管理运筹学-对策论
合集下载
运筹学-第15章--对策论
1 8 5 8 5 5*
2 2 3 2 1 1
3 4
9 0
5 2
6 3
5 5*
3
0
max 9 5* 8 5*
可知 ai* j* =5,i*=1,3,j*=2,4.故(α1,β2)(α1,β4)(α2,
β2)(α2,β4)为对策的纳管 什理均运衡,筹 V学G=5.
15
• 最优纯策略求解步骤:
• 1、行中取小,小中取大得最大化最小收益 值;
• 2、列中取大,大中取小得最小化最大支付 值;
• 3、比较两值是否相等。若相等便存在最优 纯策略。若不等,则不存在最优纯策略。
管理运筹学
16
§3 矩阵对策的混合策略
设矩阵对策 G = { S1, S2, A }。当
max
i
min
j
aij
min
j
max
i
aij
时,不存在最优纯策略。
例:设一个赢得矩阵如下:
一个局势,一个局势决定了各局中人的对策结果(量化) 称为该局势对策的益损值。
管理运筹学
3
§1 对策论的基本概念
出赛的次序是一个策略 “齐王赛马”齐王在各局势中的益损值表(单位:千金)
管理运筹学
4
§1 对策论的基本概念
其中:齐王的策略集: S1={ 1, 2, 3, 4, 5, 6 }, 田忌的策略集:S2={ 1, 2, 3, 4, 5, 6 }。
A=[aij]m×n i 行代表甲方策略 i=1, 2, …, m;j 列代表乙方策略 j=1, 2, …, n;aij 代表甲方取策略 i,乙方取策略 j,这一局势下甲方的 益损值。此时乙方的益损值为 -aij(零和性质)。
运筹与优化--对策论
y∈S2*为局中人I和Ⅱ的混合策略,(x,y)为混合局势,
局中人I的赢得函数为 E(x,y)xTAy aix jiyj
称G* ={S1*,S2*,E}为对策G的混合扩充. i j
A
12
设 mm ax E i(x n ,y)mE i(x n *,y)
x S 1 * y S2 *
y S2 *
mm inE a(x,x y)mE a(x,x y*)
注意:G在纯策略下解存在时,定义4中的
VG ;Gai在j 混合策略意义下的解(x*,y*)
存在时,VG=E(x*,y*).
例4. 解矩阵对策 中
3 G6={S1 ,S2 ;A },其
A
5
4
A
14
局中人I取纯策略αi时,其赢得函数为 E(i,y)=∑aijyj ,
局中人Ⅱ取纯策略βj时,其赢得函数为 E(x,j)=∑aijxi .
人I以概率xi≥0取纯策略αi,局中人Ⅱ以概率yj≥0取
纯策略βj ,且
m
xi
1.记,
n
yj 1
i1
j1
m
S 1 {x(x1,x2, ,xm ) E mxi0 , xi1 }
i 1
n
S2 {y(y1,y2, ,yn) E nyj0, yj1 }
j 1
则S1* ,S2*分别称为局中人I和Ⅱ的混合策略集.称x∈S1*,
A
24
推论.如果纯策略α1被纯策略α2 , … αm的凸线 性组合所优超,则定理10的结论仍成立.
由上两式得
E(x,y)=∑E(i,y)xi
(5)
E(x,y)=∑E(x,j)yj . (6)
定理3.设x∈S1*,y∈S2*,则(x*,y*)是G的解的充要条 件是: 对任意i=1,2,…,m 和 j=1,2,…,n,有
《管理运筹学-对策论》
博弈与均衡
04
对策分析方法
CHAPTER
VS
静态分析法是一种不考虑时间因素的分析方法,主要适用于解决一次性决策问题。
详细描述
静态分析法将问题视为一个静态系统,不考虑时间变化和过程发展,只关注决策变量的当前状态和最优解。这种方法适用于确定性和静态的环境,如线性规划、整数规划等。
总结词
静态分析法
总结词
《管理运筹学-对策论》
目录
对策论概述 对策模型 对策论的基本概念 对策分析方法 对策论的应用实例 对策论的未来发展
CONTENTS
01
对策论概述
CHAPTER
对策论,也称为博弈论,是研究决策主体在相互竞争、相互依存的环境中如何进行策略选择和行动的学科。
对策论强调理性、优化和均衡,通过数学模型和逻辑推理来描述和分析竞争行为,尤其关注在不确定性和信息不对称情况下的决策问题。
对策论的定义与特点
特点
定义
竞争策略分析
对策论可以用于分析企业或组织在市场竞争中的策略选择,例如定价策略、产品差异化、市场份额争夺等。
合作协议
在某些情况下,企业间可能通过对策论的方法找到合作的可能性,例如供应链协调、合作研发等。
人力资源决策
在招聘、晋升、激励设计等方面,对策论可以帮助理解个体和团队的行为反应,优化人力资源决策。
03
对策论的基本概念
CHAPTER
策略与行动
策略
在对策中,参与者为达到目标所采取的行动方案。策略是完整的、具体的行动计划,它规定了参与者在所有可能情况下应采取的行动。
行动
在对策中,参与者实际采取的行动。行动是实现策略的具体行为或决策。
在对策中,如果一个参与者的某个策略能够使其获得比其他参与者更好的结果,则称该策略为优势策略。优势策略是相对于其他参与者的策略而言的。
运筹学第9章 对策论
3. 赢得函数(支付函数)(payoff function)
一个对策中,每一个局中人所出策略形成的策略 组称为一个局势。 即设 s i 是第 i 个局中人的一个策略, 则n个局中人的策略形成的策略组 s ( s1 , s2 ,, sn )
s 就是一个局势。
在“齐王VS田忌赛马”中,
齐王有6个策略: 2 ( 上,下,中)、 1 (上,中,下)、 4 (中,下,上)、 5 ( 下,上,中)、
1 2
设局中人I采用纯策略 1和 2的概率 分别为 x1 和 x2 ,x1 x2 1, x1,2 0 设局中人II采用纯策略 1和 2的概率 分别为 y1 和 y2 ,y1 y2 1, y1,2 0
SI 1 , 2 设局中人I的策略集原来为: 那么在没找到纯策略的前提下,局中人I的策略集变为: 局中人I的策略 SI X ( x1, x2 )T x1 x2 1, x12 0 有无穷多个 S II 1 , 2 设局中人I的策略集原来为: 那么在没找到纯策略的前提下,局中人II的策略集变为:
当一个局势 s 出现后,每一局中人就会面对
一个赢得值或损失值,记作 Hi (s)。
Hi (s) 是定义在局势上的函数,
所以称为局中人 i 的赢得函数。
通常的分类方式有: (1) 根据局中人的个数,分为二人对策和多人对策; (2) 根据各局中人的赢得函数的代数和是否为零,分 为零和对策与非零和对策; (3) 根据各局中人间是否允许合作,分为合作对策和 非合作对策; (4) 根据局中人的策略集中的策略个数,分为有限对 策和无限对策等等。
max VG X 1 E ( X 1 , 1 ) E ( X 1 , 2 ) X 2 E ( X 2 , 1 ) E ( X 2 , 2 ) 5 x1 8 x2 VG E s . t . X 3 E ( X 3 , 1 ) E ( X 3 , 2 ) 9 x1 6 x2 VG x x 1 , x , x 0 1 2 1 2
管理运筹学课件第13章对策论
2 :v2 3x5(1x)52x
203.0:2v.23021 11x2(1x) 9x2
步骤:
(1)绘制x数轴,标出x取值范围[0,1]
(2)x取0和1,确定三条直线端点,绘制三 条甲赢得值直线
(3)由于乙是理智的,甲的赢得值只能是 最小的(粗线所示)
(4)甲只能在最小中取最大,对应的策略 为 X * ( 3 , 8 ) ,最优对策值为V*=49/11
同 理 可 定 义 局 中 人 乙 的 混 合 策 略 与 混 合 策 略 集 .
当甲采取混合策略x,乙采取混合策略y,则称(x,y)为一个混合局势.
G*S1*,S2*,E 表示一个混合策略矩阵对策及G的一个混合扩充.
20.02.2021
课件
17
13.3.2 图解法
图解法求解矩阵对策,一般
适用于赢得矩阵为 或 的对
20.02.2021
课件
6
13.1.1 对策模型的基本要素
1.局中人
局中人(players)是指参与竞争的各方,每方必须有独立的决策能力和承 担风险的能力。(如:田忌、齐王)
2.策略集
在对策问题中,局中人为了应对其他局中人的行动而采取的方案和手段 称为该局中人的一个策略(strategy)。
3.赢得及赢得函数
5
2
4
5
2
4
m
ax
2
max 6 3 4 2
最 优 纯 策 略 (3,4)
20.02.2021
min2
课件
13
13.3.1 混合策略的概念
【例13.5】 猜硬币游戏:甲、乙两个儿童玩猜硬币游戏, 甲手中拿着一枚硬币,把硬币盖在桌子上,让儿童乙猜是 正面向上还是反面向上。如若猜对甲给乙1元钱,猜错乙给 甲1元钱。
203.0:2v.23021 11x2(1x) 9x2
步骤:
(1)绘制x数轴,标出x取值范围[0,1]
(2)x取0和1,确定三条直线端点,绘制三 条甲赢得值直线
(3)由于乙是理智的,甲的赢得值只能是 最小的(粗线所示)
(4)甲只能在最小中取最大,对应的策略 为 X * ( 3 , 8 ) ,最优对策值为V*=49/11
同 理 可 定 义 局 中 人 乙 的 混 合 策 略 与 混 合 策 略 集 .
当甲采取混合策略x,乙采取混合策略y,则称(x,y)为一个混合局势.
G*S1*,S2*,E 表示一个混合策略矩阵对策及G的一个混合扩充.
20.02.2021
课件
17
13.3.2 图解法
图解法求解矩阵对策,一般
适用于赢得矩阵为 或 的对
20.02.2021
课件
6
13.1.1 对策模型的基本要素
1.局中人
局中人(players)是指参与竞争的各方,每方必须有独立的决策能力和承 担风险的能力。(如:田忌、齐王)
2.策略集
在对策问题中,局中人为了应对其他局中人的行动而采取的方案和手段 称为该局中人的一个策略(strategy)。
3.赢得及赢得函数
5
2
4
5
2
4
m
ax
2
max 6 3 4 2
最 优 纯 策 略 (3,4)
20.02.2021
min2
课件
13
13.3.1 混合策略的概念
【例13.5】 猜硬币游戏:甲、乙两个儿童玩猜硬币游戏, 甲手中拿着一枚硬币,把硬币盖在桌子上,让儿童乙猜是 正面向上还是反面向上。如若猜对甲给乙1元钱,猜错乙给 甲1元钱。
运筹学-第六讲对策论
S S1 S2 Sn
引言
对策论 game theory
对策的结构和分类
按对策方式非 合合 作作 对对 策策有 完限 全理 理性 性
对策分类按对策人数二人对策二 二人 人非 零零 和和 对对 策策
多人对策
按对策状态动 静态 态对 对策 策不 完 不 完完 全 完 全全 信 全 信信 息 信 息息 动 息 静动 态 静 态态 对 态 对对 策 对 策策 策
Nash对对策论的贡献有: (i) 合作对策中的讨价还价模型,称为Nash讨价还价解; (ii) 非合作对策的均衡分析。
(6) 目前,博弈论在定价、招投标、谈判、拍卖、委托—代理以及很多的经营 决策中得到应用,它已成为现代经济学的重要基础。现代对策论总体上是一门 新兴的发展中的学科。
对策论 game theory
数服从(0-1)分布.
【定义】 如果一个策略G={S1, …, Sn; h1, … , hn}中,参予者i 的策略集为
Si={Si1, … , Sik},如果由各个对策方的策略组成策略集合G*={S1*, S2*, …, Sn*},
其中
Si*
xi
E mi
| xi
0,i 1,2,, mi ,
纳什均衡
Nash Equilibrium
对于对策中的每一个局中人,真正成功的措施应该是针对于其他局中 人所采取的每次行动,相应地采取有利于自己地反应策略,于是每一 个局中人应采取的必定是他对其他局中人策略的预测的最佳反应。
纳什均衡
对策论 game theory
纳什均衡定义
用G 表示一个对策,若一个对策中有 n 个局中人,则每个局中人可选策略的 集合称为策略集,分别用 S1,S2,…,Sn 表示;Sij 表示局中人i 的第 j 个策 略,其中 j 可取有限个值(有限策略对策),也可取无限个值(无限策略对策); 对策方 i 的得益则用 hi 表示;hi 是各对策方策略的多元函数,n个局中人的
引言
对策论 game theory
对策的结构和分类
按对策方式非 合合 作作 对对 策策有 完限 全理 理性 性
对策分类按对策人数二人对策二 二人 人非 零零 和和 对对 策策
多人对策
按对策状态动 静态 态对 对策 策不 完 不 完完 全 完 全全 信 全 信信 息 信 息息 动 息 静动 态 静 态态 对 态 对对 策 对 策策 策
Nash对对策论的贡献有: (i) 合作对策中的讨价还价模型,称为Nash讨价还价解; (ii) 非合作对策的均衡分析。
(6) 目前,博弈论在定价、招投标、谈判、拍卖、委托—代理以及很多的经营 决策中得到应用,它已成为现代经济学的重要基础。现代对策论总体上是一门 新兴的发展中的学科。
对策论 game theory
数服从(0-1)分布.
【定义】 如果一个策略G={S1, …, Sn; h1, … , hn}中,参予者i 的策略集为
Si={Si1, … , Sik},如果由各个对策方的策略组成策略集合G*={S1*, S2*, …, Sn*},
其中
Si*
xi
E mi
| xi
0,i 1,2,, mi ,
纳什均衡
Nash Equilibrium
对于对策中的每一个局中人,真正成功的措施应该是针对于其他局中 人所采取的每次行动,相应地采取有利于自己地反应策略,于是每一 个局中人应采取的必定是他对其他局中人策略的预测的最佳反应。
纳什均衡
对策论 game theory
纳什均衡定义
用G 表示一个对策,若一个对策中有 n 个局中人,则每个局中人可选策略的 集合称为策略集,分别用 S1,S2,…,Sn 表示;Sij 表示局中人i 的第 j 个策 略,其中 j 可取有限个值(有限策略对策),也可取无限个值(无限策略对策); 对策方 i 的得益则用 hi 表示;hi 是各对策方策略的多元函数,n个局中人的
管理运筹学课件第13章-对策论
管理运筹学课件第13章对策论
• 对策论基本概念 • 矩阵对策 • 连续对策 • 合作对策 • 非合作对策 • 对策论在实际问题中应用
01
对策论基本概念
对策论定义与特点
定义
对策论,又称博弈论,是研究决策过 程中理性决策者之间冲突与合作的数 学理论。
特点
对策论注重分析决策者之间的相互作 用和影响,以及决策结果的均衡性和 稳定性。
供应链管理
在供应链管理中,对策论可用于 协调供应商、制造商、销售商之 间的利益关系,优化供应链整体 效益。
金融市场投资决策
对策论可用于分析金融市场中的 投资决策问题,如股票交易、期 货交易等,帮助投资者制定最优 的投资策略。
军事领域应用案例
作战计划制定
01
对策论可用于分析敌我双方的作战能力和策略选择,帮助军事
指挥官制定最优的作战计划。
武器系统研发
02
在武器系统研发中,对策论可用于分析不同武器系统的性能优
劣和作战效能,为武器系统研发提供决策支持。
军事演习评估
03
对策论可用于评估军事演习的效果和参演部队的作战能力,为
军事训练提供改进建议。
社会领域应用案例
社会治安综合治理
对策论可用于分析社会治安问题中的各方利益关系和行为选择,提 出综合治理的策略和措施。
微分对策的求解方法
包括最大值原理、动态规划等方法。
连续对策求解方法
01
02
03
迭代法
通过不断迭代更新参与者 的策略,直到达到某个均 衡条件为止。
数值解法
利用数值计算的方法求解 连续对策的均衡解,如有 限差分法、有限元法等。
解析法
在某些特殊情况下,可以 通过解析的方法求解连续 对策的均衡解,如线性二 次型微分对策等。
• 对策论基本概念 • 矩阵对策 • 连续对策 • 合作对策 • 非合作对策 • 对策论在实际问题中应用
01
对策论基本概念
对策论定义与特点
定义
对策论,又称博弈论,是研究决策过 程中理性决策者之间冲突与合作的数 学理论。
特点
对策论注重分析决策者之间的相互作 用和影响,以及决策结果的均衡性和 稳定性。
供应链管理
在供应链管理中,对策论可用于 协调供应商、制造商、销售商之 间的利益关系,优化供应链整体 效益。
金融市场投资决策
对策论可用于分析金融市场中的 投资决策问题,如股票交易、期 货交易等,帮助投资者制定最优 的投资策略。
军事领域应用案例
作战计划制定
01
对策论可用于分析敌我双方的作战能力和策略选择,帮助军事
指挥官制定最优的作战计划。
武器系统研发
02
在武器系统研发中,对策论可用于分析不同武器系统的性能优
劣和作战效能,为武器系统研发提供决策支持。
军事演习评估
03
对策论可用于评估军事演习的效果和参演部队的作战能力,为
军事训练提供改进建议。
社会领域应用案例
社会治安综合治理
对策论可用于分析社会治安问题中的各方利益关系和行为选择,提 出综合治理的策略和措施。
微分对策的求解方法
包括最大值原理、动态规划等方法。
连续对策求解方法
01
02
03
迭代法
通过不断迭代更新参与者 的策略,直到达到某个均 衡条件为止。
数值解法
利用数值计算的方法求解 连续对策的均衡解,如有 限差分法、有限元法等。
解析法
在某些特殊情况下,可以 通过解析的方法求解连续 对策的均衡解,如线性二 次型微分对策等。
运筹学--对策论
max min E(X,Y)= min max E(X,Y)
X S1* Y S2*
Y S2* X S1*
则称这个公共值为对策G在混合意义 下的值,记为V*G,而达到V*G 的混 合局势(X*,Y*)称为对策G在混合 策略意义下的解,而X*和Y*分别称 为局中人I,II的最优混合策略。
定理14-2:矩阵对策 G = S1,S2;A
0 2 3 0
赢得矩阵为 A 2 0 3 0
0
3
0 4
0
3
4
0
14.2 矩阵对策的混合策略
定义:对给定的矩阵对策
G = Ⅰ,Ⅱ;S1,S2;A
其中 S1= 1, 2…m
S2= 1 , 2… n
A=(aij)mn
把纯策略集合对应的概率向量
X=(x1, x2 … xm) 其中 xi 0 xi=1 和 Y=(y1 , y2 … yn ) 其中 yj 0 yj=1
分别称为局中人I和局中人II的混合策略。
如果局中人I选取的策略为
X=(x1, x2 … xm) 局中人II选取的策略为
Y=(y1 , y2 … yn ),则期望值 E(X,Y)= xi aij yj=XAYT 称为局中人I期望赢得,而局势(X,Y) 称为“混合局势”,局中人I,II的混合 策略集合记为S1*, S2*。
S1= 1、 2…… m
同样,局中人II有n个策略:1、 2。。。 n ;用S2表示这些策略的集合: S2= 1、 2… n 局中人I的赢得矩阵是:
a11 a12 …… a1n a21 a22 …… a2n A= …… …… …… a m1 a m2 … a mn
局中人II的赢得矩阵是 -A 把一个对策记为G: G= S1,S2;A
运筹学-第六讲对策论
对策G常写成: G={S1,…,Sn;h1,…hn}
【定义 】 在对策G={S1,S2…,Sn;h1,h2…hn}中,假如由各个对策方旳各 选用一种策略构成旳某个策略组合(S1*,S2*…,Sn*)中,任一对策方i 旳策略 Si*,都是对其他策略方策略旳组合 (S1*,…,S*i-1,S*i+1…,Sn*)旳最佳策略, 即h i(S1*, … , S*i-1, Si*, S*i+1,…Sn*)≥hi(S1*, …, S*i-1, Sij, S*i+1 , …, Sn*)对任意 Sij∈Si 都成立,则称(S1*,…,Sn*)为G旳一种纯策略意义下旳“纳什均 衡”(Nash Equilibrium).
(2,0)
(4,0)
反应函数法
对策论 game theory
【例4】 考虑上述模型旳另一种情况即各厂商所选择旳是价格而不是产量,假 设产量与价格旳函数关系为:
q1 ( p2 ) a1 b1 p1 d1 p2
q2 ( p1 ) a2 b2 p2 d 2 p1
其他条件不变,边际成本为C1、C2,试求解其纳什均衡。
P2
R2 ( p1 )
1 2b2
(a2
b2 c2
d 2 p1 )
p1*
p2*
1 2b1 1 2b2
(a1b1c1ຫໍສະໝຸດ d1p* 2
)
(a2 b2c2 d 2 p1* )
P1*
d1 4b1b2 d1d 2
(a2
b2c2 )
2b2 4b1b2 d1d 2
(a1
b1c1 )
P2*
d2 4b1b2 d1d 2
Nash对对策论旳贡献有: (i) 合作对策中旳讨价还价模型,称为Nash讨价还价解; (ii) 非合作对策旳均衡分析。
【定义 】 在对策G={S1,S2…,Sn;h1,h2…hn}中,假如由各个对策方旳各 选用一种策略构成旳某个策略组合(S1*,S2*…,Sn*)中,任一对策方i 旳策略 Si*,都是对其他策略方策略旳组合 (S1*,…,S*i-1,S*i+1…,Sn*)旳最佳策略, 即h i(S1*, … , S*i-1, Si*, S*i+1,…Sn*)≥hi(S1*, …, S*i-1, Sij, S*i+1 , …, Sn*)对任意 Sij∈Si 都成立,则称(S1*,…,Sn*)为G旳一种纯策略意义下旳“纳什均 衡”(Nash Equilibrium).
(2,0)
(4,0)
反应函数法
对策论 game theory
【例4】 考虑上述模型旳另一种情况即各厂商所选择旳是价格而不是产量,假 设产量与价格旳函数关系为:
q1 ( p2 ) a1 b1 p1 d1 p2
q2 ( p1 ) a2 b2 p2 d 2 p1
其他条件不变,边际成本为C1、C2,试求解其纳什均衡。
P2
R2 ( p1 )
1 2b2
(a2
b2 c2
d 2 p1 )
p1*
p2*
1 2b1 1 2b2
(a1b1c1ຫໍສະໝຸດ d1p* 2
)
(a2 b2c2 d 2 p1* )
P1*
d1 4b1b2 d1d 2
(a2
b2c2 )
2b2 4b1b2 d1d 2
(a1
b1c1 )
P2*
d2 4b1b2 d1d 2
Nash对对策论旳贡献有: (i) 合作对策中旳讨价还价模型,称为Nash讨价还价解; (ii) 非合作对策旳均衡分析。
运筹学—对策论(一)
3﹒赢得函数
局势: 在一局对策中,各局中人所选定的策略形 成的策略组称为一个局势。即若设si是第i个局中人的 一个策略,则n个局中人的策略组s={s1, s2,…, sn} 就是一个局势。
全体局势的集合S可用各局中人策略集的笛卡尔 乘积表示,即S=S1× S2×… × Sn
赢得函数:当局势出现后,对策的结果也就确定 了。也就是说,对任一局势s∈S,局中人i可以得到 一个赢得Hi(s)。
对
二人
动 策无
态
限
对 策
微分对策等
多人
重点
零和
学习
的对
非零和 策。
零和
非零和 零和
非零和
零和
非零和
§2矩阵对策的基本定理 一﹑矩阵对策的数学模型
1﹒二人有限零和对策: 是指有两个参加对策的局中人, 每个局中人都只有有限个策略可供选择,在任一局势 下,两个局中人的赢得之和总等于零。
2﹒矩阵对策:就是二人有限零和对策。 3﹒矩阵对策模型
总之,局中人Ⅰ﹑Ⅱ的最优察纯策略分别为α2 ,β 2。
5﹒矩阵对策的解 定义1 设G={S1 , S2;A}为矩阵对策,其中
S1={α1,α2, …,αm},S2={ β 1, β 2, …, β n} , A=(aij)m×n
若等式
max
i
min
j
aij=minj
max
i
aij
=ai*j*
成立,记VG= ai*j* 。则称VG为对策G的值,称上 述等式成立的纯局势( α i* , β j* )为G在纯策略下的 解(或平衡局势), α i*与β j*分别称为局中人Ⅰ﹑Ⅱ 的最优纯策略。
由于假定对策为零和,所以局中人Ⅱ的赢得矩阵
运筹学-10、对策论
第五章
对策论
第一节 引言
一、对策行为与对策论
对策论又称博弈论,是运筹学的一个重要分 支。对策论所研究的主要对象是带有斗争或竞争性 质的现象。由于对策论研究的对象与政治、军事、 工业、农业、交通、运输等领域有密切关系,处理 问题的方法又有着明显的特色,所以越来越受到人 们的重视。
1
在日常生活中,我们经常看到一些相互之间的 竞争、比赛性质的现象,如下棋、打扑克、体育竞 赛等。
所以:min max aij
j i
max min aij (1)
i j
i
j
另一方面,对任意i,j均有:
min aij aij max aij j i max min aij max aij
i j i
j j
max min aij min max aij (2)
i
所以: max min aij
7
例1:设有矩阵对策,局中人Ⅱ的支付矩阵如下:
7 3 A 16 3
1 8 2 4 1 9 0 5
解: α3 → β3 → α4 → β1 → α 3
如果各局中人都不想冒险,必须考虑对方会 选择策略使他得到最差的收入。因此各局中人都 选择理智的决策行为。
对策的值为VG= 5。
17
二、矩阵对策的混合策略
矩阵对策G有鞍点时,就存在最优解(最优纯策 略),但是否一切矩阵对策问题中,各局中人都有 上述意义的最优纯策略呢?答案是否定的。
1 1 0 A 1 0 1 例1:石头、剪刀、布 1 1 0
max min aij 1 min max aij 1
i j j i
不存在上述纯策略意义下的解。
对策论
第一节 引言
一、对策行为与对策论
对策论又称博弈论,是运筹学的一个重要分 支。对策论所研究的主要对象是带有斗争或竞争性 质的现象。由于对策论研究的对象与政治、军事、 工业、农业、交通、运输等领域有密切关系,处理 问题的方法又有着明显的特色,所以越来越受到人 们的重视。
1
在日常生活中,我们经常看到一些相互之间的 竞争、比赛性质的现象,如下棋、打扑克、体育竞 赛等。
所以:min max aij
j i
max min aij (1)
i j
i
j
另一方面,对任意i,j均有:
min aij aij max aij j i max min aij max aij
i j i
j j
max min aij min max aij (2)
i
所以: max min aij
7
例1:设有矩阵对策,局中人Ⅱ的支付矩阵如下:
7 3 A 16 3
1 8 2 4 1 9 0 5
解: α3 → β3 → α4 → β1 → α 3
如果各局中人都不想冒险,必须考虑对方会 选择策略使他得到最差的收入。因此各局中人都 选择理智的决策行为。
对策的值为VG= 5。
17
二、矩阵对策的混合策略
矩阵对策G有鞍点时,就存在最优解(最优纯策 略),但是否一切矩阵对策问题中,各局中人都有 上述意义的最优纯策略呢?答案是否定的。
1 1 0 A 1 0 1 例1:石头、剪刀、布 1 1 0
max min aij 1 min max aij 1
i j j i
不存在上述纯策略意义下的解。
管理运筹学-对策论
min 8 策略1
min 9 5
max 8 9
j
3.矩阵对策的混合策略
矛盾:甲取2 ,乙取时1,甲实际赢得8比预期多2(乙就少2)这对乙讲是不满意的,考虑这一点,乙采取策略2,若甲分析到这一点,取策略1,则赢得更多为9…
01
此时,甲,乙方没有一个双方均可接受的平衡局势。
01
一个思路:对甲(乙)给出一个选取不同策略的概率分布,以使甲(乙)在各种情况下的平均赢得(损失)最多(最少)。-----即混合策略
建立线性模型: min X1+X2 s.t. 5X1+8X21 X1= 1/21 9X1+6X21 X2= 2/21 X1, X20 1/V= X1+X2=1/7 所以:V=7 返回原问题: X1’= X1V= 1/3 X2’= X2V= 2/3 于是甲的最优混合策略为: 以1/3的概率选1;以2/3的概率选2 最优值V=7.
3.矩阵对策的混合策略(续)
例 设甲方的益损值 赢得矩阵。 3 2 0 3 0 被第3、4行所优超 5 0 2 5 9 被第3行所优超 A= 7 3 9 5 9 4 6 8 7 5.5 6 0 8 8 3 得到 7 3 9 5 9 被第1列所优超 A1= 4 6 8 7 5.5 被第2列所优超 6 0 8 8 3
同样可求乙的最优混合策略: 设乙使用策略1的概率为Y1′ Y1′+Y2′=1 设乙使用策略2的概率为Y2′ Y1′,Y2′0 设在最坏的情况下,甲赢得的平均值为V. 这也是乙损失的平均值,越小越好 作变换: Y1= Y1’/V ; Y2= Y2’/V 建立线性模型: max Y1+Y2 s.t. 5Y1+9Y21 Y1= 1/14 8Y1+6Y21 Y2= 1/14 Y1, Y20 1/V= Y1+Y2=1/7 所以:V=7
min 9 5
max 8 9
j
3.矩阵对策的混合策略
矛盾:甲取2 ,乙取时1,甲实际赢得8比预期多2(乙就少2)这对乙讲是不满意的,考虑这一点,乙采取策略2,若甲分析到这一点,取策略1,则赢得更多为9…
01
此时,甲,乙方没有一个双方均可接受的平衡局势。
01
一个思路:对甲(乙)给出一个选取不同策略的概率分布,以使甲(乙)在各种情况下的平均赢得(损失)最多(最少)。-----即混合策略
建立线性模型: min X1+X2 s.t. 5X1+8X21 X1= 1/21 9X1+6X21 X2= 2/21 X1, X20 1/V= X1+X2=1/7 所以:V=7 返回原问题: X1’= X1V= 1/3 X2’= X2V= 2/3 于是甲的最优混合策略为: 以1/3的概率选1;以2/3的概率选2 最优值V=7.
3.矩阵对策的混合策略(续)
例 设甲方的益损值 赢得矩阵。 3 2 0 3 0 被第3、4行所优超 5 0 2 5 9 被第3行所优超 A= 7 3 9 5 9 4 6 8 7 5.5 6 0 8 8 3 得到 7 3 9 5 9 被第1列所优超 A1= 4 6 8 7 5.5 被第2列所优超 6 0 8 8 3
同样可求乙的最优混合策略: 设乙使用策略1的概率为Y1′ Y1′+Y2′=1 设乙使用策略2的概率为Y2′ Y1′,Y2′0 设在最坏的情况下,甲赢得的平均值为V. 这也是乙损失的平均值,越小越好 作变换: Y1= Y1’/V ; Y2= Y2’/V 建立线性模型: max Y1+Y2 s.t. 5Y1+9Y21 Y1= 1/14 8Y1+6Y21 Y2= 1/14 Y1, Y20 1/V= Y1+Y2=1/7 所以:V=7
运筹学12-1对策论
第十二章 对策论
对策:具有对抗性质的问题。 对策:具有对抗性质的问题。在竞争中寻找有利 于自己的策略。 于自己的策略。 对策论:竞争中的决策论。 对策论:竞争中的决策论。
前一页
后一页
退出
§12.1 对策论的基本Байду номын сангаас念
一、引例
1) 猜硬币:甲、乙各出示一枚硬币,如果两个 猜硬币: 乙各出示一枚硬币, 硬币都呈正面或者反面,甲得1分 硬币都呈正面或者反面,甲得 分,同时乙损 失1分,反之,甲损失 分,乙得 分。 分 反之,甲损失1分 乙得1分
前一页 前一页 后一页 退出 退 出
1 2 111 解之, 解之,得到 X = ( ,0, ),Y = ( , , ) 7 7 777 3 3 3 ∑ xi = ∑ y j = 7 i =1 j =1 1 7 V= 3 = 则原矩阵对策的值, 则原矩阵对策的值, 3 最优混合策略为: 最优混合策略为: ∑ xi
前一页
后一页
退出
§12.1 对策论的基本概念
二、基本要素: 基本要素: 1.局中人:参与对抗的各方; 局中人: 局中人 2.策略集:局中人选择对付其它局中人的行动方 策略集: 策略集
案称为策略。 某局中人的所有可能策略全体称为策略集;
3.收益函数:当每一个局中人都选定了一个策略 收益函数: 收益函数
后一页
退出 退 出
i j j i
成立的充分必要条件是:存在局势(i ), 成立的充分必要条件是:存在局势(i*,j*),使得
aij* ≤ ai * j* ≤ ai * j ( i = 1,...m , j = 1,...n)
前一页 前一页
后一页
退出 退 出
A} 定义9.1 对于矩阵对策 Γ = { S1 , S 2 ,,如果存在 定义 局势(i 局势 *,j*),使得 , aij* ≤ ai * j* ≤ ai * j ( i = 1,...m , j = 1,...n)
对策:具有对抗性质的问题。 对策:具有对抗性质的问题。在竞争中寻找有利 于自己的策略。 于自己的策略。 对策论:竞争中的决策论。 对策论:竞争中的决策论。
前一页
后一页
退出
§12.1 对策论的基本Байду номын сангаас念
一、引例
1) 猜硬币:甲、乙各出示一枚硬币,如果两个 猜硬币: 乙各出示一枚硬币, 硬币都呈正面或者反面,甲得1分 硬币都呈正面或者反面,甲得 分,同时乙损 失1分,反之,甲损失 分,乙得 分。 分 反之,甲损失1分 乙得1分
前一页 前一页 后一页 退出 退 出
1 2 111 解之, 解之,得到 X = ( ,0, ),Y = ( , , ) 7 7 777 3 3 3 ∑ xi = ∑ y j = 7 i =1 j =1 1 7 V= 3 = 则原矩阵对策的值, 则原矩阵对策的值, 3 最优混合策略为: 最优混合策略为: ∑ xi
前一页
后一页
退出
§12.1 对策论的基本概念
二、基本要素: 基本要素: 1.局中人:参与对抗的各方; 局中人: 局中人 2.策略集:局中人选择对付其它局中人的行动方 策略集: 策略集
案称为策略。 某局中人的所有可能策略全体称为策略集;
3.收益函数:当每一个局中人都选定了一个策略 收益函数: 收益函数
后一页
退出 退 出
i j j i
成立的充分必要条件是:存在局势(i ), 成立的充分必要条件是:存在局势(i*,j*),使得
aij* ≤ ai * j* ≤ ai * j ( i = 1,...m , j = 1,...n)
前一页 前一页
后一页
退出 退 出
A} 定义9.1 对于矩阵对策 Γ = { S1 , S 2 ,,如果存在 定义 局势(i 局势 *,j*),使得 , aij* ≤ ai * j* ≤ ai * j ( i = 1,...m , j = 1,...n)
运筹学第八章对策论
上述两个案例均为矩阵对策。
一般地,用 和 分别表示两个局中人,并设局中人 和 的策略集分别为 S, S, 局中人 的收益矩阵为A, 则矩
阵对策的模型记为 S,S.;A
如案例2中,双方策略集同为{(上,中,下),(上,下中),
(中,上,下),(中,下,上), (下,中,上,(下,上,中)},为了
区别,相应地记为 S {1 和, 2, 3 , 4 , 5 , 6 ,}则局中人 ,
即齐S 王 的{赢1 ,得2 ,矩3 ,阵4 为, 5 , 6 }
1 2 3 4 5 6
1 3 1 1 1 1 1
2
1
3
1
1
1
1
A 3 4
1 1
1
1
3 1
1 3
1 1
1
1
5
1
1 1 1
3
1
6 1 1 1 1 1 3
纯策略矩阵对策
定义1:设 S,S;A 为矩阵对策,其中
赢得矩阵(支付):当每个局中人在确定了所采 取的策略后,他们就会获得相应的收益或损失, 此收益或损失的值称为赢得(支付)。赢得与策 略之间的对应关系称为赢得(支付)函数。
矩阵对策的模型
矩阵对策即二人有限零和对策。 “二人”是指参加对策的局中人有两个; “有限”是指每个局中人的策略集均为 有限集;“零和”是指在任一局势下, 两个局中人的赢得之和总等于零,即一 个局中人的所得值恰好等于另一局中人 的所失值,双方的利益是完全对抗的。
定理 1 矩阵对策在纯策略意义下有解的充要条件是
aij* ai*j* ai*j 。
证:充分性: 由 aij* ai*j* ai*j可以得到 m i aaij*xai*j* m j a iin *j 。
一般地,用 和 分别表示两个局中人,并设局中人 和 的策略集分别为 S, S, 局中人 的收益矩阵为A, 则矩
阵对策的模型记为 S,S.;A
如案例2中,双方策略集同为{(上,中,下),(上,下中),
(中,上,下),(中,下,上), (下,中,上,(下,上,中)},为了
区别,相应地记为 S {1 和, 2, 3 , 4 , 5 , 6 ,}则局中人 ,
即齐S 王 的{赢1 ,得2 ,矩3 ,阵4 为, 5 , 6 }
1 2 3 4 5 6
1 3 1 1 1 1 1
2
1
3
1
1
1
1
A 3 4
1 1
1
1
3 1
1 3
1 1
1
1
5
1
1 1 1
3
1
6 1 1 1 1 1 3
纯策略矩阵对策
定义1:设 S,S;A 为矩阵对策,其中
赢得矩阵(支付):当每个局中人在确定了所采 取的策略后,他们就会获得相应的收益或损失, 此收益或损失的值称为赢得(支付)。赢得与策 略之间的对应关系称为赢得(支付)函数。
矩阵对策的模型
矩阵对策即二人有限零和对策。 “二人”是指参加对策的局中人有两个; “有限”是指每个局中人的策略集均为 有限集;“零和”是指在任一局势下, 两个局中人的赢得之和总等于零,即一 个局中人的所得值恰好等于另一局中人 的所失值,双方的利益是完全对抗的。
定理 1 矩阵对策在纯策略意义下有解的充要条件是
aij* ai*j* ai*j 。
证:充分性: 由 aij* ai*j* ai*j可以得到 m i aaij*xai*j* m j a iin *j 。
管理运筹学11对策论
A= 4 3 5
3
8 -1 -10 -10
-3 0 6 -3
Max 3
局中人甲应选择2 ,此时不管局中人乙采取什么策略,甲的
赢得均不小于3。
2024/3/29
2. 矩阵对策解的问题
设矩阵对策G={S1,S2,A},其中:
S1 ={1,2,3,4}, S2 = {1 ,2 , 3}
Min
-4 2 -6 -6
对策矩阵G={S1,S2,A}在混合策略意义下有 解的充分必要条件是存在着
x * S1* , y * S2*使(x *,y *) 为E (x,y) 的 一个鞍点,即对于一切x S1* , y S2* 有
E (x,y *) E (x *,y *) E (x *,y)
2024/3/29
3. 矩阵对策的混合策略
A= 4 3 5
3
8 -1 -10 -10
-3 0 6 -3
Max 3
Max
8 36
Min 3
局中人甲应选择2 ,乙应采取2策略;结果甲赢得3,乙付
出3。
2024/3/29
2. 矩阵对策解的问题
定义1:设矩阵对策G={S1,S2,A},其中:
S1 ={1,2,…,m}, S2 = {1 ,2 , …, n}
6 5 7 5 5 0 1 -1 2 -1
Max 7 5 9 5
Min = 5
i = 1, 3 ,j = 2, 4,ai*j* = 5,四个局势均为矩 阵对策的解。
2024/3/29
3. 矩阵对策的混合策略
对矩阵对策G={S1,S2,A}来说,局中人甲 有把握的最小赢得是:
v1 = max min aij
x S1* y S2*
管理运筹学课件第13章 对策论
2020/1/23
课件
6
13.1.2 对策问题的分类
局中人之
间是否允 许合作?
策略选择
是否与时 间有关?
合作对策 对 策 论
非合作对策
静态对策 动态对策
二人对策 多人对策
2020/1/23
局中人多 寡?
课件
零和对策 常和对策 变和对策
赢得值代 数和是否 为0?
7
13.1.2 对策问题的分类
本章主要内容
13.1 对策论的基本概念 13.1.1 对策模型的基本要素 13.1.2 对策问题的分类 13.2 矩阵对策的纯策略 13.2.1优超原则 13.2.2最大最小原则 13.3 矩阵对策的混合策略 13.3.1 混合策略的概念 13.3.2 图解法 13.3.3 线性规划法 13.4 纳什均衡 13.4.1 纯策略纳什均衡的划线法 13.4.2 混合策略纳什均衡的LP方法 13.4 应用举例 案例13-1 市场竞争策略 案例13-2 对抗赛项目确定 本章小结
课件
13
13.3.1 混合策略的概念
设甲出正面(α1)的概率x,出反面(α2)的概率1-x;乙猜正面(β1)的概率y,猜反 面(β2)的概率1-y。则乙两个策略的期望值分别为:
E 1 1 x ( 1 )(1 x) 2 x 1 E 2 ( 1 ) x 1 (1 x ) 1 2 x
局中人采用不同策略对策时,各方总是有得或有失,统称赢得(payoff)或
得益。
1
2
3
4
5
6
(上中下) (上下中) (中上下) (中下上) (下上中) (下中上)
(1 上中下) (2 上下中) (3 中上下) (4 中下上) (5 下上中) (6 下中上)
相关主题