变频器控制方式有哪些_变频器有几种控制方式_变频器的控制方式详解

合集下载

变频器的参数及其选择方法

变频器的参数及其选择方法

变频器的参数及其选择方法随着现代工业的发展,变频器作为一种重要的电气设备,在各个行业中得到了广泛应用。

变频器的参数设置和选择对于设备的稳定运行和性能表现起着至关重要的作用。

本文将介绍变频器的参数及其选择方法,帮助读者更好地了解和应用变频器。

一、变频器的参数1. 额定输入功率(Pn):变频器的额定输入功率是指变频器可以连续正常运行的功率。

在选型时,需要根据所需的负载功率来选择合适的额定输入功率。

2. 额定输出电流(In):额定输出电流是指变频器能够提供给负载的最大电流。

在选型时,需要根据负载的性质和所需的工作电流来确定合适的额定输出电流。

3. 输入电压范围(V):输入电压范围是指变频器可以正常工作的电压范围。

在选型时,应根据现场的电源电压情况选择适当的输入电压范围。

4. 输出电压范围(V):输出电压范围是指变频器可以输出的电压范围。

在选型时,应根据负载设备对电压稳定性的要求选择合适的输出电压范围。

5. 短路保护:短路保护是变频器的一项重要功能,能够在发生短路时及时切断输出电流,保护设备和使用者的安全。

6. 过载保护:过载保护是变频器的另一项重要功能,能够在负载过载时及时切断输出电流,保护设备免受损坏。

7. 控制方式:变频器的控制方式有多种,如电压控制、速度控制和转矩控制等。

在选型时应根据具体的应用需求选择合适的控制方式。

二、变频器的选择方法1. 确定负载类型:首先需要确定所需控制的负载类型,如电动机、泵、风机等。

不同的负载类型对变频器的要求不同,因此在选型时需要明确负载类型。

2. 计算负载功率:根据实际负载工作条件和负载参数,计算负载功率。

负载功率是选择变频器的重要依据,应精确计算以确保变频器能够满足负载需求。

3. 分析负载特性:根据负载的启动特性、工作特性和负载惯量等参数,分析负载对变频器的要求。

例如,对于负载惯量大的设备,需要选择具有较强驱动能力的变频器。

4. 选择合适的变频器:根据前述确定的参数要求,选择具有合适额定输入功率、额定输出电流、输入电压范围和输出电压范围等参数的变频器。

变频器的工作原理与控制方式

变频器的工作原理与控制方式

变频器的工作原理与控制方式变频器(Variable Frequency Drive,缩写为VFD),又称为交流调速器(AC Drive),是一种用于调节交流电机转速的电子装置。

它通过改变输入电压的频率和幅值来控制电机的转速。

变频器工作原理主要涉及开关技术、PWM调制技术、电机驱动理论等方面内容,下面将详细介绍。

一、变频器的工作原理1.开关技术变频器利用开关电子器件(如晶体管、IGBT等)来实现对输入电源的开关控制。

通过不断开关电路,形成等效于几十千赫兹至几千千赫兹的高频方波,从而形成理想的正弦波输出。

2.PWM调制技术PWM(Pulse Width Modulation)调制技术是指通过改变开关装置的导通时间和关断时间,以一定占空比形式控制开关管工作的方式。

在变频器中,PWM技术可以实现加减压、变频和控制电机的转速。

3.电机驱动理论变频器通过改变输入电压的频率和幅值来调节电机的转速。

在工作过程中,通过改变开关器件导通时间和关断时间,将输入电压的频率调节到所需的频率范围,实现对电机转速的精准控制。

二、变频器的控制方式1.V/f控制方式V/f控制方式(Voltage/frequency ratio control)是一种常用的变频器控制方式。

它通过传感器检测电机当前的转速,并根据转速信号和预设的转速曲线进行比较,计算所需输出频率,并根据预设的V/f比值进行控制,实现对电机速度的调节。

2.向量控制方式向量控制方式(Vector Control)又称矢量控制方式,是一种高性能的变频器控制方式。

它通过传感器检测电机当前的转速、转矩和位置等信息,并根据这些信息进行精确计算和控制,实现对电机速度、转矩和位置等的准确控制。

3.矢量控制方式矢量控制方式(Direct Torque Control,缩写为DTC)是一种高性能的变频器控制方式。

它通过传感器检测电机当前的转速、转矩等信息,并根据转速、转矩的变化率进行预测和计算,在每个采样周期内调节电机的转速和转矩,实现对电机的精确控制。

变频器常用的几种控制方式

变频器常用的几种控制方式

变频器常用的几种控制方式Prepared on 22 November 2020变频器常用的几种控制方式变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

1、变频器简介变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。

变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

2、变频器中常用的控制方式非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2) 转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。

变频器的四种控制方式详解

变频器的四种控制方式详解

变频器的四种控制方式详解一、V/f恒定控制:V/f控制是在改变电动机电源频率的同时改变电动机电源的电压,使电动机磁通保持一定,在较宽的调速范围内,电动机的效率,功率因数不下降。

因为是控制电压(Voltage)与频率(Frequency)之比,称为V/f控制。

恒定V/f控制存在的主要问题是低速性能较差,转速极低时,电磁转矩无法克服较大的静摩擦力,不能恰当的调整电动机的转矩补偿和适应负载转矩的变化; 其次是无法准确的控制电动机的实际转速。

由于恒V/f变频器是转速开环控制,由异步电动机的机械特性图可知,设定值为定子频率也就是理想空载转速,而电动机的实际转速由转差率所决定,所以V/f恒定控制方式存在的稳定误差不能控制,故无法准确控制电动机的实际转速。

二、转差频率控制:转差频率是施加于电动机的交流电源频率与电动机速度的差频率。

根据异步电动机稳定数学模型可知,当频率一定时,异步电动机的电磁转矩正比于转差率,机械特性为直线。

转差频率控制就是通过控制转差频率来控制转矩和电流。

转差频率控制需要检出电动机的转速,构成速度闭环,速度调节器的输出为转差频率,然后以电动机速度与转差频率之和作为变频器的给定频率。

与V/f控制相比,其加减速特性和限制过电流的能力得到提高。

另外,它有速度调节器,利用速度反馈构成闭环控制,速度的静态误差小。

然而要达到自动控制系统稳态控制,还达不到良好的动态性能。

三、矢量控制矢量控制,也称磁场定向控制它是70年代初由西德F.Blasschke等人首先提出,以直流电机和交流电机比较的方法阐述了这一原理。

由此开创了交流电动机和等效直流电动机的先河。

矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic。

通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1、Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流; It1相当于直流电动机的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换实现对异步电动机的控制。

变频器的分类_变频器应用技术1

变频器的分类_变频器应用技术1
电 气 自动化
二、
外形
ABB变频器(瑞士) 变频器(瑞士) 变频器
电 气 自动化
ABB变频器(瑞士) 变频器(瑞士) 变频器
电 气 自动化
富士变频器G11系列 系列 富士变频器
富士变频器GP11系列 系列 富士变频器
富士变频器(日本) 富士变频器(日本)
电 气 自动化
MICROMASTER 440系列
西门子变频器(德国) 西门子变频器(德国)
电 气 自动化
G110系列 系列
西门子变频器(德国) 西门子变频器(德国)
电 气 自动化
西门子变频器(德国) 西门子变频器(德国)
电 气 自动化
变频器外形
FR-E500系列 系列
FR-S500E系列 系列
三菱变频器(日本) 三菱变频器(日本)
电 气 自动化
J7系列 系列
安川变频器(日本) 安川变频器(日本)
电 气 自动化
变频器外形
SB40系列高性能通用型 系列高性能通用型
SB80系列矢量控制型 系列矢量控制型
森兰变频器
电 气 自动化
变频器外形
SB60系列全能王 系列全能王
SB12系列风机 水泵专用 系列风机/水泵专用 系列风机
森兰变频器
电 气 自动化
当中间直流环节采用大电感滤波时,电流波形较平直, 当中间直流环节采用大电感滤波时,电流波形较平直,因而电源内阻抗大 输出是一个恒流源,输出交流电流是矩形波或阶梯波, ,输出是一个恒流源,输出交流电流是矩形波或阶梯波,这类变频装置叫电 流型变频器。 流型变频器。
电气自动化
3. 电压型和电流型变频器比较
2.交-交变频器 交 交变频器 交-交变频器是把工频交流电直接变换成不同频率交流电的 交变频器是把工频交流电直接变换成不同频率交流电的 过程,它不通过中间直流环节, 过程,它不通过中间直流环节,故又称为直接变频器或周波变换 因为没有中间环节,仅用一次变换就实现了变频, 器。因为没有中间环节,仅用一次变换就实现了变频,效率较高 主要构成环节如下图所示。 。主要构成环节如下图所示。

变频器的控制方法

变频器的控制方法

变频器的控制方法变频器是一种能够控制交流电动机转速的设备,通常用于工业生产中的电机调速和节能控制。

它通过改变电机输入的电压和频率,使电机达到所需的转速。

变频器的控制方法有多种,下面将详细介绍几种常见的控制方法。

1. 简单开关控制方法简单开关控制方法是变频器最基本的控制方式,通过控制电机的开/关状态来实现转速控制。

这种方法的控制精度较低,转速调节范围也较有限,适用于一些对转速要求不高的应用。

2. 转矩控制方法转矩控制方法是通过调节变频器输出的电压和频率来实现对电机输出转矩的控制。

通过改变电压和频率的比例关系,可以实现电机的恒转矩调速。

这种控制方法适用于一些需要保持恒定转矩的场合,如起重机械、卷取机等。

3. PI控制方法PI控制方法是一种闭环控制方法,它通过测量电机的输出转速与期望转速之间的差异,并根据差异调整变频器的输出电压和频率来控制转速。

这种控制方法具有较高的控制精度和适应性,可以根据实际情况进行参数调整,实现稳定的转速控制。

4. 矢量控制方法矢量控制方法是一种高级的闭环控制方法,它可以实现更精确的转速控制和较高的转矩响应。

矢量控制方法通过对电机的电流、电压和转速进行测量和计算,并根据计算结果调整变频器的输出,使电机能够精确地跟随给定的转速和转矩变化。

5. 力矩控制方法力矩控制方法是一种特殊的转矩控制方法,它可以根据负载的力矩需求来调整电机输出的转矩。

通过测量负载的力矩大小,并根据力矩与转速的关系进行计算和控制,可以实现对电机输出的力矩进行精确的控制。

综上所述,变频器的控制方法有简单开关控制、转矩控制、PI控制、矢量控制和力矩控制等多种方式。

不同的控制方法适用于不同的应用场合,可以根据实际需求选择最合适的控制方式。

随着技术的不断进步和应用领域的扩大,变频器的控制方法也在不断发展和创新,为工业生产提供更加高效和可靠的电机控制解决方案。

变频器操作方法有几种

变频器操作方法有几种

变频器操作方法有几种
变频器是一种调节电力频率的设备,可用于控制交流电动机的转速、提供稳定的电源频率等。

根据操作方法的不同,变频器的操作可以分为以下几种方式:
1. 手动操作:通过手动控制开关、旋钮、按钮等来调节变频器的输出频率和其他参数。

这种操作方式主要适用于较简单的应用场景,对变频器的参数进行简单的调整。

2. 自动操作:通过自动化控制系统,实时监测相关参数,自动调节变频器的输出频率和相关参数,以实现对电机或设备的精确控制。

这种操作方式主要适用于需要精确控制和自动化管理的场景。

3. 远程操作:通过远程控制设备,通过网络或无线信号等方式,远程操作调节变频器的输出频率和相关参数。

这种操作方式主要适用于需要从远程地点对设备进行控制和管理的场景。

总的来说,变频器的操作方法可以根据具体应用场景的要求选择合适的方式,手动操作适用于简单的场景,自动操作适用于需要精确控制和自动化管理的场景,远程操作适用于需要远程控制和管理的场景。

变频器的控制方式有哪些

变频器的控制方式有哪些

变频器的控制方式有哪些变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。

随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

那么,常见的变频器有哪些种类,它们的控制方法又是什么?变频器的种类从控制方式来讲,现在市场上常见的有V/F控制变频器、矢量控制变频器两种。

从电压角度来讲,有低压变频器、高压变频器两种。

从电源角度来讲,有单相变频器、三相变频器的区分。

从适用场合来分,有通用变频器、风机水泵专用型变频器、注塑机专用型变频器、拉丝机专用变频器、电梯专用变频器、球磨机专用变频器等等。

变频器常用的控制方式1、非智能控制方式在交流变频器中使用的非智能控制方式有V/f 协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1)V/f正弦脉宽调制(SPWM)控制方式V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2)转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。

这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳。

变频器的控制功能第1讲变频器的控制方式_上_李方园

变频器的控制功能第1讲变频器的控制方式_上_李方园
图 5 所示为旋转编码器 PG 与变频器 VF 组成的闭环 V/f 控 制。图 5a 中,PS+/PS- 为编码器的工作电源,A+ 信号为 A 相 信号或 B 相信号,本控制方式采用一相反馈。
a)PG 接口示意
b)速度增益曲线 图5 闭环V/f控制接线图和速度增益示意
闭环 V/f 控制为了获得良好的速度控制性能,还必须设置 比例增益 P 值和积分时间 I 值,图 5b 所示为参数设置情况。
动机的绕组电阻比大容量电动机大,电阻压降也大,应适当增
大 V 值;(3)当电动机抖动厉害时,说明转矩过大,转矩补 0
偿增益调得过高,应适当减小 V 值。这里必须避免这样一个 0
误区:即使提高很多输出电压,电动机转矩并不能和其电流相
2007 年 12 月刊 自动化博览 21
本期策划
Survey 综 述
本期策划
Survey 综 述
AC Inveter’s Control Function
变频器的控制功能 第 1 讲 变频器的控制方式(上)
李方园
李方园(1973 -)
男, 籍贯浙江舟山,毕业于浙江大学电气 自动化专业,高级工程师,长期从事于变 频器等现代工控产品的应用与研究工作。
摘要:根据不同的变频控制理论,可以发展为几种不同的变频器控制方式, 即 V/f 控制方式(包括开环 V/f 控制和闭环 V/f 控制)、无速度传感器矢量控 制方式(矢量控制 VC 的一种)、闭环矢量控制方式(即有速度传感器矢量控 制 VC 的一种)、转矩控制方式(矢量控制 VC 或直接转矩控制 DTC)等。这 些控制方式在变频器通电运行前必须首先设置。本文主要阐述的就是变频器 的这几种控制方式。 关键词:变频器; 控制方式; 矢量控制; 直接转矩控制

空调变频器控制原理及方式

空调变频器控制原理及方式

空调变频器控制原理及方式作者:徐经碧来源:《中国科技博览》2016年第24期[摘 ;要]变频调速技术是一门先进的科学技术,由电力电子、微电子以及计算机等多种技术组成的。

具有工作效率高、精确度高以及范围广泛等优点,由于其具有较高的节能效果,因此在空调、冶金、机械等领域得到了广泛的应用,而且逐渐成为了电气传动发展的主要方向。

不同的变频装置具有不同的控制特性,因此在不同的应用场合中应当选择一个合适的系统。

本文介绍空调变频器的常用类型,并且分析空调变频器控制原理与方式。

[关键词]空调变频器 ;控制原理控制方式中图分类号:D522 文献标识码:A 文章编号:1009-914X(2016)24-0028-01前言近几年,随着电子技术以及集成电路的不断发展,生产工艺的提高,功率半导体器件的价格逐步降低,工业上开始重视起变频调速的开发。

因此,相关的专业技术人员认识到开发性能良好的变频器并将其应用于工业控制中的重要性,这也逐渐成为了变频空调控制工作者共同追求的目标。

1.变频器的类型1.1 交-直-交型交-直-交型变频器首先通过整流器将交流电转变为直流电,再通过逆变器将直流电转化为频率可以调节的交流电。

这种类型的变频器是一种间接的变频调速系统,带有直流调节环节,并且具有较宽的频率调节范围,功率因素较高,一般应用于空调变频器控制系统以及各种拖动系统。

1.2 交-交型交-交型变频器通过利用变频器将电网交流电直接转换为电压和频率可以调节的交流电,这是一种变频调速系统,具有较高的工作效率,但是由于其调频范围较窄,而且在低速下功率因数较低,因此在低速大功率的拖动装置中比较适用。

常用的VVVF变频器通常使用交-直-交型为主,这种类型的变频器由于中间的滤波方式有所不同而分为电压型和电流型两种主要形式。

2.空调变频器控制原理空调变频器由五个部分组成,分别为滤波电路、整流电路、功率因素校正(PFC)电路、逆变电路和MCU控制电路。

其中滤波电路滤除电网中的干扰,同时滤除控制器系统对电网产生的EMI干扰。

变频器的控制方式及合理选用

变频器的控制方式及合理选用

变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。

其控制方式经历以下四代。

(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。

其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。

他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。

以内切多边形逼近圆的方式而进行控制的。

经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。

但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

(3)第三代以矢量控制(磁场定向法)又称VC控制。

其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。

通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。

(4)第四代以直接转矩控制,又称DTC控制。

其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。

具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。

变频器的运行控制方式

变频器的运行控制方式

变频器的运转指令方式变频器的运转指令方式是指如何控制变频器的基本运行功能,这些功能包括启动、停止、正转与反转、正向电动与反向点动、复位等。

与变频器的频率给定方式一样,变频器的运转指令方式也有操作器键盘控制、端子控制和通讯控制三种。

这些运转指令方式必须按照实际的需要进行选择设置,同时也可以根据功能进行相互之间的方式切换。

1 操作器键盘控制操作器键盘控制是变频器最简单的运转指令方式,用户可以通过变频器的操作器键盘上的运行键、停止键、点动键和复位键来直接控制变频器的运转。

操作器键盘控制的最大特点就是方便实用,同时又能起到报警故障功能,即能够将变频器是否运行或故障或报警都能告知给用户,因此用户无须配线就能真正了解到变频器是否确实在运行中、是否在报警(过载、超温、堵转等)以及通过led 数码和lcd 液晶显示故障类型。

按照前面一节的内容,变频器的操作器键盘通常可以通过延长线放置在用户容易操作的5m 以内的空间里。

同理,距离较远时则必须使用远程操作器键盘。

在操作器键盘控制下,变频器的正转和反转可以通过正反转键切换和选择。

如果键盘定义的正转方向与实际电动机的正转方向(或设备的前行方向)相反时,可以通过修改相关的参数来更正,如有些变频器参数定义是“正转有效”或“反转有效”,有些变频器参数定义则是“与命令方向相同”或“与命令方向相反”。

对于某些生产设备是不允许反转的,如泵类负载,变频器则专门设置了禁止电动机反转的功能参数。

该功能对端子控制、通讯控制都有效。

2 端子控制2.1 基本概念端子控制是变频器的运转指令通过其外接输入端子从外部输入开关信号(或电平信号)来进行控制的方式。

这时这些由按钮、选择开关、继电器、plc 或dcs 的继电器模块就替代了操作器键盘上的运行键、停止键、点动键和复位键,可以在远距离来控制变频器的运转。

图1 端子控制原理在图1 中,正转fwd、反转rev、点动jog、复位reset、使能enable 在实际变频器的端子中有三种具体表现形式:(1)上述几个功能都是由专用的端子组成,即每个端子固定为一种功能。

变频器常用的10种控制方式

变频器常用的10种控制方式

变频器常用的10种控制方式
变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素。

除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

一、变频器的分类
变频器的分类方法有多种。

按照主电路工作滤波方式分类,可以分为电压型变频器和电流型变频器。

按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器。

按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等。

按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

二、变频器中常用的控制方式
1、非智能控制方式
在交流变频器中使用的非智能控制方式有V/f控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制
V/f就是加在电机定子上的电压和电源频率的比值。

如下图,V/F符合直线AB,则是直线型;符合折线段ABC,则是多点型;符合曲线AB,则是平方型。

变频器的控制

变频器的控制

变频器的控制变频器是一种能够实现电机无级调速的装置,广泛应用于工业控制、电力系统、交通运输等领域。

变频器控制技术是工业自动化控制领域的重要组成部分,为实现工业自动化生产、提高生产效率、降低能耗和维护成本提供了重要的技术手段。

本文将对变频器的控制技术进行介绍。

变频器的基本原理变频器的基本原理是将直流电转换为交流电,通过调节交流电的频率实现电机的无级调速。

变频器由三部分组成:整流器、逆变器和控制电路。

其中,整流器将交流电转换为直流电,逆变器将直流电转换为可控制的交流电,控制电路控制逆变器输出电压的频率和幅度,从而改变电机的转速。

变频器的控制方式在工业生产中,常用的变频器控制方式有以下几种:电压频率控制电压频率控制是指通过改变变频器输出电压的频率和幅度来控制电机的转速。

这种控制方式简单、可靠,适用于一些转速较稳定的工况,但是在低速工况下容易产生噪声和振动。

矢量控制矢量控制是指通过控制电机电流的大小和相位来实现对电机转速的控制。

这种控制方式可以实现电机的高精度控制,适用于一些对转速精度要求较高的工况,但是对控制算法要求较高,同时需要对电机进行矢量控制器的参数调试。

直接转矩控制直接转矩控制是指通过控制电机电流来实现对电机转矩的控制,从而实现对电机的无级调速。

这种控制方式具有响应速度快、控制精度高的特点,适用于一些快速变化的工况,但是需要对电机进行复杂的模型建立和仿真分析。

变频器的控制步骤实现对变频器的控制需要经过以下几个步骤:变频器参数设置在使用变频器之前,需要对其进行参数设置,包括额定频率、额定电压、额定电流、额定功率等。

不同的工况需要进行不同的参数设置,一般由厂家根据客户需求提供。

信号输入设置接下来需要配置输入信号,将外部信号通过变频器的控制电路传入逆变器,从而实现对电机的控制。

输入信号通常包括开机信号、停机信号、转速信号等。

控制模式选择在控制变频器之前,需要根据控制应用的特点选择适当的控制模式,如电压频率控制、矢量控制或直接转矩控制。

变频器的控制方式及参数对应调节

变频器的控制方式及参数对应调节

变频器的控制方式及参数对应调节为了更好地控制电机转速和电机功率,变频器是不可缺少的控制设备之一。

通过改变电机供电频率和电压来控制电机的运行状态,变频器可实现流量、压力和温度等各种工业自动化领域的控制。

本文将介绍变频器的控制方式及变频器参数的调节方法。

一、变频器的控制方式1. 软启动控制方式在启动时,变频器可以平滑地控制电机的加速度,从而有效地减少了电网辐射和机械冲击。

软启动控制方式可以作为一种常规的设计方式,以保护电机设备和相关的配套设备。

2. 闭环控制方式闭环控制方式可以依靠编码器、传感器、控制器等设备,实现对电机的精确控制。

此方式的精度比较高,可以满足更高精度、更高质量、更高安全性的要求,适用于各种高精度控制的领域。

3. 开环控制方式开环控制方式是指变频器直接控制电机,没有反馈控制,因此无法直接获得电机的实际运行状态。

但是,由于采取的是数字控制,所以控制精度较高。

这种方式适用于低速和中速转速控制,如风门控制、输送机架空控制等。

二、变频器参数的调节1. 调节输出频率变频器控制的关键是输出频率的控制,变频器可以缓慢而平稳地调整输出频率,来实现对电机的精确控制。

在操作中,需要根据实际需要来设置输出频率的大小,以满足不同的工作需求。

2. 调节电压在对电机速度进行控制时,可以通过调节变频器输出电压的大小来实现。

变频器的输出电压需要根据电机负载特性渐进式变化,从而达到更加精确的控制效果。

3. 调节尺寸变频器的尺寸也会影响到变频器的使用效果,一般来说,尺寸越大的变频器可以提供更大的输出功率和反应速度,但是对于实际应用来说,需要根据实际情况进行选择。

4. 调节电流电机的正常运行需要一定的电流,因此需要根据电机的电流特性来精确调节输出电流的大小。

通过设置输出电流限制值来防止电机过载、短路等异常情况的发生。

总之,变频器的控制方式和参数设置是影响机器性能和控制效果的关键因素。

必须准确调节变频器参数,以确保设备的正常运行和更好的控制效果。

变频器的内部控制方式

变频器的内部控制方式

针对不同应用场景的优化建议
01
工业自动化领域
02
提高调速精度和稳定性,以满足高精度加工和生产线的需求 。
03
加强抗干扰能力,以适应复杂电磁环境下的稳定运行。
针对不同应用场景的优化建议
01
新能源领域
02
优化动态响应性能,以适应风能、太阳能等新能源发电系统的
快速变化。
提高变频器效率,降低能源转换过程中的损耗。
03
针对不同应用场景的优化建议
01
智能家居领域
02
降低噪音和振动,提升家居环境的舒适度。
03 增强变频器的易用性和智能化水平,方便用户进 行远程控制和调试。
未来发展趋势预测
智能化发展
随着人工智能和物联网技术的不断进步,变频器将实现更 加智能化的内部控制方式,如自适应控制、模糊控制等。
高性能化
未来变频器将追求更高的调速精度、更宽的调速范围和更 快的动态响应速度,以满足日益增长的工业自动化和新能 源领域的需求。
通过实时监测电机定子磁链和转矩, 直接对逆变器的开关状态进行最优控 制,实现高性能的调速控制。
速度-位置复合控制
在实现转速闭环控制的基础上,引入位 置环,通过位置传感器实时监测电机位 置,实现位置和速度的精确控制。
03 内部控制策略与算法
PID控制策略
01
02
03
比例(P)控制
通过调整输出与输入之间 的比例关系,快速响应误 差变化。
绿色环保
随着全球环保意识的提高,变频器将更加注重能源利用效 率和环保性能的提升,如采用更高效的功率器件、优化散 热设计等。
THANKS FOR WATCHING
感谢您的观看
滤波电路
对整流后的直流电进行滤波,以消 除谐波和减小电压波动。

变频器的控制方式

变频器的控制方式

变频器的控制方式1引言我们通常意义上讲的低压变频器,其输出电压一般为220~650v、输出功率为0. 2~400kw、工作频率为0~800hz左右,变频器的主电路采用交-直-交电路。

根据不同的变频控制理论,其模式主要有以下三种:(1)v/f=c的正弦脉宽调制模式(2)矢量控制(vc)模式(3)直接转矩控制(dtc)模式针对以上三种控制模式理论,可以发展为几种不同的变频器控制方式,即v/f控制方式(包括开环v/f控制和闭环v/f控制)、无速度传感器矢量控制方式(矢量控制v c的一种)、闭环矢量控制方式(即有速度传感器矢量控制vc的一种)、转矩控制方式(矢量控制vc或直接转矩控制dtc)等。

这些控制方式在变频器通电运行前必须首先设置。

2v/f控制方式2.1基本概念我们知道,变频器v/f控制的基本思想是u/f=c,因此定义在频率为fx时,ux的表达式为ux/fx=c,其中c为常数,就是“压频比系数”。

图1中所示就是变频器的基本运行v/f曲线。

图1基本运行v/f曲线由图1可以看出,当电动机的运行频率高于一定值时,变频器的输出电压不再能随频率的上升而上升,我们就将该特定值称之为基本运行频率,用fb表示。

也就是说,基本运行频率是指变频器输出最高电压时对应的最小频率。

在通常情况下,基本运行频率是电动机的额定频率,如电动机铭牌上标识的50hz或60hz。

同时与基本运行频率对应的变频器输出电压称之为最大输出电压,用vmax表示。

当电动机的运行频率超过基本运行频率fb后,u/f不再是一个常数,而是随着输出频率的上升而减少,电动机磁通也因此减少,变成“弱磁调速”状态。

基本运行频率是决定变频器的逆变波形占空比的一个设置参数,当设定该值后,变频器cpu将基本运行频率值和运行频率进行运算后,调整变频器输出波形的占空比来达到调整输出电压的目的。

因此,在一般情况下,不要随意改变基本运行频率的参数设置,如确有必要,一定要根据电动机的参数特性来适当设值,否则,容易造成变频器过热、过流等现象。

变频器的控制方法

变频器的控制方法

变频器的控制方法变频器是一种用于控制电动机转速的设备,它通过改变电源的频率来实现对电动机的精确控制。

变频器的控制方法有多种,下面将逐一介绍。

1. 开关控制:开关控制是变频器最基本的控制方式之一。

通过手动或自动操作,将变频器的开关打开或关闭,从而控制电动机的启停。

这种控制方法简单直接,适用于一些简单的应用场景,但无法实现精确的转速调节。

2. 脉宽调制(PWM)控制:脉宽调制是一种常见的变频器控制方法。

它通过改变电源信号的脉冲宽度来控制电动机的转速。

脉宽调制技术可以实现高效的能量转换,使得电动机在不同负载下都能保持稳定的转速。

同时,脉宽调制还可以实现电动机的正反转和制动功能。

3. 矢量控制:矢量控制是一种较为高级的变频器控制方法。

它通过对电动机的转子位置和速度进行准确测量,并根据测量结果计算出合适的电流矢量,从而实现对电动机的精确控制。

矢量控制可以实现电动机的高速响应和精确的转速调节,适用于一些对转速要求较高的场合。

4. 感应电动机矢量控制:感应电动机矢量控制是一种应用广泛的变频器控制方法。

它通过对感应电动机的转子位置和转速进行测量,并根据测量结果调整电动机的电流矢量,从而实现对电动机的精确控制。

感应电动机矢量控制具有响应速度快、转速范围广等优点,适用于各种工业领域。

5. 闭环控制:闭环控制是一种基于反馈的变频器控制方法。

它通过测量电动机的转速,并将转速信号与设定值进行比较,然后根据比较结果调整电动机的控制参数,从而实现对电动机转速的闭环控制。

闭环控制可以有效消除外界干扰和负载变化对电动机转速的影响,实现更加精确的转速控制。

以上是几种常见的变频器控制方法,每种方法都有自己的特点和适用场景。

在实际应用中,可以根据具体需求选择合适的控制方法,并结合其他控制策略进行综合控制,以实现更好的控制效果。

变频器的控制方法不断创新和发展,为电动机控制提供了更多的选择和可能性。

16个变频器参数设置、调试步骤及方法

16个变频器参数设置、调试步骤及方法

16个变频器参数设置、调试步骤及方法1、概述变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。

因此,变频器调试是从正确设置变频器参数开始的。

2、控制方式即速度控制、转距控制、PID控制或其他方式。

采取控制方式后,一般要根据控制精度进行静态或动态辨识。

3、最低运行频率即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。

而且低速时,其电缆中的电流也会增大,也会导致电缆发热。

4、最高运行频率一般的变频器最大频率到60Hz,有的甚至到400Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。

5、载波频率载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。

6、电机参数变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。

7、跳频在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。

8、加减速时间加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。

通常用频率设定信号上升、下降来确定加减速时间。

在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。

加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。

加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。

9、转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器控制方式有哪些_变频器有几种控制方式_变频器的控制方式详解变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的先天条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

变频器简介1)变频器的基本结构
变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。

2)变频器的分类
变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

变频器控制方式选择依据对于控制方式,要根据生产机械的具体要求来进行选择。

1、二次方律负载对于离心式风机、水泵和空气压缩机一类的二次方律负载,一般采用V/F控制方式为宜。

因为V/F控制方式有低励磁U/f线,在低频运行时可以更好地节能。

矢量控制方式实质上是使电动机始终保持额定磁通的控制方式,不可能实现低励磁。

2.恒转矩负载
(1)对于负载率经常变动、调速范围又不很大的负载,一般以选择无反馈矢量控制为好,因为V/F控制方式的转矩提升量不易预置得恰到好处,但采用无馈矢量控制方式时,须注。

相关文档
最新文档