线面垂直的性质定理 PPT

合集下载

线面垂直_面面垂直的性质定理PPT资料(正式版)

线面垂直_面面垂直的性质定理PPT资料(正式版)

β
a l
A α
a
l
a
a l
面面垂直线面垂直
合作探究6分钟
只要在其中一个平面内找到
内12要1共2、、、、同容求重组讨熟讨及:点长论练论目讨负 时掌,标论责 ,握做:自协 随定到测调 时理全1好 记的、员小录运自积组,用测极讨争,2参、论取完与达在,善,标讨可步高1论先骤、效时一,讨达能对总论标将一结。2问.讨做题论题解然方决后法,组. 未内 两知直(,知(如只如直问思知不2垂只只知一直知思 都不不知线不如 (知垂、个识线线识线果要果线题考识但直要要识条线识考与但但识面但果线识足讨平 探 与 面 探 面 直 在 直 与 22探 要 于 在 在 探 直 与 探 3交 要 要 探 垂 要 直面 探为::论:黑如面究平垂究垂线其线平究展同其其究线平究线展展究直展线 垂究B把时板图,垂(面直(直中面(示一中中(与面(A示示(_示直(lll地,面D与与与所,那直一垂一一垂一解个一一一一垂一解解一解一垂面随面平平平在长么,)直)个直)题平个个)个直)题题)题)面面面直抽时垂面面面平方直则平判平平判平过面平平平平判平过过平过平面面面,象记直面体线一面定面面定面程的面面面面定面程程面程面垂垂垂这为录的与A内内内A个与定与内定与,两内内与内定与,,与,与直直直两B平 ,性B地的的的平平理平找理平更条找找平的理平更更平更平)))C与条面争质面D任任任面面:面到:面重到到面两:面重重面重面平直,取定—所意意意内垂垂垂要垂条垂要要垂要垂面线旗在理A在一一一垂直直直的直相直的的直的直1与杆讨平的B条条条直的的的的交的的的平1抽论面位直直直于性性性性线性性性C面象时1垂置线线线交质质质质都质质质DA为能直关都都都线定定定定垂定定定B1直将中C,系垂垂垂的理理理理直理理理D线问,在如直直直直,垂,题平黑何,,,线则直实解面板?我我我与该吗际决A上为们们们另直?1问,A是什说说说一线D题未否么直直直个与D能能存?线线线1平此与够解在面平lll平转决与与与直垂面面化的平平平线直垂A为组面面面与。直B一长C地.D个记面垂什录垂直么好直,样,?其的准若交数备存线学展在为问示,A题质怎D?疑,样.直画线线A?1A,D1D都在平面A1ADD1内,且

高二数学《线面垂直、面面垂直的性质定理》课件07

高二数学《线面垂直、面面垂直的性质定理》课件07
证明两条直线平行
a //
// 面面平行性质定理 a a // b b
线面垂直性质定理
a α α // b b α
定义,与平面内的任何直线都没有公共点
证明线面平行
面面平行性质
// a // a
la lb
CD l 面面垂直性质定理 l
l二面角 (即二面角的平面角为直角) 证明两个平面垂直
面面垂直判定定理 a l b a b A
la lb
线面垂直、面面垂直 的性质
线线垂直和线面垂直的比较: (1)线面垂直一定有垂足,线线垂直不一定有垂足; (2)过一点有且只有一条直线和已知平面垂直; 过一点有且只有一个平面和已知直线垂直; 过一点有无数条直线和已知直线垂直. 在平面内 讨论呢?
1、直线与平面垂直有什么性质呢? 定义:若直线和平面垂直,则直线与平面内 的任意直线都垂直. 线线垂直 线面垂直
α C B D l
A β
练1: 已知PA 平面ABC , 二面角A PB C是 直二面角, 求证: AB BC . P
D
A C
练:已知平面 、 、 满足 , , 求证: l .
B
l.
三个两两垂直的平面的交线也两两垂直.
两条异面直线所成角 三大计算
例3 、 已知平面 、 , , 直线a满足a , a , 试判断直线a与平面的位置关系.

b
a

探究:
已知平面 、 和直线a , 且 ,
AB ,
a // , a AB , 试判断直线a与平面的位置关系.
例2.已知:如图,α⊥β,在α与β的交线 上取线段AB=4,AC、BD分别在α和β内,它 们都垂直于AB,并且AC=3,BD=12,求CD长.

线面垂直面面垂直的性质定理PPT课件

线面垂直面面垂直的性质定理PPT课件
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
线面、面面垂直 的性质定理
复习回顾
1. 线面垂直判定:一条直线和一个平面内的 两条相交直线都垂直.
2. 面面垂直判定:一个平面经过另一个平 面的垂线.
β
l ,l
l α
3.线面角:
P
α
ALeabharlann B4.面面角:β B
lO
A
[0 ,90 ]
α [0 ,180 ]
新课导入: 问题1:如果直线a,b都垂直于同一条平 面,那么直线a,b的位置关系如何?
问题2:一个平面的垂线有多少条?这些 直线彼此之间具有什么位置关系?
新课讲授: 线面垂直的性质2
垂直于同一个平面的两条直线平
行。符号语言:
a
a
b
b
a
//
b
a b
// a
b
线面垂
线线平
练习:如:已知 l,CA , 于
点A,CB 于点B,a , a AB,
求证:a // l . C β
( ×)
(2)垂直于交线l的直线必垂直于平面β
( ×)
√ (3)在平面α内作交线的垂线,则此垂线必垂
直于平面β( )
2.如图,P是 ABC所在的平面外一点, 且PA 面ABC,面PAC 面PBC 求证:BC AC
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折

线面垂直面面垂直的性质与判定定理课件

线面垂直面面垂直的性质与判定定理课件

学习目标
学习者能够理解面面 垂直的性质与判定定 理的基本概念。
学习者能够通过实际 案例分析,提高解决 实际问题的能力。
学习者能够掌握面面 垂直的性质与判定定 理的应用方法。
02
线面垂直的性质
定义与性质
01
02
03
定义
线面垂直是指一条直线与 某一平面内的任意一条直 线都垂直。
性质1
线面垂直,则该直线与平 面内任意直线都垂直,且 线段与平面所成的角为直 角。
06
实例分析
线面垂直实例
总结词
线面垂直的判定定理
详细描述
若一条直线与平面内两条相交直线都垂直,则该 直线与该平面垂直。
实例
一个长方体,其一条棱与底面垂直,则该棱与底 面所在的平面垂直。
面面垂直实例
总结词
面面垂直的判定定理
详细描述
若两个平面内各有一条相交直线互相垂直,则这两个平面互相垂直 。
实例
证明2
根据判定定理2,如果一个平面$alpha$与另一个平面$beta$的垂线$c$平行,那么可以证明平面$alpha$与平面 $beta$垂直。设过直线$c$作平面$gamma$与$beta$相交于直线$d$,由于$c parallel d$,且$c perp beta$ ,则$d perp beta$。又因为直线$d$在平面$alpha$内,所以平面$alpha perp beta$。
平面与平面垂直的判定定理证明
假设平面β内有一条直线m与平面α垂直,那么可以通过平面的性质证明平面β与平面α 互相垂直。
05
面面垂直的判定定理
判定定理
判定定理1
如果一个平面内的两条相交直线与另一个平面垂直,则这两 个平面垂直。

线面垂直、面面垂直的性质定理ppt课件

线面垂直、面面垂直的性质定理ppt课件
我们说直线 l 与平面 互相垂直。
一条直线与一个平面内的 两条相交线都垂直,则该 直线与此平面垂直.
线面垂直则线线垂直. 线线垂直则线面垂直.
精选
(1)长方体ABCDA'B'C'D'中,棱AA',BB', CC',DD'所在直线与平面ABCD的位置关 系怎样?它们之间又具有什么位置关系?
D'
A'
C'
(1)证明:∵ AB是⊙O的直径,C P
是圆周上不同于A,B的任意一
点 ∴∠ACB=90°∴BC⊥AC
又∵平面PAC⊥平面ABC,平面
C
PAC∩平面ABC=AC,BC 平
面ABC ∴BC⊥平面PAC
A
O
(2)又∵ BC 平面PBC ,∴平面PBC⊥平面PAC
精选
例2:如图,已知PA⊥平面ABC, 平面PAB⊥平面PBC,求证:BC⊥平面PAB
和∵αa的⊥交α点, 为o,则可过o作 b’∥a ∴b’⊥α.
∴过点o的两条直线 b和b’都 垂直平面α,这是不可能的, ∴a∥b. 精选
温故知新
面面垂直的判定方法: 1、定义法:
找二面角的平面角
说明该平面角是直角。
2、判定定理:
要证两平面垂直,只要在其中一个平面内 找到另一个平面的一条垂线。
(线面垂直面面垂直)
证明:过点A作AE⊥PB,垂足 P 为E,
∵平面PAB⊥平面PBC,
平面PAB∩平面PBC=PB,
∴AE⊥平面PBC
A
C
∵BC 平面PBC ∴AE⊥BC
∵PA⊥平面ABC,BC 平面ABC
B
∴PA⊥BC
∵PA∩AE=A,∴BC⊥平面PAB

人教版高中数学必修二.线面垂直、面面垂直的性质定理教学课件 共18张PP

人教版高中数学必修二.线面垂直、面面垂直的性质定理教学课件 共18张PP

1、线面垂直的性质:面面垂直的性质:
2、会利用“转化思想”解决垂直问题
β A
B
线面垂直 α a
面面垂直
人教版高中数学必修二2.3.3-2.3.4线 面垂直 、面面 垂直的 性质定 理教学 课件 共18张PP
线线平行 3、用条件想性质: 证结果想判定:
4、如何举反例?满足条件的线、面 转动
人教版高中数学必修二2.3.3-2.3.4线 面垂直 、面面 垂直的 性质定 理教学 课件 共18张PP
四.知识应用
1、判断下列命题是否正确:正确的是:①④ ①平行于同一条直线的两条直线互相平行;
②垂直于同一条直线的两条直线互相平行;
③平行于同一个平面的两条直线互相平行;
④垂直于同一个平面的两条直线互相平行.
2、a,b表示线, 表示面,正确的是 (3)(4)
(1)a ,ab,则 b/ / (2)a/ /,a b,则 b
证明:假设 a与b不平行.记直线b
和α的交点为o,则可过o作 b’∥a
a
b b’ ∵a⊥α,
α
o
∴b’⊥α.
反证法
∴过点o的两条直线 b和b’都 垂直平面α,这是不可能的,
∴a∥b.
线面垂直的性质定理:
垂直于同一个平面的两条直线平行
符号语言? a ,b a//bBiblioteka 简述: 线面垂直 如何证明?
线线平行
人教版高中数学必修二2.3.3-2.3.4线 面垂直 、面面 垂直的 性质定 理教学 课件 共18张PP
人教版高中数学必修二2.3.3-2.3.4线 面垂直 、面面 垂直的 性质定 理教学 课件 共18张PP

1.边塞诗的作者大多一些有切身边塞 生活经 历和军 旅生活 体验的 作家, 以亲历 的见闻 来写作 ;另一 些诗人 用乐府 旧题来 进行翻 新创作 。于是 ,乡村 便改变 成了另 一种模 样。正 是由于 村民们 的到来 ,那些 山山岭 岭、沟 沟坪坪 便也同 时有了 名字, 成为村 民们最 朴素的 方位标 识.

直线与平面垂直的判定PPT课件

直线与平面垂直的判定PPT课件
2.3.1 直线与平面垂直的判定
(1)判定定理
学习目标
1、理解直线与平面垂直的定义; 2、掌握直线与平面垂直的判定定理内容及其
应用; 3、应用直线与平面垂直的判定定理解决问题。
• 重点:线面垂直的判定定理内容及其应用。 • 难点:线面垂直的判定定理内容及论证过程 。
Yesterday once more
2.已知:正方体中,AC是面对角线,BD′是与AC 异面的体对角线。
求证:AC⊥BD′
证明:连接BD
∵正方体ABCD-A’B’C’D’
∴DD’⊥平面ABCD,∴DD’ ⊥AC ∵AC、BD 正方形ABCD的为对角线
D’
∴AC⊥BD
A’
∵DD’∩BD=D
∴AC⊥平面D’DB
∴BD平面D’DB,
D
∴AC⊥BD’
A′C⊥B′D′?
A′
D′
B′ C′
A
D
B C
知识盘点
1、线面垂直的定义: 2、线面垂直的判定定理: 3、数学思想方法:转化的思想。
课后作业
• P67—练习1 • P74—习题B组2,4
课后作业
1、如图,圆O所在一平面为 ,AB是圆O的直径,
C是圆周上一点,且PA⊥AC, PA⊥AB, P
求证:(1)PA⊥BC (2)BC⊥平面PAC
• 空间中直线与平面的位置关系:
直线在平面外 a⊂/ α
文字 语言
图形
语言
符号 语言 交点 情况
直线在平面α内
a α
a⊂α 有无数个交点
直线与平面α平行 直线与平面α相交
a α
a
A α
a∥α
a∩α=A
无交点
有且只有一个交点

课件2:线面、面面垂直的判定与性质

课件2:线面、面面垂直的判定与性质


基 础
因为PH为△PAD中AD边上的高,所以PH⊥AD.
考 情
因为PH 平面ABCD,AB∩AD=A,AB,AD 平面
ABCD,
典 例
所以PH⊥平面ABCD.





·




菜单
91淘课网 ——淘出优秀的你
(2)如图,连接 BH,取 BH 的中点 G,连接 EG.

自 主
因为 E 是 PB 的中点,
高 考


落( )


·
· 固
A.若l∥α,l∥β,则α∥β
明 考



B.若l∥α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l⊥β

D.若α⊥β,l∥α,则l⊥β






·




菜单
91淘课网 ——淘出优秀的你

自 主
【解析】 设α∩β=a,若直线l∥a,且l α,l β,则 考 体
落 实
固 基 础
面,∠ACB=90°,AC=BC=12AA1,
· 明 考 情
D 是棱 AA1 的中点.
(1)证明:平面 BDC1⊥平面 BDC;
(2)平面 BDC1 分此棱柱为两部分,
典 求这两部分体积的比.


探 究 ·
【思路点拨】 (1)证明DC1⊥平面BDC.
后 作 业
提 知 能
(2) 先 求 四 棱 锥 B—DACC1 的 体 积 , 再 求 三 棱 柱 ABC—
2 12 .

线面垂直的判定定理(公开课)课件

线面垂直的判定定理(公开课)课件

习题
01
02
03
04
B. 若直线a在平面α外,且直 线a与平面α内的两条相交直
线都垂直,则线面垂直。
C. 若直线a在平面α外,且直 线a与平面α内的无数条直线
都垂直,则线面垂直。
D. 若直线a在平面α外,且直 线a与平面α内的两条平行直
线都垂直,则线面垂直。
填空题:若直线a与平面β内 的两条直线分别平行和垂直,
情况二
如果一条直线与平面内的 两条平行直线都垂直,那 么这条直线与这个平面垂 直。
情况三
如果一条直线与平面内的 无数条直线都垂直,那么 这条直线与这个平面垂直 。
线面垂直在几何问题中的应用
应用一
在几何问题中,线面垂直可以用来证明某些几何图形的性质,例如三角形的高线、矩形的对角线等。
应用二
线面垂直可以用来解决一些几何问题,例如求点到平面的距离、求两平面之间的夹角等。
本节课的难点解析
如何理解线面垂直的概念及其几何意 义
运用判定定理解决复杂问题的策略和 方法
判定定理证明中的逻辑推理和数学表 达
下节课预告
线面平行的判定定理及其应用 平行线的性质和判定方法总结
几何问题中线面平行与垂直的综合应用
THANK YOU
判定定理的证明实例
实例一
假设有一个正方体,我们知道它的一个顶点A所在的直线a与顶点B、C所在的平 面β都垂直,那么我们可以应用线面垂直的判定定理证明直线a与平面β垂直。
实例二
假设有一个长方体,我们知道它的一个顶点A所在的直线a与顶点B、C、D所在的 平面β都垂直,那么我们同样可以应用线面垂直的判定定理证明直线a与平面β垂 直。
线面垂直的判定定理(公开课)课件

线面垂直-面面垂直的性质定理课件PPT

线面垂直-面面垂直的性质定理课件PPT

8
平面与平面垂直的性质定理
两个平面垂直,则一个平面内垂直于交线的直线与 另一个平面垂直
简记为:面面垂直,则线面垂直.
用符号怎么表示?
l
2021/3/10
a
9
例 1 .如 ,已 图 知 ,, 平 ,直 a 满 面 线 a 足 ,a 试判 a 与 断 的 平 .直 关 面 线 系
a b
位置 _关 __系 __是 __
2021/3/10
6
知识探究(二)平面与平面垂直的性质定理
思考3:如图,长方体ABCD—A1B1C1D1 中,平面AA1D1D与平面ABCD垂直,直线 AA1垂直于其交线AD.平面AA1D1D内的 直线AA1与平面ABCD垂直吗?
C1 B1
D1 A1
C
D
B 2021/3/10
A
7
推导:平面与平面垂直的性质定理
设 ⊥ , C ,A D B ,A ⊥C B 且 .A D B C D B
AB ?⊥
在内引直线BE⊥ CD, 垂足为B,
则∠ ABE是二面角-CD- 的
平面角, 由 ⊥ 知,
AB⊥ BE,又BE与CD
是 内的两条
相交直线.
C
E
D
BA
2021/3/10
2021/3/1012❖ 2.已知两个平面垂直,下列命题为真命题的是____
①一个平面内已知直线必垂直于另一个平面内的任意 一条直线.
②一个平面内的已知直线必垂直于另一个平面的无数 条直线.
③一个平面内的任一条直线必垂直于另一个平面
④过一个平面 内任意一点作交线的垂线,则此垂线必 垂直于另一个平面.
2021/3/10
13
2021/3/10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③m与n不平行
,则 a∥b
4 如图,已知 l,CA
于点A,CB 于点B,a , a AB,
求证:a // l .
C β
B
α
l
Aa
2.若a,b表示直线, 表示平面,下列命题
正确的是 (3)(4)。
(1)a , a b,则b // (2)a //, a b,则b (3)a //, b ,则b a (4)a ,b ,则b a
巩固练习
3 请在下面的横线上填上适当的条 件,使结论成立。
a m, a n
bm,bn
线面垂直的性质定理
垂直于同一个平面的两条直线平行
已知:a⊥α, b⊥α, 求证:a // b
证明:
假设 a与b不平行.
记直线b和α的交点为o,
a
则可过o作 b’∥a. ∵a⊥α , ∴b’⊥α.
α
∴过点o的两条直线 b和
b’都垂直平面α , 这不可能!
∴a∥b .
b b’ o
巩固练习
1.判断下列命题是否正确:正确的是:①④ ①平行于同一条直线的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③平行于同一个平面的两条直线互相平行; ④垂直于同一个平面的两条直线互相平行.
相关文档
最新文档