】先设x2+y2=t,则方程即可变形为t2+5t﹣6=0,解方程即可求得t即x2+y2的值.【解答】解:设x2+y2=t,则原方程可化为:t2+5t﹣6=0即(t+6)(t﹣1)=0∴t=﹣6(舍去)或t=1,即x2+y2=1.故答案是:1.14.(4分)若a是方程3x2+2x﹣1=0的解,则代数式3a2+2a﹣2019的值为﹣2018.【分析】利用a是方程3x2+2x﹣1=0的解得到3a2+2a=1,然后利用整体代入的方法计算3a2+2a﹣2019的值.【解答】解:∵a是方程3x2+2x﹣1=0的解,∴3a2+2a﹣1=0,∴3a2+2a=1,∴3a2+2a﹣2019=1﹣2019=﹣2018.故答案为﹣2018.15.(4分)若有意义,则a的取值范围为a≤4且a≠﹣2【分析】二次根式的被开方数是非负数且分式的分母不等于零.【解答】解:依题意得:4﹣a≥0且a+2≠0,解得a≤4且a≠﹣2.故答案是:a≤4且a≠﹣2.16.(4分)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=4,则菱形ABCD的周长为32.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=4,∴AB=8,∴菱形ABCD的周长是:4×8=32,故答案为:32.17.(4分)如图,四边形ABCD是平行四边形,AC与BD相交于点O,AB=AD,添加一个条件:∠BAD=90°,可使它成为正方形.【分析】根据正方形的判定即可得结论.【解答】解:因为四边形ABCD是平行四边形,AB=AD,所以▱ABCD是菱形,如果∠BAD=90°,那么四边形ABCD是正方形.故答案为:∠BAD=90°.18.(4分)一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:10cm.【分析】设正方形的边长是xcm,根据面积相应地增加了44cm2,即可列方程求解.【解答】解:设正方形的边长是xcm,根据题意得:(x+2)2﹣x2=44,解得:x=10.故答案为:10cm.三、计算题(本大题共2小题,共16.0分)19.(8分)(1);(2).【分析】(1)直接利用二次根式的性质以及负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用二次根式的性质分别化简,进而结合二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式=2﹣3×﹣2﹣1×=2﹣﹣2﹣=﹣2;(2)原式=[3+4×﹣(﹣)]×=(3+2﹣+)×=(2+3)×=6+3.20.(8分)解方程:(1)x2﹣7x﹣1=0;(2)x(2x﹣5)=4x﹣10【分析】(1)可用公式法进行求解;(2)观察原方程,方程的左右两边都含有2x﹣5,因此可先移项,然后用提取公因式法进行求解.【解答】解:(1)a=1,b=﹣7,c=﹣1;b2﹣4ac=53;x=;x1=,x2=;(2)原方程可化为:x(2x﹣5)﹣2(2x﹣5)=0;(2x﹣5)(x﹣2)=0,x﹣2=0或2x﹣5=0;解得:x1=2,x2=.四、解答题(本大题共5小题,共42.0分)21.(8分)如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=4时,求AF的长度.【分析】(1)先证四边形DECO是平行四边形,再根据菱形的性质求出∠DOC=90°,即可得出结论;(2)证△AFO≌△EFD(AAS),得OF=DF,由直角三角形的性质得OD=AO=4,则OF=OD=2,再根据勾股定理求出AF即可.【解答】(1)证明:∵DE∥AC,CE∥BD,∴四边形DECO是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形DECO是矩形;(2)解:如图,∵四边形ABCD是菱形,∴AO=OC,AC⊥BD,∵四边形DECO是矩形,∴OC=DE=4,∴AO=4,∵DE∥AC,∴∠F AO=∠DEF,在△AFO和△EFD中,,∴△AFO≌△EFD(AAS),∴OF=DF,∵∠ADB=30°,∴OD=AO=4,∴OF=OD=2,∴AF===2.22.(8分)已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形;(2)求出此时菱形的边长.【分析】(1)根据题意△=0,构建方程,解方程即可.(2)把m=1代入方程,解方程即可解决问题.【解答】解:(1)四边形ABCD为菱形,则方程有两个相等的实数根,∴△=b2﹣4ac=(﹣m)2﹣4(﹣)=0,即m2﹣2m+1=0,解得m=1,所以当m=1时,四边形ABCD为菱形.(2)把m=1代入原方程得x2﹣x+=0,解得所以菱形的边长为.23.(8分)阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=0【分析】当绝对值内的数不小于0时,可直接去掉绝对值,而当绝对值内的数为负数时,去绝对值时,绝对值内的数要变为原来的相反数.本题要求参照例题解题,要先对x的值进行讨论,再去除绝对值将原式化简.【解答】解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.(2)当x≥2时,原方程可可化为x2+2x﹣4﹣3=0,解得x1=﹣1+(舍去),x2=﹣1﹣(舍去).当x<2时,原方程化为x2﹣2x+4﹣3=0,解得x1=x2=1综上所述,原方程的根是x1=x2=1.24.(8分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的长方形花圃.(1)设花圃的一边AB为xm,则BC的长可用含x的代数式表示为(30﹣3x)m;(2)当AB的长是多少米时,围成的花圃面积为63平方米?【分析】(1)设AB的长为xm,则平行一墙的一边长为(30﹣3x)m,该花圃的面积为x (30﹣x)m2;进而用含x的代数式表示BC即可;(2)令该面积等于63平方米,求出符合题意的x的值,即是所求AB的长.【解答】解:(1)BC的长可用含x的代数式表示为(30﹣3x)m.故答案为:(30﹣3x);(2)依题意有x(30﹣3x)=63.解得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去.故当AB的长是7米时,围成的花圃面积为63平方米.25.(10分)观察下列运算过程:…请运用上面的运算方法计算:.【分析】先分母有理化,然后合并即可.【解答】解:原式=+++…++=.。
2022-2023学年湖北省黄冈市八年级(下)第一次月考数学试卷
2022-2023学年湖北省黄冈市八年级(下)第一次月考数学试卷一、选择题(每小题3分,共24分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)下列各式计算正确的是()A.6﹣2=4B.5+5=10C.4÷2=2D.4×2=83.(3分)直角三角形两边分别为5和12,则第三边为()A.13B.C.13或D.74.(3分)等式成立的条件是()A.x≥1B.x≥﹣1C.﹣1≤x≤1D.x≥1或x≤﹣15.(3分)下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是()A.0 个B.1 个C.2 个D.3 个6.(3分)如图,有一块Rt△ABC的纸片,∠ABC=90°,AB=6,BC=8,将△ABC沿AD折叠,使点B 落在AC上的E处,连接ED,则BD的长为()A.3B.4C.5D.6.7.(3分)如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①x2+y2=49;②x﹣y=2;③2xy+4=49.其中正确的结论是()A.①②B.②C.①②③D.①③8.(3分)如图,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若AD=4,CD=2,则BD的长为()A.6B.2C.5D.2二、填空题(每小题3分,共24分)9.(3分)已知,那么(a+b)2023+1的值为.10.(3分)当x=+3时,代数式x2﹣6x﹣2的值是.11.(3分)已知,,则a2﹣b2=.12.(3分)若是正整数,则整数n的最小值为.13.(3分)在实数范围因式分解:a2﹣5=.14.(3分)观察下列各式:2×=;3×=;4×=,……依此规律,则第4个式子是.15.(3分)如图,∠AOB=40°,M、N分别在OA、OB上,且OM=2,ON=4,点P、Q分别在OB、OA上,则MP+PQ+QN的最小值是.16.(3分)一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是.三、解答题(共72分)17.(8分)计算:(1);(2).18.(8分)已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.19.(6分)若a,b,c是△ABC的三边长,且a,b,c满足(a﹣6)2+(b﹣8)2+|c﹣10|=0.(1)求a,b,c的值;(2)△ABC是直角三角形吗?请说明理由.20.(6分)如图:已知等腰三角形ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,E,F分别为垂足.DE+DF=2,三角形ABC面积为3+2,求AB的长.21.(8分)一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?22.(6分)观察下列运算:由,得;由,得;由,得;…(1)通过观察得=;(2)利用(1)中你发现的规律计算:.23.(8分)小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解答的:∵a===2﹣,∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1.∴2a2﹣8a+1=2(a2﹣4a)+1=2(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:若a=,求4a2﹣8a﹣3的值.24.(10分)已知,在等腰Rt△OAB中,∠OAB=90°,OA=AB,点A,B在第四象限.###(1)如图1,若A(1,﹣3),则①OA=;②求点B的坐标;(2)如图2,AD⊥y轴于点D,M为OB的中点,求证:DO+DA=DM.25.(12分)已知△ABC是等边三角形.(1)如图1,△BDE也是等边三角形,求证:AD=CE;(2)如图2,点D是△ABC外一点,且∠BDC=30°,请探究线段DA、DB、DC之间的数量关系,并证明你的结论;(3)如图3,点D是等边三角形△ABC外一点,若DA=13,DB=5,DC=7,试求∠BDC的度数.。
八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)
八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。
八年级数学下第一学期月考数学试卷
八年级数学(下)第一学期月考数学试卷考试时间:90分钟 满分:120分一、填空题:(每题3分,共33分)1、“a 的平方是非负数”用式子表示为2、写出一个不等式,使它的解集是x >-13、不等式6-2x >0的解集是_ __ _____.4、24m 2n +18n 的公因式是__________;5、分解因式:2x 3-8x 2= , x 2-14x +49= ,6、观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是 。
7、不等式x+52 -1>3x+23的解集为__________________。
8、当x 时,分式1051+-x x 的值为零;当x 时,分式1051+-x x 有意义。
9、化简:ab bc a 2= ,12122+--x x x = 。
10、当x ______ __时,代数式523--x 的值是非正数.? 11、不等式组⎩⎨⎧-<+<212m x m x 的解集是x <m -2,则m 的取值应为___ _____.。
二、选择题:(每小题3分,共27分)12、如果a >b ,下列各式中不正确的是……………( )A 、a -3>b -3B 、2a >2b C 、-2a <-2b D 、-2a >-2b 13、下列从左到右的变形,是因式分解的是( )A 、(a +3)(a -3)=a 2-9B 、x 2+x -5=(x -2)(x +3)+1C 、a 2b +ab 2=ab(a +b)D 、x 2+1=x(x +x1) 14、在x 1、21、212+x 、πxy 3、yx +3、m a 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个15、如图,用不等式表示数轴上所示的解集,正确的是( )第6小题图A 、x <-1或x ≥-3B 、x ≤-1或x >3C 、-1≤x <3D 、-1<x ≤316、下列说法①x =0是2x -1<0的解;②x =31不是3x -1>0的解; ③-2x -1<0的解集是x >2;④不等式⎩⎨⎧>>21x x 的解集是x >1,其中正确的个数是……( )A 、1个B 、2个C 、3个D 、4个17、下列多项式中不能用平方差公式分解的是( ) A 、a 2-b 2 B 、-x 2-y 2 C 、49x 2- y 2z 2 D 、16m 4n 2-25p 218、下列多项式能用完全平方公式分解的是( )A 、x 2-2x -41B 、(a +b)(a -b)-4abC 、a 2+ab +42b D 、y 2+2y -1 19、分解因式b 2(x -3)+b(x -3)的正确结果是( )A 、(x -3) (b 2+b)B 、b (x -3) (b +1)C 、(x -3) (b 2-b)D 、b((x -3) (b -1)20、把分式ba a +2分子、分母中a 、b 都变成原来的2倍,则分式的值变为原分式值的( )A 、4倍B 、2倍C 、不变D 、21倍 三、把下列各式因式分解:(每小题5分,计20分)21. 7x 2-63= 22. 9-12t +4t 2 =23. -2x 3+4x 2-2x = 24. (a 2+4)2 -16a 2=四、解答题(每题8分,共24分,要写出解题过程,直接写答案不得分)25. 解不等式2-x ≥2(x -3),并写出非负整数解。
八年级数学(下册)第一次月考数学试卷(含答案解析) (4)
八年级(下)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分×10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.2016-2017学年江苏省淮安市盱眙县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】根据全等三角形的判定可以添加条件∠1=∠2.【解答】解:条件是∠1=∠2,∴∠ABE=∠DBC,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故选D5.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A图有两边相等,而夹角不一定相等,二者不一定全等;B图与三角形ABC有两边及其夹边相等,二者全等;C图有两边相等,而夹角不一定相等,二者不一定全等;D图与三角形ABC有两角相等,二者不一定全等;故选B6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【考点】全等三角形的判定.【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选D.7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC ∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【考点】全等三角形的性质.【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∴∠BAD=∠DAE+∠EAB=77°.故选D.二、填空题题(3分×10=30分)9.我国国旗上的五角星有5条对称轴.【考点】轴对称的性质.【分析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠F,再根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=80°,∠C=75°,∴∠D=∠A=80°,∠F=∠C=75°,∴∠E=180°﹣∠D﹣∠F=25°.故答案为:25.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:AB=DC.【考点】全等三角形的判定.【分析】条件是AB=DC,根据SAS推出即可.【解答】解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为5厘米.【考点】全等三角形的应用.【分析】首先利用SAS定理判定△AOB≌△A′OB′,然后再根据全等三角形对应边相等可得A′B′=AB=5cm.【解答】解:连接AB,∵把两根钢条A′B、AB′的中点连在一起,∴AO=A′O,BO=B′O,在△ABO和△A′B′O中,∴△AOB≌△A′OB′(SAS),∴A′B′=AB=5cm,故答案为:5.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有3对全等三角形.【考点】全等三角形的判定.【分析】由已知易得△ABD≌△ACD,从而运用全等三角形性质及判定方法证明△BDE≌△CDE,△ABE≌△ACE.【解答】解:图中的全等三角形共有3对.∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴BE=CE,在△ABE与△ACE中,,∴△ABE≌△ACE(SSS).故答案为:3.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=10°.【考点】全等三角形的判定与性质.【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=40°,求出∠EAC的度数,然后即可求出∠AEC的度数.【解答】解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,在Rt△CAE与△RtDAE中,,∴Rt△CAE≌Rt△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=40°,∴∠CAB=90°﹣40°=50°,∴∠EAC=10°.故答案为:10.16.如图:作∠AOB的角平分线OP的依据是SSS.(填全等三角形的一种判定方法)【考点】作图—基本作图;全等三角形的判定.【分析】根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.【解答】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.【考点】作图—应用与设计作图;全等图形.【分析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,并且图形要保证为相同即可.【解答】解:如下图所示:21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【考点】全等三角形的性质.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠D=∠A,全等三角形对应边相等可得DO=AO,再根据三角形的内角和定理列式计算即可求出∠DCO,BD=BO+DO计算即可得解.【解答】解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.【考点】全等三角形的判定与性质.【分析】由已知两对边相等,加上公共边AB=AB,利用SSS得到三角形ABC与三角形ABD全等,利用全等三角形对应角相等得到∠CAB=∠DAB,即可得证.【解答】证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.【考点】全等三角形的判定与性质.【分析】欲证明AD=BC,只要证明△ACB≌△CAD即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据两个等腰直角三角形的性质得:AB=AC,AD=AE,∠BAC=∠EAD=90°,由等式性质得:∠BAE=∠CAD,根据SAS证明两三角形全等;(2)由等腰直角三角形得两锐角为45°,再由全等三角形的性质得:∠ACD=∠B=45°,所以∠BCD=90°,则CD⊥BE.【解答】证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定与性质.【分析】直接利用全等三角形的判定与性质分别得出△MOE≌△NOD(SAS),△MDC≌△NEC(AAS),△DOC≌△EOC(SSS),进而得出答案.【解答】解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是矩形;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.【考点】四边形综合题;全等三角形的判定与性质;平行四边形的判定;矩形的判定;旋转的性质.【分析】思考与实践:(1)根据矩形的定义:有一个角是直角的平行四边形是矩形进行判断即可;(2)取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,根据旋转后三角形的一条边与四边形的一边在同一条直线上,构成平行四边形.发现与运用:=S□ABGH即可;(1)过点E作AB的平行线,交BC于点G,交AD的延长线于点H,得出S梯形ABCD(2)分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.【解答】解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),∴S△DEH =S△CEG,∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH 一起拼接到△FBH位置即可.。
2020-2021学年度八年级下学期数学第一次月考试卷(含答案)
八年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第十六章《二次根式》~第十七章《勾股定理》班级姓名得分一、选择题(本大题共12小题,每小题4分,共48.0分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑、涂满)1.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A. 0.7米B. 1.5米C. 2.2米D. 2.4米2.实数a,b在数轴上对应点的位置如图所示,且|a|>|b|,则化简√a2+|a+b|的结果为()A. 2a+bB. −2a−bC. bD. 2a−b3.若式子√x−1在实数范围内有意义,则x的取值范围是()x−2A. x≥1且x≠2B. x≤1C. x>1且x≠2D. x<14.关于√8的叙述正确的是()A. 在数轴上不存在表示√8的点B. √8=√2+√6C. √8=±2√2D. 与√8最接近的整数是35.已知△ABC中,∠C=90°,若a+b=14cm,c=10cm,则△ABC的面积是().A. 24cm2B. 36cm2C. 48cm2D. 60cm26.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好能与点C重合.若BC=5,AC=6,则BD的长为()A. 1B. 2C. 3D. 47.若a=√7+√6,b=√7−√6,则a2021⋅b2022的值等于()A. √7−√6B. √6−√7C. 1D. −18.若√45n是整数,则正整数n的最小值是().A. 4B. 5C. 6D. 79.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A. 12mB. 13mC. 16mD. 17m10.如图,字母B所代表的正方形的面积是()A. 12cm2B. 15cm2C. 144cm2D. 306cm211.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三、股四、则弦五”的记载。
人教版八年级下学期第一次月考数学试卷含答案解析
八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。
八年级(下)第一次月考数学试卷
八年级(下)第一次月考数学试卷一、选择题(每小题3分,共24分)1.(3分)下列各式中最简二次根式为()A.B.C.D.2.(3分)以下列各组线段长为边能构成直角三角形的是()A.3,4,7B.6,8,10C.4,6,8D.1,1,23.(3分)下列根式中,不能与合并的是()A.B.C.D.4.(3分)如图字母B所代表的正方形的面积是()A.12B.13C.144D.1945.(3分)下列计算正确的是()A.B.C.D.6.(3分)下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.AB=CD,AD=BCC.AB∥CD,AD∥BC D.∠A=∠C,∠B=∠D7.(3分)若实数x、y满足,则x+y的值是()A.1B.C.2D.8.(3分)如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是()A.B.C.D.2二、填空题(每小题3分,共24分)9.(3分)=.10.(3分)比较大小:.(填“>”、“=”、“<”).11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17,AB=6,那么对角线AC+BD=.13.(3分)如图,在△ABC中,AB=AC,BC=6,高AD=4,则AB=.14.(3分)某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要元.15.(3分)如果两个最简二次根式与能合并,那么a=.16.(3分)观察并分析下列数据,寻找规律:,,3,,,,…,那么第10个数据是.三、解答题(共72分)17.(12分)计算(1);(2);(3).18.(6分)一旗杆离地面6m处折断,旗杆顶部落在离旗杆底部8m处,旗杆折断之前有多高?19.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,若DO=1.5cm,AB=5cm,BC=4cm,求▱ABCD的面积.20.(6分)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠DAE=∠BCF.求证:AE=CF.21.(6分)先简化,再求值:,其中x=.22.(6分)在平行四边形ABCD中,E,F分别是AB,CD的中点,求证:四边形EBFD是平行四边形.23.(6分)已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.24.(8分)如图,正方形网格中有△ABC.若每个小方格边长均为1,请你根据所学的知识解答下列问题:(1)判断△ABC的形状,并说明理由;(2)求△ABC中BC边上的高.25.(8分)如图,四边形ABCD中,∠B=90°,AB=BC=,CD=8,AD=10.(1)求∠BCD的度数;(2)求四边形ABCD的面积.26.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.。
八年级下学期第一次月考数学试卷(含参考答案)
八年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________第I卷(选择题共40分)一.单选题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。
1.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( )2.若a<b<0,则下列条件一定成立的是( )A.ab<0B.a+b>0C.ac<bcD.a+c<b+c3.下列各式由左边到右边的变形中,是因式分解的为( )A.a2-16+3a=(a-4)(a+4)+3aB.10x2-5x=5x(2x-1)C.x2-4x+4=x(x-4)+4D.a(m+n)=am+an4.不等式x>4的解集在数轴上表示正确的是( )A. B. C. D.5.在平面直角坐标系中,已知点A的坐标为(1,4),如果将点A向右平移2个单位长度得到点A’,则点A’的坐标为( )A.(1,2)B.(1,6)C.(-1,4)D.(3,4)6.多项式12a3b-8ab2c的公因式是( )A.4a2B.4abC.2a2D.4abc7.下列多项式能用平方差公式进行因式分解的是( )A.x2-1B.x2+4C.x+9D.x2-6x8.下列多项式能直接用完全平方公式进行因式分解的是( )A.9x2-16y2B.4x2-4x+1C.x2+xy+y2D.9-3x+x29.如图,将△ABC绕点A逆时针旋转角a(0°<a<180°)得到△MDE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25,则旋转角a的度数是( )A.70°B.60°C.50°D.40°(第9题图) (第10题图)10.如图,将点A 1(1,1)向上平移1个单位,再向右平移2个单位,得到点A 2;将点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;将点A 3向上平移4个单位,再向右平移8个单位,得到点A 4……按这个规律平移得到点A n ,则点A 2024的横坐标为( )A.22024B.22004-1C.22023-1D.2203+1第II 卷(非选择题 共110分)二.填空题:(每题4分,共24分)11.用适当的符号表示下列关系:a 是正数 .12.因式分解:a 2+4a= .13.若m>n ,则m -n 0(填">"或"="或"<").14.若一次函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b<0的解集是 .(第14题图) (第15题图) (第16题图)15.如图,将周长为10cm 的△ABC 沿 BC 方向平移得到△DEF ,连接AD ,四边形ABFD 的周长为15cm ,则平移的距离为 cm.16.如图,长方形ABCD 中,AB=5,BC=12,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B’处,当△CEB'为直角三角形时,BE 的长为 .三.解答题(共10小题,86分)17.(4分)解下列不等式,并把不等式的解集在数轴上表示出来:-x -1≤3x -518.(6分)解不等式组{x -3(x -1)>11+3x 2>x -1,并写出它的所有非负整数解.19.(每题3分,共18分)因式分解:(1)8m 2n+2mn (2)-15a ³b 2+9a 2b 2-3ab 3 (3)4a 2-1(4)a 2-4ab+4b 2 (5)3x 3-12x (6)mx 2+2m 2x+m 320.(6分)先分解因式,再求值:2x(a-2)-y(2-a),其中a=2,x=1.5,y=-2.21.(6分)在如图所示的平面直角坐标系中,已知点4(1,2),B(3,1).(1)C点的坐标为.(2)将三角形ABC先向下平移4个单位,在向左平移3个单位,得到三角形A1B1C1,画出三角A1B1C1:(3)三角形A1B1C1的面积为。
2023-2024学年度第一学期杭州八年级数学第一次月考试卷(解答卷)
2023-2024学年度第一学期杭州八年级数学第一次月考试卷(解答卷)一、选择题(本大题共有10个小题,每小题3分,共30分)1.下列长度的三条线段,能首尾相连围成三角形的是( )A .1 cm ,2 cm ,3cmB .2 cm ,3 cm ,4 cmC .1 cm ,1 cm ,2 cmD .1 cm ,2 cm ,4 cm【答案】B2.下列四个图中,正确画出△ABC 中BC 边上的高是( )A .B .C .D .【答案】C3. 下列命题的逆命题是真命题的是( )A .全等三角形的面积相等B .对顶角相等C .两直线平行,内错角相等D .如果0a =且0b =,那么0ab =【答案】C4. 如图,用尺规作'''A O B AOB ∠=∠的依据是( )A.SAS B.ASA C.AAS D.SSS 【答案】D5.将一副三角板按如图方式重叠,则1∠的度数为()A.45°B.60°C.75°D.105°【答案】C5.在△ABC中,∠A=12∠B=13∠C,则此三角形是()A.锐角三角形 B.直角三角形C.钝角三角形D.等腰三角形【答案】B7 .如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A .SASB .ASAC .AASD .SSS【答案】D8.如图,在三角形纸片ABC 中,8=AB cm ,7BC = cm ,5AC = cm ,将CDB ∆沿过点B 的直线折叠,使顶点C 落在AB 边上的点E 处,折痕为BD , 则AED ∆的周长为( )A .5cmB .6cmC .7cmD .8cm【答案】B9 在ABC 中,12cm ABAC ==,B C ∠=∠,8cm BC =,点D 为AB 的中点. 如果点P 在线段BC 上以2cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为cm/s v ,则当BPD △与CQP 全等时,v 的值为( )A .2B .3C .1或2D .2或3【答案】D10. 如图在ABC ,ADE 中,90BAC DAE ∠=∠=°,AB AC =,AD AE =, 点C 、D 、E 点在同一条直线上,连结BD ,BE 以下四个结论:①BD CE =;②BD CE ⊥;③45ACE DBC∠+∠=°;④ACB DBC ∠=∠, 其中结论正确的个数有( )A .4B .3C .2D .1【答案】B二、填空题(本大题共有8个小题,每小题3分,共24分)11.如图,已知:∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF ,(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件;(3)若以“SAS”为依据,还缺条件 .【答案】∠A=∠D ∠ACB=∠F BC=EF12.如图,在△ABC中,∠C=90°,BD平分∠ABC,CD=3,则点D到AB的距离是______【答案】313.如图所示,在△ABC中,AD⊥BC于点D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C= °.【答案】6514 .如图,已知∠B=∠C.添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是;15 .如图,在Rt ABC 中,∠C =90°,直线DE 是斜边AB 的垂直平分线交AC 于D .若AC =8,BC =6,则 DBC 的周长为_______【答案】1416.如图,已知∠BDC =142º,∠B =34º,∠C =28º,则∠A = .【答案】80°17 .如图,锐角ABC 中,直线l 为BC 的中垂线,BM 为的ABC ∠角平分线,l 与BM 相交于点P .若60A °∠=,24ACP °∠=,则ABP ∠的度数为 .【答案】32°18.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E ,若∠BAC =100°,则∠DAE =_____.【答案】20°三、解答题(本大题共有6个小题,共46分)19.方格纸中每个小正方形的边长均为1,点A B C,,在小正方形的顶点上.(1)画出ABC中边BC上的高AD;(2)画出ABC中边AC上的中线BE;(3)求出ABE的面积.解:(1)如图所示,线段AD即为所求;(2)如图所示,线段BE即为所求;(3)S△ABC=12BC•AD=12×4×4=8.∴△ABE的面积=12S△ABC=4,故答案为:4.20.已知:如图,1234∠=∠∠=∠,.求证:AB AD =.证明:∵3=4∠∠,3180ACB ∠+∠=°,4180ACD ∠+∠=°, ∴ACB ACD ∠=∠, ∵12AC ACACB ACD ∠=∠ = ∠=∠, ∴△ACB ≌△ACD ,∴AB AD =.21.如图,点,,,A C F D 在同一直线上,,,.AF DC AB DE BC EF === 求证:.A D ∠=∠证明:AF DC =AF CF DC CF ∴−=−即AC DF =在ABC ∆与DEF ∆中,AB DE BC EF AC DF = = =()SSS ABC DEF ∴≅.A D ∴∠=∠22.如图,点A 、D 、C 、F 在同一条直线上,AD =CF , AB =DE ,BC = EF .(1)求证:△ABC ≌△DEF ;(2)若∠A =60°,∠B =80°,求∠F 的度数. 解:(1)∵AD=CF ,∴AD+CD=CD+CF ,即AC=DF ,在 ABC 和 DEF 中,AB=DE BC=EF AC=DF∴ ABC ≌ DEF (SSS ); (2)由(1)可得 ABC ≌ DEF ,∴∠F=∠ACB ,根据三角形内角和180°,∠A=60°,∠B=80°,∴∠ACB=180°-60°-80°=40°, ∴∠F=40°.23 .如图,在ABC 和ADE 中,90BAC DAE ∠=∠=°,AB AC =,AD AE =, 点C 、D 、E 三点在同一直线上,连接BD 交AC 于点F .(1)求证:BAD CAE ≌;(2)猜想BD ,CE 有何特殊位置关系,并说明理由.(1)证明:∵90BAC DAE ∠=∠=°, ∴BAC CAD EAD CAD ∠+∠=∠+∠,∴BAD CAE ∠=∠, 在BAD 和CAE 中,===AB AC BAD CAE AD AE ∠∠,∴()SAS BAD CAE ≌△△.(2)证明:猜想:BD CE ⊥,理由如下:由(1)知BAD CAE ≌,∴=BD CE ,ABD ACE ∠=∠, ∵=AB AC ,90BAC ∠=°, ∴45ABC ACB ∠=∠=°, ∴45ABD DBC ABC +==°∠∠∠, ∵ABD ACE ∠=∠, ∴45ACE DBC∠+∠=°, ∴90DBC DCB DBC ACE ACB ∠+∠=∠+∠+∠=°,∴1801809090BDCDBC DCB ∠=°−∠−∠=°−°=°, ∴BD CE ⊥.24.如图1,在ABC 中,AB AC =,AD 是ABC 的角平分线.(1) 写出图中全等的三角形______,线段AD 与线段BC 的位置关系是______;(2) 如图2,在(1)的条件下,过点B ,作BE AC ⊥,垂足为E ,交AD 于点F ,且AE BE =,请说明AEF BEC ≌的理由.解:(1)∵AD 是ABC 的角平分线,∴BAD CAD ∠=∠, ∵AB AC =,AD AD =, ∴()SAS ABD ACD ≌△△,∴ADB ADC ∠=∠, ∵180ADB ADC∠+∠=°, ∴90ADB ADC ∠=∠=°,即AD BC ⊥, 故答案为:ABD ACD △≌△;垂直(或线段AD BC ⊥); (2)由(1)得AD BC ⊥,所以90ADC ∠=°. 所以90EAF C ∠+∠=°. 因为BE AC ⊥,所以90BEC AEF ∠∠==°. 所以90CBE C ∠+∠=°.所以EAF EBC ∠=∠又因为AE BE =,90BEC AEF ∠∠==°, 所以()ASA AEF BEC ≌.。
校2022--2023学年八年级下学期第一次月考数学试卷 (原卷版)
A.6,6,7B.6,7,8C.6,8,10D.6,8,9
6.在平面直角坐标系中,已知点P的坐标是(3பைடு நூலகம்4),则OP的长为( )
A.3B.4C.5D.
7.若 ,则()
A. B. C. D.
8.已知 是整数,则满足条件的最小正整数 的值是()
A.5B.1C.2D.3
13.命题“同位角相等,两直线平行” 逆命题是:_____.
14.已知一个直角三角形的两直角边长分别为3和4,则斜边长是___________.
15.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是________.
16.如图,点B到数轴 距离为1, ,则数轴上点C所表示的数为________.
9.当x= 时,x2+2x的值是( )
A.1B.2C.2 -1D.2 +1
10.如图,在平面直角坐标系中,将长方形 沿直线 折叠(点E在边 上),折叠后顶点D恰好落在边 上的点F处.若点D的坐标为 .则点E的坐标为( )
A. B. C. D.
二、填空题
11.计算 ________.
12.实数范围内分解因式: _______.
2022-2023八年级下册数学第一次教学质量反馈
一、选择题
1.若 在实数范围内有意义,则 的取值范围是()
A. B. C. D.
2.下列二次根式是最简二次根式的是()
A B. C. D.
3.若| ,则 的值是( )
A. B.1C.2D.3
4.下列二次根式中,不能与 合并的是()
A. B. C. D.
17.已知a=2- ,则代数式a²-4a-2的值为________
八年级月考数学试卷及答案
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √-1B. πC. √9D. √02. 下列函数中,定义域为全体实数的是()A. y = √xB. y = |x|C. y = 1/xD. y = √(x^2 - 1)3. 已知二次方程 x^2 - 4x + 3 = 0 的两个实数根为 a 和 b,则 a + b 的值为()A. 2B. 3C. 4D. 54. 在直角坐标系中,点 A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(2,3)D.(-2,3)5. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1二、填空题(每题5分,共25分)6. 若 a 和 b 是方程 x^2 - 5x + 6 = 0 的两个根,则 a^2 + b^2 的值为________。
7. 已知函数 y = 2x - 3,当 x = 2 时,y 的值为 ________。
8. 在等腰三角形 ABC 中,AB = AC,若∠B = 50°,则∠A 的度数为 ________。
9. 下列式子中,正确的有(用序号表示)________。
(1)(a + b)^2 = a^2 + 2ab + b^2(2)(a - b)^2 = a^2 - 2ab + b^2(3)a^2 - b^2 = (a + b)(a - b)(4)(a^2 + b^2)^2 = a^4 + 2a^2b^2 + b^410. 若 a、b、c 成等差数列,且 a + b + c = 12,a^2 + b^2 + c^2 = 42,则 b 的值为 ________。
三、解答题(每题10分,共30分)11. (1)已知二次函数 y = -2x^2 + 4x + 3,求该函数的顶点坐标。
(2)已知函数 y = 3x^2 - 2x - 1,求该函数的最大值。
12. (1)已知三角形 ABC 中,AB = 5,AC = 7,BC = 8,求三角形 ABC 的面积。
江苏省泰州市泰州中学附属初级中学2023-2024学年八年级下学期第一次月考模拟数学试题(解析版)
八年级数学第一次月度检测模拟试卷第Ⅰ卷(选择题)一、选择题:本题共5小题,每小题3分,共15分.在每小题给出的选项中,只有一项是符合题目要求的.1. 下列四个图案中,既是轴对称图形又是中心对称图形的图案是( )A. B. C. D.【答案】B【解析】【分析】本题考查中心对称图形和轴对称图形的知识,解题的关键是掌握中心对称图形的定义和轴对称图形的定义,进行判断,即可.【详解】中心对称图形的定义:旋转后能够与原图形完全重合,∴A 、是中心对称图形,不是轴对称图形,不符合题意;B 、即是中心对称图形也是轴对称图形,符合题意;C 、即不是中心对称图形也不是轴对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选:B .2. 为了解某地一天内的气温变化情况,比较适合使用的统计图是( )A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数分布直方图【答案】B【解析】【分析】根据题意中的“变化情况”直接选择折线统计图.【详解】为了解某地一天内的气温变化情况,180应选择的统计图是折线统计图,故选:B .【点睛】本题考查了条形统计图,扇形统计图,折线统计图,频数直方图的概念,根据实际选择合适的统计图,根据题意中的“变化情况”选择统计图是解题的关键.折线统计图用折线的起伏表示数据的增减变化情况不仅可以表示数量的多少,而且可以反映数据的增减变化情况.3. □ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A. BE =DFB. AE =CFC. AF //CED. ∠BAE =∠DCF 【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B 、如图所示,AE =CF ,不能得到四边形AECF 是平行四边形,故符合题意;C 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,∵AF //CE ,∴∠FAO =∠ECO ,又∵∠AOF =∠COE ,∴△AOF ≌△COE,∴AF =CE ,∴四边形AECF 是平行四边形,故不符合题意;D 、如图,∵四边形ABCD 是平行四边形,∴AB =CD ,AB //CD ,∴∠ABE =∠CDF ,又∵∠BAE =∠DCF ,∴△ABE ≌△CDF ,∴AE =CF ,∠AEB =∠CFD ,∴∠AEO =∠CFO ,∴AE //CF ,∴四边形AECF 是平行四边形,故不符合题意,故选B .【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.4. 在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为( )A. 60,1B. 60,60C. 1,60D. 1,1【答案】A【解析】【分析】本题是频数与频率基础应用题,难度一般,主要考查学生对频数与频率的定义的理解和运用能力. 根据频数与频率的定义即可得到结果.【详解】解:在对个数据进行整理的频率分布表中,各组的频数之和等于,频率之和等于1,故选A .5. 如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB,则旋的6060转角的度数为( )A. 30°B. 40°C. 50°D. 65°【答案】C【解析】【分析】根据两直线平行,内错角相等可得∠ACC ′=∠CAB ,根据旋转的性质可得AC ′=AC ,然后利用等腰三角形两底角相等求∠CAC ′,再根据∠CAC ′、∠BAB ′都是旋转角解答.【详解】解:∵CC ′∥AB ,∴∠ACC ′=∠CAB =65°,∵△ABC 绕点A 旋转得到△AB ′C ′,∴AC =AC ′,∴∠CAC ′=180°-2∠ACC ′=180°-2×65°=50°,∴∠CAC ′=∠BAB ′=50°故选:C .【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.二、填空题:本题共10小题,每小题3分,共30分6. 函数x 的取值范围是__________.【答案】x ≥-2且x ≠1【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出结论.【详解】解:由题意可得解得x ≥-2且x ≠1故答案为:x ≥-2且x ≠1.【点睛】此题考查的是求自变量的取值范围,掌握二次根式有意义的条件和分式有意义的条件是解决此题的关键.y =2010x x +≥⎧⎨-≠⎩7. 一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率是________.【答案】【解析】【分析】先求出总球的个数,再根据概率公式进行计算即可得出答案.【详解】解:∵有两个红球和一个黄球,共3个球,∴从中任意取出一个是黄球的概率是;故答案为.【点睛】本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.8. “校园安全”受到全社会的广泛关注,某校对400名学生和家长就校园安全知识的了解程度进行了随机抽样调查,并绘制成如图所示的统计图(不完整),根据统计图中的信息,若全校有2050名学生,请你估计对校园安全知识达到“非常了解”和“基本了解”的学生有______人.【答案】1350【解析】【分析】本题考查的是条形统计图运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 求得调查的学生总数,则可得对“校园安全”知识达到“非常了解”和“基本了解”所占的比例,利用求得的比例乘以2050即可得到.【详解】解:∵调查的家长的总人数是:(人)∴调查的学生的总人数是:(人)对“校园安全“知识达到“非常了解”和“基本了解”的学生是(人),全校2050学生中达到“非常了解”和“基本了解”的学生人数为:(人).故答案为:.9. 在中,,则的度数为______.【答案】##135度1313138377314195+++=400195205-=2055416135--=13520501350205´=1350ABCD Y :A B ∠∠=3:1C ∠135︒【解析】【分析】本题考查平行四边形的知识,根据平行四边形的性质,则,则,再根据,求出,;最后根据平行四边形的性质,即可.【详解】∵四边形是平行四边形,∴,,∴,∵,∴,,∴.故答案为:.10. 如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x - 6上时,线段BC 扫过的面积为_______【答案】16【解析】【分析】根据题意,线段扫过的面积应为一平行四边形的面积,其高是的长,底是点平移的路程.求当点落在直线上时的横坐标即可.【详解】解:如图所示.AD BC ∥180A B ∠+∠=︒:A B ∠∠=3:1A ∠B ∠ABCD AD BC ∥A C ∠=∠180A B ∠+∠=︒:A B ∠∠=3:1135A ∠=︒45B ∠=︒135C ∠=︒135︒BC AC C C 26y x =-点、的坐标分别为、,.,,∴由勾股定理可得:..点在直线上,,解得.即...即线段扫过的面积为16.故选:C .【点睛】此题考查平移的性质及一次函数的综合应用,解决本题的关键是明确线段扫过的面积应为一平行四边形的面积.11. 如图,将绕点顺时针旋转后得到,点与点是对应点,点与点是对应点.如果,那么______°.【答案】【解析】A B (1,0)(4,0)3AB ∴=90CAB ∠=︒ 5BC =4AC =4A C ∴''= C '26y x =-264x ∴-=5x =5OA '=514CC ∴'=-=4416BCC B S ''∴=⨯= BC BC ABC A 80︒ADE V B D C E 35EAB ∠=︒DAC ∠=125【分析】本题考查旋转的性质,解题的关键是掌握:旋转变换只改变图形的位置不改变图形的形状与大小.据此解答即可.【详解】解:∵将绕点顺时针旋转后得到,∴,∵,∴,∴.故答案为:.12. 在平行四边形中,,已知,,将沿翻折至,使点落在平行四边形所在的平面内,连接.若是直角三角形,则的长为______.【答案】或【解析】【分析】根据平行四边形中,,要使是直角三角形,则,,画出图形,分类讨论,即可.【详解】当,,延长交于点,∵四边形是平行四边形,∴,,∴,∵沿翻折至,∴,,∴,,∴,在中,,设,∴,ABC A 80︒ADE V 80CAE ∠=︒35∠=︒BAE 803545EAD CAB CAE BAE ∠=∠=∠-∠=︒-︒=︒453545125DAC CAB BAE DAE ∠=∠+∠+∠=︒+︒+︒=︒125ABCD AB BC <30B ∠=︒AB =ABC AC AB C 'V B 'ABCD B D 'AB D 'V BC 23AB BC <AB C 'V 90B AD '∠=︒90AB D '∠=︒①90B AD '∠=︒AB BC <B A 'BC G ABCD AD BC ∥AD BC =90B AD B GC ''∠=∠=︒ABC AC AB C 'V AB AB '==30B AB C '∠=∠=︒BC B C'=12AG AB ==2B C GC '=B G AB AG ''=+==Rt B GC ' 222B C B G CG ''=+GC x =2B C x '=∴,解得:,∴,∴;当时,设交于点,∵四边形是平行四边形,∴,,∵沿翻折至,∴,,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴,∴,∵,,∴,()2222x x =+32x =3B C '=3BC =②90AB D '∠=︒AD B C 'O ABCD AD BC ∥AD BC =ABC AC AB C 'V BC B C '=2BCA ∠=∠AD BC B C '==AD BC ∥1BCA ∠=∠12BCA ∠=∠=∠AO CO =DO B O '=3=4∠∠AOC DOB '∠=∠1234∠=∠=∠=∠'∥AC B D 90B AC BAC '∠=∠=︒30B ∠=︒AB =12AC BC =设,∴,∴,∴解得:,∴.综上所述,当的长为或时,是直角三角形.【点睛】本题考查平行四边形、直角三角形的知识,解题的关键是掌握平行四边形的性质,直角三角形的性质,等腰三角形的性质,直角三角形中,所对的直角边是斜边的一半,即可.13. 如图,平行四边形,点F 是上的一点,连接平分,交于点E ,且点E 是的中点,连接,已知,则__.【答案】4【解析】【分析】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及等腰三角形的性质的综合运用,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等进行推算.延长交于点,判定,即可得出,再根据三线合一即可得到即可解答.详解】解:如图,延长交于点,【AC x =2BC x =222BC AC AB =+()2222x x =+1x =2BC =BC 23AB D 'V 30︒ABCD BC 60AF FAD AE ∠=︒,,FAD ∠CD CD EF 53AD CF ==,EF =AE BC ,G ADE GCE △≌△5CG AD AE GE ===,FE AG ⊥AE BC ,G∵点是的中点,∴,∵平行四边形中,,∴,∵,∴,∴,∵平分,,∴,∴,∵是的中点,∴,∴中,,故答案为:.14. 在平面直角坐标系中,一次函数的图像过和两点,该一次函数的表达式为______;若该一次函数的图像过点,则的值为______.【答案】① ②. 【解析】【分析】本题考查待定系数法求一次函数解析式,一次函数图像上点的坐标特征,分别将点和点的坐标代入得到关于、的二元一次方程组,求解即可;将点代入所求得的一次函数表达式即可得到的值.掌握待定系数法确定一次函数解析式是解题的关键.【详解】解:∵一次函数的图像过和两点,.E CD DE CE =ABCD AD BC ∥D ECG ∠=∠AED GEC ∠=∠()ASA ADE GCE ≌5CG AD AE GE ===,AE FAD ∠AD BC ∥1302FAE DAE G DAF ∠=∠=∠=∠=︒358AF GF ==+=E AG FE AG ⊥Rt AEF 142EF AF ==4xOy ()0y kx b k =+≠()0,5A ()1,2B -(),11C m m 35y x =+2A B ()0y kx b k =+≠k b (),11C m m ()0y kx b k =+≠()0,5A ()1,2B -∴,解得:,该一次函数的表达式为,∵该一次函数的图像过点,∴,解得:.故答案为:;.15. 如图,E 为外一点,且,,若,则的度数为______.【答案】##度【解析】【分析】根据四边形内角和求出度数,再借助平行四边形的性质可知即可得到结果.【详解】解:在四边形中,,,所以.四边形是平行四边形,.故答案为:.【点睛】本题主要考查了平行四边形的性质、四边形内角和,解题的关键是掌握特殊四边形的角度问题,一般借助旋转转化角,进行间接求解.三、解答题:本题共10小题,共80分.解答应写出文字说明,证明过程或演算步骤.16. 某同学在解关于的分式方程,去分母时,由于常数漏乘了公分母,最后解得,试求的值,并求出该分式方程正确的解.【答案】,52b k b =⎧⎨-+=⎩35k b =⎧⎨=⎩35y x =+(),11C m 1135m =+2m =35y x =+2ABCD Y EB BC ⊥ED CD ⊥65E ∠=︒A ∠115︒115360︒C ∠A C ∠=∠BCDE 65E ∠=︒90EBC EDC ∠=∠=︒360659090115C ∠=︒-︒-︒-︒=︒ ABCD 115A C ∴∠=∠=︒115︒360︒x 3622x m x x -+=--6=1x -m 2m =177x =【解析】【分析】本题考查分式方程,根据题意,按照该同学的解法解这个分式方程,将解代入,求出的值.再将值代入原方程,求出其正确的解即可.求出的值、掌握解分式方程的步骤是求解题的关键.【详解】解:由题意得,是该同学去分母后得到的整式方程的解,∴,解得:,∴.方程两边同乘以,得:,解得:,检验:当时,代入得:,∴是该分式方程正确的解.17. 先化简,再求值:(1),其中;(2),其中.【答案】(1), (2),【解析】【分析】本题考查分式的化简求值:(1)先根据分式的加法法则,进行化简,再代值计算即可;(2)先根据分式的加法法则,进行化简,再根据,得到,代入计算即可.【小问1详解】解:=1x -m m m =1x -36x m -+=36x m -+=2m =32622x x x -+=--()2x -()3622x x -+-=177x =177x =()2x -1732077-=≠177x =221211a a a a a -+-+-2a =2224224n m mn m n n m n m +++--15m n =11a a +-322n m n m +-11915m n =5n m =221211a a a a a -+-+-,当时,原式;【小问2详解】,,,原式.18. 如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (-3,2),B (-1,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180,画出旋转后对应的△A 1B 1C ;(2)平移△ABC ,若A 的对应点A 2的坐标为(-5,-2),画出平移后的△A 2B 2C 2;(3)若将△A 2B 2C 2绕某一点旋转可以得到△A 1B 1C ,请直接写出旋转中心的坐标.()()21111a a a a -=+--111a a a =+--11a a +=-2a =21321+==-2224224n m mn m n n m n m +++--()()()()()()()()2224222222n n m m n m mnn m n m n m n m n m n m -+=+++-+-+-()()22422422n mn mn m mn n m n m -+++=+-()()()2222n m n m n m +=+-22n m n m+=- 15m n =5n m ∴=∴1010119m m m m +=-=︒【答案】(1)答案见解析;(2)答案见解析;(3)(-1,0).【解析】【分析】(1)根据图中的网格结构分别找出点A、B绕点C旋转180°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C平移后的位置,然后顺次连接即可;(3)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)△A1B1C如图所示;(2)△A2B2C2如图所示;(3)如图所示,旋转中心为(﹣1,0).【点睛】本题考查作图﹣旋转变换,作图﹣平移变换.19. 某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A ,B ,C ,D 四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D 班选择环境保护的学生人数,并补全折线统计图;(3)若该校共有学生4000人,试估计该校选择文明宣传的学生人数.【答案】(1);(2)15人,见解析;(3)1520人【解析】【分析】(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A ,B ,C 三个班选择环境保护的学生人数即可得出D班选择环境97.2保护的学生人数,进而补全折线图;(3)先求出四个班中选择文明宣传的百分比,用4000乘以样本中选择文明宣传的学生所占的百分比即可.【详解】解:(1)由折线图可得选择交通监督的各班学生总数为12+15+13+14=54人,在四个班人数的百分比为54÷200×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数=;(2)由扇形统计图中选择环境保护的占30%,∴选择环境保护的学生人数为200×30%=60人,∴D 班选择环境保护的学生人数为60-15-14-16=15(人),补全折线统计图如图;(3)四个班中选择文明宣传的学生人数所占百分比为1-30%-5%-27%=38%,该校4000人选择文明宣传的学生人数为:(人).【点睛】本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.20. 已知,按要求完成下列尺规作图(不写作法,保留作图痕迹).(1)如图①,B ,C 分别在射线、上,求作;(2)如图②,点是内一点,求作线段,使P 、Q 分别在射线、上,且点O 是的中点.【答案】(1)见解析(2)见解析【解析】36027%97.2⨯= 400038%1520⨯=MAN ∠AM AN ABDC O MAN ∠PQ AM AN PQ【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.(1)分别以、点为圆心,以、为半径画弧,两弧相交于点,则四边形满足条件;(2)连接,以点O 为圆心,为半径画弧,交延长线于点G ,再作,交于,连接并延长交于,则满足条件.【小问1详解】解:如图①,平行四边形为所作;∵,∴四边形为平行四边形;【小问2详解】图②,为所作.∵,,,∴,∴,即点是的中点.21. 2016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?【答案】(1)该商家购进第一批纪念衫单价是30元;(2)每件纪念衫的标价至少是40元.【解析】【分析】(1)设未知量为x ,根据所购数量是第一批购进量的2倍得出方程式,解出方程即可得出结论,此题得以解决.-B C AC AB D ABDC AO AO AO PGA OAN ∠=∠GP AM P PO AN Q PQ ABDC ,AB CD AC BD ==ABDC PQ POG QOA ∠=∠OA OP =PGA OAN ∠=∠()ASA OPG OQA ≌OP OQ =O PQ(2)设未知量为y ,根据题意列出一元一次不等式,解不等式可得出结论.【详解】(1)设该商家购进第一批纪念衫单价是x 元,则第二批纪念衫单价是(x +5)元,由题意,可得:,解得:x =30,检验:当x =30时,x (x +5)≠0,∴原方程的解是x =30答:该商家购进第一批纪念衫单价是30元;(2)由(1)得购进第一批纪念衫的数量为1200÷30=40(件),则第二批的纪念衫的数量为80(件)设每件纪念衫标价至少是a 元,由题意,可得:40×(a ﹣30)+(80﹣20)×(a ﹣35)+20×(0.8a ﹣35)≥640,化简,得:116a ≥4640解得:a ≥40,答:每件纪念衫的标价至少是40元.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解决此类题的关键是要根据题意找出题目中的等量或不等量关系,根据关系列方程或不等式解决问题.22. 如图,在平行四边形ABCD 中,点E 、F 在对角线BD 上,且BE =DF ,(1)求证:AE =CF ;(2)求证:四边形AECF 是平行四边形.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据平行四边形的性质可得AB =CD ,AB ∥CD ,然后可证明∠ABE =∠CDF ,再利用SAS 来判定△ABE ≌△DCF ,从而得出AE =CF .(2)首先根据全等三角形的性质可得∠AEB =∠CFD ,根据等角的补角相等可得∠AEF =∠CFE ,然后证明AE ∥CF ,从而可得四边形AECF 是平行四边形.【详解】(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD.1200280025x x ⨯=+∴∠ABE =∠CDF .在△ABE 和△CDF 中,,∴△ABE ≌△DCF (SAS ).∴AE =CF .(2)∵△ABE ≌△DCF ,∴∠AEB =∠CFD ,∴∠AEF =∠CFE ,∴AE ∥CF ,∵AE =CF ,∴四边形AECF 是平行四边形.【点睛】此题考查了平行四边形的判定与性质,解题的关键是掌握平行四边形的判定方法与性质.23. 如图,在平行四边形ABCD 中,E ,F 为BC 上两点,且BE=CF ,AF=DE求证:(1)△ABF ≌△DCE ;(2)四边形ABCD 是矩形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF ,根据平行四边形的性质得AB=DC .利用“SSS”得△ABF ≌△DCE .(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C ,从而得到一个直角,问题得证.【详解】(1)∵BE=CF ,BF=BE+EF ,CE=CF+EF ,∴BF=CE .∵四边形ABCD 是平行四边形,∴AB=DC.AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩在△ABF 和△DCE 中,∵AB=DC ,BF=CE ,AF=DE ,∴△ABF ≌△DCE .(2)∵△ABF ≌△DCE ,∴∠B=∠C .∵四边形ABCD 平行四边形,∴AB ∥CD .∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD 是矩形.24. 如图,已知,点 D 在 y 轴的负半轴上,若将沿直线折叠,点 B 恰好落在 x 轴正半轴上的点 C 处.(1)求直线的表达式;(2)求 C 、D 坐标;(3)在直线上是否存在一点 P ,使得 ? 若存在,直接写出点 P 的坐标;若不存在,请 说明理由.【答案】(1) (2), (3)存在,或【解析】【分析】本题考查的是一次函数综合运用,涉及到图形折叠、面积的计算等,(1)将点A 、B 的坐标代入一次函数表达式,即可得到直线的表达式;(2)由题意得:,故点,设点D 的坐标为,根据,即可得到m 的值;(3)由是的()()3004A B ,,,DAB AD AB DA 10PAB S = 443y x =-+()80C ,()06D -,()14-,()54,y kx b =+AB 5AC AB ==()80C ,()0m ,CD BD =,即可求解.【小问1详解】解:设一次函数表达式:,将点的坐标代入得:,解得:,故直线的表达式为:;【小问2详解】解:,,由题意得: ,,,故点,设点D 的坐标为:,,解得:,故点;【小问3详解】解:存在,理由如下:PAB BDP BDA S S S =- y kx b =+()()3004A B ,,,034k b b =+⎧⎨=⎩434k b ⎧=-⎪⎨⎪=⎩AB 443y x =-+()()3004A B ,,,5AB ∴=CD BD =5AC AB ==358OC OA AC ∴=+=+=()80C ,()0m ,CD BD = 4m\=-6m =-()06D -,设直线的表达式为,由点、的坐标代入得:,解得:,直线的表达式为:,,,,,,点P 在直线上,设,,解得:或5,即点P 的坐标为:或.25. 如图1,在ABC 中,BD 是AC 边上的中线,将DBA 绕点D 顺时针旋转α(0°<α<180°) 得到DEA (如图2),我们称DEA 为DBC 的“旋补三角形”.DEA 的边EA 上的中线DF 叫做DBC 的“旋补中线”.AD 11y k x b =+()30A ,()06D -,111036k b b =+⎧⎨=-⎩1126k b =⎧⎨=-⎩AD 26y x =-()04B ,()06D -,10BD ∴=1103152ABD S \=´´= 10PAB S = DA (),26P a a -13102PAB BDP BDA S S S BD a \=-=´´-= 1a =()14-,()54,(1)在图2,图3,图4中,DEA 为DBC 的“旋补三角形”,DF 是DBC 的“旋补中线”.①如图2,∠BDE +∠CDA = °;②如图3,当DBC 为等边三角形时,DF 与BC 的数量关系为DF = BC ;③如图4,当∠BDC =90°时,BC =4时,则DF 长为 ;(2)在图2中,当DBC 为任意三角形时,猜想DF 与BC 的关系,并给出证明.(3)如图5,在四边形ABCD 中,∠C =90°,∠D =150°,BC =12,CD =DA =6,BE ⊥AD ,E 为垂足.在线段BE 上是否存在点P ,使PDC 是PAB 的“旋补三角形”?若存在,请作出点P ,不需证明,简要说明你的作图过程.【答案】(1)①180;②;③2(2);证明见解析 (3)存在.见解析【解析】【分析】(1)①依据,可得;②当为等边三角形时,可得是等腰三角形,,,再根据,即可得到中,,进而得出;③当时,时,易得,即可得到中,;(2)延长至,使得,连接,,判定四边形是平行四边形,进而得到,再判定,即可得到,进而得出;(3)延长,,交于点,作线段的垂直平分线,交于,交于,连接、、,由定义知当,且时,是的“旋补三角形”,据此进行证明即可.【小问1详解】解:①∵∠ADE +∠BDC =180°,1212DF BC =180ADE BDC ∠+∠=︒180BDE CDA ∠+∠=︒DBC ∆ADE ∆120ADE ∠=︒30E ∠=︒DF AE ⊥Rt DEF ∆12DF DE =12DF BC ==90BDC ∠︒4BC =ADE CDB ∆∆≌Rt ADE ∆122DF AE ==DF G FG DF =EG AG AGED BDC DEG ∠=∠DGE CDB SAS ∆∆≌()BC DG =1122DF DG BC ==AD BC F BC PG BE P BC G PA PD PC PA PD PB PC ==,180DPA CPB ∠+∠=︒PDC ∆PAB ∆∴∠BDE +∠CDA =180°,故答案为:180;②当△DBC 为等边三角形时,BC =DB =DE =DC =DA ,∠BDC =60°,∴△ADE 是等腰三角形,∠ADE =120°,∠E =30°,又∵DF 是△ADE 的中线,∴DF ⊥AE ,∴Rt △DEF 中,DF =DE ,∴DF =BC ,故答案为:;③∵BD 是AC 边上的中线,∴,∵∠BDC =90°,∴ ,在△ADE 和△CDB 中,,∴△ADE ≌△CDB ,∴AE =BC =4,∴Rt △ADE 中,DF =AE =2,故答案为:2;【小问2详解】猜想:DF =AE .证明:如图2,延长DF 至G ,使得FG =DF ,连接EG ,AG ,121212AD CD =90EDA BDC ∠=∠=︒AD CD EDA BDC DE BD =⎧⎪∠=∠⎨⎪=⎩1212∵EF =FA ,FG =DF ,∴四边形AGED 是平行四边形,∴,GE =AD =CD ,∴∠GED +∠ADE =180°,又∵∠BDC +∠ADE =180°,∴∠BDC =∠DEG ,在△GED 和△CDB 中,,∴△DGE ≌△CDB (SAS ),∴BC =DG ,∴DF=DG =BC ;【小问3详解】存在.理由:如图5,延长AD ,BC ,交于点F ,作线段BC 的垂直平分线PG ,交BE 于P ,交BC 于G ,连接PA 、PD 、PC ,由定义知当PA =PD ,PB =PC ,且∠DPA +∠CPB =180°时,△PDC 是△PAB 的“旋补三角形”,∵∠ADC =150°,EG DA ∥DE BD GED CDB GE CD =⎧⎪∠=∠⎨⎪=⎩1212∴∠FDC =30°,在Rt △DCF 中,∵CD =DCF =90°,∠FDC =30°,∴CF =2,DF =4,∠F =60°,在Rt △BEF 中,∵∠BEF =90°,BF =14,∠FBE =30°,∴EF =BF =7,∴DE =EF −DF =3,∵AD =6,∴AE =DE ,又∵BE ⊥AD ,∴PA =PD ,PB =PC ,在Rt △BPG 中,∵BG =BC =6,∠PBG =30°,∴PG =∴PG =CD ,又∵,∠PGC =90°,∴四边形CDPG 是矩形,∴∠DPG =90°,∴∠DPE +∠BPG =90°,∴2∠DPE +2∠BPG =90°,即∠DPA +∠BPC =180°,∴△PDC 是△PAB 的“旋补三角形”.【点睛】本题属于四边形综合题,主要考查了全等三角形的判定和性质、平行四边形的判定和性质、含30°角直角三角形的性质、等边三角形的判定和性质、矩形的判定和性质等知识的综合运用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.1212CD PG ∥。
青岛版八年级下册数学第一次月考试卷
青岛版八年级下册数学第一次月考试卷一.选择题(共12小题) 1.函数x32y 中自变量x 的取值范围是( )A .x >3B .x <3C .x ≤3D .x ≥﹣32.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元; (2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多; (4)若两种方案通讯费用相差10元,则通话时间是145分或185分. A .1个 B .2个 C .3个 D .4个3.已知y=(m ﹣3)x |m|﹣2+1是一次函数,则m 的值是( ) A .﹣3 B .3C .±3D .±24.正比例函数y=2kx 的图象如图所示,则y=(k ﹣2)x+1﹣k 图象大致是( )A .B .C .D .5.在一次函数y=ax ﹣a 中,y 随x 的增大而减小,则其图象可能是( )A .B .C .D .6.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A.B.C.D.7.若不等式组无解,则m的取值范围是( )A.m>2 B.m<2 C.m≥2 D.m≤28.如果(a+1)x<a+1的解集是x>1,那么a的取值范围是( )A.a<0 B.a<﹣1 C.a>﹣1 D.a是任意有理数9.已知不等式4x﹣a≤0的正整数解是1,2,则a的取值范围是( )A.8<a<12 B.8≤a<12 C.8<a≤12 D.8≤a≤1210.对于实数x,我们规定表示不大于x的最大整数,例如=1,=3,=﹣3,若=5,则x的取值可以是( )A.36 B.40 C.45 D.4611.泰安市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为15.5元,那么x的最大值是( )A.11 B.8 C.7 D.512.某医院为了提高服务质量,进行了下面的调查:当还未开始挂号时,有N个人已经在排队挂号,开始挂号后排队的人数平均每分钟增加M人.假定挂号的速度是每窗口每分钟K个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟后不出现排队现象,则需要同时开放的窗口至少应有( )A.4个B.5个C.6个D.7个二.填空题(共5小题)13.若定义:f(x)=﹣x,g(y)=y2,例如f(3)=﹣3,g(2)=4,则g[f(2)]=.14.执行图所示的程序框图,若输入x=10,则输出y的值为 .15.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)d关系式为Q=40﹣5t.当t=4时,Q=升,从关系式可知道这台拖拉机最多可工作 小时.16.若是正整数,则最小的整数n是 .17.已知a,b,c在数轴上的位置如图,化简代数式的值为 .三.解答题(共9小题)18.已知一次函数图象如图:(1)求一次函数的解析式;(2)若点P为该一次函数图象上一点,且点A为该函数图象与x轴的交点,若S△PAO=6,求点P的坐标.19.若直线分别交x轴、y轴于A、B两点,点P是该直线上的一点,PC⊥x轴,C为垂足.(1)求△AOB的面积.(2)如果四边形PCOB的面积等△AOB的面积的一半,求出此时点P的坐标.20.计算:(1)2﹣6+3(2)(﹣)(+)+(2﹣3)2.21.解不等式:,并写出它的所有正整数解.22.解不等式组,并把它们的解集表示在数轴上.23.如图,有一张边长为6cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.24.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?26.如图①,正方形ABCD,EFGH的中心P,Q都在直线l上,EF⊥l,AC=EH.正方形ABCD以1cm/s的速度沿直线l向正方形EFGH移动,当点C与HG的中点I重合时停止移动.设移动时间为x s时,这两个正方形的重叠部分面积为y cm2,y与x的函数图象如图②.根据图象解答下列问题:(1)AC=cm;(2)求a的值,并说明点M所表示的实际意义;(3)当x取何值时,重叠部分的面积为1cm2?八年级数学学科能力展示参考答案一.选择题(共12小题)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C A B B A D B B B B A二.填空题(共5小题)13.914.﹣1.2515.20;816.317.﹣a三.解答题(共9小题)18.已知一次函数图象如图: (1)求一次函数的解析式;(2)若点P 为该一次函数图象上一点,且点A 为该函数图象与x 轴的交点,若S △PAO =6,求点P 的坐标.解:(1)设一次函数解析式为y=kx+b ,根据题意得,解得,所以一次函数解析式为y=x+2; (2)把y=0代入y=21x+2得21x+2=0,解得x=﹣4,则A 点坐标为(﹣4,0), 设P 点坐标为(x ,y ),∴S △PAO =21•OA •|y|, ∵S △PAO =6,∴21•4•|y|=6,解得y=±3, 当y=3时,则y=21x+2=3,解得x=2;当y=﹣3时,则y=21x+2=﹣3,解得x=﹣10;∴P 点坐标为(2,3)或(﹣10,﹣3).19.若直线分别交x 轴、y 轴于A 、B 两点,点P 是该直线上的一点,PC ⊥x 轴,C 为垂足.(1)求△AOB 的面积.(2)如果四边形PCOB 的面积等△AOB 的面积的一半,求出此时点P 的坐标.解:(1)由y=21x+2可知A (﹣4,0),B (0,2), ∴OA=4,OB=2,∴S △AOB =21OA •OB=4; (2)设P (m ,21m+2),∵四边形PCOB 的面积等△AOB 的面积的一半,S △AOB =4, ∴四边形PCOB 的面积为2, ∴21(21m+2+2)(﹣m )=2, 解得m=2±2,∴P (2﹣2,3﹣)或(2+2,3+2).20.计算:(1)2﹣6+3(2)(﹣)(+)+(2﹣3)2.解:(1)2﹣6+3=4﹣6×+3×4=2+12=14;(2)(﹣)(+)+(2﹣3)2=6﹣5+12+18﹣12=31﹣12.21.如图,有一张边长为6cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)长方体盒子的纸板的面积:(6)2﹣4×()2=64cm2;(2)长方体盒子的体积:(6﹣2)(6﹣2)×=32cm3.22.解不等式:,并写出它的所有正整数解.解:去分母,得3(x+3)﹣2(2x﹣1)>6,去括号,得3x+9﹣4x+2>6,移项,得3x﹣4x>6﹣9﹣2,合并同类项,得﹣x>﹣5,系数化成1得x<5.则正整数解是1,2,3,4.23.解不等式,并把它们的解集表示在数轴上.解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.用数轴表示为:.24.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?解:(1)设甲种君子兰每株成本为x元,乙种君子兰每株成本为y元,依题意有,解得.故甲种君子兰每株成本为400元,乙种君子兰每株成本为300元.(2)设购进甲种君子兰a株,则购进乙种君子兰(3a+10)株,依题意有400a+300(3a+10)≤30000,解得a≤.∵a为整数,∴a最大为20.故最多购进甲种君子兰20株.25.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?解:(1)设购进苹果x千克,则购进丑桔(140﹣x)千克,依题意得:5x+9(140﹣x)=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)(140﹣x)=﹣x+460.故当x=35时,y有最大值,最大值为425元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.26.如图①,正方形ABCD,EFGH的中心P,Q都在直线l上,EF⊥l,AC=EH.正方形ABCD以1cm/s的速度沿直线l向正方形EFGH移动,当点C与HG的中点I重合时停止移动.设移动时间为x s时,这两个正方形的重叠部分面积为y cm2,y与x的函数图象如图②.根据图象解答下列问题:(1)AC=4cm;(2)求a的值,并说明点M所表示的实际意义;(3)当x取何值时,重叠部分的面积为1cm2?解:(1)当这两个正方形的重叠部分面积为8时,也就是小正方形的面积为8,得出小正方形的边长为2cm,所以AC=×2=4cm.故答案为:4.(2)当x=4时,点A与点I重合,y===8,∴a的值为8.点M所表示的实际意义为:当x=4s时,重叠部分面积最大,最大面积为8cm2;(3)由题意,可知:当0≤x≤2时,y=x2,此时y的取值范围是0≤y≤4;当2≤x≤6时,y=﹣(x﹣4)2+8,此时y的取值范围是4≤y≤8;当6≤x≤8时,y=(8﹣x)2,此时y的取值范围是0≤y≤4.当y=1时,得x2=1,解得x=1(负值舍去),或(8﹣x)2=1,解得x=7或x=9(不合题意,舍去),∴当x的值为1或7时,重叠部分的面积为1.11。
北师大版八年级数学下第一次月考数学试卷
北师大版八年级数学第一次月考数学试卷(考试时间:100分钟,分值:120分)一.选择题(3×10=30分)1.下列不等式中,属于一元一次不等式的是()A.x>1B.3x2﹣2<4C.<2D.4x﹣3<2y﹣7 2.如图,在足球场内,A,B,C表示三个足球运动员,为做折返跑游戏,现准备在足球场内放置一个足球,使它到三个运动员的距离相等,则足球应放置在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处第2题第 4题第7题第8题3. 将不等式组{4x>−83x−5≤1的解集在数轴上表示出来,则下列选项正确的是()A.B.C.D.4.如图,BE=CF,AE⊥BC,DF⊥BC,要直接根据“HL”证明Rt△ABE≅Rt△DCF,则还要添加一个条件是()A.∠A=∠D B.∠B=∠C C.AE=BF D.AB=DC5. 下列不一定成立的是()A.若a<b,则 c−a>c−b .B. 若ac2<bc2,则 a<bC. 若a−c<b−c,则 a<b.D. 若a< b,则 ac2<bc2.6. 郑州市出租车的收费标准是:起步价10元(即行驶距离不超过3千米都需付10元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为18元,依题意,可列出不等式()A.10+2x<18 B.10+2x≤18 C.10+2(x-3)≤18 D.10+2(x-3)<18 7.如图,直线y1=kx+b,y2=mx﹣n交于点P(1,m),则不等式mx﹣b>kx+n的解集是()A.x>0 B.x<0 C.x>1 D.x<18. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=28°,则∠CBD=()A.15°B.16°C.18°D.20°9. 关于x的不等式组{x−a>02x−5<1−x有且仅有5个整数解,则a的取值范围是()A.﹣5<a≤﹣4B.﹣5≤a<﹣4C.﹣4<a≤﹣3D.﹣4≤a<﹣310.如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9 C.6 D.3二、填空题(3×5=15分)11 . 假期里全家去旅游,爸爸开小型客车走中间车道,你给爸爸建议车速为km/h.12.已知△ABC中,∠B≠∠C,求证:AB≠AC.若用反证法证这个结论,应首先假设.13. 若(m-1)x>m-1的解集为x<1,则m的取值范围是.14.如图,在△ABC中,∠BAC=60°,角平分线BE,CD相交于点P,若AP=4,AC=6,则S△APC=15. 小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为.第14题第15题二、解答题16(10分)下面是小明同学解不等式x−13≥x−32+1的过程.去分母,得2(x-1)≥3(x−3)+1.①去括号,得2x-2≥3x−9+1. ②移项、合并同类项得﹣x≥﹣6.③两边都除以﹣1,得x≥6.④(1)他的解题过程中在第步和第步有错误,请你分别指出错误原因:;。
2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)
2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷1、选择题:(本题共10小题,每小题2分,共20分)1.下列二次根式是最简二次根式的是( )A. B. C. D.14128132.下列各式正确的是( )A. B.(−4)×(−9)=−4×−916+94=16×94C.D. 449=4×494×9=4×93.若,则( )y =x−2+4−2x−3x +y =A. B. C. D. 15−5−14.用配方法解一元二次方程时,下列变形结果正确的是 ( )x 2−4x−3=0A. B. C. D. (x−2)2=1(x−2)2=7(x−4)2=1(x−4)2=75.若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )x (k−1)x 2+4x +1=0k A. B. 且 C. 且 D. k <5k <5k ≠1k ≤5k ≠1k >56.如果一组数据2、3、4、5、x 的方差与另一组数据101,102,103,104,105的方差相等,那么x 的值( )A. 6 B. 1C. 6或1D. 无法确定7.若,,则( )x +1x=60<x <1x−1x=A. B. C. D. −2−2±2±28.如图,中,对角线、相交于点,交于点,连接,若的周长▱ABCD AC BD O OE ⊥BD AD E BE ▱ABCD 为,28则的周长为( )△ABE A. B. C. D. 282421149.已知a,b,c 满足( )4a 2+2b−4=0,b 2−4c +1=0,c 2−12a +17=0,则a 2+b 2+c 2的值为A. B. C.14 D.201621429410.新定义:关于的一元二次方程与称为“同族二次方程”如x a 1(x−m )2+k =0a 2(x−m )2+k =0.与是“同族二次方程”现有关于的一元二次方程2021(x−3)2+4=03(x−3)2+4=0.x 与是“同族二次方程”,那么代数式能取2(x−1)2+1=0(a +2)x 2+(b−4)x +8=0ax 2+bx +2024的最小值是( )A. B. C.2018D. 202320242019二、填空题:(本题共10小题,每小题3分,共30分)11.要使根式有意义,则的取值范围是__________.x +4x−2x 12.已知三角形的两边长分别为和,第三边长是方程的根,则这个三角形的周长36x 2−6x +8=0是 .13.计算: .(2−5)2023(2+5)2024=14.一个多边形的内角和比它的外角和的倍少,这个多边形的边数是 .3180∘15.若是完全平方式,则的值为__________.x 2+2(m−1)x +16m 16.已知一组数据,,,,的平均数是,方差是,那么另一组数据,,x 1x 2x 3x 4x 5213x 1−23x 2−2,,的平均数__________, 方差__________.3x 3−23x 4−23x 5−217.设,是方程的两个实数根,则________.a b x 2+x−2024=0a 2+2a +b =18.已知,则的值为 ________(x 2+y 2+2)(x 2+y 2+4)=15x 2+y 219.对于实数、,我们用符号表示,两数中较小的数,如,p q min{p,q}p q min {1,2}=1若,则 .min{(x +1)2,x 2}=4x =20.如图,在▱中,,是的中点,作,垂足在线段上,连接、ABCD AD =2AB F AD CE ⊥AB E AB EF ,CF 则下列结论中,; ;①2∠DCF =∠BCD ②EF =CF; .其中正确的是________.③S △BEC =2S △CEF ④∠DFE =3∠AEF 三、解答题:(本题共7小题,共50分)21.本小题分计算或选用适当的方法解下列方程(10)(1)(2)(2+3)(2−3)(−3)0−27+|1−2|.(3)(2x−1)2=1(4)(x−5)2=3(x−5)22.本小题6分已知的三条边长,,,在下面的方格图内()△ABC AB =2AC =412BC =251254×4画出,使它的顶点都在格点上每个小方格的边长均为.△ABC (1).(1)画出△ABC 求的面积.(2)△ABC 求点到边的距离.(3)A BC 23.本小题8分某校八(1)班甲、乙两名男生在5次引体向上测试中有效次数记录如下:()甲:8,8,7,8,9;乙:5,9,7,10,9.甲、乙两人引体向上的平均数、众数、中位数、方差如下表所示:平均数众数中位数方差甲8b 80.4乙a9C3.2(1)表中a= ,b= ,c=______ (2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是 班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是__________________. (3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数 ,中位数 ,方差 (均填“变大”“变小”或“不变”).24.本小题4分如图,在平行四边形中,对角线,相交于点,过点的直线分别()ABCD AC BD O O 交,于点,AD BC E F.求证:。
八年级下册第1次月考试题--数学(含答案) (18)
八年级数学(下册)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或173.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为164.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.138.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.如果等腰三角形的一个角等于80°,则它的顶角等于度.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为cm.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=度.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积cm2.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.18.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是(填序号);(2)证明:23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是;(2)若∠BAC=128°,则∠DAE的度数是.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,在某一时刻也能够使△BPD 与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.3.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为16【考点】等腰三角形的判定.【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解:解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=70°时,∠A=∠C=40°,当顶角为∠A=40°时,∠B=∠C=70°,所以B选项正确.当AB=AC=3,BC=63+3=6,不能构成三角形,所以C选项错误.当AB=3、BC=8,周长为16,AC=5,所以D选项错误.故选B.4.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点【考点】角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等解答即可.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形三条边的距离相等的点是三角形三条角平分线的交点,故选:A.6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC 的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.8.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个【考点】等腰三角形的判定.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB=,然后即可确定C点的位置.【解答】解:如图,AB==,∴当△ABC为等腰三角形,则点C的个数有8个,故选C.9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论.故选A.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.12.如果等腰三角形的一个角等于80°,则它的顶角等于80或20.度.【考点】等腰三角形的性质;三角形内角和定理.【分析】当等腰三角形的一个角等于80°时,分2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角与其相等,②当等腰三角形的顶角等于80°,时,利用三角形内角和定理即可求出答案.【解答】解;当等腰三角形的一个角等于80°时,则有2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角等于80°时,②当等腰三角形的顶角等于80°时则它的底角为:=20°故答案为:80或20.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为105°.【考点】轴对称的性质.【分析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=40°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣35°=105°.故答案为:105°14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为3cm.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,从而得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴DE=CD,∵CD=3cm,∴DE=3cm,即点D到AB的距离为3cm.故答案为:3.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积18cm2.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线定义和平行线性质求出∠EOB=∠EBO,∠FCO=∠FOC,根据等腰三角形的判定得出OE=BE,OF=FC,求出BC长,根据三角形的面积公式求出即可.【解答】解:∵∠B与∠C的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC,∵△ABC的周长比△AEF的周长大12cm,∴(AC+BC+AC)﹣(AE+EF+AF)=12,∴BC=12cm,∵O到AB的距离为3cm,∴△OBC的面积是cm×3cm=18cm2.,故答案为:18.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为5.【考点】等腰三角形的性质.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=15°,∴∠GEF=∠FGE=30°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是15°,第二个是30°,第三个是45°,四个是60°,五个是75°,六个是90°就不存在了.所以一共有5个.故答案为518.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【考点】轴对称-最短路线问题;等腰三角形的性质.【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,=×BC×AD=×AB×CN,∴S△ABC∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质结合网格得出符合题意的图形即可.【解答】解:如图所示:.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为14.【考点】作图-轴对称变换.【分析】(1)先作出各点关于直线MN的对称点,再顺次连接即可;(2)利用矩形的面积减去三角形的面积即可.【解答】解:(1)如图所示;(2)S六边形AA′B′C′CB=3×6﹣×2×1﹣×2×1﹣×2×1﹣×2×1=18﹣1﹣1﹣1﹣1=14.故答案为:14.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【考点】作图—应用与设计作图.【分析】到AB、BC距离相等的点在∠ABC的平分线上,到点A、D的距离相等的点在线段AD的垂直平分线上,AD的中垂线与∠B的平分线的交点即为点P的位置.【解答】解:如图所示:点P即为所求.22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是①(填序号);(2)证明:【考点】全等三角形的判定与性质.【分析】(1)利用全等三角形的判定定理选出合适的条件即可;(2)利用SSS进而判断出全等三角形,得出AB∥ED即可.【解答】解:(1)选择①AB=ED或③∠ACB=∠DFE即可.故答案为:①(答案不唯一);(2)证明:∵FB=CE,∴BC=EF,在△ABC和△EFD中,∴△ABC≌△EFD(SSS),∴∠B=∠E,∴AB∥ED.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是10;(2)若∠BAC=128°,则∠DAE的度数是76°.【考点】线段垂直平分线的性质.【分析】(1)由在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,易得AE=BE,AF=CF,即可得BC=△AEF周长;(2)由∠BAC=128°,可求得∠B+∠C的值,即可得∠BAE+∠CAF的值,继而求得答案.【解答】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∵△ADE周长是10,∴BC=BE+EF+CF=AE+EF+AF=10;故答案为:10;(2)∵AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=128°,∴∠B+∠C=180°﹣∠BAC=52°,∴∠BAE+∠CAF=∠B+∠C=52°,∴∠FAE=∠BAC﹣(∠BAE+∠CAF)=76°,故答案为:76°.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?【考点】等边三角形的性质;全等三角形的性质;等腰三角形的判定.【分析】(1)根据全等三角形的性质得到CO=CD,∠BCO=∠ACD,由等边三角形的性质得到∠ACB=60°,求得∠OCD=∠ACB=60°;即可得到结论;(2)根据等边三角形的性质和周角的定义解答即可;(3)分三种情况::①要使AO=AD,需∠AOD=∠ADO,根据周角的定义得到∠ADO=α﹣60°,得到方程190°﹣α=α﹣60°求得α=125°;②要使OA=OD,需∠OAD=∠ADO.由于∠AOD=190°﹣α,∠ADO=α﹣60°,于是得到α﹣60°=50°求得α=110°;③要使OD=AD,需∠OAD=∠AOD.由于190°﹣α=50°于是得到α=140°.【解答】解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO=CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°﹣110°﹣90°﹣60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣100°﹣60°﹣α=200°﹣α,∠ADO=α﹣60°,∴200°﹣α=α﹣60°∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=40°,∴α﹣60°=40°∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°﹣α=40°∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,或100°,150°或160°时,△AOD是等腰三角形26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= 3:1.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.【考点】含30度角的直角三角形;等腰三角形的性质;等边三角形的性质.【分析】(1)根据三角形内角和定理推知∠A=30,∠C=90°.(2)根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB;(3)如图3,连接AD.利用等腰三角形的性质、垂直的定义推知∠B=∠ADE=30°,然后由”30度角所对的直角边是斜边的一半“分别求得BE、AE的值;(4)如图4,根据全等三角形的判定定理SAS可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到∠PBQ=30°,根据直角三角形的性质即可得到.【解答】解:(1)∵∠A:∠B:∠C=1:2:3,且∠A+∠B+∠C=180°,∴∠A=30,∠C=90°,∴BC=AB=.故填:;(2)如图2,∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故填:15cm;(3)如图3,连接AD.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,AE=AD,∴BE:EA=BD:AD,又∵BD=AD,∴BE:AE=3:1.故填:3:1.(4)BP=2PQ.理由如下:∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 1.5cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?【考点】全等三角形的判定;等腰三角形的性质.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;②假设△BPD≌△CPQ,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴vQ===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(下)第一学期月考数学试卷
考试时间:90
分钟 满分:120分
2005.4.3
1、 2、 34、 、填空题:(每题3分,共33
分) “a 的平方是非负数”用式子表示为 写出一个不等式,使它的解集是x > — 1 不等式6—2X >
0的解集是 2 24m n + 18n 的公因式 __________ ; 集疋
L
□
□]
第6小题图
5、 分解因式:2X 3—
8X 2
=
2
,x 2
—14x +49=
观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因 式的公式,这个公式是 _______ 。
7、不等式穿—1>3X 3+2
的解集为 6、 &当X 时,分式上的值为零;当X 5X 10 时,分式启有意义。
x 2
_1 _ ,X 2 -2x 1
10、 时,代数式奨三的值是非正数.?
「5
11、 不等式组丿 X ::' 2m 亠 1
X
'的解集是x v m —2,则m 的取值应为
X :: m -2
12、 13、 14、 15、 选择题:(每小题3分,共27分) 如果a > b ,下列各式中不正确的是
a b
A 、a —3>b —3
B 、—>—
C 、—2a v —2b
D 、— 2a >—2b
2 2 是因式分解的是( )
B 、X 2+X —5=(X —2)(X + 3)+ 1 2 1
D 、X 2+ 仁X (X + )
X
1
、a •—中分式的个数有(
)
m
、4个 D 、5个 )
下列从左到右的变
形,
2
A 、(a +3)(a-3)=/—9 2 2
C 、ab +ab=ab(a^b) 2
X 1 3xy 、 2 二 B 、3个 在1、1
X 2
A 、2个
如图,用不等式表示数轴上所示的解集,正确的是(
A、x v —1 ^或x》一3
B、x w —1 ^或x >3
C、一1 w x v3
D、一1 <x W 3
1
16、下列说法①x=0是2x—1v 0的解;②x=—不是3x-1>0的解;
3
"x > 1
③一2x—1v0的解集是x>2;④不等式J 的解集是x>1,
X A 2
其中正确的个数是……()
A、1个B 、2个 C 、3个D 、4个
17、下列多项式中不能用平方差公式分解的是( )
八 2 冷f 2 2 小“ 2 2 2 小“ 4 2 “2
A、a —b
B、一x —y
C、49x —y z
D、16mn —25p
18、下列多项式能用完全平方公式分解的是( )
2 1 o b 2
A、x2—2x——
B、(a+b)(a-b)—4ab
C、s i+ab+
D、y2+2y—1
4 4
19、分解因式b2(x—3)+b(x—3)的正确结果是( )
A、(x—3) (b2+b) B 、b(x—3) (b +1)
2
C、(x—3) (b —b) D 、b((x—3) (b —1)
20、把分式上’分子、分母中a、b都变成原来的2倍,则分式的值变为原分式值的
a +b
()
1
A、4倍 B 、2倍 C 、不变D 、1倍
2
三、把下列各式因式分解:(每小题5分,计20分)
21、 ___________________ 7x2—63= 22_9 ______________________ —12t +4t2= ________________
3 2 2 2 2
23. —2x +4x —2x= _________ 24. (a +4) —16a= __________________
四、解答题(每题8分,共24分,要写出解题过程,直接写答案不得分)
25.解不等式2—x>2(x —3),并写出非负整数解。
j-2x 15 -x
26•解下列不等式组,/1并把解集表示在数轴上表示出来:
—x 兰—2
、2
2
27.先化简再求值:幕計2,其中心
五、应用题(共16分)
28、(7分)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。
该商场为促销制定了如下两种优惠方式:第一种:买一支毛笔附赠一本书法练习本;第二种:按购买金额打九折付款。
八年级(5)班的小明想为本班书法兴趣小组购买这种毛笔10支,书法练习本x (x>10)本。
试问小明应该选择哪一种优惠方式才更省钱?
29. (9分)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图像•根据图像解答下列问题:
(1)在轮船快艇中,哪一个的速度较大?
(2)当时间x在什么范围内时,快艇在轮船的后面?当时间x在什么范围内时, 快艇在轮船的前面?
(3)问快艇出发多长时间赶上轮船?。