圆锥曲线中的定点定值问题的四种模型
圆锥曲线中的定点定值问题的四种模型
圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k -+=-⋅=++22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。
圆锥曲线中的四种经典模型
圆锥曲线中的定点定值问题的四种经典模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k -+=-⋅=++22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。
圆锥曲线中的定点定值问题的四种模型
圆锥曲线中的定点定值问题的四种模型Last revision on 21 December 2020圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线如何转化题目条件圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
【一题一课 难点突破】圆锥曲线之定点定值问题探究
圆锥曲线中的定: 1.设而不求,韦达定理 2.求点代点 3.齐次方程 4.曲线系 二、三种曲线中得出的一般结论: 斜率之和为定值,直线过定点; 斜率之积为定值,直线过定点; 反之, 直线过定点,斜率之和为定值,斜率之积为定值。
三.直线或曲线过定点的解题策略: 1.如果题设条件没有给出这个定点,我们可以考虑这个定点 对符合要求的一些特殊情况必然成立,那么,可以先根据特 殊情况先找到这个定点,再证明这个点与变量无关。 2.直接推理、计算,找出参数之间的关系,并在计算过程中 消去部分参数,将直线方程化为点斜式,从而得出定点。 3.若直线方程含有多个参数,能求出参数满足的方程,观察 直线方程特征与参数方程满足的方程特征(例如对应项系数 成比例,消参等方法),得到直线过定点的坐标,最后注意 带入进行验证。对学生来讲,繁难的代数运算是此类问题的 特点,设而不求、整体思想和消元的思想的运用可以有效的 简化运算。
第11课_圆锥曲线中的定点、定值问题
x1
x2
x1x2
即 k m 2 代入 y kx m
那么 k(x 1) y 2x ,即直线 AB 过定点 (1,2)
另外,当直线垂直 x 轴时,设 A(x1, y1) , B(x1, y1) ,代入 k1 k2 4 , 易得 x1 1,即直线 AB 的方程为 x 1 ,也过定点 (1,2)
,直线过定点
(1,2)
f
(x,
y)
g(x,
y)
0
,则曲线以
f (x, g(x,
y) y)
0 0
的交点为定点。
【典例分析】
例 1.如图,过抛物线 y 2 x 上一点 A(4,2) 作倾斜角互补的两条直线 AB, AC 交 抛物线于 B, C 两点,求证:直线 BC 的斜率是定值。
证明:显然直线 AB, AC 的斜率都不是零,设 AB 的直线方程是 y k(x 4) 2 ,
k1
k1k 2 [ x
(
2
k
2 2
m)] ,
即 y k1k2 (x m) 2 ,
直线 MN 恒过定点 (m,2) .
【典例分析】
变式训练3. 已知椭圆方程 x2 y2 1 ,过点 P(0,2) 分别作直线 PA, PB 交椭圆于 A, B 两点,设直线 84
PA, PB的斜率分别为 k1 , k2 ,且 k1 k2 4 ,求证:直线 AB 过定点
第11课 圆锥曲线中的定点、定值问题
【要点梳理】
1.解析几何中,定点、定值问题是高考命题的一个热点,也是一个难点, 解决这类问题并没有常规方法,但基本思想是明确的,那就是定点、定值必 然是在变化中所表现出来的不变量,所以可运用函数的思想方法,结合等式 的恒成立求解,也就是说要与题中的可变量无关。
1_2_圆锥曲线定点定值问题之定比点差法
1_2_圆锥曲线定点定值问题之定比点差法一、圆锥曲线定点定值问题圆锥曲线定点定值问题是数学中的一个重要分支,它是求解由圆锥曲线上的点来确定曲线的定值问题。
这类问题常用于统计图形、机械工程、测绘学、几何拓扑等领域的应用。
圆锥曲线定点定值问题一般包括以下四个方面:1. 求取圆锥曲线的函数形式:即给定圆锥曲线的一些特征点(如圆心、焦点或直线),求出该曲线的函数表达式;2. 求取满足定点定值条件的曲线:即给定一组点,求出在这组点上取得指定值的曲线;3. 求取满足定值定点条件的曲线:即给定一组值,求出能使这组值在指定点上取得的曲线;4. 求取满足定点定值定切线条件的曲线:即给定曲线上的一组点及其对应的切线方向,求出在这些点上取得指定的值的曲线。
二、定比点差法方法,它基于圆锥曲线的定义,将曲线上的每两点之间的比率作为关键参数,从而构造出满足定值定点条件的曲线。
定比点差法的基本思想是:给定圆锥曲线上的N个点,根据定义求出每两点之间的比率,即点A(x1,y1)和点B(x2,y2)之间的比率为R=y1/y2,将R作为新的曲线的参数。
令新曲线的关于x的函数为f(x),则f(x1)=y1,f(x2)=y2,有f(x1)/f(x2)=R,即f(x2)=[f(x1)]/R,再令f(x3)=y3,则f(x3)=[f(x2)]/R,一般情况下,新曲线的函数可表示为:f(xn)=[f(xn-1)]/R其中n=2,3,…,N,即可求解出新曲线的函数f(x),此函数满足圆锥曲线定点定值问题的要求,即给定N个点的坐标,求出在这N个点上取得指定的值的曲线的函数。
定比点差法的主要优点是,它可以快速求解满足定点定值条件的曲线,并且不需要太多的计算量。
但是,该方法有一定的局限性,即只能用于求解给定点的曲线,无法求解给定值的曲线。
种优秀方法,由于其简单易行,使用比较广泛,是一个值得研究的重要问题。
圆锥曲线中的定点定值问题
圆锥曲线中的定点定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、(07山东)已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题
圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。
解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。
圆锥曲线的经典模型
圆锥曲线中的定点定值问题的四种经典模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-,1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。
圆锥曲线的定值、最值与定点问题和圆锥曲线中的“定值”问题
探讨圆锥曲线的定值、最值与定点问题圆锥曲线中的最值与定值问题,是解析几何中的综合问题,是一种典型题型,将函数与解析融为一体,要求有较强的综合能力,例析如下。
一、 定值问题解决定值问题的方法:将问题涉及的几何式转化为代数式或三角式,证明该式的值与参数无关。
例1 A 、B 是抛物线22y px =(p >0)上的两点,且OA ⊥OB ,求证: (1)A 、B 两点的横坐标之积,纵坐标之积分别都是定值; (2)直线AB 经过一个定点。
证明:(1)设A (11,x y )、B (22,x y ),则2112y px =,2222y px =。
∵22121222y y px px ⋅=⋅=22121244p x x p y y =-,∴2124y y p =-为定值,212124x x y y p =-=也为定值。
(2)∵2221212112()()2()y y y y y y p x x -=+-=-,∵12x x ≠,∴2121122y y px x y y -=-+ ∴直线AB 的方程为:211112122y p y y x y y y y y -=-+++2121224p p x y y y y =-++ 122(2)px p y y =-+,∴直线AB 过定点(2p ,0)。
例2 已知抛物线方程为212y x h =-+,点A 、B 及点P(2,4)都在抛物线上,直线PA 与PB 的倾斜角互补。
(1)试证明直线AB 的斜率为定值;(2)当直线AB 的纵截距为m (m >0)时,求△PAB 的面积的最大值。
分析:这类问题一般运算量大,要注意函数与方程、数形结合、分类讨论等思想方法的灵活运用。
解析:(1)证明:把P(2,4)代入212y x h =-+,得h=6。
所以抛物线方程为:y -4=k(x -2),由24(2)162y k x y x -=-⎧⎪⎨=-+⎪⎩,消去y ,得22440x kx k +--=。
圆锥曲线定点定值及其他常用结论(个人整理,已经没错误)
圆锥曲线定点定值及其他常用结论一、直线过定点问题过定点模型:A,B是圆锥曲线上的两动点,M是一定点,其中, 分别为MA,MB的倾斜角,则有下面的结论:uuur uuur①、MA MB 为定值直线AB 恒过定点;直线AB 恒过定点;②、 k MA k MB 为定值③、(0)直线AB 恒过定点.方法:要证明直线y kx m过定点,只需要找到k 与m之间的关系即可.确定定点P(m,n),可以证明 AP, BP, AB任意两个斜率相等即可、定值问题基本思路:转化为与 A, B两点相关的斜率k1与k2的关系式x1 x2,x1x2的关系式代数式形式的定值(多个参数)结论:①若代数式表达式结果为分式,且为定值,则系数对应成比例;cx d c d形如,若,则该式为定值,与x 无关;(注意x是变量,具有任意性,是主元)ax b a b ②若代数式表达式结果为整式,则无关参数的系数为0.1例如:2t 1x 1,当2t 1 0即t 时,该式为定值与x无关. (注意x是变量,具有2任意性,是主元)三、椭圆经典结论2y 21 ( a >0, b >0上任一点 A ( x 0 , y 0 )任意作两条倾斜角互补的直线交椭 bb 2x圆于 B,C 两点,则直线 BC 有定向且 k BC2(常数) .(求偏导可得到) (类似结论22x y2 2 2 2 2 3.椭圆 2 21与直线 Ax By C 0 有公共点的充要条件是 A 2a 2B 2b 2C 2ab22xy4. 已知椭圆 2 21( a >b >0 ),O 为坐标原点, P, Q 为椭圆上两动点, 且OP OQ . ab对原点张直角)a 2b2 最小值是a 2b 2 .2 x1、 过椭圆 2 a适合于双曲线, 抛物线)2x2、 设椭圆 2a2y21( a >b >0)的两个焦点为 F 1、F 2, P (异于长轴端点)为椭圆上任 b意一点,在 PF 1F 2 中,记 F 1PF 2PF 1F 2, F 1F 2P ,则有sin sin sinc e .a 2a 2y 01 1)|OP|2 |OQ |11 a2 b2;2) OP2OQ 2 的最大值224a 2b 2 ; 2 2 ;ab3) S OPQ 的4)直线 PQ 必经过一个定点 ( 22aba 2b 2,0)5 )点 O 到直线 PQ 的距离 d 为定值:ab a2 b22x 5 . 过椭圆 2a2y21(a >b >0)的右焦点 F 作直线交椭圆于 M , N 两点,弦 MN 的垂 b| PF | e 直平分线交 x 轴于 P ,则||M P N F || 2e .直 线 AB 恒 过 定 点2x2类比. 给定双曲线 C : a 2对 C 上任意给定的点 P 0(x 0,y 0), 它的任一直角弦必须经过定点22 22a b ab.(22 x0,22 y 0).a bab8、 抛物线中的过定点 模型: A, B 是抛物线 y 22px (p 0)上异于D (x 0,y 0)的两动点,分别为 DA,DB 的倾斜角,则可以得到下面 充要的结论:(手电筒模型 )1 ( a >b >0)上异于长轴端点的任一点 , F 1,F2 为其焦点记2 类比 .过双曲线 x 2a 22b y 21(a >0,b >0)的右焦点 F 作直线交该双曲线的右支于 M ,N 两点,弦 MN 的垂直平分线交x 轴于 P ,则 |PF | e|MN | 2226.设椭圆 x 2 y 2 a2 b21(a >b >0), M ( m , 0)或( 0, m )为其对称轴上除中心,顶点外的任点,过 M 引一条直线与椭圆相交于 P 、 Q 两点,则直线 A1P 、 A 2Q ( A 1 , A 2为对称轴上的两 顶点)的交点 2N 在直线 l :x a(或m b m2)上. m用极点与极线直接写出来)7、椭圆中的过定点 模型: A,B 是椭圆2x 2 a2 y b 21(a上异于P ( x 0 , y 0)的两动点,其中 分别为PA,PB的倾斜角,则可以得到下面几个充要的结论: 手电筒模型 )PA PB k DA k DBx 0(a 2 b 2)(22 aby 0 (a 2 b 2))a 2b 2 )2b y 21(a b 0)其中DA DB2直 线 AB 恒 过 定 点(x 0 2p,y 0)特别地OA OB2直线 AB 恒过定点 (2p,0) .22xy 9、设 P点是椭圆 2 2abF 1PF 2acos ,bsin对于y 2px(p 0)抛物线上的动点的坐标可设为 ( y 0, y 0) ,(抛物线独有的一点两设)2p以简化计算 .双曲线的方程与渐近线方程的关系(1 )若双曲线方程为2x 2 a2 yb 22 x1渐近线方程: 2a2 yb 2yb.x. a22(2) 若渐近线方程为yb xx y0 双曲线可设为 x2y2aabab2222 2(3) 若双曲线与x 2y2 x1 有公共渐近线,可设为y2(0 ,焦点在 x 轴a2b 2ab 20 ,焦点在 y 轴上)则 (1) | PF 1 || PF 2 | 2b21 cos(2) SPF 1F 2b 2 tan .22x双曲线 2 a2 y b 21 (a>0,b>0) 中, SF 1PF 2b 2, 其中θ=∠F 1PF 2. )tan2210. 椭 圆 x 2a 22 y b2 1(a b 0) 的 参 数 方 程 是acosbsin, 椭 圆 上 的 动 点 可 设(4). 双曲线焦点到渐近线的距离总是 b. 顶点到渐近线的距离为ab(5). 双曲线 x 2 y 2a 2 称为等轴双曲线,其渐近线方程为 y x ,离心率 e 2 .抛物线常用2设 AB 为过抛物线 y 2px(p 0) 焦点的弦,A( x 1, y 1) 、B(x 2,y 2),直线 AB 的倾斜角为 ,则1.x 1x 2p 24 ,y 1y 22p 2;2 y21 的 不 平 行 于对 称轴 的 弦 , M (x 0,y 0) 为 AB 的 中 点 , 则 bb 22-1k OM k AB 2=e -1ab 2x, 即 KABb 2x 0。
圆锥曲线中的定值问题模型
,消去
m
得
a2
2c2
,所以离心率
e
2 .
3m m 2a
2
(Ⅱ)解法一: 由(1)知, b2 c2 1 a2 ,所以椭圆方程可化为 x2 2 y2 2c2 . 2
①当 A 点恰为椭圆短轴的一个端点时, 1 2 ,直线 AF1 的方程为 y x c .
由
y x c
y2 b2
1 的公共点分
别为 A 、 B , P 、 Q 分别是椭圆 C1 和双曲线 C2 上不同于 A 、 B 的两个动点,且满足: AQ BQ ( AP BP) , 其 中 | | 1. 记 直线 AQ 、 BQ 、 AP 、 BP 的斜率分别为
证明 设 A(x0 , y0 ) , B(x1, y1) ,C(x2 , y2 ) ,则 x02 2 y02 a2 .
第5页共6页
若
A
为椭圆的长轴端点,则
1
a a
c c
, 2
a a
c c
,
或
1
a a
c c
, 2
a a
c c
,
所以
1
2
2(a2 c2 ) a2 c2
2
2 m2
m2 4
m2
因为 m R 且 m 0 ,于是 S 4 ,所以 DAB 的面积 S 范围是 (4, ) .
第4页共6页
(Ⅲ)由(Ⅱ)及 AF FB , AP PB ,得
(1 x1, y1) (x2 1, y2 ) , (1 x1, m y1) (x2 1, y2 m) ,
圆锥曲线中的定点定值问题的四种模型
圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->Q 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-,1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。
圆锥曲线专题(定点、定值问题)
圆锥曲线专题——定点、定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型【例题】已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
圆锥曲线的定点定值问题
圆锥曲线的定点定值问题一、引言圆锥曲线是数学中的重要概念,广泛应用于物理、工程、计算机图形学等领域。
圆锥曲线的定点定值问题是研究在给定条件下,确定圆锥曲线上的某个点或某些特定值的问题。
本文将深入探讨圆锥曲线的定点定值问题,包括椭圆、双曲线和抛物线三种常见的圆锥曲线。
二、椭圆的定点定值问题椭圆是圆锥曲线中的一种,其定义为平面上到两个固定点的距离之和等于常数的点的轨迹。
椭圆的定点定值问题主要包括确定椭圆上的某个点的坐标、确定椭圆的焦点和确定椭圆的离心率等问题。
2.1 确定椭圆上的某个点的坐标已知椭圆的长轴和短轴的长度,以及椭圆的中心点坐标,可以通过参数方程求解椭圆上任意一点的坐标。
设椭圆的半长轴为a,半短轴为b,中心点坐标为(h, k),参数为θ,则椭圆上任意一点的坐标可以表示为:x = h + a * cos(θ) y = k + b * sin(θ)2.2 确定椭圆的焦点椭圆的焦点是确定椭圆形状的重要参数之一。
已知椭圆的长轴和短轴的长度,可以通过以下公式计算椭圆的焦点坐标:c = sqrt(a^2 - b^2)其中c为焦距,a为半长轴长度,b为半短轴长度。
椭圆的焦点坐标可以表示为:F1 = (h + c, k) F2 = (h - c, k)2.3 确定椭圆的离心率椭圆的离心率是描述椭圆形状的重要参数之一,可以通过以下公式计算椭圆的离心率:e = c / a其中c为焦距,a为半长轴长度,e为离心率。
离心率描述了椭圆的扁平程度,当离心率为0时,椭圆退化为圆形;当离心率小于1时,椭圆的形状更加扁平;当离心率等于1时,椭圆退化为抛物线;当离心率大于1时,椭圆的形状更加拉长。
三、双曲线的定点定值问题双曲线是圆锥曲线中的一种,其定义为平面上到两个固定点的距离之差等于常数的点的轨迹。
双曲线的定点定值问题主要包括确定双曲线上的某个点的坐标、确定双曲线的焦点和确定双曲线的离心率等问题。
3.1 确定双曲线上的某个点的坐标已知双曲线的半轴长度、中心点坐标和参数,可以通过参数方程求解双曲线上任意一点的坐标。
圆锥曲线定值,定点
过圆锥曲线上定点和斜率和积为定值直线,则直线过定点(一)一般性推论:过圆锥曲线上一定点产生的两条直线斜率和积为定,则另外两点的连线过定点。
数学表达:若点定一上线曲锥圆为点定过线直值定者或值定⎩⎨⇒⎧∙=+=P k k k k PA PB PA PB AB点定一上线曲锥圆为值定者或值定点定过线直⎩⎨⇒∙=+=⎧P k k k k PA PB PA PB AB 其次法的使用要点:“齐次”即次数相等的意思,例如=++x cy f ax bxy 22)(称为二次齐式,即二次齐次式的意思,因为f x )(中每一项都是关于x 、y 的二次项。
当圆锥曲线遇到斜率之和或者斜率之积的问题,可以先平移图形,将公共点平移到原点,注意平移口诀是“左加右减,上减下加”,注意此处因为是在y 同侧进行加减,故为“上减下加”,而我们以往记的“上加下减”都是在y 的异侧。
例如要证明直线AP 与AQ 的斜率之和或者斜率之积为定值,可将公共点A 平移到原点,设平移后的直线为+=mx ny 1(为什么这样设?因为这样齐次化能更加方便解题),与圆锥曲线方程联立,一次项乘以+mx ny ,常数项乘以+mx ny 2)(,构造++=ay bxy cx 022,然后等式两边同时除以x 2(前面注明x 不等于0),得到⎝⎭⎪++=⎛⎫x x a b c y y 02,化简为++=ak bk c 02,可以直接利用韦达定理得出斜率之和或者斜率之积,即可得出答案,如果是过定点题目,还需要还原直线,之前如何平移,现在就如何反平移回去。
解题的方法步骤为: (1)平移直线; (2)联立方程并齐次化; (3)同除x 2:(4)利用韦达定理证明,如果过定点,还需要还原直线。
优点;大大减小了计算量,提高准确率,缺点:+=mx ny 1不能表示过原点的直线。
一. 构造法解整式问题在抛物线中的应用引题:证明:已知直线l 与抛物线 2p (p>0,p为常数)交于点A ,B 两点,若OA ⊥OB,则直线l 恒过定点(2p,0)设,B(x ,y ))x ,y (A 1122,⊥⇒∙=∙=-x x OA OB k k y y OA OB 11212设AB 直线方程为+=mx ny 1(截距式的变形式可以表示任意直线,该种设法可以利用1的妙用,快速制作齐次式)联立⎩=⎨⎧+=y pxmx ny 212第一步:构造齐次式-∙+=⇒--=y px ny pnxy pmx 2(mx )0y 220222易知A ,B 两点不与O 点重合,所以x 0令则==y p 0,x 2,所以直线过定点(2p,0) 常规证明方法(略)例1:(2017•新课标Ⅰ文)设A ,B 为曲线C :y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.第一步:平移抛物线,将抛物线沿→M O 方向平移,及左移2个单位,下移1个单位,及抛物线方程变为=+-y 4(x 2)112化简得+-x x 42联立方程=0⎩⎧+=-⎨-y y mx m x x 4142第二步:构造齐次式--∙-=⇒+-+=x mxy my 4(x y)m(x y)0(14m)x 840222,第四步平移回去:右2,上1,=-++=+y x x 28171.(2020春•江西月考)过抛物线E:y2=2px(p>0)上一点M(1,﹣2)作直线交抛物线E于另一点N.(Ⅰ)若直线MN的斜率为1,求线段|MN|的长;(Ⅱ)不过点M的动直线l交抛物线E于A,B两点,且以AB为直径的圆经过点M,问动直线l是否恒过定点.如果有求定点坐标,如果没有请说明理由.题型拓展:2.(2021•齐齐哈尔一模)已知抛物线C1:y2=2px(p>0)的焦点F是椭圆C2:x2+2y2=1的一个顶点.(1)求抛物线C1的方程;(2)若点P(1,2),M,N为抛物线C1上的不同两点,且PM⊥PN.求证:直线MN过定点.斜率和积为定值,直线过定点问题在椭圆中的数学模型建立k k PA PB ⋅=定值或者k k PA PB +=定值,直线过定点,P 点坐标之间的转化证明 将椭圆C 按向量--x y ,00)(平移得椭圆C x x ay y b'+++=2222:001)()(又点P x y ,00)(在椭圆xa yb+=22221上,所以x a y b +=2222001,代入上式得+++=a b a b x y x y x y 022********①。
圆锥曲线中的定点定值问题的四种模型
圆锥曲线中的定点定值问题的四种模型圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340km +->212122284(3),3434mkm x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+Q以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BDk k ⋅=-, 1212122y y x x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++,整理得:2271640mmk k ++=,解得:1222,7k m k m=-=-,且满足22340k m +->当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((22222222ba b a y b a b a x +-+-。
圆锥曲线中的定点、定值问题的结论及多种证明方法 高考数学
七、圆锥曲线中的平行弦的问题
在前面一、推论:“若圆锥曲线为圆,直线AB交C于A、B两点,的斜率分别为,当时,为定值,”给出了平移图像法、一般法、参数方程法等多种证明方法。现在我们对一、推论
31.采用另一种思维方式探究如下:设点是圆上的一定点,过点P作x轴的
2. 当 时, 【1】化为: 。即 时,为定值,,
3.当)时,,得, ,,即 ,
,即 。 得:
; 【2】
即: 或 (因为直线AB不过点P,舍去)AB的方程为化为: 即 由得 即直线AB恒过定点( )。
3. 当时, 由 【2】化为: , , , 即:。(因为直线AB不过点P,舍去)或;,即 为定值.
1.当时,, , ,
,即: , ,
化为:, (因为直线AB不过点P,舍去)或。, ; 【6】AB的方程为化为: 即 由得 即当时,直线AB恒过定点( )。
2.当 时, 【6】化为:; 即当时,为定值,。
3.当时, 即, ,,即 ,
, ; 【7】 ,化为:, (因为直线AB不过点P,舍去)或。由,
2.当时,直线AB恒过定点(
3.当时,为定值
4.当时,即直线AB恒过定点( ). 及其证法已知点(其中 是圆锥曲线上的一个定点,过点作直线分别与圆锥曲线C相交于点A、 则必定存在以下结论:
二、椭圆、双曲线、抛物线、圆中的定点、定值问题的统一结论
1.当时,为定值,
2.当时,直线AB恒过定点( )
圆锥曲线中的定点、定值问题的
结论及多种证明方法
主讲人:某某某老师
某某学校
山东东营 徐新华 大家都知道,圆锥曲线的很多重要结论,特别是圆锥曲线的定点、定值问题并没有列入高中数学教材,但它们一直确是高考数学试题中考察的重要内容。本文件中,从多个角度、采用多种方法对圆锥曲线的定点、定值问题的结论作出了证明,并力求对证明过程给予最大化的展示。需要说明的是,个别证法有相当大的难度,其证明过程也极为复杂,因此叙述也就比较详细具体。
圆锥曲线专题(定点、定值问题)
圆锥曲线专题——定点、定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型【例题】已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届高三第一轮复习专题训练之 圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、(07山东)已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k -+=-⋅=++22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。
(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”)◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=•BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。
(参考优酷视频资料尼尔森数学第一季第13节)此模型解题步骤:Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,∆求出参数范围;Step2:由AP 与BP 关系(如1-=•BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。
◆迁移训练练习1:过抛物线M:px y 22=上一点P (1,2)作倾斜角互补的直线PA 与PB ,交M 于A 、B 两点,求证:直线AB 过定点。
(注:本题结论也适用于抛物线与双曲线)练习2:过抛物线M:x y 42=的顶点任意作两条互相垂直的弦OA 、OB ,求证:直线AB 过定点。
(经典例题,多种解法)练习3:过1222=-y x 上的点作动弦AB 、AC 且3=•AC AB k k ,证明BC 恒过定点。
(本题参考答案:)51,51(-) 练习:4:设A 、B 是轨迹C :22(0)y px P =>上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且4παβ+=时,证明直线AB 恒过定点,并求出该定点的坐标。
(参考答案()2,2p p -)【答案】设()()1122,,,A x y B x y ,由题意得12,0x x ≠,又直线OA,OB 的倾斜角,αβ满足4παβ+=,故0,4παβ<<,所以直线AB 的斜率存在,否则,OA,OB 直线的倾斜角之和为πAB 方程为y kx b =+,显然221212,22y y x x p p ==, 将y kx b =+与22(0)y px P =>联立消去x ,得2220ky py pb -+=由韦达定理知121222,p pby y y y k k+=⋅=① 由4παβ+=,得1=tan tan()4παβ=+=tan tan 1tan tan αβαβ+-=122122()4p y y y y p +- 将①式代入上式整理化简可得:212pb pk=-,所以22b p pk =+, 此时,直线AB 的方程可表示为y kx =+22p pk +即()(2)20k x p y p +--=所以直线AB 恒过定点()2,2p p -.练习5:(2013年高考陕西卷(理))已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8. (Ⅰ)求动圆圆心的轨迹C 的方程;(Ⅱ)已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.【答案】解:(Ⅰ) A (4,0),设圆心C2222,2),,(EC ME CM CA MNME E MN y x +===,由几何图像知线段的中点为x y x y x 84)422222=⇒+=+-⇒((Ⅱ) 点B (-1,0),222121212122118,8,00),,(),,(x y x y y y y y y x Q y x P ==<≠+,由题知设.080)()(88811211221212222112211=+⇒=+++⇒+-=+⇒+-=+⇒y y y y y y y y y y y y x y x y 直线PQ方程为:)8(1)(21121112121y x y y y y x x x x y y y y -+=-⇒---=-1,088)(8)()(122112112==⇒=++⇒-=+-+⇒x y x y y y y x y y y y y y所以,直线PQ 过定点(1,0)练习6:已知点()()1,0,1,0,B C P -是平面上一动点,且满足||||PC BC PB CB ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点(,2)A m 在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD AE ⊥,判断:直线DE 是否过定点?试证明你的结论.【解】(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入 (5分)).2,1(,14)2,()2(2的坐标为点得代入将A m x y m A ∴== ,044,422=--=+=t mt y x y t my x DE 得代入的方程为设直线)((,则设*016)44,4),(),,(221212211>+-=∆-=⋅=+t m t y y m y y y x E y x D4)(21)()2)(2()1)(1(212121212121++-⋅+++-=--+--=⋅∴y y y y x x x x y y x x AE AD5)(2)44(44212122212221++-⋅++-⋅=y y y y y y y y 5)(242)(16)(212121221221++-⋅+⋅-+-⋅=y y y y y y y y y ym m t t m t t m t 845605)4(2)4(4)4(2)4(16)4(2222+=+-=+--+----=化简得)1(23)1(43484962222+±=-∴+=-++=+-m t m t m m t t )即(即 0*,1252>∆+-=+=∴)式检验均满足代入(或m t m t 1)2(5)2(+-=++=∴y m x y m x DE 或的方程为直线 )不满足题意,定点((过定点直线21).2,5(-∴DE )练习7:已知点A (-1,0),B (1,-1)和抛物线.x y C 4:2=,O 为坐标原点,过点A 的动直线l交抛物线C 于M 、P ,直线MB 交抛物线C 于另一点Q ,如图.(I )证明: OM OP ⋅为定值; (II )若△POM 的面积为25,求向量OM 与OP 的夹角; (Ⅲ)证明直线PQ 恒过一个定点.解:(I )设点P y y P y y M ),,4(),,4(222121、M 、A 三点共线, ,4414,222121211y y y y y y k k DM AM --=+=∴即 4,142121211=∴+=+y y y y y y 即 .544212221=+⋅=⋅∴y y y y OP OM (II)设∠POM =α,则.5cos ||||=⋅⋅αOP OM.5sin ||||,25=⋅⋅∴=∆αOP OM S ROM 由此可得tan α=1. 又.45,45),,0(︒︒=∴∈的夹角为与故向量OP OM απα(Ⅲ)设点M y y Q ),,4(323、B 、Q 三点共线,,QM BQ k k =∴ 3133222233131323133131311,,41444(1)()4,40.11y y y y y y y y y y y y y y y y y y -+==-++-∴++=-+++=即即即分,0444,4,432322121=+++⋅∴==y y y y y y y y 即第22题即.(*)04)(43232=+++y y y y,44432232232y y y y y y k PQ +=--=)4(422322y x y y y y PQ -+=-∴的方程是直线即.4)(,4))((323222322x y y y y y y x y y y y =-+-=+-即由(*)式,,4)(43232++=-y y y y 代入上式,得).1(4))(4(32-=++x y y y 由此可知直线PQ 过定点E (1,-4).模型二:切点弦恒过定点例题:有如下结论:“圆222r y x =+上一点),(00y x P 处的切线方程为200r y y y x =+”,类比也有结论:“椭圆),()0(1002222y x P b a by a x 上一点>>=+处的切线方程为12020=+b y y a x x ”,过椭圆C :1422=+y x 的右准线l 上任意一点M 引椭圆C 的两条切线,切点为 A 、B. (1)求证:直线AB 恒过一定点;(2)当点M 在的纵坐标为1时,求△ABM 的面积。