数学建模报告选址问题

数学建模报告选址问题
数学建模报告选址问题

长沙学院数学建模课程设计说明书

题目选址问题

系(部) 数学与计算机科学

专业(班级) 数学与应用数学

姓名

学号

指导教师

起止日期 2015、6、1——2015、6、5

课程设计任务书

课程名称:数学建模课程设计

设计题目:选址问题

已知技术参数和设计要求:

选址问题(难度系数1.0)

已知某地区的交通网络如下图所示,其中点代表居民小区,边代表公路,边上的数字为小区间公路距离(单位:千米),各个小区的人数如下表所示,问区中心医院应建在哪个小区,可使离医院最远的小区居民人均就诊时所走的路程最近?

各阶段具体要求:

1.利用已学数学方法和计算机知识进行数学建模。

2.必须熟悉设计的各项内容和要求,明确课程设计的目的、方法和步骤。 3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。 4.设计中绝对禁止抄袭他人的设计成果。

5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。 6.所设计的程序必须满足实际使用要求,编译出可执行的程序。 7.要求程序结构简单,功能齐全,使用方便。

设计工作量:

论文:要求撰写不少于3000个文字的文档,详细说明具体要求。

1v 5

工作计划:

提前一周:分组、选题;明确需求分析、组内分工;

第一天:与指导老师讨论,确定需求、分工,并开始设计;第二~四天:建立模型并求解;

第五天:完成设计说明书,答辩;

第六天:针对答辩意见修改设计说明书,打印、上交。

注意事项

?提交文档

长沙学院课程设计任务书(每学生1份)

长沙学院课程设计论文(每学生1份)

长沙学院课程设计鉴定表(每学生1份)

指导教师签名:日期:

教研室主任签名:日期:

系主任签名:日期:

长沙学院课程设计鉴定表

目录

第一章课程设计的目的、任务及要求 (2)

1.1 目的 (2)

1.2 主要任务 (2)

1.3 要求 (2)

摘要 (3)

第二章问题重述 (4)

2.1 问题背景 (4)

2.2 问题重述 (4)

第三章问题分析 (5)

第四章假设与符号约定 (6)

4.1 模型假设 (6)

4.2符号说明 (6)

第五章模型的建立与求解 (7)

5.1.选定中心点 (7)

5.1.1 模型一 (7)

5.1.2 模型二 (7)

5.2 题目引申 (9)

第六章模型的结果分析与检验 (10)

6.1 结果分析 (10)

6.2 模型检验 (10)

6.3 模型优缺点 (12)

结论 (13)

参考文献 (14)

结束语 (15)

附录 (16)

第一章课程设计的目的、任务及要求

1.1 目的

1、巩固《数学建模》课程基本知识,培养运用《数学建模》理论知识和技能分析解决实际应用问题的能力;

2、初步掌握数学建模的基本流程,培养科学务实的作风和团体协作精神;

3、培养调查研究、查阅技术文献、资料、手册以及撰写科技论文的能力。

1.2 主要任务

1、利用所学建模知识求解最短路径问题;

2、建立一个模型;

3、拓展问题,深入思索医院选址的约束因素。

1.3 要求

1.利用已学数学方法和计算机知识进行数学建模.

2.必须熟悉设计的各项内容和要求,明确课程设计的目的.方法和步骤。

3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。

4.设计中绝对禁止抄袭他人的设计成果。

5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。

6.所设计的程序必须满足实际使用要求,编译出可执行的程序。

7.要求程序结构简单,功能齐全,使用方便。

摘要

本文研究在几个小区之间选择一个最适合的小区来建设医院的问题,利用实验数据建立数学模型,成功构建了中心医院所在小区与各个小区之间的距离、小区人数、以及各小区去往医院的交通方式等因素的模型,在实际的应用中具有重要意义.

针对问题本身,运用了两种方法处理.一是直接根据最短距离进行求解.将居民点与其之间的距离抽象成图论中的加权简单图,而所求的“可使距离医院最远的小区居民就诊时所走的路程最近的小区”,则可以简化为图论中的最短路的模型,利用Floyd算法,运用Matlab求解出每两个小区之间的最短距离,再根据模型求解得出最适合建设中心医院的小区,从而得到小区

v是最适合建立中心医院的小区.二是以各顶点的载荷(人

6

口数)加权,求每一个顶点至其他各个顶点的最短路径长度的加权和,建立模型,以此来确定中心点的位置,得到

v小区较适合作为中心医院的建设点.进一步综合两种方

6

案得到最优解,则最终选定

v为最佳建设点.

6

针对问题的引申,考虑了到达医院的交通方式、费用以及各个小区的发病率等,以总交通费用之和建立数学模型,最后选择交通费用最少的

v小区作为最佳选址.

6

关键词:选址问题、Floyd算法、图论

2.1 问题背景

这是一个最优选址问题,是一种重要的长期决策,它的好坏直接影响到服务方法、服务质量、服务效率、服务成本,医疗网点对经济和社会的发展起着至关重要的作用。当人们对健康越来越重视的同时,医院的选择也成为人们关注的对象。

2.2 问题重述

已知某一地区的交通路线图,其中的点代表居民居住区域,边代表道路,边上的数字表示两小区之间的距离(单位:千米),各个小区的人数见下表,要求在这7个小区间选一个小区建立一个中心医院,使得距离中心医院最远的小区居民也能很快的到达中心医院,问中心医院建在哪个小区合适?

2.3 题目引申:

在考虑到患者去医院所选择的交通方式的情况下,对该问题再进行分析,即在给定的各种交通工具和各种工具所对应的费用的条件下,求将中心医院设在哪一个小区,使得各个小区患者到该小区所花费的交通费用最少?

由于每两个小区之间的路径不同,因为题目中只需考虑离医院最远小区到医院的距离最近,则只需考虑其他各个小区的人到达医院的路径问题,即只需要找出各小区到医院的最短路径。

第一步:这是一个选定中心点的建模问题,建模得出中心点来确定医院的位置。

第二步:求出其它各点到达中心医院的最短距离,得出初步的选址方案。

第三步:再通过第二种方法得到可行的选址地点,再建模进行计算和分析是否为最佳方案,综合两种方法的考量,得出最佳选址方案。

第四步:在已知条件下对题目进行引申,考虑病患到医院的交通费用,对此引申建立数学模型,求解在考虑交通费用的条件下,求得最佳选址方案,根据之前求得的选址方案进行对比,选择最优方案,得到该问题的最优解。

第五步:通过网上数据的采集,对给出的模型进行检验与分析,判断方案是否符合实际,能否推广到更多领域,进行分析,得出最终选址方案。

第四章假设与符号约定4.1 模型假设

(1)假设各小区的发病率是一致的.

(2)假设每个小区选择同种交通工具的人数的比例是相同的. (3)假设医院所在小区的患者的交通费用为0.

(4)假设生病的人都会去医院就医.

(5)假设乘坐每种交通方式都不会影响病情.

4.2符号说明

其中i,k=1,2,..7,j=1,2,….n

第五章 模型的建立与求解

5.1.选定中心点 5.1.1 模型一

设G =(V ,E )是一个无向简单连通赋权图,连接两个顶点的边的权值代表它们之间的距离,对于每一个顶点i v ,它与各个顶点之间的最短路径长度为7321,...,,k k k k d d d d (其中k=1,2,…7)。这些距离中的最大数称为顶点i v 的最大服务距离,记为)(ki v D 。 求每一个顶点的最大服务距离,显然,它们分别是矩阵D 【见附录1】中各行的最大值,见表1.

表1 各小区间的最短距离

由表1可建立如下模型:

}...,30,0max{},...,,max{)(7,37321k k k k k k ki d d d d d d v D ==

)}(),...,(),(min{721i i i v D v D v D

即为所求。 即:93)(15=v D ,

63)(25=v D ,50)()(3531==v D v D ,63)(41=v D ,93)(51=v D ,

48)(65=v D ,63)(75=v D .

由此可得,48)}(min{)(65==ki v D v D ,所以6v 是中心点,也就是说,医院设在6v 上是可行的。

方案:区中心医院应建在6v 小区,可使离医院最远的小区5v 居民人均就诊时所走的路程最近,此时6v 小区与5v 小区的最短距离为48 km. 最佳方案即为所求。 5.1.2 模型二

以各顶点的载荷(人口数)加权,求每一个顶点至其他各个顶点的最短路径长度的加权

和 ,以此来确定中心点。 由题目中已给出的小区人数的表格

再结合表(1)可建立如下模型:

∑==7

1)()(i ki

i k d v a v S

若:(1)将医院设在1v 小区:

∑===7

1112706243

)()(i i i d v a v S

(2)将医院设在2v 小区:

1396683)()(7

122==∑=i i i d v a v S

(3)将医院设在3v 小区:

1441290)()(7

133==∑=i i i d v a v S

(4)将医院设在4v 小区:

∑===7

1441434207)()(i i i d v a v S

(5)将医院设在5v 小区:

2661447)()(57

15==∑=i i i d v a v S

(6)将医院设在6v 小区:

∑===7

1661185423)()(i i i d v a v S

(7)将医院设在7v 小区:

1774173

)()(77

17==∑=i i i d v a v S

经比较,可得:

1185423)(min )(7

16==∑=ki i i k

d v a v S

所以,6v 是题目中图1的中位点。即:中心医院设在6v 是可行的。

方案:区中心医院应建在6v 小区,而此时可使离医院最远的小区5v 居民人均就诊时所走的路程最近,由表1可看出,6v 小区与5v 小区的最短距离为48 km. 5.2 题目引申

在考虑到患者去医院所选择的交通方式的情况下,对该问题再进行分析,即在给定的各种交通工具和各种工具所对应的费用的条件下,求将中心医院设在哪一个小区,使得各个小区患者到该小区所花费的费用最少? 对该问题建立模型进行求解,

由假设可知: ???≠==i k d i

k d ki ki ,,0

每个小区的患病人数:

a v a P i ?=)(

其中 1...211=+++=∑=n n

j j b b b b

乘坐每种交通工具每km 的费用:

)

()...()()(22111n n n

j j j y C b y C b y C b y C b C ?+?+?=?=∑=

计算各个小区到医院的总费用之和:

∑∑==????=??=711

)

()()(i n

j j j ki i ki k y C b d a v a d C P v C

∑∑==????=n

j j j i i i y C b d v a a 1

71

1)()(

由上述公式可知,医院的选址只与∑=?7

1

)(i ki i d v a 有关,则比较∑=?7

1

)(i ki i d v a 的大小就可得

到交通总费用最少的最佳选址方案。又由第一问中求出了)()(17

1

1v S d v a i i i =?∑=,结合表1,

所以若

(1)将医院设在1v 小区,2706243)(1=v S (2)将医院设在2v 小区,1396683)(2=v S (3)将医院设在3v 小区,1441290)(3=v S (4)将医院设在4v 小区,1434207)(4=v S (5)将医院设在5v 小区,2661447)(5=v S (6)将医院设在6v 小区,1185423)(6=v S

(7)将医院设在7v 小区,1774173)(7=v S 通过比较可得出:1185423)(min )(7

16==∑=ki i i k

d v a v S

由此可得出最佳选址方案:将医院设在6v 小区可使得各小区到医院的交通费用最少,经过合理分析,从而确定了医院的最佳选址地点。

第六章 模型的结果分析与检验

6.1 结果分析

综合最远小区到医院的最短距离,以及患者到医院的交通费用最少的情况考虑,选择6v 小区来建立区中心医院是最合适的选择,既可以节省患者的交通时间,使得病情在有效时间内能够得到很好的控制,不会延误病情,又为患者节省掉一部分的交通开支,从医院或者从患者的角度来看,此方案很合理。 6.2 模型检验

根据网上数据,找到1919年禽流感的发病率为2.5%~5%,由于医院每日接待人数有限,则本题中取a=2.5%,选取三种交通方式为公交车,出租车,私家车,其中公交车全程2元,即与距离无关,出租车为1.5元/km,私家车为0.5元/km ,据网上调查显示:选择坐公交车的人数占80%,选择坐出租车的占12%,选择坐私家车的人占8%。 通过以上数据来对此次建立的模型进行检验,得出如下结果:

∑∑==????=n

j j j i i i k y C b d v a a v C 1

71

1)()()(

∑=???+?+???=7

1

)(8.02%5.2)5.008.05.112.0()(%5.2i i k v a v S (其中k i ≠)

表2

通过具体数据的检验及表2,可看出在医院接待患者的人数相同的情况下,6v 小区作为建设中心医院可使得患者的交通费用最少,因此结合数据考虑,6v 小区是建立中心医院的最佳地点,符合实际情况,由此综合诸多元素考虑,选择6v 建立市中心医院是最佳选址方案,由模型检验也可看出6v 的总交通费用最少,最远小区5v 到医院的距离也最短,因此得出此方案是合理的,是可行的。

6.3模型优缺点

模型的优点:

(1)问题一我们采取了找中心点的方法对模型进行了合理的构建,方法简单易懂。(2)问题二我们对模型实现了实例化,用数据进行了精确的计算分析,并用matlab对模型进行了求解,满足所有小区居民对医院位置的要求。

(3)最后我们选出了一组数据进行了计算,用计算数据充分说明了我们所建模型的合理性。

模型的缺点:

(1)模型和算法的选取比较单一,未能用到更多、更好的优化模型,缺乏与其他模型的对比性。

(2)其中的找中心点的方法针对本题较简单,但对实际其他较复杂问题不具有通用性。

结论

在这近一周的努力,我们经过反复的思考、讨论、检验,终于顺利的完成了这一次的数学建模。在建模过程中,我们遇到了很多的困难和障碍。在选题的时候我们简单商量了一下,最终选定了此次的最优选址问题。选定题目的时候,我们开始觉得问题较为复杂,无法理解题目的要求,但是在老师和同学的引导和帮助下,我们打开思路,拓宽思维面,不再局限于问题。

经过讨论发现医院的选址不仅关系到各个小区的利益,更与社会的经济的长期发展离息息相关,若无法决定好医院的位置,将对该地区的社会生活经济健康造成长期的伤害。明白了这一点我们考虑的就更加全面。虽然接下来的过程中也是困难重重,但我们却更加有信心能够完成这次的问题。

在此次模型建立的探索过程中,我们以前很陌生、抽象的课程(数学建模)变得清晰起来,也切实体会到在建立模型中的种种艰辛。通过此次建模达到了总和所学知识,学以致用的目的,也对数学建模有了更深入的认识,不仅熟悉了建模过程可能遇到的问题,在思想上形成了系统的概念,使自己动手能力和综合能力有了新的提高。

此次的模型是求最优选址、最短路径,具有一定的实用性。我们利用了Floyd算法,用matlab求解。从总体上纵观此次的模型,达到了我们所预期的效果。

参考文献

[1]姜启源、谢金星、叶俊编,数学模型-4版[M],北京,高等教育出版社,2011.1

结束语

我们进行了为期一周的数学建模课程设计。通过这次课程设计我们拓宽了知识面,锻炼了能力,综合素质也有了较大的提高。安排课设的基本目的,在于理论与实际的结合、人与人的沟通,进一步提高思想觉悟。预期是观察、分析和解决实际问题的实际工作能力能力,以培养适应社会主义现代化建设需要的高素质复合型人才。作为整个学习体系的有机组成部分。课程设计的一个重要功能在于运用学习成果,检验学习成果。运用学习成果把课堂上学到的理论知识,尝试性的运用到实际设计工作,并从理论的高度对设计工作的现代化提出一些有针对性的建议和设想。检验学习成果,看一看课堂学习与实际工作底有多大差距。并通过综合分析找出学习中存在的不足,以便为完善学习计划,改变学习内容与方法提供实践依据。对我们信息与计算科学系的学生来说,实际能力培养至关重要,而这种能力培养单靠课堂教学是远远不够的,必须从课堂走向时间。这也是为毕业设计做预演,通过课程设计让我们了解到自身与实际的差距,并在以后学习期间及时补充相关知识,为求职与工作做好了充分的知识和能力的准备,从而缩短了从学校走向社会心理转型期。

在建模过程中,我们也得到老师和同学们的热心帮助,我们才能顺利完成此次的建模,在此向帮助和指导我们的老师同学表示最衷心的感谢!

附录

【附录1】:

Matlab程序代码:

建立M文件:

function[D,R]=floyd(a)

n=size(a,1);

D=a

for i=1:n

for j=1:n

R(i,j)=j;

end

end

R

for k=1:n

for i=1:n

for j=1:n

if D(i,k)+D(k,j)

D(i,j)=D(i,k)+D(k,j);

R(i,j)=R(i,k);

end

end

end

k

D

R

end

a=[0 30 inf inf inf inf inf;30 0 20 inf inf 15 inf;...

inf 20 0 20 60 25 inf;inf inf 20 0 30 18 inf;...

inf inf 60 30 0 inf inf;inf 15 25 18 inf 0 15;...

inf inf inf inf inf 15 0];

[D,R]=floyd(a)

D =

0 30 50 63 93 45 60

30 0 20 33 63 15 30

50 20 0 20 50 25 40

63 33 20 0 30 18 33

数学建模 学校选址问题模型

学校选址问题 摘 要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: ∑==16 1i i x s 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab 进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。 其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数 最小花费 固定成本 规模成本 灵敏度分析

1. 问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 表1-1备选校址表 备选校址 1 2 3 4 5 6 7 8 覆盖小区 1,2,3, 4,6 2,3,5,8, 11,20 3,5,11,20 1,4,6,7, 12 1,4,7,8,9,11,13, 14 5,8,9,10 11,16,20 10,11,1516,19, 20 6,7,12, 13,17, 18 备选校址 9 10 11 12 13 14 15 16 覆盖小区 7,9,13, 14,15, 17,18, 19 9,10,14,15,16, 18,19 1,2,4,6, 7 5,10,11, 16,20, 12,13,14,17, 18 9,10,14, 15 2,3,,5, 11,20 2,3,4,5,8 1.2 问题提出: 问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。 问题二、设每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 ?? ???-??+=, 否则, 若学生人数超过学生人数0600 )600(50 1002000i i i c βα 其中i α和i β由表1-2给出: 表1-2 学校建设成本参数表(单位:百万元) 备选校址 1 2 3 4 5 6 7 8 i α 5 5 5 5 5 5 5 3.5 i β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1 备选校址 9 10 11 12 13 14 15 16 i α 3.5 3.5 3.5 3.5 2 2 2 2 i β 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表1-3: 表1-3.各小区1到6年级学龄儿童数平均值(样本均值) 小区 1 2 3 4 5 6 7 8 9 10 学龄儿童数 120 180 230 120 150 180 180 150 100 160

数学建模学校选址问题

学校选址问题 摘要 本文为解决学校选址问题,建立了相应的数学模型。 针对模型一 首先,根据已知信息,对题目中给出的数据进行处理分析。在保证每个小区,学生至少有一个校址可供选择的情况下,运用整数规划中的0-1规划法,列出建校方案的目标函数与其约束条件,通过LINGO软件,使用计算机搜索算法进行求解。得出建立校址的最少数目为4个。再运用MATLAB软件编程,运行得到当建校的个数为4个时,学 首先,对文中给出的学校建设成本参数表和各校区1到6年级学龄儿童的平均值(样本均值)进行分析,可知20个小区估计共有4320个学龄儿童,当每个学校的平均人数都小于600时,至少需要建设8个学校;其次,模型一得到最少的建校数目为4个,运用MATLAB软件编程,依次列出学校个数为4、5、6、7、8时的最优建校方案,分别算出其最优建校方案下的总成本;最后,通过对比得出,最低的建校总成本为1650万,即选取校址10、11、13、14、15、16建设学校。 最后,我们不但对模型进行了灵敏度分析,,保证了模型的有效可行。 关键词:MATLAB灵敏度 0-1规划总成本选址 1 问题重述

当代教育的普及,使得学校的建设已成为不得不认真考虑的问题。 1.1已知信息 1、某地新开发的20个小区需要建设配套的小学,备选的校址共有16个,各校址覆盖的小区情况如表1所示: 2、在问题二中,每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 (单元:元)学生人数)600-(50100200010? ?? ???+=i i i c βα,若学生人数超过600人,其中 i α和i β由表2给出: 并且考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表3: 1.2提出问题 1、要求建立数学模型并利用数学软件求解出学校个数最少的建校方案。 2、求出总成本最低的建校方案。 2 问题假设与符号说明

数学建模论文__物流与选址问题

物流预选址问题 (2) 摘要 .............................................................................................. 错误!未定义书签。 一、问题重述 (3) 二、问题的分析 (3) 2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (4) 2.2 问题二:建立合理的仓库选址和建造规模模型 (4) 2.3 问题三:工厂向中心仓库供货的最佳方案问题 (5) 2.4 问题四:根据一组数据对自己的模型进行评价 (5) 三、模型假设与符号说明 (5) 3.1条件假设 (5) 3.2模型的符号说明 (5) 四、模型的建立与求解 (6) 4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (6) 4.1.1模型的建立 (7) 4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (10) 4.2.1 基于重心法选址模型 (10) 4.2.2 基于多元线性回归法确定中心仓库的建造规模 (12) 4.3 问题三:工厂向中心仓库供货方案 (13)

4.4 问题四:选用一组数据进行计算 (14) 五、模型评价 (21) 5.1模型的优缺点 (21) 5.1.1 模型的优点 (21) 5.1.2 模型的缺点 (21) 六参考文献 (21) 物流预选址问题 摘要 在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。 本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用

数学建模 学校选址问题模型

学校选址问题 摘要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。 其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数最小花费固定成本规模成本灵敏度分析 1.问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 1.2 问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。 问题二、设每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i个备选校址的建校成本 c可表示为 i

《数学建模》选题.

《数学建模》选题(一) 1、选址问题研究 在社会经济发展过程中, 经常需要在系统中设置一个或多个集散物质、传输信息或执行某种服务的“中心”。在设计和规划商业中心、自来水厂、消防站、医院、飞机场、停车场、通讯系统中的交换台站等的时候,经常需要考虑将场址选在什么位置才能使得系统的运行效能最佳。选址问题, 是指在指定的范围内, 根据所要求的某些指标,选择最满意的场址。在实际问题中,也就是关于为需要设置的“设施”选择最优位置的问题。选址问题是一个特殊类型的最优化问题,它属于非线性规划和组合最优化的研究范围。由于它本身所具有的特点,存在着单独研究的必要性和重要性。 1.1“中心”为点的情形 如图1,有一条河,两个工厂P 和Q位于河岸L(直线)的同一侧,工厂 P 和 Q 距离河岸L分别为8千米和10千米,两个工厂的距离为14千米,现要在河的工厂一侧选一点R,在R处建一个水泵站,向两工厂P、Q 输水,请你给出一个经济合理的设计方案。 图1 图2 (即找一点 R ,使 R 到P、Q及直线l的距离之和为最小。) 要求和给分标准: 提出合理方案,建立坐标系,分情况定出点R的位置,0分——70分。 将问题引申: (1)、若将直线 L缩成一个点(如向水库取水),则问题就是在三角形内求一点R,使R到三角形三顶点的距离之和为最小(此点即为费尔马点)。 (2)、若取水的河道不是直线,是一段圆弧(如图2),该如何选点? 对引申问题给出给出模型和讨论30分——50分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺点讨论扣10分。 1.2“中心”为线的情形

在油田管网和公路干线的设计中提出干线网络的选址问题: 问题A :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ∑=n i i i L P d w 1 ),( (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题B :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ∑=n i i i L X d w 1 ),( (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 问题C :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ),(max 1L P d w i i n i ≤≤ (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题D :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ),(max 1i i n i L X d w ≤≤ (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 参考文献 【1】林诒勋, 尚松蒲. 平面上的点—线选址问题[J]. 运筹学学报,2002,6(3):61—68. 【2】尚松蒲, 林诒勋. 平面上的min-max 型点—线选址问题[J]. 运筹学学报,2003,7(3):83—91. 要求和给分标准: 选择问题A 和B(或者C 和D)进行研究:根据文献重述模型(10分),提出自己的算法(30分),计算机仿真验证算法的正确性(40分,含如何在平面上随机产生n 个点,对每个点随机赋权,按照算法编程实现求干线的程序,并将寻得的干线和点在平面上图示,建议用MATLAB 编程)。 将问题引申: 如果同时确定两条、三条干线,应该如何讨论?其他情形的讨论? 对引申问题给出给出模型和讨论20分——30分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺

机场选址问题数学建模论文

机场选址问题 摘要 针对机场选址问题,文章共建立了三个模型用以解决该类问题。为了计算出任意两城市之间的距离,我们利用公式(1)将利用题目中所给的大地坐标得出了任意两点之间的距离,见附录2。 对于问题1,我们主要利用0-1变量法,从而对问题进行了简化。我们设了第i个 y以及第i个城市是否是以第j个支线机场为最近机场的()j i x,。城市是否建支线机场的 i 然后将任意两点之间的距离与该城市的总人数之积,再乘以0-1变量()j i x,,最后得出每一个所有城市到最近机场的距离与该城市人口的乘积,然后利用LINGO进行编写程序,进行最优化求解,最后得出的结果见表1和表2,各大城市以及支线机场的分布见图2。 对于问题2,该问题是属于多目标规划的问题,目标一是居民距离最近机场的距离最短,目标二是每个机场覆盖人口数尽可能相等。我们在第一题的基础上,又假设了一些正、负偏差变量,对多个目标函数设立优先级,把目标函数转化为约束条件,进而求得满足题目要求的结果。 对于问题3,我们分析到影响客流量的因素是GDP跟居民人数,所以通过所搜集的资料分析我们给予这两个因素以不同的权重。然后同样采取问题2中所给的反求机场覆盖的方法,求的各个机场所覆盖的客流量,再让其在平均客流量水平上下浮动。通过LINGO程序的运行得到的六个机场的坐标见表6,六个机场的分布见图7。 针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际应用。 关键词:选址问题;多目标规划;LINGO;0-1变量法;加权

1.问题的重述 近年来,随着我国经济社会的迅猛发展,公共交通基础设施日趋需要进一步完善与提高。支线机场作为我国交通运输体系的有机组成部分,对促进欠发达地区经济社会的发展具有基础性的作用。现某区域有30个城市,本区域计划在未来的五年里拟建6个支线机场。 任务1,确定6个支线机场的所在城市,建立居民到最近机场之间的平均距离最小的数学模型。 任务2,在任务一基础上,确定6个支线机场的所在城市,建立使得每个支线机场所覆盖的居民人数尽可能均衡的数学模型。 任务3,在任务一基础上,根据近一年每个城市的GDP 情况,确定6个支线机场的所在城市,建立使得每个支线机场的客流量尽量均衡的数学模型。 2.问题的分析 2.1 问题1 题目要求是建立居民到最近机场之间的平均距离最小的数学模型,该问题其实就是利用的0-1变量建立的模型。首先我们设两个0-1变量,一个是控制某个城市是否为支线机场的i y ,一个是控制某个城市的最近机场是哪一个的ij x 。针对于上述两个0-1变量,我们分别设立了约束条件。同时又为了满足问题所要求的使局面平均距离最小,我们将某一个城市到离它最近的机场的距离与该城市的人口乘积作为目标函数,在LINGO 软件中,通过设立一约束条件,最后将目标函数进行最优化求解。 2.2 问题2 该问题可以归结为多元目标线性规划的问题,所以我们在第一问的基础上又增加了一个目标函数,最后利用加权的方法将两个目标函数转化成了一个目标函数,将另一个目标函数作为约束条件。同时我们又引入了正负偏差变量,通过控制该变量达到覆盖居民人数均衡以及居民到城市之间的平均距离尽量小。 2.3 问题3 该问题要求的是客流量尽量均衡,经过分析可以知道,城市的GDP 越高,说明该城市经济越繁荣,货币流通越快,从而反映出客流量越大。另一方面城市越大、人口越多,也在一定程度上反映出了该城市客流量越大。基于上述两点,我们对GDP 跟城市人口分别给予了不同的权重来反映其对客流量的影响大小。按照第二问的方法,我们依然利用多元目标线性规划的只是进行求解。通过LINGO 编写程序,最中求得可行解。

数学建模论文--物流与选址问题

物流预选址问题 (2) 摘要............................................................................................................. 错误!未定义书签。 一、问题重述 (2) 二、问题的分析 (3) 2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (3) 2.2 问题二:建立合理的仓库选址和建造规模模型 (3) 2.3 问题三:工厂向中心仓库供货的最佳方案问题 (3) 2.4 问题四:根据一组数据对自己的模型进行评价 (4) 三、模型假设与符号说明 (4) 3.1条件假设 (4) 3.2模型的符号说明 (4) 四、模型的建立与求解 (5) 4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (5) 4.1.1模型的建立 (5) 4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (7) 4.2.1 基于重心法选址模型 (8) 4.2.2 基于多元线性回归法确定中心仓库的建造规模 (10) 4.3 问题三:工厂向中心仓库供货方案 (10) 4.4 问题四:选用一组数据进行计算 (11) 五、模型评价 (16) 5.1模型的优缺点 (16) 5.1.1 模型的优点 (16) 5.1.2 模型的缺点 (16) 六参考文献 (16)

物流预选址问题 摘要 在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。 本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进行实例化分析,我们确定了工厂和中心仓库位置和建造规模。对于问题三我们运用LINGO软件简单的解决了工厂对中心仓库的供货情况。问题四我们选用了一组数据通过求解多元线性规划对问题进行了实例化分析。为中心仓库的选址问题做了合理说明。最后我们对模型进行了评价和分析。 关键词:物流网络重心法选址模型多元线性规划 一、问题重述 某公司是生产某种商品的省知名厂家。该公司根据需要,计划在本省建设两个生产工厂和若干个中心仓库向全省所有城市供货。根据市场调研,全省有m个城市,每个城市单位时间需要该公司的物资量是已知的,有关运费的信息也是确定的,工厂和中心仓库

数学建模报告选址问题

长沙学院数学建模课程设计说明书 题目选址问题 系(部) 数学与计算机科学 专业(班级) 数学与应用数学 姓名 学号 指导教师 起止日期 2015、6、1——2015、6、5

课程设计任务书 课程名称:数学建模课程设计 设计题目:选址问题 已知技术参数和设计要求: 选址问题(难度系数1.0) 已知某地区的交通网络如下图所示,其中点代表居民小区,边代表公路,边上的数字为小区间公路距离(单位:千米),各个小区的人数如下表所示,问区中心医院应建在哪个小区,可使离医院最远的小区居民人均就诊时所走的路程最近? 各阶段具体要求: 1.利用已学数学方法和计算机知识进行数学建模。 2.必须熟悉设计的各项内容和要求,明确课程设计的目的、方法和步骤。 3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。 4.设计中绝对禁止抄袭他人的设计成果。 5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。 6.所设计的程序必须满足实际使用要求,编译出可执行的程序。 7.要求程序结构简单,功能齐全,使用方便。 设计工作量: 论文:要求撰写不少于3000个文字的文档,详细说明具体要求。 1v 5

工作计划: 提前一周:分组、选题;明确需求分析、组内分工; 第一天:与指导老师讨论,确定需求、分工,并开始设计;第二~四天:建立模型并求解; 第五天:完成设计说明书,答辩; 第六天:针对答辩意见修改设计说明书,打印、上交。 注意事项 ?提交文档 长沙学院课程设计任务书(每学生1份) 长沙学院课程设计论文(每学生1份) 长沙学院课程设计鉴定表(每学生1份) 指导教师签名:日期: 教研室主任签名:日期: 系主任签名:日期:

4.第17讲 应急设施的优化选址问题(数学建模)

第17讲应急设施的优化选址问题 问题(AMCM-86B题)里奥兰翘镇迄今还没有自己的应急设施。1986年该镇得到了建立两个应急设施的拨款,每个设施都把救护站、消防队和警察所合在一起。图17-1指出了1985年每个长方形街区发生应急事件的次数。在北边的L形状的区域是一个障碍,而在南边的长方形区域是一个有浅水池塘的公园。应急车辆驶过一条南北向的街道平均要花15秒,而通过一条东西向的街道平均花20秒。你的任务是确定这两个应急设施的位置,使得总响应时间最少。 图17-1 1985年里奥兰翘每个长方街区应急事件的数目(I)假定需求集中在每个街区的中心,而应急设施位于街角处。 (II)假定需求是沿包围每个街区的街道上平均分布的,而应急设施可位于街道的任何地方。 §1 若干假设 1、图17-1所标出的1985年每个长方形街区应急事件的次数具有典型代表性,能够反映该街区应急事件出现的概率的大小。 2、应急车辆的响应时间只考虑在街道上行驶时间,其他因纱(如转弯时间等)可以忽略不计。 3、两个应急设施的功能完全相同。在应急事件出现时,只要从离事件发生地点最近的应急设施派出应急车辆即可。 4、执行任何一次应急任务的车辆都从某一个应急设施出发,完成任务后回到原设施。不出现从一个应急事件点直接到另一事件点的情况。(这是因为,每一个地点发生事件的概率都很小,两个地点同时发生事故的概率就更是小得可以忽略不计)。

§2 假定(I )下的模 在假定(I )下,应急需求集中在每个街区中心。我们可以进一步假定应急车辆只要到达该街区四个街角中最近的一个,就认为到达了该街区,可以开始工作了。按假定(I ),每个应急设施选在街角处,可能的位置只有6×11=66个。两个应急设施的位置的可能的组合至多只有66×65/2=2145个。这个数目对计算机来说并不大,可用计算机进行穷举,对每种组合一一算出所对应的总响应时间,依次比较得出最小的响应时间及对应的选址方案。具体算法是: 建立直角坐标系,以该镇的西北角为原点,从北到南为X -轴正方向,从西到东为Y -轴正方向,在南北、东西方向上分别以一个街区的长作为单位长,则街角的坐标),(Y X 是满足条件50,100≤≤≤≤Y X 的整数。而每个街区中心的坐标具有形式)5.0,5.0(++j i ,其中j i ,是满足条件:40,90≤≤≤≤j i 的整数。如果不考虑障碍和水塘的影响,同应急车辆从设在),(Y X 点的应急设施到以)5.0,5.0(++j i 为中心的街区的行驶时间等于 )5.05.0(20)5.05.0(15),,,(---+---=j Y i X j i Y X t )5.17)5.0(20)5.0((15-+-++-=j Y i X 秒 记),(j i p 为以)5.0,5.0(++j i 为中心的街区的事故发生频率(即在图上该街区所标的数字)。如果应急设施设在),(),,(2211Y X Y X 这两点,总不妨设21X X ≤,则该设置方案的总响应时间为 ),,,(2211Y X Y X T ∑∑===904 02211)},,,(),,,,(min{),(i j j i Y X t j i Y X t j i p 让1X 取遍0—10,2X 取遍101-X ,21,Y Y 分别独立地取遍0—4。依次对四数组),,,(2211Y X Y X 的每一个值算出对应的总响应时间的最小值及对应的四数组。 以上算法不难用计算机编程实现。由于数组的个数不算多(只有两千多个),计算机可很快得出答案。答案是: 两个应急设施分别设在点(2,3),(6,3)时最优。 这是在不考虑L 形障碍区域和水塘的影响的假定下得出的最优解,但从这两个点到

选址问题数学模型

选址问题数学模型 摘要 本题是用图论与算法结合的数学模型,来解决居民各社区生活中存在三个的问题:合理的建立3个煤气缴费站的问题;如何建立合理的派出所;市领导人巡视路线最佳安排方案的问题。通过对原型进行初步分析,分清各个要素及求解目标,理出它们之间的联系.在用图论模型描述研究对象时,为了突出与求解目标息息相关的要素,降低思考的复杂度。对客观事物进行抽象、化简,并用图来描述事物特征及内在联系的过程.建立图论模型是为了简化问题,突出要点,以便更深入地研究问题 针对问题1:0-1规划的穷举法模型。该模型首先采用改善的Floyd-Warshall 算法计算出城市间最短路径矩阵见附录表一;然后,用0-1规划的穷举法获得模型目标函数的最优解,其煤气缴费站设置点分别在Q、W、M社区,各社区居民缴费区域见表7-1,居民与最近的缴费点之间平均距离的最小值11.7118百米。 针对问题2:为避免资源的浪费,且满足条件,建立了以最少分组数为目标函数的单目标最优化模型,用问题一中最短路径的Floyd算法,运用LINGO软件编程计算,得到个社区之间的最短距离,再经过计算可得到本问的派出所管辖范围是2.5千米。最后采用就近归组的搜索方法,逐步优化,最终得到最少需要设置3个派出所,其所在位置有三种方案,分别是:(1)K区,W区,D区;(2)K区,W区,R区;(3)K区,W区,Q区。最后根据效率和公平性和工作负荷考虑考虑,其第三种方案为最佳方案,故选择K区,W区,Q区,其各自管辖区域路线图如图8-1。 针对问题3:建立了双目标最优化模型。首先将问题三转化为三个售货员的最佳旅行售货员问题,得到以总路程最短和路程均衡度最小的目标函数,采用最短路径Floyd算法,并用MATLAB和LINGO软件编程计算,得到最优树图,然后按每块近似有相等总路程的标准将最优树分成三块,最后根据最小环路定理,得到三组巡视路程分别为11.8km、11km和12.5km,三组巡视的总路程达到35.3km,路程均衡度为12%,具体巡视路线安排见表9-1和图9.2 。 关键词Floyd-Warshall算法穷举法最小生成树最短路径 1问题重述 1.1问题背景 这是一个最优选址问题,是一种重要的长期决策,它的好坏直接影响到服务方法,服务质量,服务效率,服务成本,所以选址问题的研究有着重大的经济社

数学建模物流配送中心选址模型

数学建模物流配送中心 选址模型 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

物流配送中心选址模型 姓名:学号:班级: 摘要:在现代络中,配送中心不仅执行一般的职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个络的灵魂所在。因此,发展现代化配送中心是现代业的发展方向。文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。 关键词:物流选址;选址;重心法;优化模型; 1.背景介绍 1.1 研究主题 如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。 1.2 前人研究进展 1.2.1国内外的研究现状:

国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。归纳起来,这些配送中心选址方法可分为三类: (1)应用连续型模型选择地点; (2)应用离散型模型选择地点; (3)应用德尔菲(Delphi)专家咨询法选择地点。 第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。解析方法的优点在于计算简单,数据容易搜集,易于理解。由于通常不需要对进行整体评估,所以在单一设施定位时应用解析方法简便易行。 第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。 第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。 国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。北方交通大学鲁晓春等对配送中心的重心法地址做出了深入的研究,认为原有的重心法存在着问题,并把原有的计算公式用流通费用偏微分方程来取代。中国矿业大学周梅

选址问题及最佳巡视路线的数学模型 (1)

本科14组 许泽东,邹志翔,陈佳成 选址问题及最佳巡视路线的数学模型 摘 要 本文解决的问题是缴费站、派出所选址和最佳巡视路线的确定。合理设置缴费站,可以为居民缴费节省大量时间和精力。派出所位置和数量的不同选择,会产生不同的建设成本和管理经费。而最佳巡视路线的确立,可以让领导在最短时间内巡视完所有社区。为解决以上问题,我们建立的三个最优化模型。 针对问题一,我们先用floyd 算法求出各社区间的最短路,然后用计算机枚举出所有选址方案。对每一种选址方案都会产生一个平均距离S ,我们以此为指标对方案进行评估。经过合理化推导,我们得出最优解11712S .=(百米),且此时应该在M,Q,W 三社区设置煤气缴费站。 针对问题二,我们在问题一求出的最短路基础上,建立了0-1线性规划模型。然后借助matlab 软件求得最优解3=X (即应该设置3个派出所),并给出了各派出所管辖范围。这样既满足了每个社区在3分钟内至少能得到一个派出所服务,也为派出所的建设管理节省了不少成本。具体结果如下表3: 构建了社区网络的完全图,然后考虑到最优哈密顿圈的求解极其困难,我们连续使用30次模拟退火的方法求得连接各社区的近似最优哈密顿圈。其中,我们对每次求出的哈密顿圈都进行了合理划分,产生了三个子圈,即三组巡视路线。最终得到近似最优解128,见表4。接着,我们还对哈密顿圈划分方法进行了改进,求得近似最优解125(具体结果见表5)。 1.问题重述 问题背景 社区已是现代都市的的基础,随着城市社会经济的飞速发展,社区与人们生活的联系越来越密切,人们需要在社区解决日常生活涉及的各种利益和需要,因而人们对社区社会生活服务提出更高的要求,而政府也希望能够更好的指导和管理城市社区,社区生

数学建模学校选址问题模型

数学建模学校选址问题 模型 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

学校选址问题 摘要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。

其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数最小花费固定成本规模成本灵敏度分析 1.问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 表1-1备选校址表

数学建模物流配送中心选址模型

物流配送中心选址模型 姓名:学号:班级: 摘要:在现代络中,配送中心不仅执行一般的职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个络的灵魂所在。因此,发展现代化配送中心是现代业的发展方向。文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。 关键词:物流选址;选址;重心法;优化模型; 1.背景介绍 1.1 研究主题 如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。 前人研究进展 1.2.1国内外的研究现状:

国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。归纳起来,这些配送中心选址方法可分为三类:(1)应用连续型模型选择地点; (2)应用离散型模型选择地点; (3)应用德尔菲(Delphi)专家咨询法选择地点。 第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。解析方法的优点在于计算简单,数据容易搜集,易于理解。由于通常不需要对进行整体评估,所以在单一设施定位时应用解析方法简便易行。 第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。 第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。 国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。北方交通大学鲁晓春等对配送中心的重心法地址做出了深入的研究,认为原有的重心法存在着问题,并把原有的计算公式用流通费用偏微分方程来取代。中国矿业

数学建模选址问题

摘要 目前,社区的优化管理和最佳服务已经成为一种趋势,并且为城市的发展作出了一定的贡献。本文针对在社区中选址问题及巡视路线问题,分别建立了多目标决策模型、约束最优化线路模型,并分别提供了选址社区和巡视路线。 对于问题一,我们建立了单目标优化模型,考虑到各社区居民到收费站点的平均距离最小,我们使用floyd 算法并通过matlab 编程,算出任意两个社区之间的最短路径,并以此作为工具,使用0-1变量列出了目标函数。在本题中,我们根据收费站数、超额覆盖等确定了约束条件,以保证收费站覆盖每个社区,同时保证居民与最近煤气站之间的平均距离最小,最终利用lingo 软件求得收费站建在M、Q、W三个社区。 对于问题二,同样是单目标优化模型,较之问题一不同的是,问题二不需要考虑人口问题,但需要确定选址的个数。接下来的工作分了两步,第一步,我们通过0-1变量列出目标函数,以超额覆盖等确定约束条件,用lingo 软件编程求出最小派出所站点的个数;第二步,我们利用第一步中求出的派出所个数作为新的约束条件,建立使总距离最小的优化模型,最终利用lingo 软件求得三个派出所分别建在W、Q、K社区。 对于问题三,我们建立了约束最优化线路模型,根据floyd 算法求得的任意两个社区之间的最短路径,建立了以w 点为树根的最短路径生成树,并据此对各点的集中区域进行划分,再利用破圈法得到最短回路。在本题中,我们初定了两种方案,并引入均衡度α对两种方案进行比较,最终采用了方案二。最后,我们用matlab编程求解方案二中各组的巡视路线为113百米,123百米,117百米,均衡度α=8.13%。具体路线见 关键词:最短路径 hamilton圈最优化 floyd算法

数学建模B题标准答案

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):北京大学 参赛队员(打印并签名):1.姚胜献 2.许锦敏 3.刘迪初 指导教师或指导教师组负责人(打印并签名):刘业辉 日期:2011年9月12日 赛区评阅编号(由赛区组委会评阅前进行编号):

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号): 交巡警服务平台的设置与调度 摘要 本文通过建立整数规划模型,解决了分配各平台管辖范围、调度警务资源以及合理设置交巡警服务平台这三个方面的问题;通过建立线性加权评价模型定量评价了某市现有交巡警服务平台设置方案的合理性,并根据各个区对服务平台需求量的不同,提出了重新分配全市警力资源的解决方案。在计算交巡警服务平台到各个路口节点的路程时,使用了图论里的floyd算法。 针对问题一的第一个子问题,首先假设交巡警服务平台对某个路口节点的覆盖度是二元的,引入决策变量,建立了0-1整数规划模型。交巡警出警应体现时间的紧迫性,所以选择平均每个突发事件的出警时间最短作为目标函数,运用基于MATLAB的模拟退火算法进行求解,给出了中心城区A的20个服务平台的管辖范围,求得平均每个案件的出警时间为1.013分钟。 针对问题一的第二个子问题,为了实现对中心城区A的13个交通要道的快速全封锁,以最短的封锁时间为目标,建立了0-1整数规划模型,利用lingo软件编程求解,给出了该区交巡警服务平台警力合理的调度方案,并求得对13个交通要道实现全封锁最短需要8.02分钟。 问题一的第三个子问题是交巡警服务平台的选址问题。考虑到建设新的服务平台需要投入更多的成本和警务资源,还需平衡各个服务平台的工作量。因此,以增加最少的服务平台数和服务平台工作量方差最小为目标,采用集合覆盖理论,建立了双目标0-1整数规划模型,用基于MATLAB的模拟退火算法求解出增加的服务平台数为4个,新增 的服务平台具体位置为A 28,A 40 ,A 48 ,A 88 ,并得到各个服务平台的工作强度方差为2.28。 针对问题二的第一个子问题,通过建立线性加权评价模型定量评价了该市现有交巡警服务平台设置方案的合理性,结果发现全市服务平台覆盖率较低且各个区的工作量不均衡,得出全市服务平台的布局存在明显的不合理的结论。并确定各区域人口密度、各区域公路总长度以及各区域平均每天总的发案率为各区域对交巡警需求的指标,然后根据各个区对服务平台需求量的不同,提出了较为合理的分配全市警力资源的解决方案。 对于问题二的第二个子问题,以围堵范围最小和调动警力最少的原则,通过分析案发后嫌疑犯可能到达的位置,给出了围堵方案。 关键词:交巡警服务平台0-1整数规划模拟退火法

数学建模中选址问题(Lingo程序)

P94,例选址问题 目录 题目......................................................... 错误!未定义书签。 第一步,旧址基础上只求运量的LP程序......................... 错误!未定义书签。 第二步,旧址基础上选择新址的NLP程序......................... 错误!未定义书签。题目 6个工地的地址(坐标表示,距离单位KM)及水泥用量(单位:吨)如下表,而在P(5,1)及Q(2,7)处有两个临时料场,日储量各有20t,如何安排运输,可使总的吨公里数最小? 新料场应选何处能节约多少吨公里数 第一步,旧址基础上只求运量的LP程序 MODEL: Title Location Problem;

sets: demand/1..6/:a,b,d; supply/1..2/:x,y,e; link(demand,supply):c; endsets data: !locations for the demand(需求点的位置); a=,,,,3,; b=,,,5,,; !quantities of the demand and supply(供需量); d=3,5,4,7,6,11; e=20,20; x,y=5,1,2,7; enddata init: !initial locations for the supply(初始点); endinit !Objective function(目标); [OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) ); !demand constraints(需求约束); @for(demand(i):[DEMAND_CON] @sum(supply(j):c(i,j)) =d(i););

相关文档
最新文档