2020高考数学最后冲刺 导数及其应用

合集下载

2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)

2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)

专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <.方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-.(1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈.【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑.方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在012x ⎡⎤∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥.3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值.5.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围.6.(2020·江西高三)已知函数()()2xf x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值; (2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围.11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈. (1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.14.(2020·河北高三期末)已知函数()f x 满足:①定义为R ;①2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.15.(2020·湖南高三月考)已知函数2()()af x x ax a R x=+-∈. (1)当1a =且1x >-时,求函数()f x 的单调区间;(2)当21e a e ≥+时,若函数2()()ln g x f x x x =--的两个极值点分别为1x 、2x ,证明12240()()1g x g x e <-<+.16.(2020·江西高三期末)已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+. (1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值.17.(2020·江西高三期末)已知函数()()()2,xf x x m e nxm n R =--∈在1x =处的切线方程为y ex e =-.(1)求,m n 的值;(2)当0x >时,()3f x ax -…恒成立,求整数a 的最大值.18.(2020·河南高三期末)已知函数()()ln 1mxf x x x m=+-+,()1,0x ∈-. (1)若1m =,判断函数()f x 的单调性并说明理由; (2)若2m ≤-,求证:关于x 的不等式()()()21xx m f x e x-+⋅<-在()1,0-上恒成立.19.(2020·江西高三月考)已知函数32()32f x x x x =-+,()g x tx t R =∈,,()xe x xφ=. (1)求函数()()y f x x φ=⋅的单调增区间;(2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0m n ,,,其中m n <. ①若12m n =,求函数()h x 在x m =处的切线方程; ①若对[]x m n ∀∈,,()16h x t ≤-恒成立,求实数M 的取值范围.专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【答案】(1)()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2(2)存在,724a ≥ 【解析】(1)当1a =时,21()2ln 3(0)2f x x x x x =+->. 所以2()3f x x x '=+-=232(2)(1)x x x x x x-+--=令()0f x '≥,则01x <≤或2x ≥,令()0f x '<,则12x <<, 所以()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2 (2)存在724a ≥,满足题设,因为函数34()()9g x f x ax x =++=23142ln 229x a x x x +-+所以224()23a g x x x x '=+-+,要使函数()g x 在0,∞(+)上单调递增,224()20,(0,)3a g x x x x x '=+-≥+∈+∞,即3243660x x x a +-+≥,(0,)x ∈+∞⇔324366x x xa +-≥-,(0,)x ∈+∞ 令32436()6x x x h x +-=,(0,)x ∈+∞,则2()21(21)(1)h x x x x x '=+-=-+,所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在10,2⎛⎫⎪⎝⎭上单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0h x '>,()h x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以12x =是()h x 的极小值点,也是最小值点,且17224h ⎛⎫=- ⎪⎝⎭,∴324366x x x+--在(0,)+∞上的最大值为724.所以存在724a ≥,满足题设.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【答案】(1)1a =;(2)证明见解析. 【解析】(1)因为()()ee 10xxf x ax =--≥,且e0x>,所以e 10x ax --≥,构造函数()e 1xu x ax =--,则()'e xu x a =-,又()00u =,若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >, 则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e xxf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()022200000011e1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+<⎪⎝⎭. 方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-. (1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值;(3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈. 【答案】(1)sin1a ≤.(2)max ()(1)0h x h ==.(3)见解析.【解析】(1)由()0f x >,得:sin 0x ax ->,因为01x <<,所以sin xa x<, 令sin ()x g x x=,()2cos sin 'x x xg x x -=, 再令()cos sin m x x x x =-,()'cos sin cos sin 0m x x x x x x x =--=-<, 所以()m x 在()0,1上单调递减, 所以()()0m x m <,所以()'0g x <,则()g x 在()0,1上单调递减, 所以()(1)sin1g x g >=,所以sin1a ≤. (2)当1a =时,()sin f x x x =-, ①()ln 1h x x x =-+,()11'1x h x x x-=-=, 由()'0h x =,得:1x =,当()0,1x ∈时,()'0h x >,()h x 在()0,1上单调递增; 当()1,x ∈+∞时,()'0h x <,()h x 在()1,+∞上单调递减; ①()max (1)0h x h ==.(3)由(2)可知,当()1,x ∈+∞时,()0h x <, 即ln 1x x <-, 令1n x n +=,则11ln1n n n n ++<-,即()1ln 1ln n n n+-<, 分别令1,2,3,,n n =L 得,()11ln 2ln11,ln 3ln 2,,ln 1ln 2n n n-<-<+-<L ,将上述n 个式子相加得:()()*111ln 1121n n N n n+<++++∈-L . 【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 【答案】(1)1;(2)12S S S <<,证明见解析;(3)见解析 【解析】(1)由已知得0a ≤时,不合题意,所以0a >.()ln 11axx x <++恒成立,即()()()1ln 10ax x x x <++>恒成立. 令()()()1ln 1m x x x ax =++-,()()'ln 11m x x a =++-. 当1a ≤时,()m x 在()0,∞+上为增函数,此时()0m x >成立.当1a >时,()m x 在()10,1a e --上为减函数,不合题意,所以1a ≤.令()()ln 1n x ax x x =-+,()1'1n x a x =-+,当1a ≥时,()n x 在()0,∞+上为增函数,此时()0n x >,()ln 1x ax +<恒成立.当01a <<时,()n x 在10,1a ⎛⎫- ⎪⎝⎭上为减函数,不合题意,所以1a ≥.综上得1a =. (2)由(1)知()()ln 101x x x x x <+<>+.令1x i =,得111ln 11i i i⎛⎫<+< ⎪+⎝⎭, 从而11111111ln 112321n i n i n -=⎛⎫+++<+<+++ ⎪-⎝⎭∑L L ,又因为11ln nS dx n x==⎰,则12S S S <<. (3)由已知111232313ni i i i =⎛⎫+- ⎪--⎝⎭∑1111111123323n n ⎛⎫⎛⎫+++⋅⋅⋅+-++++ ⎪ ⎪⎝⎭⎝=⎭L 111123n n n =++⋅⋅⋅+++,因为111ln 11i i i⎛⎫<+< ⎪+⎝⎭,所以 111111ln 1ln 1ln 1123123n n n n n n ⎛⎫⎛⎫⎛⎫+++>++++++ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭L L 31ln1n n +=+, 111123ln ln ln 123131n n n n n n n n n ++⎛⎫⎛⎫⎛⎫+++<+++ ⎪ ⎪ ⎪+++-⎝⎭⎝⎭⎝⎭L L ln 3=.从而131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【答案】(1)322ln 220x y +-+=(2)()1,2(3)1,4⎛⎤-∞- ⎥⎝⎦【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=--,化简得:322ln 220x y +-+= ()2对函数求导可得,()()221'0ax ax f x x x-+=>,令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得1211x x ==+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q211x ∴=+<()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在1,22⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意①当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围. 【答案】(1)2y x =-,8833918y e x e =-.(2)8319a e ≤≤.(3)345[,1)(7,5]3a e e e∈⋃. 【解析】(1)设切点为()00,x y ,()()'31xf x e x =+,则切线斜率为()0031x e x +,所以切线方程为()()000031x y y e x x x -=+-,因为切线过()2,0,所以()()()000032312x x ex e x x --=+-,化简得200380x x -=,解得080,3x =. 当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有()()322xe x a x -≥-恒成立,①当(),2x ∈-∞时,()()323222x x maxe x e x a a x x ⎡⎤--≥⇒≥⎢⎥--⎣⎦,令()()322x e x F x x -=-,则()()()2238'2x e x xF x x -=-,令()'0F x =得0x =,()()max 01F x F ==,故此时1a ≥.①当2x =时,恒成立,故此时a R ∈. ①当()2,x ∈+∞时,()()min323222x x e x e x a a x x ⎡⎤--≤⇒≤⎢⎥--⎣⎦,令()8'03F x x =⇒=,()83min 893F x F e ⎛⎫== ⎪⎝⎭,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即()()322xex a x -<-,由(2)知()83,19,a e ⎛⎫∈-∞⋃+∞ ⎪⎝⎭,令()()322x e x F x x -=-,则当(),2x ∈-∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x -<-存在唯一的整数0x 成立,因为()01F =最大,()513F e -=,()11F e =-,所以当53a e<时,至少有两个整数成立, 所以5,13a e ⎡⎫∈⎪⎢⎣⎭. 当()2,x ∈+∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x ->-存在唯一的整数0x 成立,因为83893F e ⎛⎫= ⎪⎝⎭最小,且()337F e =,()445F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有(347,5a e e ⎤∈⎦.综上:(345,17,53a e e e ⎡⎫⎤∈⋃⎪⎦⎢⎣⎭. 【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <. 【答案】(1)见解析(2)见解析【解析】(1)由题意()f x 的定义域为()0,∞+,且()()()222222x a x a a x ax a f x x a x x x--+--+'=--+==, 当0a =时,()20f x x '=-<; 当0a >时,2a x >时,()0f x '<;02ax <<时,()0f x '>; 当0a <时,x a >-时,()0f x '<;0x a <<-时,()0f x '>;综上所述,当0a =时,()f x 在()0,∞+上为减函数; 当0a >时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上为增函数,在,2a ⎛⎫+∞ ⎪⎝⎭上为减函数; 当0a <时,()f x 在()0,a -上为增函数,在(),a -+∞上为减函数. (2)要证()()f x g x <,即证()21ln 0x x x -+>,当12x =时,不等式显然成立; 当12x >时,即证ln 021x x x +>-;当102x <<时,即证ln 021xx x +<-; 令()ln 21x F x x x =+-,则()()()()()22411112121x x F x x x x x ---'=+=--, 当12x >时,在1,12⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数;在()1,+∞上()0F x '>,()F x 为增函数,①()()min 110F x F ==>,①ln 021xx x +>-.当102x <<时,在10,4⎛⎫ ⎪⎝⎭上()0F x '>,()F x 为增函数;在11,42⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数, ①()max 111ln 0442F x F ⎛⎫==-<⎪⎝⎭,①ln 021x x x +<-, 综上所述,当0x >时,()()f x g x <成立.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥. 【答案】(1)见解析;(2)证明见解析【解析】(1)22121(2)()()a x a x a f x x x a ax+-'=-+= 当0a >时,()0f x x a '>⇒>,()00f x x a '<⇒<<当0a <时,()002f x x a '>⇒<<-,()02f x x a '<⇒>- ①0a >时,()f x 在(0,)a 上递减,在(,)a +∞递增 0a <时,()f x 在(0,2)a -上递增,在(2,)a -+∞递减(2)设1()()()ln 2a F x f x g x x x a=-=++- 则221()(0)a x aF x x x x x-'=-=> Q 0a >,(0,)x a ∴∈时,()0F x '<,()F x 递减(,)x a ∈+∞,()0,F x '>()F x 递增,1()()ln 1F x F a a a∴≥=+-设1()ln 1h x x x =+-,(0)x >,则22111()(0)x h x x x x x-'=-=>1x >时,()0,h x '>时,()h x 递增, 01x <<时,()0h x '<,∴()h x 递减()(1)0h x h ∴≥=,()()0F a h a ∴=≥()0F x ∴≥,即()()f x g x ≥3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【答案】(①)()11f =-;(①)(①)1; (①)()34 ,2ln31,3⎛⎤-∞-+⋃+∞ ⎥⎝⎦. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,①()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ①函数()f x 的最大值为(1)1f =-; (2)①()a g x x x=+,①2()1a g x x =-',(①)由(1)知,1x =是函数()f x 的极值点,又①函数()f x 与()ag x x x=+有相同极值点, ①1x =是函数()g x 的极值点,①(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(①)①211()2f e e =--,(1)1f =-,(3)92ln 3f =-+, ①2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,①1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(①)知1()g x x x =+,①21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,①11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,①1(1)()(3)g g g e <<,①1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,①12()()(1)(1)123f x g x f g -≤-=--=-,①312k ≥-+=-,又①1k >,①1k >, ①当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,①121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,①342ln 33k ≤-+,又①1k <, ①342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【答案】(1)1a =,0b =;(2)3【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2hx x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为35.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围. 【答案】(1)y x =-;(2)[2,)+∞【解析】(1)因为1m =,所以()e 21xf x x =--,所以()e 2xf x '=-,则(0)0,(0)1f f '==-,故曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.(2)因为()e 2x f x m x m =--,所以()e 2xf x m '=-,①当2m ≥时,()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,从而()(0)0f x f >=成立,故2m ≥符合题意; ①当02m <<时,令()0f x '<,解得20lnx m <<,即()f x 在20,ln m ⎛⎫ ⎪⎝⎭上单调递减,则2ln(0)0f f m ⎛⎫<= ⎪⎝⎭,故02m <<不符合题意; ①当0m ≤时,0()e 2x f x m '-<=在(0,)+∞上恒成立,即()f x 在(0,)+∞上单调递减,则()(0)0f x f <=,故0m ≤不符合题意.综上,m 的取值范围为[2,)+∞. 6.(2020·江西高三)已知函数()()2x f x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.【答案】(1)单调递增区间为()1,+?,单调递减区间为(),1-∞(2)证明见解析【解析】(1)因为()()2x f x x e =-,所以()()1x f x x e '=-,令()0f x ¢>,解得1x >;令()0f x ¢<,解得1x <.故()f x 的单调递增区间为()1,+?,单调递减区间为(),1-∞.(2)要证()2ln 6xf x x x >-,只需证()ln 32x f x x>-.由(1)可知()()min 1f x f e ==-.令()ln 3(0)2x h x x x =->,则()21ln 2xh x x -'=, 令()21ln 0ln 102xh x x x e x-'=>⇒<⇒<<, 所以当()0,x e ∈时,()0h x '>,()h x 单调递增;当(),x e ∈+∞时,()0h x '<,()h x 单调递减, 则()()max 132h x h e e==-. 因为 2.71828e =⋅⋅⋅,所以 2.75e ->-,所以1133 2.7524e -<-=-, 从而132e e->-,则当0x >时,()()min max f x h x >.故当0x >时,()()f x h x >恒成立,即对任意的()0,x ∈+∞,()2ln 6xf x x x >-.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.【答案】(1)当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减;(2)2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 【解析】(1)()(32)xf x m e x '=--,因为0x =是函数()f x 的一个极值点,则(0)320f m '=-=,所以23m =,则21()ln (0)2h x b x x x =->,当2()b b x h x x x x-'=-=,当0b …时,()0h x '…恒成立,()h x 在(0,)+∞上单调递减,当0b >时,2()000h x b x x '>⇒->⇒<<所以()h x 在上单调递增,在)+∞上单调递减. 综上所述:当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减. (2)()f x 在R 上有且仅有一个零点,即方程2322x x m e -=有唯一的解,令2()2xx g x e=, 可得(2)()0,()2xx x g x g x e -'>=, 由(2)()02xx x g x e -'==, 得0x =或2x =,(1)当0x …时,()0g x '…,所以()g x 在(,0]-∞上单调递减,所以()(0)0g x g =…,所以()g x 的取值范围为[0,)+∞. (2)当02x <<时,()0g x '>,所以()g x 在(0,2)上单调递增, 所以0()(2)g x g <<,即220()g x e<<, 故()g x 的取值范围为220,e ⎛⎫ ⎪⎝⎭. (3)当2x …时,()0g x '…,所以()g x 在[2,)+∞上单调递减, 所以(0)()(2)g g x g <…,即220()g x e <…, 即()g x 的取值范围为220,e ⎛⎤ ⎥⎝⎦. 所以,当320m -=或2232m e ->, 即23m =或22233m e >+时,()f x 在R 上有且只有一个零点,故m 的取值范围为2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析(2)[1,)+∞ 【解析】(1)()f x 的定义域为(0,)+∞,2'()2af x x=-, ①当0a ≤时,'()0f x <,所以()f x 在(0,)+∞上是减函数,()f x 无极值. ①当0a >时,令'()0f x =,得x a =,在(0,)a 上,'()0f x >,()f x 是增函数;在(,)a +∞上,'()0f x <,()f x 是减函数. 所以()f x 有极大值()2ln 21f a a a a =-+,无极小值.(2)由(1)知,①当0a ≤时,()f x 是减函数,令2a x e =,则0(0,1]x ∈,222220()(2)21(2)320a a f x a a e a e --=-+--=->,不符合题意,①当0a >时,()f x 的最大值为()2ln 21f a a a a =-+, 要使得对任意0x >,2()(1)f x a ≤-恒成立, 即要使不等式22ln 212a a a a -+≤-成立, 则22ln 230a a a a --+≤有解.令2()2ln 23(0)g a a a a a a =--+>,所以'()2ln 2g a a a =-令()'()2ln 2h a g a a a ==-,由22'()0ah a a-==,得1a =. 在(0,1)上,'()0h a >,则()'()h a g a =在(0,1)上是增函数; 在(1,)+∞上,'()0h a <,则()'()h a g a =在(1,)+∞上是减函数. 所以max ()(1)20h a h ==-<,即'()0g a <, 故()g a 在(0,)+∞上是减函数,又(1)0g =,要使()0g a ≤成立,则1a ≥,即a 的取值范围为[1,)+∞. 9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.【答案】(1)增区间为(),2-∞-,()0,∞+,单调减区间为()2,0-;(2)三条切线,理由见解析;(3)0,2⎡+⎣ 【解析】(1)()()()222xxf x x x e x x e '==++,()0f x '>得,2x <-或0x >;()0f x '<得,20x -<<;所以()f x 的单调增区间为(),2-∞-,()0,∞+;单调减区间为()2,0-; (2)过()1,0P 点可做()f x 的三条切线;理由如下:设切点坐标为()0200,x x x e,所以切线斜率()()00002xx x k x e f '=+= 所以过切点的切线方程为:()()002200002x x x e x x e x y x -=+-,切线过()1,0P 点,代入得()()0022*******x x x e x x e x -=+-,化简得(0000x x x x e=,方程有三个解,00x =,0x =0x 所以过()1,0P 点可做()f x 的三条切线. (3)设()()21xg x x e k x -=-,①0k =时,因为20x ≥,0x e >,所以显然20x x e ≥对任意x ∈R 恒成立; ①k 0<时,若0x =,则()()0001f k k =>-=-不成立, 所以k 0<不合题意.①0k >时,1x ≤时,()()210xg x x e k x -=->显然成立,只需考虑1x >时情况;转化为21xx e k x ≥-对任意()1,x ∈+∞恒成立令()21xx e h x x =-(1x >),则()min k h x ≤,()()()(()2222(2)111xx xx x x ex x e x x e h x x x +--'==--,当1x <<时,()0h x '<,()h x 单调减;当x >()0h x '>,()h x 单调增;所以()(min 2h x h==+=所以(2k ≤+综上所述,k 的取值范围(0,2+⎡⎣. 10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值;(2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围. 【答案】(1)13a =,403=-b ;(2)2642ln 2<-m【解析】(1)()()23114310f f x ax x''=--, 因为()f x 在()()1,1f 处的切线方程为100++=x y b ,即10y x b =--,此时切线斜率10k =-,则()3(1)13141010f f a k ''=--==-,解得13a =,所以()()333101114ln 314ln 3103f x x x x x x x ⨯-=--=+-, 所以()31110113114ln13333f =⨯+⨯-=+=,则10103b =--,解得403=-b(2)由(1)知()31314ln 3f x x x x =+-, ()32143143x x f x x x x+-'=+-=, 设函数()()33140g x xx x =+->,则()2330g x x '=+>,所以()g x 在()0,∞+为增函数,因为()20g =,令()0g x <,得02x <<;令()0g x >,得2x >, 所以当02x <<时,()0f x '<;当2x >时,()0f x '>, 所以()()3min 126223214ln 214ln 233f x f ==⨯+⨯-=-, 从而12614ln 233<-m ,即2642ln 2<-m 11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈.(1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析(2)15,2ln 28⎛⎤-∞- ⎥⎝⎦【解析】(1)由()ln 1f x ax x =--,(0,)x ∈+∞, 则11()ax f x a x x'-=-=, 当0a ≤时,则()0f x '≤,故()f x 在(0,)+∞上单调递减;当0a >时,令1()0f x x a'=⇒=, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述:当0a ≤时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. (2)①21()ln (1)2g x x x a x =+-+, 21(1)1()(1)x a x g x x a x x-++'=+-+=, 由()0g x '=得2(1)10x a x -++=,①121x x a +=+,121=x x ,①211x x =①32a ≥①111115210x x x x ⎧+≥⎪⎪⎨⎪<<⎪⎩解得1102x <≤.①()()()()222112121211221111ln(1)2ln 22x g x g x x x a x x x x x x ⎛⎫-=+--+-=-- ⎪⎝⎭. 设22111()2ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()2233121()0x h x x x x x '--=--=<,①()h x 在10,2⎛⎤ ⎥⎝⎦上单调递减;当112x =时,min 115()2ln 228h x h ⎛⎫==- ⎪⎝⎭. ①152ln 28k ≤-,即所求k 的取值范围为15,2ln 28⎛⎤-∞- ⎥⎝⎦.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.【答案】(1)证明见解析(2)(i )证明见解析(ii )证明见解析 【解析】(1)由题意知,()1cos 1f x x x x'=+-+,()1,x ∈-+∞, 当()1,0x ∈-时,()1101f x x x x'<+-<<+,所以()f x 在区间()1,0-上单调递减, 当()0,x ∈+∞时,()()g x f x '=,因为()()()22111sin 011g x x x x '=+->>++所以()g x 在区间()0,∞+上单调递增,因此()()00g x g >=,故当()0,x ∈+∞时,()0f x '>,所以()f x 在区间()0,∞+上单调递增, 因此当()1,x ∈-+∞时,()()00f x f ≥=,所以()0f x ≥ (2)(①)()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递增,()()00f x f >=,因为881288311111C C 147122224e ⎛⎫⎛⎫=+=+++>++=> ⎪ ⎪⎝⎭⎝⎭L , 故83318ln ln ln 022e ⎛⎫-=-< ⎪⎝⎭,所以()1113131131sin ln sin ln 18ln 22826822822f x f π⎛⎫⎛⎫<=+-<+-=+-<⎪ ⎪⎝⎭⎝⎭因此当10,2x ⎛⎫∈ ⎪⎝⎭时,()01f x <<,又因为110,2a ⎛⎫∈ ⎪⎝⎭,所以()()()()()()12110,2n n n a f a ff a f f f a --⎛⎫====∈ ⎪⎝⎭LL L(①)函数()()h x f x x =-(102x <<),则()()11cos 11h x f x x x x''=-=+--+, 令()()x h x ϕ=',则()()0x g x ϕ''=>,所以()x ϕ在区间10,2⎛⎫ ⎪⎝⎭上单调递增;因此()()111217cos 1cos 0222326h x x ϕϕ⎛⎫'=≤=+--=-<⎪⎝⎭, 所以()h x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减,所以()()00h x h <=, 因此()()10n n n n n a a f a a g a +-=-=<, 所以x *∀∈N ,1n n a a +<13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值. 【答案】(1)极小值为1a e-+;无极大值(2)证明过程见解析;(3)2. 【解析】(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e =-+;无极大值(2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,。

2020版高考数学一轮总复习 第三单元导数及其应用 教案全集 含解析

2020版高考数学一轮总复习  第三单元导数及其应用  教案全集 含解析

导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程. 3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理 1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率ΔyΔx= f x0+Δx -f x 0Δx.(2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 ΔyΔx 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0f x 0+Δx -f x 0Δx.(3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) . 3.导数的运算(1)基本初等函数的导数公式 ①C ′= 0 (C 为常数); ②(x n)′= nxn -1(n ∈Q );③(sin x )′= cos x ; ④(cos x )′= -sin x ; ⑤(a x)′= a xln a (a >0且a ≠1);⑥(e x )′= e x; ⑦(log a x )′=1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x.(2)导数的运算法则 ①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) . ②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) . ③商的导数 [f xg x]′= fx g x -f x gxg 2x(g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以Δy Δx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f+Δx -f2Δx等于(C)A .f ′(1) B.2f ′(1) C.12f ′(1) D.f ′(2)因为f (x )可导,所以lim Δx →0f+Δx -f2Δx =12lim Δx →0 f +Δx -fΔx =12f ′(1). 3.下列求导运算中正确的是(B) A .(x +1x )′=1+1x2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 3 .(2)y =xx +1,则y ′x =2= 19.(1)因为f ′(x )=2e x+(2x +1)e x=(2x +3)e x ,所以f ′(0)=3e 0=3. (2)因为y ′=(x x +1)′=x x +-x x +x +2=1x +2,所以y ′x =2=1+2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx x +Δx +x +,所以Δy Δx=-1x +Δx +x +,所以f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0[-1x +Δx +x +]=-1x +x +=-1x +2.利用定义求导数的基本步骤: ①求函数的增量:Δy =f (x +Δx )-f (x ); ②求平均变化率:Δy Δx=fx +Δx -f xΔx;③取极限得导数:f ′(x )=li m Δx →0f x +Δx -f xΔx.1.设函数f (x )在x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于(B)A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0f x 0-Δx -f x 0Δx=-li mΔx →0f [x 0+-Δx-f x 0-Δx=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x.(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=+sin x-cos x -+sin x-cos x-cos x2=cos x-cos x -+sin xx-cos x2=cos x -sin x -1-cos x2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e xln x ,所以f ′(x )=e xln x +ex x,所以f ′(1)=e.(2)因为y ′=+cos x x -+cos x xsin 2x=-sin 2x -+cos x os x sin 2x=-1-cos xsin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y′=2x-1x2,所以y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,所以切线方程为y-2=x-1,即x-y+1=0.(2)因为y′=ln x+1,设切点为P(x0,y0),则y′x=x0=ln x0+1=2,所以x0=e,此时y0=x0ln x0=eln e=e,所以切点为(e,e).故所求切线方程为y-e=2(x-e),即2x-y-e=0.(1)x-y+1=0 (2)2x-y-e=0(1)求切线方程有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.3.(2018·广州市模拟)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为(D) A.ln 2 B.1C.1-ln 2 D.1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x0,x0ln x0),因为y′=ln x+1,所以k=ln x0+1,所以切线方程为y-x0ln x0=(ln x0+1)(x-x0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0Δy Δx=li mΔx→0f x+Δx-f xΔx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.导数在函数中的应用——单调性1.了解函数的单调性与其导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知识梳理1.函数的单调性与导数的关系设函数y=f(x)在某个区间(a,b)内有导数.如果f′(x)>0,则f(x)在(a,b)上为增函数;如果f′(x)<0,则f(x)在(a,b)上为减函数.2.导数与函数单调性的关系设函数y=f(x)在某个区间(a,b)内可导,且f′(x)在(a,b)的任意子集内都不恒等于0.如果f (x )在区间(a ,b )内单调递增,则在(a ,b )内f ′(x ) ≥ 0恒成立; 如果f (x )在区间(a ,b )内单调递减,则在(a ,b )内f ′(x ) ≤ 0恒成立.热身练习1.“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件f ′(x )>0在(a ,b )上成立⇒f (x )在(a ,b )上单调递增;反之,不一定成立,如y =x 3在(-1,1)上单调递增,但在(-1,1)上f ′(x )=3x 2≥0.2.设f (x )=2x 2-x 3,则f (x )的单调递减区间是(D) A .(0,43) B .(43,+∞)C .(-∞,0)D .(-∞,0)和(43,+∞)f ′(x )=4x -3x 2<0⇒x <0或x >43.3.函数f (x )=(3-x 2)e x的单调递增区间是(D) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞) D.(-3,1)因为f ′(x )=-2x e x+(3-x 2)e x =(-x 2-2x +3)e x ,令f ′(x )>0,得x 2+2x -3<0,解得-3<x <1.所以f (x )的单调递增区间为(-3,1).4.设定义在区间(a ,b )上的函数f (x ),其导函数f ′(x )的图象如右图所示,其中x 1,x 2,x 3,x 4是f ′(x )的零点且x 1<x 2<x 3<x 4.则(1)f (x )的增区间为 (a ,x 1),(x 2,x 4) ; (2)f (x )的减区间为 (x 1,x 2),(x 4,b ) .5.(2019·福建三明期中)函数f (x )=x 3-3bx +1在区间[1,2]上是减函数,则实数b 的取值范围为 [4,+∞) .因为f ′(x )=3x 2-3b ≤0,所以b ≥x 2,要使b ≥x 2在[1,2]上恒成立, 令g (x )=x 2,x ∈[1,2],当x ∈[1,2],1≤g (x )≤4,所以b ≥4.利用导数求函数的单调区间函数f (x )=x 2-2x -4ln x 的单调递增区间是____________.函数f (x )的定义域为(0,+∞). f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0,得x 2-x -2>0,解得x >2或x <-1(舍去). 所以f (x )的单调递增区间为(2,+∞).(2,+∞)求可导函数f (x )的单调区间的步骤: ①求函数f (x )的定义域; ②求导数f ′(x );③解不等式f ′(x )>0和f ′(x )<0;④确定函数y =f (x )的单调区间:使f ′(x )>0的x 的取值区间为增区间,使f ′(x )<0的x 的取值区间为减区间.1.(2017·全国卷Ⅱ节选)设函数f (x )=(1-x 2)e x.讨论f (x )的单调性.f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.已知函数的单调性求参数的范围(经典真题)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞) D.[1,+∞)依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x在(1,+∞)上恒成立.令g (x )=1x,因为x >1,所以0<g (x )<1,所以k ≥1,即k 的取值范围为[1,+∞).D函数f (x )在(a ,b )上单调递增,可转化为f ′(x )≥0在该区间恒成立,从而转化为函数的最值(或值域)问题.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是(C)A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,13](方法一)因为f (x )在(-∞,+∞) 单调递增,所以f ′(x )=1-23cos 2x +a cos x ≥0对x ∈(-∞,+∞)恒成立,即f ′(x )=-43cos 2x +a cos x +53≥0对x ∈(-∞,+∞)恒成立,令cos x =t ,-1≤t ≤1,则等价于:g (t )=-43t 2+at +53≥0对t ∈[-1,1]恒成立.等价于⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧-a +13≥0,a +13≥0,所以-13≤a ≤13.即a 的取值范围为[-13,13].(方法二:特殊值法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,因为f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C.利用导数求含参数的函数的单调区间已知f (x )=12x 2-a ln x (a ∈R ),求函数f (x )的单调区间.f (x )的定义域为(0,+∞),因为f ′(x )=x -a x =x 2-ax(x >0),当a ≤0时,f ′(x )≥0恒成立,所以函数f (x )的单调递增区间为(0,+∞). 当a >0时,令f ′(x )>0,得x >a . 令f ′(x )<0,得0<x <a .所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(1)当函数的解析式中含有参数时,如果参数对导函数的符号有影响或导数的零点是否在定义域内不确定时,要对参数进行分类讨论.(2)讨论时,首先要看f ′(x )的符号是否确定,再看f ′(x )的零点与定义域的关系. (3)画出导函数的示意图有助于确定单调性.3.(2017·全国卷Ⅲ节选)已知函数f (x )=ln x +ax 2+(2a +1)x .讨论f (x )的单调性.f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈(0,-12a )时,f ′(x )>0;当x ∈(-12a,+∞)时,f ′(x )<0.故f (x )在(0,-12a )上单调递增,在(-12a,+∞)上单调递减.(1)求f(x)的定义域,并求导数f′(x);(2)解不等式f′(x)>0和f′(x)<0;(3)确定函数y=f(x)的单调区间:使f′(x)>0的x的取值区间为增区间,使f′(x)<0的x的取值区间为减区间.在求单调区间时,要注意如下两点:①要注意函数的定义域;②当求出函数的单调区间(如单调增区间)有多个时,不能把这些区间取并集.2.已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果f(x)在区间[a,b]单调递增⇒f′(x)≥0在x∈[a,b]上恒成立;(2)如果f(x)在区间[a,b]单调递减⇒f′(x)≤0在x∈[a,b]上恒成立.3.处理含参数的单调性问题,实质是转化为含参数的不等式的解法问题,但要注意在函数的定义域内讨论.导数在函数中的应用——极值与最值1.掌握函数极值的定义及可导函数的极值点的必要条件和充分条件(导数在极值点两侧异号).2.会研究一些简单函数的极值.3.会利用导数求一些函数在给定区间上的最值.知识梳理1.函数的极值(1)函数极值的定义:设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0) ,我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.函数的最值(1)(最值定理)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数f(x)在(a,b)内的极值.②将f(x)的极值和端点的函数值比较,其中最大的一个为最大值;最小的一个为最小值.热身练习1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(A)A.1个 B.2个C.3个 D.4个因为f′(x)与x轴有4个交点,即f′(x)=0有4个解,但仅左边第二个交点x=x0满足x<x0时,f′(x)<0;x>x0时,f′(x)>0,其他交点均不符合该条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(C) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件因为函数f(x)在x=x0处可导,所以若x=x0是f(x)的极值点,则f′(x0)=0,所以q⇒p,故p是q的必要条件;反之,以f (x )=x 3为例,f ′(0)=0,但x =0不是极值点.所以p q . 故p 不是q 的充分条件.3.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =(D) A .-4 B .-2 C .4 D .2由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,所以当x <-2或x >2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0,所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数. 所以f (x )在x =2处取得极小值,所以a =2.4.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是(C) A .1,-1 B .1,-17 C .3,-17 D .9,-19令f ′(x )=3x 2-3=0,得x =±1.f (1)=1-3+1=-1,f (-1)=-1+3+1=3, f (-3)=-17,f (0)=1.所以最大值为3,最小值为-17. 5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 2 .f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.求函数的极值、最值求函数f (x )=13x 3-4x +4的极值.因为f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.(1)求可导函数f (x )的极值的步骤: ①确定函数的定义域,求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )在方程根左、右值的符号;④作出结论:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)求可导函数f (x )在[a ,b ]上最值的步骤: ①求f (x )在(a ,b )内的极值;②将f (x )各极值与f (a ),f (b )比较,得出f (x )在[a ,b ]上的最值.1.求函数f (x )=13x 3-4x +4在[-3,3]上的最大值与最小值.由例1可知,在[-3,3]上, 当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.又f (-3)=7,f (3)=1,所以f (x )在[-3,3]上的最大值为283,最小值为-43.含参数的函数的极值的讨论已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值.由f ′(x )=1-a x =x -ax(x >0)可知(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )的零点的存在; (2)参数是否影响f ′(x )不同零点的大小; (3)参数是否影响f ′(x )在零点左右的符号. 如果有影响,则要分类讨论.2.(2018·银川高三模拟节选)已知函数f (x )=ax -1-ln x (a ∈R ).讨论函数f (x )在定义域内的极值点的个数.f (x )的定义域为(0,+∞). f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,所以f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a.所以f (x )在(0,1a )上递减,在(1a,+∞)上递增,所以f (x )在x =1a处有极小值.所以当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.含参数的函数的最值讨论已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最大值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )max =f (1)=-a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )max =f (2)=ln 2-2a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.所以f (x )max =f (1a)=-ln a -1.综上可知:当0<a ≤12时,f (x )max =ln 2-2a ;当12<a <1时,f (x )max =-ln a -1; 当a ≥1时,f (x )max =-a .(1)求函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内使f ′(x )=0的点和区间端点的函数值,最后比较即可.(2)当函数f (x )中含有参数时,需要依据极值点存在的位置与所给区间的关系,对参数进行分类讨论.3.已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最小值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )min =f (2)=ln 2-2a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )min =f (1)=-a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,f (x )min =f (1)=-a ;当ln 2≤a <1时,f (x )min =f (2)=ln 2-2a . 综上可知:当0<a <ln 2时,函数f (x )min =-a ; 当a ≥ln 2时,函数f (x )min =ln 2-2a .1.求可导函数f(x)的极值的步骤:(1)确定f(x)的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根左、右值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.求可导函数f(x)在[a,b]上的最大值和最小值可按如下步骤进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值和最小值.3.求含参数的极值,首先求定义域;然后令f′(x)=0,解出根,根据根是否在所给区间或定义域内进行参数讨论,并根据左右两边导函数的正负号,从而判断f(x)在这个根处取极值的情况.4.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.导数的综合应用——导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x ∈[a,b]内的最小值≥0.(填“最小值”“最大值”“极小值”或“极大值”) 2.若f′(x)>0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b) ,f(x)<0的x的取值范围为(a,x0) .3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值>m.(填“最小值”“最大值”“极小值”或“极大值”)若f (x )<m 在x ∈[a ,b ]上恒成立,则函数f (x )在x ∈[a ,b ]的 最大值 <m .(填“最小值”“最大值”“极小值”或“极大值”)4.若f (x )>m 在x ∈[a ,b ]有解,则函数f (x )在x ∈[a ,b ]的 最大值 >m .(填“最小值”“最大值”“极小值”或“极大值”)热身练习1.对于∀x ∈[0,+∞),则e x与1+x 的大小关系为(A) A .e x≥1+x B .e x<1+xC .e x=1+x D .e x与1+x 大小关系不确定令f (x )=e x-(1+x ),因为f ′(x )=e x-1,所以对∀x ∈[0,+∞),f ′(x )≥0,故f (x )在[0,+∞)上递增,故f (x )≥f (0)=0, 即e x≥1+x .2.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )>0,则必有(B) A .f (0)+f (2)<2f (1) B .f (0)+f (2)>2f (1) C .f (0)+f (2)=2f (1)D .f (0)+f (2)与2f (1)的大小不确定依题意,当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数, 故当x =1时,f (x )取最小值,所以f (0)>f (1),f (2)>f (1),所以f (0)+f (2)>2f (1).3.已知定义在R 上函数f (x )满足f (-x )=-f (x ),且x >0时,f ′(x )<0,则f (x )>0的解集为(A)A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)因为f (x )是定义在R 上的奇函数,所以f (0)=0,又x >0时,f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减,所以f (x )>0的解集为(-∞,0).4.若函数h (x )=2x -k x +k3在[1,+∞)上是增函数,则实数k 的取值范围是 [-2,+∞).因为h′(x)=2+kx2,且h(x)在[1,+∞)上单调递增,所以h′(x)=2+kx2≥0,所以k≥-2x2,要使k≥-2x2在[1,+∞)上恒成立,则只要k≥(-2x2)max,所以k≥-2.5.设f(x)=-x2+a,g(x)=2x.(1)若∀x∈[0,1],f(x)≥g(x),则实数a的取值范围为[3,+∞);(2)若∃x∈[0,1],f(x)≥g(x),则实数a的取值范围为[0,+∞).(1)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]min=F(1)=-3+a.因为“若∀x∈[0,1],f(x)≥g(x)”等价于“[F(x)]min≥0,x∈[0,1]”,所以-3+a≥0,解得a≥3.所以实数a的取值范围为[3,+∞).(2)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]max=F(0)=a.因为“若∃x∈[0,1],f(x)≥g(x)”等价于“[F(x)]max≥0,x∈[0,1]”,所以a≥0.所以实数a的取值范围为[0,+∞).利用导数解不等式若f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4的解集为A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)令g(x)=f(x)-2x-4,因为g′(x)=f′(x)-2>0,所以g(x)在(-∞,+∞)上是增函数,又g(-1)=f(-1)-2×(-1)-4=0,所以f(x)>2x+4⇔g(x)>g(-x>-1.所以f(x)>2x+4的解集为(-1,+∞).B利用导数解不等式的基本方法:(1)构造函数,利用导数研究其单调性;(2)寻找一个特殊的函数值;(3)根据函数的性质(主要是单调性,结合图象)得到不等式的解集.1.(2018·遂宁模拟)已知f(x)为定义在(-∞,0)上的可导函数,2f(x)+xf′(x)>x2恒成立,则不等式(x+2018)2f(x+2018)-4f(-2)>0的解集为(B)A.(-2020,0) B.(-∞,-2020)C.(-2016,0) D.(-∞,-2016)构造函数F(x)=x2f(x),x<0,当x<0时,F′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],因为2f(x)+xf′(x)>x2≥0,所以F′(x)≤0,则F(x)在(-∞,0)上递减.又(x+2018)2f(x+2018)-4f(-2)>0可转化为(x+2018)2f(x+2018)>(-2)2f(-2),即F(x+2018)>F(-2),所以x+2018<-2,所以x<-2020.即原不等式的解集为(-∞,-2020).利用导数证明不等式已知函数f(x)=(1+x)e-2x.当x∈[0,1]时,求证:f(x)≤11+x.要证x∈[0,1]时,(1+x)e-2x≤11+x,只需证明e x≥x+1.记k(x)=e x-x-1,则k′(x)=e x-1,当x∈(0,1)时,k′(x)>0,因此,k(x)在[0,1]上是增函数,故k(x)≥k(0)=0,所以f(x)≤11+x,x∈[0,1].(1)证明f(x)>g(x)的步骤:①构造函数F(x)=f(x)-g(x);②研究F(x)的单调性或最值;③证明F (x )min >0.(2)注意:其中构造函数是将不等式问题转化为函数问题.为了利用导数研究函数的性质,常用分析法...将要证明的不等式进行适当变形或化简,然后构造相应的函数.2.(2018·全国卷Ⅰ节选)已知函数f (x )=a e x-ln x -1.证明:当a ≥1e时,f (x )≥0.当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x .当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.已知不等式恒成立求参数的范围已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围.f (x )≤g (x ) ⇔7x 2-28x -c ≤2x 3+4x 2-40x ⇔c ≥-2x 3+3x 2+12x , 所以原命题等价于c ≥-2x 3+3x 2+12x 在x ∈[-3,3]上恒成立. 令h (x )=-2x 3+3x 2+12x ,x ∈[-3,3],则c ≥h (x )max . 因为h ′(x )=-6x 2+6x +12=-6(x -2)(x +1),当x 变化时,h ′(x )和h (x )在[-3,3]上的变化情况如下表:单调递减单调递增 单调递减 易得h (x )max =h (-3)=45,故c ≥45.(1)已知不等式恒成立,求参数a 的范围,例如f (x )>g (x )在x ∈D 上恒成立,其主要方法是:①构造函数法:将不等式变形为f (x )-g (x )>0,构造函数F (x )=f (x )-g (x ),转化为F (x )min >0.②分离参数法:将不等式变为a >h (x )或a <h (x )在x ∈D 内恒成立,从而转化为a >h (x )max或a <h (x )min .(2)注意:①恒成立问题常转化为最值问题,要突出转化思想的运用;②“f (x )max ≤g (x )min ”是“f (x )≤g (x )”的一个充分不必要条件,分析不等式恒成立时,要注意不等号两边的式子中是否是有关联的变量,再采取相应的策略.1. 已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x 1∈[-3,3],x 2∈[-3,3]都有f (x 1)≤g (x 2)成立,求实数c 的取值范围.此题与例3不同,例3中不等式两边的式子中均有相同的变化的未知量x ,故可先移项,直接进行转化;而此题中不等式两边的式子中的x 1,x 2相互独立,则等价于f (x 1)max ≤g (x 2)min.由∀x 1∈[-3,3],x 2∈[-3,3], 都有f (x 1)≤g (x 2)成立,得f (x 1)max ≤g (x 2)min . 因为f (x )=7x 2-28x -c =7(x -2)2-28-c , 当x 1∈[-3,3]时,f (x 1)max =f (-3)=147-c ;g (x )=2x 3+4x 2-40x ,g ′(x )=6x 2+8x -40=2(3x +10)(x -2),当x 变化时,g ′(x )和g (x )在[-3,3]上的变化情况如下表:单调递减单调递增易得g (x )min =g (2)=-48, 故147-c ≤-48,即c ≥195.1.利用导数证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数F (x )=f (x )-g(x),然后根据函数的单调性,或者函数的最值证明F(x)>0.其中要特别关注如下两点:(1)是直接构造F(x),还是适当变形化简后构造F(x),对解题的繁简有影响;(2)找到F(x)在什么地方可以等于零,往往是解决问题的一个突破口.2.利用导数解不等式的基本方法是构造函数,寻找一个函数的特殊值,通过研究函数的单调性,从而得出不等式的解集.3.处理已知不等式恒成立求参数范围的问题,要突出转化的思想,将其转化为函数的最值问题.已知f(x)>g(x)在x∈D上恒成立,求其中参数a的范围,其主要方法是:①构造函数法:将不等式变形为f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化为F(x)min>0.②分离参数法:将不等式变为a>h(x)或a<h(x)在x∈D内恒成立,从而转化为a>h(x)max 或a<h(x)min.导数的综合应用——导数与方程1.能利用导数研究一般函数的单调性、极值与最值,获得对函数的整体认识.2.会利用导数研究一般函数的零点及其分布.知识梳理1.函数零点的有关知识(1)零点的概念:函数的零点是函数图象与x轴交点的横坐标.(2)几个常用结论:①f(x)有零点y=f(x)的图象与x轴有交点方程f(x)=0有实数解.②F(x)=f(x)-g(x)有零点y=f(x)与y=g(x)的图象有交点方程f(x)=g(x)有实数解.③零点存在定理:f (x )在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )内 至少有一 个零点.2.利用导数研究函数零点的方法(1)研究y =f (x )的图象,利用数形结合的思想求解. (2)研究方程有解的条件,利用函数与方程的思想求解.热身练习1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是(D)观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.2.函数f (x )=13x 3-4x +4的零点个数为(D)A .0B .1C .2D .3因为f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增由此可得到f (x )的大致图象(如下图).由图可知f (x )有3个零点.3.若方程13x 3-4x +4+a =0有3个不同的解,则a 的取值范围为(B)A .(-43,283)B .(-283,43)C .[-43,283]D .[-283,43]13x 3-4x +4+a =0有3个不同的解⇔f (x )=13x 3-4x +4与g (x )=-a 有3个不同的交点.利用第2题图可知,-43<-a <283,即-283<a <43.4.若函数g (x )=13x 3-4x +4+a 的图象与x 轴恰有两个公共点,则a =(B)A.283或-43 B .-283或43C .-283或283D .-43或43g (x )=13x 3-4x +4+a 与x 轴恰有两个公共点⇔方程13x 3-4x +4+a =0有2个不同的解⇔f (x )=13x 3-4x +4与φ(x )=-a 有2个不同的交点.利用第2题图可知,-a =-43或-a =283,所以a =-283或a =43.5.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是(C) A .(-∞,ln 2) B .(ln 2,+∞) C .(-∞,2ln 2-2] D .[2ln 2-2,+∞)(方法一)因为f′(x)=e x-2,令e x-2=0得,e x=2,所以x=ln 2,当x∈(-∞,ln 2)时,f′(x)<0,f(x)单调递减;当x∈(ln 2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取最小值f(x)min=2-2ln 2+a.要f(x)有零点,所以a≤2ln 2-2.(方法二)函数f(x)=e x-2x+a有零点,即关于x的方程e x-2x+a=0有实根,即方程a=2x-e x有实根.令g(x)=2x-e x(x∈R),则g′(x)=2-e x.当x<ln 2时,g′(x)>0;当x>ln 2时,g′(x)<0.所以当x=ln 2时,g(x)max=g(ln 2)=2ln 2-2,所以函数g(x)的值域为(-∞,2ln 2-2].所以a的取值范围为(-∞,2ln 2-2].利用导数研究三次函数的零点及其分布已知函数f(x)=x3-12x+a,其中a≥16,则f(x)的零点的个数是A.0或1 B.1或2C.2 D.3(方法一:从函数角度出发,研究f(x)的图象与x轴的交点)因为f′(x)=3x2-12,令f′(x)=3x2-12=0,得x=±2,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增由此可得到f(x)的大致图象(如图),由a≥16得,a+16>0,a-16≥0,当a=16时,f(x)的图象与x轴有2个交点;当a>16时,f(x)的图象与x轴只有1个交点.所以f(x)的零点个数为1或2.(方法二:从方程角度出发,利用函数与方程的思想)f(x)=x3-12x+a的零点个数⇔方程x3-12x=-a的解的个数⇔g(x)=x3-12x与h(x)=-a的交点个数.画出g(x)=x3-12x与h(x)=-a的图象.由g′(x)=3x2-12=0,得x=±2,当x变化时,g′(x),g(x)的变化情况如下表:单调递增单调递减单调递增所以g(x)的图象如右图所示:因为a≥16,所以y=-a≤-16.由图可知直线y=-a与y=x3-12x的图象有1个或2个交点.B利用导数研究函数的零点的基本思路: (1)研究y =f (x )的图象,利用数形结合的思想求解; (2)研究f (x )=0有解,利用函数与方程的思想求解.1.(经典真题)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为(B)A .(2,+∞) B.(-∞,-2) C .(1,+∞) D.(-∞,-1)当a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由图象知f (x )有负数零点,不符合题意.若a <0,由图象结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a2+1>0,化简得a 2>4,又a <0,所以a <-2.利用导数研究超越方程的根及其分布已知函数f (x )=x -a e x(a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2,求a 的取值范围.由f (x )=x -a e x,可得f ′(x )=1-a e x. 下面分两种情况讨论:(1)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (2)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞). 于是,“函数y =f (x )有两个零点”等价于如下条件同时成立: ①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0; ③存在s 2∈(-ln a ,+∞),满足f (s 2)<0. 由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1,而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;而当x ∈(-ln a ,+∞)时,由于x →+∞时,e x 增长的速度远远大于x 的增长速度,所以一定存在s 2∈(-ln a ,+∞)满足f (s 2)<0.另法:取s 2=2a +ln 2a ,满足s 2∈(-ln a ,+∞),且f (s 2)=(2a -e 2a )+(ln 2a -e 2a)<0.所以a 的取值范围是(0,e -1).函数的零点是导数研究函数的性质的综合应用,要注意如下方面: (1)利用导数研究函数的单调性、极值、最值等性质; (2)数形结合思想方法的应用;(3)函数零点存在定理及根的分布知识的应用.2.(2018·广州模拟节选)已知函数f (x )=a ln x +x 2(a ≠0),若函数f (x )恰有一个零点,求实数a 的取值范围.函数f (x )的定义域为(0,+∞). 因为f (x )=a ln x +x 2,所以f ′(x )=a x +2x =2x 2+ax.①当a >0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增, 取x 0=e -1a ,则f (e -1a )=-1+(e -1a)2<0,(或:因为0<x 0<a 且x 0<1e 时,所以f (x 0) =a ln x 0 +x 20 < a ln x 0+a <a ln 1e +a =0.)因为f (1)=1,所以f (x 0)·f (1)<0,此时函数f (x )有一个零点.②当a <0时,令f ′(x )=0,解得x =-a2. 当0<x <-a 2时,f ′(x )<0,所以f (x )在(0,-a2)上单调递减, 当x >-a2时,f ′(x )>0,所以f (x )在(-a2,+∞)上单调递增. 要使函数f (x )有一个零点, 则f (-a2)=a ln -a 2-a2=0,即a =-2e. 综上所述,若函数f (x )恰有一个零点,则a =-2e 或a >0.利用导数研究两函数图象的交点问题已知函数f (x )=x +a x (a ∈R ),g (x )=ln x .若关于x 的方程g xx 2=f (x )-2e(e 为自然对数的底数)只有一个实数根,求a 的值.由g x x 2=f (x )-2e ,得ln x x 2=x +ax-2e , 化为ln x x=x 2-2e x +a .问题转化为函数h (x )=ln x x与m (x )=x 2-2e x +a 有一个交点时,求a 的值.由h (x )=ln x x ,得h ′(x )=1-ln x x2.令h ′(x )=0,得x =e. 当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0. 所以h (x )在(0,e)上递增,在(e ,+∞)上递减. 所以当x =e 时,函数h (x )取得最大值,其值为h (e)=1e .而函数m (x )=x 2-2e x +a =(x -e)2+a -e 2,当x =e 时,函数m (x )取得最小值,其值为m (e)=a -e 2.所以当a -e 2=1e ,即a =e 2+1e 时,方程g x x 2=f (x )-2e 只有一个实数根.(1)利用f (x )=g (x )的解⇔y =f (x )与y =g (x )的图象交点的横坐标,可将方程的解的问题转化为两函数图象的交点问题,从而可利用数形结合的思想方法进行求解.(2)在具体转化时,要注意对方程f (x )=g (x )尽量进行同解变形,变到两边的函数是熟悉的形式或较简单的形式,以便于对其图象特征进行研究.3.(经典真题)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2, 由题意得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题意知1-k >0,当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ),h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.1.利用导数研究函数的零点及其零点分布问题的基本步骤: (1)构造函数,并确定定义域; (2)求导,确定单调区间及极值; (3)作出函数的草图;(4)根据草图直观判断函数的零点的情况或得到零点所满足的条件. 2.处理函数y =f (x )与y =g (x )的图象的交点问题,常用方法有: (1)数形结合,即分别作出两函数的图象,考察交点情况;。

(浙江专用)2020版高考数学三轮冲刺抢分练压轴大题突破练(五)函数与导数

(浙江专用)2020版高考数学三轮冲刺抢分练压轴大题突破练(五)函数与导数

= ( k-1) a+ k-1- kln k. ②若 0<a≤ln k 时, h′(x) ≥0, h( x) 在(0 ,+∞ ) 上单调递增, 所以 h( x)> h(0) = f ( a) -f (0) = ea -a- 1.
因此, ( ⅰ) 当 0<k≤1时, 此时 ln k≤0, a>ln k, h( x) ≥(k-1) a+ k- 1- kln k≥0,
( 五) 函数与导数
1.设函数 f ( x) = ax2+ bx+ c( a≠0) ,曲线 y= f ( x) 过点 (0,2 a+ 3) ,且在点 ( - 1, f ( - 1))
处的切线垂直于 y 轴.
(1) 用 a 分别表示 b 和 c; (2) 当 bc 取得最小值时,求函数
g( x) =- f ( x)e -x 的单调区间.
若 a=0,则 F′(x)<0 , F( x) 在 ( - 1,+∞ ) 上单调递减;
1 若 a≠0,令 F′(x) = 0,得 x= a- 1.
5
1 ①当 a<0 时,则 x= a- 1<- 1,
因此在 ( - 1,+∞ ) 上恒有 F′(x)<0 , 即 F( x) 在 ( - 1,+∞ ) 上单调递减;
当 x>0 时, φ′(t )>0 ,φ( t ) 单调递增,
所以 φ( t ) ≥ φ(0) = 0,当且仅当 t = 0 时等号成立.
故方程①有且仅有唯一解 t = 0,即实数 t 的值为 0.
(2) 方法一 令 h( x) = f ( x) - bx+g( b) - f (0) - g(0)( x>- k) , 则 h′(x) = ex-( b+ 1) ,

高考数学一轮复习 第三章 导数及其应用3

高考数学一轮复习 第三章  导数及其应用3

高考数学一轮复习 第三章 3.7 利用导数研究函数零点 题型一 数形结合法研究函数零点例1 (2020·全国Ⅰ)已知函数f (x )=e x -a (x +2). (1)当a =1时,讨论f (x )的单调性; (2)若f (x )有两个零点,求a 的取值范围. 解 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)令f (x )=0,得e x =a (x +2),即1a =x +2ex ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0; 当x ∈(-1,+∞)时,φ′(x )<0, 所以φ(x )在(-∞,-1)上单调递增, 在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时, φ(x )→-∞;x →+∞时,φ(x )→0, 所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞. 教师备选已知函数f (x )=x e x +e x .(1)求函数f (x )的单调区间和极值;(2)讨论函数g (x )=f (x )-a (a ∈R )的零点的个数. 解 (1)函数f (x )的定义域为R , 且f ′(x )=(x +2)e x ,令f ′(x )=0得x =-2,则f ′(x ),f (x )的变化情况如表所示:x (-∞,-2)-2 (-2,+∞)f ′(x ) - 0 + f (x )单调递减-1e2 单调递增∴f (x )的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞). 当x =-2时,f (x )有极小值为f (-2)=-1e 2,无极大值.(2)令f (x )=0,得x =-1, 当x <-1时,f (x )<0;当x >-1时,f (x )>0,且f (x )的图象经过点⎝⎛⎭⎫-2,-1e 2,(-1,0),(0,1). 当x →-∞时,与一次函数相比,指数函数y =e -x 增长更快,从而f (x )=x +1e -x →0;当x →+∞时,f (x )→+∞,f ′(x )→+∞,根据以上信息,画出f (x )大致图象如图所示.函数g (x )=f (x )-a (a ∈R )的零点的个数为y =f (x )的图象与直线y =a 的交点个数. 当x =-2时,f (x )有极小值f (-2)=-1e2.∴关于函数g (x )=f (x )-a (a ∈R )的零点个数有如下结论:当a <-1e 2时,零点的个数为0;当a =-1e 2或a ≥0时,零点的个数为1;当-1e2<a <0时,零点的个数为2.思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)当m =e 时,f (x )=ln x +ex ,f (x )的定义域为(0,+∞), f ′(x )=1x -e x 2=x -e x 2.令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )<0; 当x ∈(e ,+∞)时,f ′(x )>0,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=2. (2)由题意知g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, ∴x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点例2 (12分)(2021·全国甲卷)设函数f (x )=a 2x 2+ax -3ln x +1,其中a >0. (1)讨论f (x )的单调性; [切入点:判断f ′(x )的正负](2)若y =f (x )的图象与x 轴没有公共点,求a 的取值范围. [关键点:f (x )>0且f (x )有最小值]教师备选已知函数f (x )=x sin x +cos x ,g (x )=x 2+4. (1)讨论f (x )在[-π,π]上的单调性;(2)令h (x )=g (x )-4f (x ),试证明h (x )在R 上有且仅有三个零点. (1)解 f ′(x )=sin x +x cos x -sin x =x cos x . 当x ∈⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-π2,0∪⎝⎛⎭⎫π2,π时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫-π2,0,⎝⎛⎭⎫π2,π上单调递减. (2)证明 h (x )=x 2+4-4x sin x -4cos x , ∵h (-x )=x 2+4-4x sin x -4cos x =h (x ), ∴h (x )为偶函数. 又∵h (0)=0,∴x =0为函数h (x )的零点.下面讨论h (x )在(0,+∞)上的零点个数: h (x )=x 2+4-4x sin x -4cos x =x (x -4sin x )+4(1-cos x ). 当x ∈[4,+∞)时, x -4sin x >0,4(1-cos x )≥0, ∴h (x )>0, ∴h (x )无零点; 当x ∈(0,4)时,h ′(x )=2x -4x cos x =2x (1-2cos x ), 当x ∈⎝⎛⎭⎫0,π3时,h ′(x )<0; 当x ∈⎝⎛⎭⎫π3,4时,h ′(x )>0,∴h (x )在⎝⎛⎭⎫0,π3上单调递减,在⎝⎛⎭⎫π3,4上单调递增, ∴h (x )min =h ⎝⎛⎭⎫π3=π29+4-4π3sin π3-4cos π3=π29+2-23π3<0,又h (0)=0,且h (4)=20-16sin 4-4cos 4>0, ∴h (x )在⎝⎛⎭⎫0,π3上无零点,在⎝⎛⎭⎫π3,4上有唯一零点. 综上,h (x )在(0,+∞)上有唯一零点, 又h (0)=0且h (x )为偶函数, 故h (x )在R 上有且仅有三个零点.思维升华 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练2 已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3. 当x ∈(-∞,3-23)∪(3+23,+∞)时, f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞), 单调递减区间为(3-23,3+23). (2)证明 因为x 2+x +1>0在R 上恒成立, 所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2x 2+2x +3x 2+x +12≥0在R 上恒成立,当且仅当x =0时,g ′(x )=0, 所以g (x )在(-∞,+∞)上单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0, f (3a +1)=13>0,故f (x )有一个零点.综上所述,f (x )只有一个零点.题型三 构造函数法研究函数的零点例3 (2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围. 解 (1)当a =2时,f (x )=x 22x (x >0),f ′(x )=x 2-x ln 22x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0, 则x >2ln 2,此时函数f (x )单调递减, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,2ln 2,单调递减区间为⎝⎛⎭⎫2ln 2,+∞. (2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解.设g (x )=ln xx (x >0),则g ′(x )=1-ln xx 2(x >0),令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝⎛⎭⎫0,1e , 又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e ,即a 的取值范围为(1,e)∪(e ,+∞). 教师备选(2022·南阳质检)已知f (x )=13x 3+32x 2+2x ,f ′(x )是f (x )的导函数.(1)求f (x )的极值;(2)令g (x )=f ′(x )+k e x -1,若y =g (x )的函数图象与x 轴有三个不同的交点,求实数k 的取值范围.解 (1)因为f ′(x )=x 2+3x +2=(x +1)(x +2), 令f ′(x )=0,得x 1=-1,x 2=-2, 当x 变化时,f ′(x ),f (x )的变化如表所示:x (-∞,-2)-2 (-2,-1)-1 (-1,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗由表可知,函数f (x )的极大值为f (-2)=-23,极小值为f (-1)=-56.(2)由(1)知g (x )=x 2+3x +2+k e x -1=x 2+3x +1+k e x , 由题知需x 2+3x +1+k e x =0有三个不同的解,即k =-x 2+3x +1e x有三个不同的解.设h (x )=-x 2+3x +1e x,则h ′(x )=x 2+x -2e x =x +2x -1e x ,当x ∈(-∞,-2)时,h ′(x )>0,h (x )单调递增, 当x ∈(-2,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,又当x →-∞时,h (x )→-∞, 当x →+∞时,h (x )→0且h (x )<0, 且h (-2)=e 2,h (1)=-5e .作出函数h (x )的简图如图,数形结合可知,-5e<k <0.思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,m >0.(1)求函数f (x )的单调区间;(2)当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=x +mx -mx .当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ). (2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,题中问题等价于求函数F (x )的零点个数.F ′(x )=-x -1x -m x ,当m =1时,F ′(x )≤0,函数F (x )为减函数,因为F (1)=32>0,F (4)=-ln 4<0, 所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,因为F (1)=m +12>0, F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即函数f (x )与g (x )的图象总有一个交点.课时精练1.(2022·贵阳模拟)已知函数f (x )=13x 3-12ax 2(a ≠0). (1)讨论f (x )的单调性;(2)当a =1时,g (x )=f (x )-2x +b ,讨论g (x )的零点个数.解 (1)f (x )的定义域为R ,f ′(x )=x 2-ax =x (x -a ),若a >0,当x ∈(-∞,0)∪(a ,+∞)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,若a <0,当x ∈(-∞,a )∪(0,+∞)时,f ′(x )>0,当x ∈(a,0)时,f ′(x )<0,综上,当a >0时,f (x )在(-∞,0),(a ,+∞)上单调递增,在(0,a )上单调递减, 当a <0时,f (x )在(-∞,a ),(0,+∞)上单调递增,在(a,0)上单调递减.(2)g (x )=13x 3-12x 2-2x +b , 令g (x )=0,所以b =-13x 3+12x 2+2x , 令h (x )=-13x 3+12x 2+2x , 则h ′(x )=-x 2+x +2=-(x -2)(x +1),所以h ′(2)=0,h ′(-1)=0,且当x <-1时,h ′(x )<0;当-1<x <2时,h ′(x )>0;当x >2时,h ′(x )<0,所以h (x )极小值=h (-1)=13+12-2=-76, h (x )极大值=h (2)=-13×8+12×4+4=103, 如图,当b <-76或b >103时,函数g (x )有1个零点; 当b =-76或b =103时,函数g (x )有2个零点; 当-76<b <103时,函数g (x )有3个零点.2.已知函数f (x )=e x (ax +1),曲线y =f (x )在x =1处的切线方程为y =bx -e.(1)求a ,b 的值;(2)若函数g (x )=f (x )-3e x -m 有两个零点,求实数m 的取值范围.解 (1)f (x )=e x (ax +1),则f ′(x )=e x (ax +1)+e x ·a =e x (ax +1+a ),由题意知⎩⎪⎨⎪⎧ f ′1=e 2a +1=b ,f 1=e a +1=b -e ,解得⎩⎪⎨⎪⎧a =1,b =3e , ∴a =1,b =3e.(2)g (x )=f (x )-3e x -m =e x (x -2)-m ,函数g (x )=e x (x -2)-m 有两个零点,相当于函数u (x )=e x ·(x -2)的图象与直线y =m 有两个交点,u ′(x )=e x ·(x -2)+e x =e x (x -1),当x ∈(-∞,1)时,u ′(x )<0,∴u (x )在(-∞,1)上单调递减;当x ∈(1,+∞)时,u ′(x )>0,∴u (x )在(1,+∞)上单调递增,∴当x =1时,u (x )取得极小值u (1)=-e.又当x →+∞时,u (x )→+∞,当x <2时,u (x )<0,∴-e<m <0,∴实数m 的取值范围为(-e,0).3.已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解 (1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1,∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0,当x <0时,取x =-1a, 则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0, ∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0,f (x )单调递增.∴当x =ln(-a )时,f (x )取得极小值,也是最小值.当x →-∞时,f (x )→+∞,当x →+∞时,f (x )→+∞,函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).4.(2022·潍坊模拟)已知函数f (x )=x 2-a sin x -2(a ∈R ). (1)若曲线y =f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线经过坐标原点,求实数a ; (2)当a >0时,判断函数f (x )在x ∈(0,π)上的零点个数,并说明理由.解 (1)f ′(x )=2x sin x -x 2-a cos x sin 2x, f ′⎝⎛⎭⎫π2=π,所以f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线方程为y =πx ,所以f ⎝⎛⎭⎫π2=π22, 即π24-a -2=π22,a =-π24-2. (2)因为x ∈(0,π),所以sin x >0,所以x 2-a sin x -2=0可转化为x 2-a -2sin x =0, 设g (x )=x 2-a -2sin x ,则g ′(x )=2x -2cos x ,当x ∈⎣⎡⎭⎫π2,π时,g ′(x )>0,所以g (x )在区间⎣⎡⎭⎫π2,π上单调递增.当x ∈⎝⎛⎭⎫0,π2时, 设h (x )=g ′(x )=2x -2cos x ,此时h ′(x )=2+2sin x >0,所以g ′(x )在x ∈⎝⎛⎭⎫0,π2上单调递增, 又 g ′(0)=-2<0,g ′⎝⎛⎭⎫π2=π>0,所以存在x 0∈⎝⎛⎭⎫0,π2使得g ′(x )=0且x ∈(0,x 0)时g (x )单调递减, x ∈⎣⎡⎭⎫x 0,π2时g (x )单调递增. 综上,对于连续函数g (x ),当x ∈(0,x 0)时,g (x )单调递减, 当x ∈(x 0,π)时,g (x )单调递增.又因为g (0)=-a <0,所以当g (π)=π2-a >0,即a <π2时,函数g (x )在区间(x 0,π)上有唯一零点,当g (π)=π2-a ≤0,即a ≥π2时,函数g (x )在区间(0,π)上无零点, 综上可知,当0<a <π2时,函数f (x )在(0,π)上有1个零点; 当a ≥π2时,函数f (x )在(0,π)上没有零点.。

2020最后十天高考数学压轴题 导数各类题型方法总结(绝对经典)

2020最后十天高考数学压轴题 导数各类题型方法总结(绝对经典)

导数压轴题第一章导数及其应用一,导数的概念1..已知xf x f xx f x ∆-∆+=→∆)2()2(lim ,1)(0则的值是()A.41-B.2C.41D.-2变式1:()()()为则设hf h f f h 233lim,430--='→()A .-1B.-2C .-3D .1变式2:()()()00003,limx f x x f x x f x x x∆→+∆--∆∆设在可导则等于()A .()02x f 'B .()0x f 'C .()03x f 'D .()04x f '导数各种题型方法总结请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令0)('=x f 得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);(请同学们参看2010省统测2)例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =--(1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.解:由函数4323()1262x mx x f x =--得32()332x mx f x x'=--2()3g x x mx ∴=--(1)()y f x = 在区间[]0,3上为“凸函数”,则2()30g x x mx ∴=--<在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵当0x =时,2()330g x x mx ∴=--=-<恒成立,当03x <≤时,2()30g x x mx =--<恒成立等价于233x m x x x ->=-的最大值(03x <≤)恒成立,而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h ==2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数”则等价于当2m ≤时2()30g x x mx =--<恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x x F x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩2b a ∴-=例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-=(Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.(二次函数区间最值的例子)解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---01a << -223aa()f x 'a3a令,0)(>'x f 得)(x f 的单调递增区间为(a ,3a )令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)∴当x=a 时,)(x f 极小值=;433b a +-当x=3a 时,)(x f 极大值=b.(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立①则等价于()g x 这个二次函数max min ()()g x a g x a≤⎧⎨≥-⎩22()43g x x ax a =-+的对称轴2x a=01,a << 12a a a a +>+=(放缩法)即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

2020年高考数学(理)考点分析与突破训练导数及其应用(解析版).

2020年高考数学(理)考点分析与突破训练导数及其应用(解析版).

热点导数及其应用【命题趋势】在目前高考全国卷的考点中,导数板块常常作为压轴题的形式出现,这块部分的试题难度呈现非减的态势,因此若想高考中数学拿高分的同学,都必须拿下导数这块的内容.函数单调性的讨论、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的.对于导数内容,其关键在于把握好导数,其关键在于把握好导数的几何意义即切线的斜率,这一基本概念和关系,在此基础上,引申出函数的单调性与导函数的关系,以及函数极值的概念求解和极值与最值的关系以及最值的求解.本专题选取了有代表性的选择,填空题与解答题,通过本专题的学习熟悉常规导数题目的思路解析与解题套路,从而在以后的导数题目中能够快速得到导数问题的得分技巧.【满分技巧】对于导数的各类题型都是万变不离其宗,要掌握住导数的集中核心题型,即函数的极值问题,函数的单调性的判定.因为函数零点问题可转化为极值点问题,函数恒成立与存在性问题可以转化为函数的最值问题,函数不等式证明一般转化为函数单调性和最值求解,而函数的极值和最值是由函数的单调性来确定的.所以函数导数部分的重点核心就是函数的单调性.对于函数零点问题贴别是分段函数零点问题是常考题型,数形结合是最快捷的方法,在此方法中应学会用导数的大小去判断原函数的单调区间,进而去求出对应的极值点与最值.恒成立与存在性问题也是伴随着导数经典题型,对于选择题来说,恒成立选择小题可以采用排除法与特殊值法相结合的验证方法能够比较快捷准确得到答案,对于填空以及大题则采用对函数进行求导,从而判定出函数的最值.函数的极值类问题是解答题中的一个重难点,对于非常规函数,超出一般解方程的范畴类题目则采用特殊值验证法,特殊值一般情况下是0,1等特殊数字进行验证求解.对于理科类导数类题目,对于比较复杂的导数题目.一般需要二次求导,但是要注意导数大小与原函数之间的关系,搞清楚导数与原函数的关系是解决此类题目的关键所在.含参不等式证明问题也是一种重难点题型,对于此类题型应采取的方法是:一双变量常见解题思路:1双变量化为单变量→寻找两变量的等量关系;2转化为构造新函数;二含参不等式常见解题思路:1参数分离;2通过运算化简消参(化简或不等关系);3将参数看成未知数,通过它的单调关系来进行消参.那么两种结构的解题思路理顺了,那么我们来看这道题.这是含参的双变量问题,一般来说,含参双变量问题我们一般是不采用转化为构造新函数,我们最好就双变量化为单变量,这就是我们解这道题的一个非常重要的思路:① 寻找双变量之间的关系并确定范围,并且确定参数的取值范围;②化简和尝试消参;③双变量化为单变量.④证明函数恒成立(求导、求极值……)(经典题型2018年全国一卷理21题)【考查题型】选择题,填空,解答题21题【限时检测】(建议用时:90分钟)1.(2019·全国高考真题(理))已知曲线ln x y ae x x =+在点),(ae 1处的切线方程 为b x y +=2,则( )A .a =e,b =−1B .a =e,b =1C .a =e −1,b =1D .a =e −1,b =−1【答案】D【解析】详解:1ln y '++=x ae x21=+=ae y ,即1a e -=将(1,1)代入b x y +=2得1.12==+b b 故故选D .【名师点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系.2.(2019·安徽高三期中(理))已知函数11,1()4ln ,1x x f x x x +≤⎧=⎨⎩>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是A .10,e ⎛⎫ ⎪⎝⎭B .C .D .1,4e ⎛⎫⎪⎝⎭【答案】B 【解析】试题分析:ln y x =,所以1'y x=,设切点为00(,)x y ,则切线方程为0001()y y x x x -=-,即0001ln ()y x x x x -=-,与直线y ax =重合时,有01a x =,0ln 10x -=,解得0x e =,所以1a e =,当直线与直线114y x =+平行时,直线为14y x =,当1x =时,11ln ln1044x x -=-<,当x e =时,11ln ln 044x x e e -=->,当3x e =时,3311ln ln 044x x e e -=-<,所以ln y x =与14y x =在3(1,),(,)e e e 上有2个交点,所以直线在14y x =和1y x e =之间时与函数()f x 有2个交点,所以11[,)4a e∈,故选B .考点:函数图像的交点问题.3.(2019·临沂第十九中学高考模拟(理))设函数()xf x mπ=.若存在()f x 的极值点0x 满足()22200x f x m ⎡⎤+<⎣⎦,则m 的取值范围是( )A .()(),66,-∞-⋃∞B .()(),44,-∞-⋃∞C .()(),22,-∞-⋃∞D .()(),11,-∞-⋃∞ 【答案】C 【解析】由题意知:()f x 的极值为所以()203f x ⎡⎤=⎣⎦,因为00()0xf x m mππ='=, 所以0,2x k k z mπππ=+∈,所以01,2x k k z m =+∈即01122x k m =+≥,所以02m x ≥,即2200[()]x f x +≥24m +3,而已知()22200x f x m ⎡⎤+<⎣⎦,所以224m m >+3,故2334m >,解得2m >或2m <-,故选C.【名师点睛】本小题主要考查利用导数研究的极值,考查三角函数,考查一元二次不等式的解法,考查分析问题与解决问题的能力,三角函数出现在导数里面不常见,故做三角函数对应的导数题目时应注意用三角函数最值问题去解决.4(2019·四川高考模拟(文))已知函数32(x)(5)(4)f x a x b x =+-++,若函数()f x 是奇函数,且曲线()y f x =在点(3,(3))f 的切线与直线y 36x=+垂直,则a b +=( ) A .−32 B .−20C .25D .42【答案】A【解析】先根据函数是奇函数求出a 的值,再根据切线与直线垂直得到b 的值,即得a +b 因为函数f(x)是奇函数,所以--()f x f x =(),所以a =5.由题得43)(2'++=b x x f ,31)3('+==b f k因为切线与直线y 36x=+垂直,所以b+31=-6, 所以b=-37.所以a +b=-32.故选:A【名师点睛】本题主要考查奇函数的性质,考查导数的几何意义,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.(2019·广东高考模拟(理))若函数()(cos )xf x e x a =-在区间,22ππ⎛⎫- ⎪⎝⎭上单调递减,则实数a 的取值范围是( )A .()+∞B .(1,)+∞C .)+∞D .[1,)+∞【答案】C【解析】对函数求导只需要,22x ππ⎛⎫∀∈- ⎪⎝⎭,()()sin cos 0xf x e x x a +'=--≤恒成立,即cos sin 4a x x x π⎛⎫≥-=+ ⎪⎝⎭恒成立,结合三角函数的性质得到函数的最值为,即可得到参数范围.【详解】由题意,,22x ππ⎛⎫∀∈-⎪⎝⎭,()()sin cos 0x f x e x x a +'=--≤恒成立,即cos sin 4a x x x π⎛⎫≥-=+ ⎪⎝⎭恒成立,当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭,(cos ,1424x x ππ⎛⎤⎛⎫⎛⎫∴+∈-+∈- ⎥ ⎪ ⎪ ⎝⎭⎝⎭⎝⎦,所以实数a 的取值范围是)+∞.故选:C 【名师点睛】这个题目考查了导数在研究函数的单调性中的应用,也考查了不等式恒成立求参的应用,此类题目最常见的方法有:通过变量分离,转化为函数最值问题.6(2018·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =, 且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,则不等式23(2cos )2sin 22x f x +> 的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】构造函数()()1122g x f x x =--,可得()g x 在定义域内R 上是增函数,且()10g =,进而根据23(2cos )2sin 022x f x +->转化成()(2cos )1g x g >,进而可求得答案 【详解】 令11()()22g x f x x =--,则1()'()0'2g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=, 1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-, ∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到 2cos 1x >,又Q 3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭故选D【名师点睛】本题考查利用函数的单调性求取值范围,此类题目应学会构造新的函数,利用新的函数去解决问题,此外此类题目最快捷的方法是特殊值与排除法相结合即可快速得到答案,特殊值首选应该选择当0=x 时,结果满足条件,故排除A ,C ,然后观察B,D 选项,带入特殊值3π=x 不满足条件.故选择D.二、填空题7.(2018·河北衡水中学高考模拟(理))若两曲线21y x =-与ln 1y a x =-存在公切线,则正实数a 的取值范围是__________. 【答案】(0,2]e【解析】设两个切点分别为1122(,),(,)A x y B x y ,两个切线方程分别为2111(1)2()y x x x x --=-,222(ln 1)()ay a x x x x --=-,化简得2112221,ln 1ay x x x y x a x a x =--=+--两条切线为同一条.可得122212ln ax x a x a x =-⎧=-⎨⎩, ,2224(ln 1)a x x =--,令22()44ln (0)g x x x x x =->,()4(12ln )g x x x =-',所以g(x)在递增,)+∞递减,max ()2g x g e ==.所以a ∈(]0,2e ,填(]0,2e .8(2019·临沂第十九中学高考模拟(理))设函数()xf x mπ=.若存在()f x 的极值点0x 满足()22200x f x m ⎡⎤+<⎣⎦,则m 的取值范围是( )A .()(),66,-∞-⋃∞B .()(),44,-∞-⋃∞C .()(),22,-∞-⋃∞D .()(),11,-∞-⋃∞ 【答案】C 【解析】由题意知:()f x的极值为所以()203f x ⎡⎤=⎣⎦,因为00()0xf x m mππ='=,所以0,2x k k z m πππ=+∈,所以01,2x k k z m =+∈即01122x k m =+≥,所以02m x ≥,即2200[()]x f x +≥24m +3,而已知()22200x f x m ⎡⎤+<⎣⎦,所以224m m >+3,故2334m >,解得2m >或2m <-,故选C.考点:本小题主要考查利用导数研究的极值,考查三角函数,考查一元二次不等式的解法,考查分析问题与解决问题的能力.9.(2019·天津高考模拟(理))已知函数()12cos 2xx f x e x e π⎛⎫=--- ⎪⎝⎭,其中e 为自然对数的底数,若()()()22300f af a f +-+<,则实数a 的取值范围为___________.【答案】312a -<< 【解析】【思路分析】利用奇偶性的定义判断函数的奇偶性,利用导数结合不等式与三角函数的有界性判断函数的单调性,再将原不等式转化为223a a <-求解即可. 【详解】()12cos 2x x f x e x e π⎛⎫=--- ⎪⎝⎭Q 12sin xx e x e =--, ()()12sin xx f x e x e --∴-=---()2sin 1x xx e f x e ⎛⎫=--=- ⎪⎝⎭-, ()f x ∴是奇函数,且()00f =,又()12'cos xx f x e ex -=+Q ,2,2c s 1o 2x xe x e +≥≤,()'0f x ∴≥, ()f x ∴在()+-∞∞,上递增, ()()()22300f a f a f ∴+-+<,化为()()()2233f af a f a <--=-,∴232312a a a <-⇒-<<,故答案为312a -<<.【名师点睛】本题主要考查利用导数研究函数的单调性,考查了奇偶性的应用、单调性的应用,属于难题. 解决抽象不等式()()f a f b <时,切勿将自变量代入函数解析式进行求解,首先应该注意考查函数()f x 的单调性.若函数()f x 为增函数,则a b <;若函数()f x 为减函数,则a b >.10.(2019·安徽高考模拟)设函数21(),()x x xf xg x x e+==,对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立,则正数k 的取值范围是_______. 【答案】121k e ≥- 【解析】对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立,则等价为()()121g x k f x k ≤+恒成立,()2112x f x x x x +=++≥=,当且仅当1x x =,即 1x =时取等号,即()f x 的最小值是2,由()x x g x e =,则()()21'x x x x e xe x g x e e --==,由()'0g x >得01x <<,此时函数()g x 为增函数,由()'0g x >得1x >,此时函数()g x 为减函数,即当1x =时,()g x 取得极大值同时也是最大值()11g e =,则()()12g x f x 的最大值为1122e e=,则由112k k e ≥+,得21ek k ≥+,即()211k e -≥,则121k e ≥-,故答案为121k e ≥-.三、解答题11.(2019·浙江高考模拟)已知函数()1ln f x x x x=-- . (1)若()1ln f x x x x=--在()1212,x x x x x =≠ 处导数相等,证明:()()1232ln2f x f x +>- ;(2)若对于任意(),1k ∈-∞ ,直线y kx b =+ 与曲线()y f x =都有唯一公共点,求实数b 的取值范围.【答案】(I )见解析(II )ln 2b ≥- 【思路分析】(1)由题x >0,()2111f x x x'=+-,由f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,得到()()12f x f x m ''==,得21122211101110m x x m x x ⎧-+-=⎪⎪⎨⎪-+-=⎪⎩,由韦达定理得12111x x +=,由基本不等式得1212x x x x +=⋅>,得124x x ⋅>,由题意得()()()121212ln 1f x f x x x x x +=--,令124t x x =⋅>,则()1212ln 1ln 1x x x x t t --=--,令()()ln 14g t t t t =-->,,利用导数性质能证明()()432ln2g t g >=-.(2)由()f x kx b =+得1ln x x b x k x ---=,令()1ln x x bx h x x---=, 利用反证法可证明证明()1h x <恒成立.由对任意(),1k ∈-∞,()h x k =只有一个解,得()h x 为()0,+∞上的递增函数,()22ln 10x b x h x x ++-='∴≥得2ln 1b x x ≥--+,令()()2ln 10m x x x x=--+>,由此可求b 的取值范围.. 【过程详解】 (I )()2111f x x x'=+- 令()()12f x f x m ''==,得21122211101110m x x m x x ⎧-+-=⎪⎪⎨⎪-+-=⎪⎩,由韦达定理得12111x x +=即1212x x x x +=⋅>,得124x x ⋅>()()()()1212121211ln ln f x f x x x x x x x ⎛⎫∴+=+-+-+ ⎪⎝⎭()1212ln 1x x x x =--令124t x x =⋅>,则()1212ln 1ln 1x x x x t t --=--,令()()ln 14g t t t t =-->, 则()()1104g t t t>'=->,得()()432ln2g t g >=-(II )由()f x kx b =+得1ln x x bxk x---=令()1ln x x bx h x x---=, 则0x →+,()h x →-∞,(),1x h x →+∞→ 下面先证明()1h x <恒成立.若存在()00,x ∈+∞,使得()01h x ≥,0x →+Q ,()h x →-∞,且当自变量x 充分大时,()1ln 1x x bx h x x---=<,所以存在()100,x x ∈,()20,x x ∈+∞,使得()11h x <,()21h x <,取()(){}12max ,1k h x h x =<,则y k =与()y h x =至少有两个交点,矛盾.由对任意(),1k ∈-∞,()h x k =只有一个解,得()h x 为()0,+∞上的递增函数,()22ln 1x b x h x x ++-='∴≥ 得2ln 1b x x ≥--+,令()()2ln 10m x x x x =--+>,则()22212x m x x x x-=-=', 得()()max 2ln2b m x m ≥==-【名师点睛】本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力属难题.12.(2019·浙江高考模拟)知函数()2x af x x a+=+,()()2ln 2g x x a a R =+∈.(1)求()f x 的单调区间;(2)证明:存在()0,1a ∈,使得方程()()f x g x =在()1,+∞上有唯一解. 【答案】(1)详见解析(2)详见解析 【思路分析】(1)求出函数f (x )的定义域,对函数f (x )求导得到22y x ax a =+-, 分0∆≤ 与0∆>,得到导函数在各区间段内的符号,得到函数f (x )的单调区间; (2)构造()()()h x f x g x =-,求导分析()h x 的单调性,找到12≤a<1时,()0h x <在(1,1上恒成立,在()1+∞上递增,而h(1)0x <,()20h e >,由函数零点存在定理得到存在()00,1a ∈,使得方程()0h x =在()1,+∞上有唯一解,即证得结论. 【过程详解】(1)函数f (x )的定义域为()(),,a a -∞-⋃-+∞,因为()()222x ax af x x a +-=+',令22y x ax a =+-,则2440a a ∆=+≤,即10a -≤≤,则()0f x '≥在()(),,a a -∞-⋃-+∞上恒成立,当1a <-或0a >,由220x ax a +->有x a >-x a <-由220x ax a +-<有a x a -<<-,综上,当10a -≤≤时,()f x 的递增区间是()(),,,a a -∞--+∞,当1a <-或0a >时,()f x 的递增区间是((),,a a -∞--+∞,递减区间是()(,,a a a a ----+;(2)令()()()22ln 2x ah x f x g x x a x a+=-=--+,当()0,1a ∈时,则()()()()()22222222x a x x ax ax ah x x x a x a x+--+-=-=++' ()((()2211x a x x x a x⎡⎤⎡⎤+--⎣⎦⎣⎦=+,因为()1,x ∈+∞,故当11x <<+()0h x '<,当1x 时,()0h x '>,所以()h x在(1,1上递减,在()1++∞上递增,即当11x =()h x 有最小值,又h (1)=1-2a ,当12≤a<1时,h (1)≤0,即()0h x <在(1,1+上恒成立, 又12≤a<1时,()2222ln 22ln 22ln 222x a x x h x x a x a x x lnx x a x x+=-->-->--=--+,取x=2e ,则22224260x lnx e e ,--=--=->即()20h e>,又()h x在()1+∞上递增,而h(1)0x <,由函数零点存在定理知()h x在()1+∞上存在唯一零点,所以当12≤a<1时即存在()0,1a ∈,使得方程()0h x =在()1,+∞上有唯一解,即方程()()f x g x =在()1,+∞上有唯一解.【名师点睛】本题主要考查导数的运算、导数在研究函数中的应用、函数零点等基础知识,考查了推理论证能力、运算求解能力,考查了函数与方程、分类与整合、化归与转化等数学思想方法,属于难题.13.(2018·河北衡水中学高考模拟(理))已知函数()ln xf x ax b x=-+在点 ()(),e f e 处的切线方程为2y ax e =-+.(2)若存在20,x e e ⎡⎤∈⎣⎦,满足()014f x e ≤+,求实数a 的取值范围. 【答案】(1) 实数b 的值为e .(2)211,24e ⎡⎫-+∞⎪⎢⎣⎭. 【解析】分析:(1)根据导数的几何意义求得曲线()y f x =在点()(),e f e 处的切线方程,与2y ax e =-+对照后可得b e =.(2)问题可转化为11ln 4a x x≥-在2,e e ⎡⎤⎣⎦上有解,令()11ln 4h x x x=-,2,x e e ⎡⎤∈⎣⎦,结合导数可得()()221124minh x h e e==-,故得实数a的取值范围为211,24e ⎡⎫-+∞⎪⎢⎣⎭. 详解:(1)函数()f x 的定义域为()()0,11,⋃+∞, ∵()ln xf x ax b x =-+, ∵()2ln 1'ln x f x a x-=-. ∵()'f e a =-, 又()e f e ae b =-+,∵所求切线方程为()()y e ae b a x e --+=--, 即y ax e b =-++.又函数()f x 在点()(),e f e 处的切线方程为2y ax e =-+, ∵b e =.(2)由题意得()00001ln 4x f x ax e e x =-+≤+, 所以问题转化为11ln 4a x x≥-在2,e e ⎡⎤⎣⎦上有解. 令()11ln 4h x x x=-,2,x e e ⎡⎤∈⎣⎦, 则()2222211ln 4'4ln 4ln x xh x x x x x x -=-=(22ln ln 4ln x x x x+-=. 令()ln p x x =-则当2,x e e ⎡⎤∈⎣⎦时,有()1'0p x x ==<. 所以函数()p x 在区间2,e e ⎡⎤⎣⎦上单调递减,所以()()ln 0p x p e e <=-<.所以()'0h x <,所以()h x 在区间2,e e ⎡⎤⎣⎦上单调递减.所以()()22221111ln 424h x h eee e ≥=-=-. 所以实数a 的取值范围为211,24e ⎡⎫-+∞⎪⎢⎣⎭. 【名师点睛】对于恒成立和能成立的问题,常用的解法是分离参数,转化为求函数最值的问题处理.解题时注意常用的结论:若()a f x >有解,则()min a f x >;若()a f x <有解,则()max a f x <.当函数的最值不存在时,可利用函数值域的端点值来代替,解题时特别要注意不等式中的等号能否成立.14.(2019·安徽六安一中高考模拟(理))已知函数()()2ln R 2a f x x x x a =-∈ . (1)若2a = ,求曲线()y f x = 在点()()1,1f 处的切线方程;(2)若()()()1g x f x a x =+- 在1x = 处取得极小值,求实数a 的取值范围. 【答案】(1)y x =-(2)1a <【解析】:(1)当2a =时,()2ln f x x x x =-,利用导数几何意义,能够求出此函数在1x =处的切线斜率,再求出切线方程;(2)对函数()g x 求导,令()()'ln h x g x x ax a ==-+,讨论)'(h x 的单调性,对a 分情况讨论,得出实数a 的取值范围. 试题解析:(1)当2a =时,()2ln f x x x x =-,()'ln 12f x x x =+-,()()11,'11f f =-=-,所以曲线()y f x =在点()()1,1f 处的切线方程为y x =-.(2)由已知得()()2ln 12a g x x x x a x =-+-,则()'ln g x x ax a =-+, 记()()'ln h x g x x ax a ==-+,则()()1110,'ax h h x a x x-==-=, ∵当0a ≤,()0,x ∈+∞时,()'0h x >,函数()'g x 单调递增, 所以当()0,1x ∈时,()'0g x <,当()1,x ∈+∞时,()'0g x >, 所以()g x 在1x =处取得极小值,满足题意.∵当01a <<时,10,x a ⎛⎫∈ ⎪⎝⎭时,()'0h x >,函数()'g x 单调递增, 可得当()0,1x ∈时,()'0g x <,11,x a ⎛⎫∈ ⎪⎝⎭时,()'0g x >当, 所以()g x 在1x =处取得极小值,满足题意.∵当1a =时,当()0,1x ∈时,()'0h x >,函数()'g x 单调递增,()1,x ∈+∞时,()'0h x <,()'g x 在()1,+∞内单调递减,所以当()0,x ∈+∞时,()'0g x ≤,()g x 单调递减,不合题意.∵当1a >时,即101a <<,当1,1x a ⎛⎫∈ ⎪⎝⎭时,()'0h x <,()'g x 单调递减, ()'0g x >,当()1,x ∈+∞时,()'0h x <,()'g x 单调递减,()'0g x <,所以()g x 在1x =处取得极大值,不合题意. 综上可知,实数a 的取值范围为1a <.【名师点睛】本题主要考查了导数在研究函数单调性、最值上的应用,考的知识点有导数几何意义,导数的应用等,属于中档题.分类讨论时注意不重不漏. 15.(2019·山东高考模拟(理))已知函数()()21ln ,2f x x xg x mx ==. (1)若函数()f x 与()g x 的图象上存在关于原点对称的点,求实数m 的取值范围; (2)设()()()F x f x g x =--,已知()F x 在()0,∞+上存在两个极值点12,x x ,且12x x <,求证:2122x x e >(其中e 为自然对数的底数).【答案】(1)2m e≥-;(2)证明见解析. 【解析】(1)函数21()2g x mx =关于原点对称的函数解析式为212y mx =-.函数()f x 与()g x 的图象上存在关于原点对称的点,等价于方程21ln 2x x mx =-在(0,)+∞有解.即12lnx mx =,2lnx m x ⇒=,令2()lnx g x x=,(0)x >,利用导数研究函数的单调性极值即可得出.(2)2122x x e >等价于122()2ln ln x x +>,等价于12()22ln x x ln >-21()()()ln 2F x f x g x x x mx =--=--,()1ln F x x mx '=---,(0)x >,再利用导数研究函数的单调性、极值,利用分析法即可得证. 【详解】(1)函数()f x 与()g x 的图像上存在关于原点对称的点,即21()()2g x m x --=--的图像与函数()ln f x x x =的图像有交点, 即21()ln 2m x x x --=在(0,)+∞上有解. 即1ln 2x m x=-在(0,)+∞上有解. 设ln ()x x x ϕ=-,(0x >),则2ln 1()x x xϕ'-= 当(0,)x e ∈时,()x ϕ为减函数;当(,)x e ∈+∞时,()x ϕ为增函数,所以min 1()()x e e ϕϕ==-,即2m e≥-. (2)证明:()()21212122ln 2ln 2ln 2ln 2x x e x x x x ⇔+>⇔>->. 可得()()()21ln 2F x f x g x x x mx =--=--, ()1ln F x x mx '=---,()0x >,∵()F x 在()0+∞,上存在两个极值点1x ,2x ,且12x x <, ∵()1ln h x x mx =++,()0x >,在()0+∞,上存在两个零点1x ,2x ,且12x x <, ∵11ln 1x mx =--,22ln 1x mx =--.∵()()1212ln 2x x m x x =-+-,()1122lnx m x x x =--.∵()1121221112221ln 1x ln x x x x x x x x x x x ++==--,令()12 01x t x =∈,,则()121ln ln 1t x x t t +=-, 要证明:()12ln 2ln 2x x >-.即证明:()1ln 2ln 2,011t t t t +>-∈-,, 即证明:()()1ln 2ln 20,011t t t t ---⋅<∈+,. 令()()()1220,011t h t lnt ln t t -=--⋅<∈+,,()10h =. ()()()()()()22222122ln 21212()()ln 22ln 20111t t t t h t t t t t t t +---+'=--⋅==>+++. ∵函数()h t 在()01t ∈,上单调递增.∵()()10h t h <=,即1ln 2ln 21t t t +>--,()01t ∈,成立.∵2x 1x 2>e 2成立. 【名师点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法、分析法,考查了推理能力与计算能力,属于难题.。

2020年高考数学解答题压轴题考法深度揭秘 - 专题10 导数及其综合应用

2020年高考数学解答题压轴题考法深度揭秘 - 专题10 导数及其综合应用

2020年高考数学解答题压轴题考法深度揭秘专题十、函数与导数的综合问题函数与导数的压轴试题,在每年的高考中属于必考内容,其命题方向主要有三个:一是围绕函数的性质考查函数的单调性、极值、最值、曲线的切线等问题展开;二是围绕函数与方程、探索方程根的个数、不等式的证明、不等式成立等问题展开,此类压轴试题难度较大,逻辑推理能力较强,不可小视;三是围绕函数、数列与不等式交汇问题展开,在考查利用导数研究函数单调性、最值等问题的同时,考查不等式的证明及数列求和等.考法01 利用导数确定或应用函数的单调性、极值与最值(2013·广东理,21,14分)设函数f (x )=(x -1)e x -kx 2(k ∈R ).(1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝ ⎛⎦⎥⎤12,1时,求函数f (x )在[0,k ]上的最大值M .【知识揭秘】 揭秘1:作差法证明k ∈⎝ ⎛⎦⎥⎤12,1时,ln 2k <k ;揭秘2:作差法比较f (k )与f (0)的大小,通过构造函数,求最值和0比较大小.【思维揭秘】 (1)利用导数的运算法则即可得出f ′(x ),令f ′(x )=0,即可得出实数根,通过列表即可得出其单调区间;(2)利用导数的运算法则求出f ′(x ),令f ′(x )=0得出极值点,得出单调区间,比较区间端点与极值点即可得到最大值.【解析揭秘】 (1)当k =1时,f (x )=(x -1)e x -x 2,则f ′(x )=x e x -2x =x (e x -2).令f ′(x )=0可得x =0或x =ln 2.当x <0时,f ′(x )>0;当0<x <ln 2时,f ′(x )<0;当x >ln 2时,f ′(x )>0,所以函数f (x )的单调递增区间是(-∞,0),(ln 2,+∞);单调递减区间是(0,ln 2).(2)对f (x )=(x -1)e x -kx 2求导可得f ′(x )=e x +(x -1)e x -2kx =x (e x -2k ).因为k ∈⎝ ⎛⎦⎥⎤12,1,所以2k ∈(1,2].令f ′(x )=0可得x =0或x =ln 2k ,显然0<ln 2k ≤ln 2,而ln 2<1.则当0<x <ln 2k 时,f ′(x )<0;当x >ln 2k 时,f ′(x )>0,所以函数f (x )的单调递增区间是(ln 2k ,+∞),单调递减区间是(0,ln 2k ).令g (k )=ln 2k -k ,则g ′(k )=1k -1=1-k k ≥0, 又当k =1时,g ′(k )=0,所以g (k )在⎝ ⎛⎦⎥⎤12,1上递增,所以g (k )≤ln 2-1=ln 2-ln e<0, 从而ln 2k <k ,所以ln 2k ∈[0,k ]. 所以当x ∈(0,ln 2k )时,f ′(x )<0; 当x ∈(ln 2k ,k )时,f ′(x )>0,所以M =max{f (0),f (k )}=max{-1,(k -1)e k -k 3}. 令h (k )=(k -1)e k -k 3+1,则h ′(k )=k (e k -3k ), 令φ(k )=e k -3k ,则φ′(k )=e k -3≤e -3<0, 所以φ(k )在⎝ ⎛⎦⎥⎤12,1上递减.而φ⎝ ⎛⎭⎪⎫12·φ(1)=⎝ ⎛⎭⎪⎫e -32(e -3)<0,所以存在k 0∈⎝ ⎛⎦⎥⎤12,1使得φ(k 0)=0,且当k ∈⎝ ⎛⎭⎪⎫12,k 0时,φ(k )>0;当k ∈(k 0,1)时,φ(k )<0,所以h (k )在⎝ ⎛⎭⎪⎫12,k 0上单调递增,在(k 0,1)上单调递减.因为h ⎝ ⎛⎭⎪⎫12=-12e +78>0,h (1)=0,所以h (k )≥0在⎝ ⎛⎦⎥⎤12,1上恒成立,当且仅当k =1时取等号.综上,函数f (x )在[0,k ]上的最大值M =(k -1)e k -k 3.1.(2016·“江淮十校”联考,21,12分)已知函数f (x )=ln x +x 2-ax (a∈R ).(1)若a =3,求函数f (x )的极值;(2)若f (x )是增函数,求实数a 的取值范围. 1.解:(1)当a =3时,f (x )=ln x +x 2-3x (x >0),令f ′(x )=1x +2x -3=(x -1)(2x -1)x =0,则x 1=12,x 2=1.极大值为f ⎝ ⎛⎭⎪⎫12=ln 12-54,极小值为f (1)=-2.(2)f ′(x )=1x +2x -a =2x 2-ax +1x≥0在(0,+∞)上恒成立,即2x 2-ax +1≥0,即a ≤2x 2+1x =2x +1x .因为2x +1x ≥22,当且仅当2x =1x ,即x =22时等号成立,∴a ≤2 2.2.(2016·四川成都一模,21,12分)已知函数f (x )=-12ax 2+(1+a )x -ln x (a ∈R ).(1)当a >0时,求函数f (x )的单调递减区间;(2)当a =0时,设函数g (x )=xf (x ).若存在区间[m ,n ]⊆⎣⎢⎡⎭⎪⎫12,+∞,使得函数g (x )在[m ,n ]上的值域为[k (m +2)-2,k (n +2)-2],求实数k 的取值范围.2.解:(1)f ′(x )=-ax +1+a -1x =-(x -1)(ax -1)x (x >0).当a =1时,f ′(x )≤0,f (x )单调递减;当a >1时,1>1a ,由f ′(x )<0,可得x >1或0<x <1a ;当0<a <1时,1<1a ,由f ′(x )<0,可得0<x <1或x >1a .综上可得,当a =1时,f (x )的减区间为(0,+∞);当a >1时,f (x )的减区间为(1,+∞),⎝ ⎛⎭⎪⎫0,1a ;当0<a <1时,f (x )的减区间为⎝ ⎛⎭⎪⎫1a ,+∞,(0,1).(2)当a =0时,设函数g (x )=xf (x )=x 2-x ln x , 则g ′(x )=2x -ln x -1(x >0), 则g ″(x )=2-1x =2x -1x (x >0),当x ≥12时,g ″(x )≥0,g ′(x )为增函数,因此g ′(x )≥g ′⎝ ⎛⎭⎪⎫12=ln 2>0,g (x )为增函数,g (x )在区间[m ,n ]⊆⎣⎢⎡⎭⎪⎫12,+∞上递增.因为g (x )在[m ,n ]上的值域是[k (m +2)-2,k (n +2)-2], 所以g (m )=k (m +2)-2, g (n )=k (n +2)-2,12≤m <n ,则g (x )=k (x +2)-2在⎣⎢⎡⎭⎪⎫12,+∞上至少有两个不同的正根. k =g (x )+2x +2, 令F (x )=g (x )+2x +2=x 2-x ln x +2x +2,求导得,F ′(x )=x 2+3x -2ln x -4(x +2)2⎝ ⎛⎭⎪⎫x ≥12. 令G (x )=x 2+3x -2ln x -4⎝ ⎛⎭⎪⎫x ≥12,则G ′(x )=2x +3-2x =(2x -1)(x +2)x ,所以G (x )在⎣⎢⎡⎭⎪⎫12,+∞上递增,G ⎝ ⎛⎭⎪⎫12<0,G (1)=0,当x ∈⎣⎢⎡⎭⎪⎫12,1时,G (x )<0,所以F ′(x )<0;当x ∈(1,+∞)时,G (x )>0,所以F ′(x )>0,所以F (x )在⎣⎢⎡⎭⎪⎫12,1上递减,在(1,+∞)上递增,所以F (1)<k ≤F ⎝ ⎛⎭⎪⎫12,所以k ∈⎝⎛⎦⎥⎤1,9+2ln 210.考法02 利用导数确定或应用方程根的个数(2016·甘肃兰州模拟,21,12分)已知函数f(x)=a(x-1)-2ln x(a ∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若函数f(x)在区间(0,1)上无零点,求a的取值范围.【知识揭秘】揭秘1:a=1时,f(x)=x-1-2ln x,定义域为(0,+∞),由f(x)的单调区间,进而得出使f′(x)>0,f′(x)<0的x的取值范围.揭秘2:由f(x)=a(x-1)-2ln x知f(1)=0,f(x)在(0,1)上无零点⇒方程f(x)=0在(0,1)上无解,而f(x)在(0,1)上有定义.因此,只需求f(x)在(0,1)上f(x)>0或f(x)<0恒成立的a的取值范围,亦即f(x)>f(1)或f(x)<f(1).【思维揭秘】(1)先求定义域,再求f′(x),解不等式f′(x)>0,f′(x)<0即可.(2)x→0时,f(x)→+∞,f(1)=0,分a≤0,a>0两种情况讨论,求解f(x)在(0,1)使f(x)>0且f(x)<0的a的取值范围.【解析揭秘】(1)当a=1时,函数f(x)=x-1-2ln x,其定义域为(0,+∞),f′(x)=1-2x=x-2x.由f′(x)>0得x>2;由f′(x)<0得0<x<2,故f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由f(x)=a(x-1)-2ln x,则f(1)=0.(1)当a≤0时,x∈(0,1)得x-1<0,-2ln x>0,得f(x)=a(x-1)-2ln x>0恒成立,即a≤0符合题意.(2)当a>0时,f′(x)=a-2x=ax-2x=ax⎝⎛⎭⎪⎫x-2a.①当a≤2时,即2a≥1时,由f′(x)<0得0<x<2a,即f(x)在(0,1)上单调递减,故f(x)>f(1)=0,满足对∀x∈(0,1),f(x)>0恒成立.故此时f(x)在(0,1)上无零点,符合题意.②当a >2时,即0<2a <1时,由f ′(x )>0得x >2a ,由f ′(x )<0得0<x <2a ,即f (x )在⎝ ⎛⎭⎪⎫0,2a 上单调递减,在⎝ ⎛⎭⎪⎫2a ,1上单调递增,此时f ⎝ ⎛⎭⎪⎫2a <f (1)=0,而x →0时,f (x )→+∞,函数f (x )图象如图所示.故在⎝ ⎛⎭⎪⎫0,2a 上存在x 0使f (x 0)=0.令g (a )=e a -a ,当a >2时,g ′(a )=e a -1>e 2-1>0恒成立. 故函数g (a )=e a -a 在(2,+∞)上单调递增, ∴g (a )>g (2)=e 2-2>0, 即e a>a >2,∴0<1e a <1a <2a <1,而f ⎝ ⎛⎭⎪⎫1e a =a ⎝ ⎛⎭⎪⎫1e a -1-2ln 1e a =a e a +a >0,故当a >2时,f ⎝ ⎛⎭⎪⎫1e a ·f ⎝ ⎛⎭⎪⎫2a <0,即∃x 0∈⎝ ⎛⎭⎪⎫1e a ,2a ,使得f (x 0)=0成立,所以a >2时,f (x )在(0,1)上有零点,不符合题意. 综上,a 的取值范围是{a |a ≤2}.1.(2016·江苏南通一模,20,16分)已知函数f (x )=a +x ln x (a ∈R ).(1)求函数f (x )的单调区间;(2)试求函数f (x )的零点个数,并证明你的结论. 1.解:(1)由函数f (x )=a +x ln x (a ∈R ),得f ′(x )=12x(ln x +2).令f ′(x )=0,得 x =e -2.列表如下:e -2). (2)由(1)可知,f (x )min =f (e -2)=a -2e -1.①当a >2e -1时,由f (x )≥f (e -2)=a -2e -1>0,得函数f (x )的零点个数为0. ②当a =2e -1时,f (x )>f (e -2)=0. 此时,函数f (x )的零点个数为1.③当a <2e -1时,f (x )min =f (e -2)=a -2e -1<0.a .a ≤0时,因为当x ∈(0,e -2]时,f (x )=a +x ln x <a ≤0,所以,函数f (x )在区间(0,e -2]上无零点;另一方面,因为f (x )在[e -2,+∞)单调递增,且f (e -2)=a -2e -1<0,又e -2a ∈(e -2,+∞),且f (e -2a )=a (1-2e -a )>0,此时,函数f (x )在(e -2,+∞)上有且只有一个零点.所以,当a ≤0时,函数f (x )零点个数为1.b .0<a <2e -1时,因为f (x )在[e -2,+∞)上单调递增,且f (1)=a >0,f (e -2)=a -2e -1<0,所以,函数f (x )在区间(e -2,+∞)有且只有1个零点;另一方面,因为f (x )在(0,e -2]上是单调递减,且f (e -2)=a -2e -1<0,又e­4a ∈(0,e -2),且f (e -4a )=a -4a e 2a >a -4a ⎝ ⎛⎭⎪⎫2a 2=0(当x >0时,e x >x 2成立).此时,函数f (x )在(0,e -2)上有且只有1个零点.所以,当0<a <2e -1时,函数f (x )零点个数为2.综上所述,当a >2e -1时,f (x )的零点个数为0;当a =2e -1或a ≤0时,f (x )的零点个数为1;当0<a <2e -1时,f (x )的零点个数为2.2.(2016·河南普通高中适应性联考,21,12分)已知函数f (x )=a -1x -ln x ,其中a 为常数.(1)若f (x )=0恰有一个解,求a 的值;(2)若函数g (x )=a -1x -2(x -p )x +p-f (x )-ln p ,其中p 为常数,试判断函数g (x )的单调性;(3)若f (x )恰有两个零点,x 1<x 2,求证:x 1+x 2<3e a -1-1. 2.解:(1)令f ′(x )=1-xx 2=0,解得x =1.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞)且f (1)=a -1为最大值.当f (1)=0时,即a =1时,f (x )=0恰有一个解x =1;当f (1)<0时,即a <1时,f (x )=0无解;当f (1)>0时,即a >1时,e -a <1<e a ,f (e -a )<0,f (e a )<0,故f (x )=0有两个解.综上,若f (x )=0恰有一个解,则a =1. (2)g (x )=ln x -2(x -p )x +p-ln p ,定义域x >0且常数p >0.求导得g ′(x )=(x -p )2x (x +p )2≥0,且只有有限个零点,因此g (x )在定义域(0,+∞)上单调递增.(3)证明:由(1)知,若f (x )=0恰有两个零点,则a >1且等价于xf (x )=0有两个零点.令h (x )=ax -1-x ln x (x >0), h ′(x )=a -1-ln x ,令h ′(x )=0, 则x =e a -1,记p =e a -1,函数h (x )两个零点满足x 1<p <x 2.当0<x <p 时,h (x )<h (p )=0,即ax 1-1=x 1ln x 1<2x 1(x 1-p )x 1+p+x 1ln p ,整理得x 21-(3p -1)x 1+p >0.当x >p 时,h (x )>h (p )=0,同理可得x 22-(3p -1)x 2+p <0,因此x 22-(3p -1)x 2+p <x 21-(3p -1)·x 1+p , 所以x 22-x 21<(3p -1)(x 2-x 1),即x 1+x 2<3e a -1-1.考法03 利用导数证明不等式考查角度1 利用导数证明不等式(2016·河北衡水模拟,21,12分)已知函数f(x)=2(a+1)ln x-ax,g(x)=12x2-x.(1)若函数f(x)在定义域内为单调函数,求实数a的取值范围;(2)证明:若-1<a<7,则对于任意x1,x2∈(1,+∞),x1≠x2,有f(x1)-f(x2)g(x1)-g(x2)>-1.【知识揭秘】揭秘1:f(x)在定义域内为单调函数⇒f′(x)≥0或f′(x)≤0在定义域内恒成立.揭秘2:先判断g(x)在(1,+∞)上的单调性,再将待证不等式转化为简单的不等式证明问题,进而构造辅助函数利用导数研究其单调性最终获得证明.【思维揭秘】(1)先求出函数定义域,再求f′(x)≥0或f′(x)≤0在定义域上恒成立的解.(2)g(x)=12x2-x⇒g(x)=12(x-1)2-12在(1,+∞)上单调递增⇒设x1>x2>1时,g(x1)>g(x2)⇒g(x1)-g(x2)>0,f(x1)-f(x2)g(x1)-g(x2) >-1⇔f(x1)-f(x2)>-(g(x1)-g(x2))⇔f(x1)+g(x1)>f(x2)+g(x2)⇒只要证明函数f(x)+g(x)在(1,+∞)上单调递增即可.【解析揭秘】(1)函数f(x)=2(a+1)ln x-ax的定义域为(0,+∞),f′(x)=2(a+1)x-a=-ax+2(a+1)x,令m(x)=-ax+2(a+1).因为函数y=f(x)在定义域内为单调函数,所以f′(x)≥0或f′(x)≤0恒成立,即m(x)=-ax+2(a+1)≥0或≤0恒成立,当a=0时,m(x)=2>0,f′(x)>0,y=f(x)在定义域内为单调递增函数;当a>0时,m(x)=-ax+2(a+1)为减函数,只需m(0)=2(a+1)≤0,即a≤-1,不符合要求;当a<0时,m(x)=-ax+2(a+1)为增函数,只需m(0)=2(a+1)≥0即可,即a≥-1,解得-1≤a<0,此时y=f(x)在定义域内为单调递增函数.综上所述,a∈[-1,0].(2)证明:g(x)=12x2-x=12(x-1)2-12在(1,+∞)上单调递增,不妨设x1>x2>1,则g(x1)>g(x2),则f(x1)-f(x2)g(x1)-g(x2)>-1等价于f(x1)-f(x2)>-(g(x1)-g(x2))等价于f(x1)+g(x1)>f(x2)+g(x2).设h(x)=f(x)+g(x)=12x2+2(a+1)ln x-(a+1)x,则h′(x)=x+2(a+1)x-(a+1)≥2x·2(a+1)x-(a+1)=2-(a+1-2)2.由于-1<a<7,故h′(x)>0,即h(x)在(1,+∞)上单调递增,从而当1<x2<x1时,有f(x1)+g(x1)>f(x2)+g(x2)成立,所以f(x1)-f(x2)g(x1)-g(x2)>-1.考查角度2 利用导数比较大小(2013·陕西理,21,14分)已知函数f(x)=e x,x∈R.(1)若直线y=kx+1与f(x)的反函数的图象相切,求实数k的值;(2)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数;(3)设a<b,比较f(a)+f(b)2与f(b)-f(a)b-a的大小,并说明理由.【知识揭秘】 揭秘1:根据反函数的定义f (x )=e x ,x ∈R 的反函数为y =ln x ;揭秘2:对t (x )=x +2+(x -2)e x 进行二次求导,得出t (x )>0,进而得出结论. 【思维揭秘】 (1)利用导数的几何意义,可求解;(2)分析清楚函数的单调性及极值,讨论确定曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数;(3)作差后对式子变形后构造新函数,利用函数的单调性进行大小比较.【解析揭秘】 (1)f (x )的反函数为g (x )=ln x . 设直线y =kx +1与g (x )=ln x 相切于点P (x 0,y 0), 则⎩⎪⎨⎪⎧kx 0+1=ln x 0,k =g ′(x 0)=1x 0⇒x 0=e 2,k =e -2. (2)当x >0,m >0时,曲线y =f (x )与曲线y =mx 2(m >0)的公共点个数即方程f (x )=mx 2根的个数.由f (x )=mx 2⇒m =e x x 2,令h (x )=e x x 2⇒h ′(x )=e x(x -2)x 3,则h (x )在(0,2)上单调递减, 在(2,+∞)上单调递增,所以h (2)=e 24是y =h (x )的极小值且是最小值.所以对曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数,讨论如下:当m ∈⎝ ⎛⎭⎪⎫0,e 24时,无公共点;当m =e 24时,有1个公共点;当m ∈⎝ ⎛⎭⎪⎫e 24,+∞时,有2个公共点.(3)f (a )+f (b )2-f (b )-f (a )b -a =(b -a +2)·f (a )+(b -a -2)·f (b )2(b -a )=(b -a +2)·e a +(b -a -2)·e b 2(b -a )=(b -a +2)+(b -a -2)·e b -a 2(b -a )·e a .令t (x )=x +2+(x -2)·e x ,x >0,则t′(x)=1+(1+x-2)·e x=1+(x-1)·e x.t′(x)的导函数t″(x)=(1+x-1)·e x=x·e x>0,所以t′(x)在(0,+∞)上单调递增,且t′(0)=0.因此t′(x)>0,t(x)在(0,+∞)上单调递增,而t(0)=0,所以在(0,+∞)上,t(x)>0.因为当x>0时,t(x)=x+2+(x-2)·e x>0且a<b,所以(b-a+2)+(b-a-2)·e b-a2·(b-a)·ea>0,所以当a<b时,f(a)+f(b)2>f(b)-f(a)b-a.1.(2016·河南中原名校一模,21,12分)已知函数f(x)=ax+ln x.(1)若函数f(x)在区间[1,e]上的最小值是32,求a的值;(2)当a=1时,设F(x)=f(x)+1+ln xx,求证:当x>1时,F(x)2e x-1>e+1x e x+1.1.解:(1)因为f′(x)=x-ax2,且x∈[1,e],则①当a≤1时,f′(x)≥0,函数f(x)在[1,e]上单调递增,其最小值为f(1)=a≤1,这与函数在[1,e]上的最小值是3 2相矛盾;②当1<a<e时,函数f(x)在[1,a)上有f′(x)<0,单调递减;在(a,e]上有f′(x)>0,单调递增,∴函数f(x)的最小值为f(a)=ln a+1=32,解得a= e.③当a≥e时,f′(x)≤0,函数f(x)在[1,e]上单调递减,其最小值为f(e)=1+a e≥2,与最小值是32相矛盾.综上所述,a的值为 e.(2)证明:要证F(x)2e x-1>e+1x e x+1,即证F(x)e+1>2e x-1x e x+1.当a=1时,F(x)=1+1x+ln x+ln xx,F′(x)=-1x2+1x+1-ln xx2=x-ln xx2,令φ(x)=x-ln x,则φ′(x)=1-1x=x-1x.当x>1时,φ′(x)>0,φ(x)单调递增;当0<x<1时,φ′(x)<0,φ(x)单调递减,∴φ(x)在x=1处取得唯一的极小值,即为最小值,即φ(x)≥φ(1)=1>0,∴F′(x)>0,∴F(x)在(0,+∞)上是增函数,∴当x>1时,F(x)为增函数,故F(x)>F(1)=2,故F(x)e+1>2e+1.令h(x)=2e x-1x e x+1,则h′(x)=2·e x-1(x e x+1)-(x e x+1)′e x-1(x e x+1)2=2e x-1(1-e x)(x e x+1)2.∵x>1,∴1-e x<0,∴h′(x)<0,即h(x)在(1,+∞)上是减函数,∴x>1时,h(x)<h(1)=2e+1,∴F(x)e+1>2e+1>h(x),即F(x)e+1>2e x-1x e x+1,∴F(x)2e x-1>e+1x e x+1.2.(2016·山东日照模拟,21,12分)已知函数f(x)=(ax2+2x-a)e x,g(x)=1 2f(ln x),其中a∈R,e=2.718 28…为自然对数的底数.(1)若函数y=f(x)的图象在点M(2,f(2))处的切线过坐标原点,求实数a的值;(2)若f(x)在[-1,1]上为单调递增函数,求实数a的取值范围;(3)当a =0时,对于满足0<x 1<x 2的两个实数x 1,x 2,若存在x 0>0,使得g ′(x 0)=g (x 1)-g (x 2)x 1-x 2成立,试比较x 0与x 1的大小.2.解:(1)∵f (x )=(ax 2+2x -a )e x , f ′(x )=[ax 2+2(a +1)x +2-a ]e x , 则f ′(2)=(7a +6)e 2,f (2)=(3a +4)e 2.∴函数y =f (x )的图象在点M (2,f (2))处的切线为y -f (2)=(7a +6)e 2(x -2). ∵切线过坐标原点, ∴0-f (2)=(7a +6)e 2(0-2), 即(3a +4)e 2=2(7a +6)e 2,∴a =-811. (2)f ′(x )=[ax 2+2(a +1)x +2-a ]e x ,要使f (x )在[-1,1]上为单调递增函数,只要ax 2+2(a +1)x +2-a ≥0. 令Γ(x )=ax 2+2(a +1)x +2-a ,①当a =0时,Γ(x )=2x +2,在[-1,1]内Γ(x )≥Γ(-1)=0, ∴f ′(x )≥0,∴函数f (x )在[-1,1]上为单调递增函数.②当a >0时,Γ(x )=ax 2+2(a +1)x +2-a 是开口向上的二次函数,其对称轴为x =-⎝ ⎛⎭⎪⎫1+1a <-1,∴Γ(x )在[-1,1]上单调递增.为使f (x )在[-1,1]上单调递增,必须Γ(x )min = Γ(-1)=-2a ≥0,∴a ≤0,而此时a >0,产生矛盾. ∴此种情况不符合题意.③当a <0时,Γ(x )=ax 2+2(a +1)x +2-a 是开口向下的二次函数,为使f (x )在 [-1,1]上单调递增,必须f ′(x )≥0,即Γ(x )≥0在[-1,1]上恒成立, ∴Γ(1)≥0,∴2a +4≥0, 又a <0,∴-2≤a <0.综合①②③,得实数a 的取值范围为[-2,0]. (3)g (x )=12f (ln x )=x ln x , g ′(x )=ln x +1.∵对于满足0<x 1<x 2的实数x 1,x 2,存在x 0>0,使得g ′(x 0)=g (x 1)-g (x 2)x 1-x 2成立,∴ln x 0+1=g (x 1)-g (x 2)x 1-x 2,即ln x 0+1=x 1ln x 1-x 2ln x 2x 1-x 2,∴ln x 0-ln x 1=x 1ln x 1-x 2ln x 2x 1-x 2-1-ln x 1=x 2ln x 1-x 2ln x 2+x 2-x 1x 1-x 2=ln x 1x 2+1-x 1x2x 1x 2-1.设φ(t )=ln t +1-t ,其中0<t <1, 则φ′(t )=1t -1>0,∴φ(t )在区间(0,1)上单调递增, φ(t )<φ(1)=0. ∵0<x 1<x 2, ∴0<x 1x 2<1,∴φ⎝ ⎛⎭⎪⎫x 1x 2=ln x 1x 2+1-x 1x 2<0.又x 1x 2-1<0,∴ln x 0-ln x 1>0,即x 0>x 1.考法04 根据不等式的成立情况求参数的取值范围(2013·课标Ⅰ理,21,12分)已知函数f (x )=x 2+ax +b ,g (x )=e x (cx+d ),若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.【知识揭秘】 揭秘1:由已知及导数的几何意义,f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4,解四元一次方程组;揭秘2:ln k 与-2的大小比较需要解对数不等式,然后分类讨论. 【思维揭秘】 (1)根据曲线y =f (x )和曲线y =g (x )都过点P (0,2),可将P (0,2)分别代入到y =f (x )和曲线y =g (x )上,再利用在点P 处有相同的切线y =4x +2,对曲线y =f (x )和曲线y =g (x )进行求导,列出关于a ,b ,c ,d 的方程组求解;(2)构造函数F (x )=kg (x )-f (x ),然后求导,判断函数F (x )的单调性,通过分类讨论确定k 的取值范围.【解析揭秘】 (1)由已知得f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ).而⎩⎨⎧f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知f (x )=x 2+4x +2,g (x )=2e x (x +1). 设F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1.令F ′(x )=0,即2(x +2)(k e x -1)=0,得 x 1=-ln k ,x 2=-2. ①若-1≤k <e 2,则-2<x 1≤0, 从而当x ∈(-2,x 1)时,F ′(x )<0; 当x ∈(x 1,+∞)时,F ′(x )>0,即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增, 故F (x )在[-2,+∞)上有最小值为F (x 1). 而F (x 1)=2x 1+2-x 21-4x 1-2=-x 1(x 1+2)≥0,故当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).②若当k=e2,则F′(x)=2e2(x+2)(e x-e-2).当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增,而F(-2)=0,故当且仅当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围为[1,e2].1.(2016·广西南宁模拟,21,12分)已知函数f(x)=1x+a ln x(a≠0,a∈R).(1)若a=1,求函数f(x)的极值和单调区间;(2)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.1.解:(1)因为f′(x)=-1x2+ax=ax-1x2.当a=1时,f′(x)=x-1 x2.令f′(x)=0,得x=1,又f(x)的定义域为(0,+∞),f′(x),f(x)随x的变化情况如下表:x(0,1)1(1,+∞) f′(x)—0+f(x)↘极小值↗所以x=1f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)因为f′(x)=-1x2+ax=ax-1x2,且a≠0,令f′(x)=0,得x=1a,若在区间[1,e]上存在一点x0,使得f(x0)<0成立,其充要条件是f(x)在区间[1,e]上的最小值小于0即可.①当a<0时,f′(x)<0对x∈(0,+∞)成立,所以f(x)在区间[1,e]上单调递减,故f (x )在区间[1,e]上的最小值为f (e)=1e +a ln e =1e +a . 由1e +a <0,得a <-1e , 即a ∈⎝ ⎛⎭⎪⎫-∞,-1e . ②当a >0时,若e≤1a ,则f ′(x )≤0对x ∈[1,e]成立,所以f (x )在区间[1,e]上单调递减, 所以f (x )在区间[1,e]上的最小值为f (e)=1e +a ln e =1e +a >0, 显然,f (x )在区间[1,e]上的最小值小于0不成立; 若1<1a <e ,即1>a >1e 时,则有所以f (x )在区间[1,e]上的最小值为f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a ,由f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a =a (1-ln a )<0,得1-ln a <0,解得a >e ,即a ∈(e ,+∞)舍去;若0<1a <1,即a >1,即有f (x )在[1,e]递增,可得f (1)取得最小值,且为1,f (1)>0,不成立.综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-1e .2.(2016·辽宁沈阳一模,21,12分)已知函数f (x )=x ln x -a2x 2-x +a (a ∈R )在其定义域内有两个不同的极值点.(1)求a 的取值范围;(2)记两个极值点分别为x 1,x 2,且x 1<x 2.已知λ>0,若不等式e 1+λ<x 1·x λ2恒成立,求λ的取值范围.2.解:(1)f ′(x )=ln x -ax ,由题意得,函数f (x )的定义域为(0,+∞),所以方程f ′(x )=0在(0,+∞)有两个不同根,即方程ln x -ax =0在(0,+∞)有两个不同根.令g (x )=ln x -ax ,从而转化为函数g (x )有两个不同零点, 而g ′(x )=1x -a =1-ax x (x >0).若a ≤0,可见g ′(x )>0在(0,+∞)上恒成立,所以g (x )在(0,+∞)上单调增, 此时g (x )不可能有两个不同零点.若a >0,在0<x <1a 时,g ′(x )>0,在x >1a 时,g ′(x )<0,所以g (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,从而g (x )极大值=g ⎝ ⎛⎭⎪⎫1a =ln 1a -1.又因为在x →0时,g (x )→-∞,在x →+∞时,g (x )→-∞,于是只须g (x )极大值>0,即ln 1a -1>0,所以0<a <1e .综上所述,0<a <1e . (2)因为e 1+λ<x 1·x λ2等价于1+λ<ln x 1+λln x 2.由(1)可知x 1,x 2分别是方程ln x -ax =0的两个根,即ln x 1=ax 1,ln x 2=ax 2. 所以原式等价于1+λ<ax 1+λax 2=a (x 1+λx 2). 因为λ>0,0<x 1<x 2, 所以原式等价于a >1+λx 1+λx 2.又由ln x 1=ax 1,ln x 2=ax 2作差得, ln x 1x 2=a (x 1-x 2),即a =ln x 1x2x 1-x 2, 所以原式等价于ln x 1x 2x 1-x 2>1+λx 1+λx 2.因为0<x 1<x 2,原式恒成立, 即ln x 1x 2<(1+λ)(x 1-x 2)x 1+λx 2恒成立.令t =x 1x 2,t ∈(0,1),则不等式ln t <(1+λ)(t -1)t +λ在t ∈(0,1)上恒成立.令h (t )=ln t -(1+λ)(t -1)t +λ,又h ′(t )=1t -(1+λ)2(t +λ)2=(t -1)(t -λ2)t (t +λ)2,①当λ2≥1时,可见t ∈(0,1)时,h ′(t )>0,所以h (t )在t ∈(0,1)上单调递增. 又h (1)=0,h (t )<0在t ∈(0,1)恒成立,符合题意.②当λ2<1时,可见t ∈(0,λ2)时,h ′(t )>0,t ∈(λ2,1)时,h ′(t )<0, 所以h (t )在t ∈(0,λ2)时单调递增,在t ∈(λ2,1)时单调递减. 又h (1)=0,所以h (t )在t ∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e 1+λ<x 1·x λ2恒成立,只需λ2≥1.又λ>0,所以λ≥1.考法05 导数与数列、不等式等知识的综合问题(2016·黑龙江哈尔滨模拟,21,12分)设函数f (x )=ln x -px +1.(1)求函数f (x )的极值点;(2)当p >0时,若对任意的x >0,恒有f (x )≤0,求p 的取值范围;(3)证明:ln 2222+ln 3232+…+ln n 2n 2<2n 2-n -12(n +1)(n ∈N ,n ≥2).【知识揭秘】 揭秘1:函数f (x )的极值点,即在定义域内使f ′(x )=0的点. 揭秘2:f (x )≤0⇔f (x )max ≤0.揭秘3:先令p =1,由(2)知,当x >0时,ln x -x +1≤0,从而ln n 2≤n 2-1,结合裂项求和及放缩法即可得证.【思维揭秘】 (1)先求函数f (x )的定义域,再讨论满足f ′(x )=0的点,在定义域内根据导数符号的变化情况来确定极值点;(2)要使f (x )≤0恒成立,只需函数f (x )的最大值小于等于零即可;(3)令p =1,结合(2)得到ln x ≤x -1⇒n ∈N ,n ≥2时,lnn 2≤n 2-1⇒ln n 2n 2≤n 2-1n 2=1-1n 2,再根据1n 2>1n (n +1)放缩求证.【解析揭秘】 (1)∵f (x )=ln x -px +1, ∴f (x )的定义域为(0,+∞), f ′(x )=1x -p =1-px x .当p ≤0时,f ′(x )>0,f (x )在(0,+∞)上无极值点; 当p >0时,令f ′(x )=0,得x =1p .当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:从上表可以看出,当p >0时,f (x )在(0,+∞)上有唯一的极大值点x =1p . (2)当p >0时,f (x )在x =1p 处取得极大值f ⎝ ⎛⎭⎪⎫1p =ln 1p ,此极大值也是f (x )在(0,+∞)上的最大值,要使f (x )≤0在x >0时恒成立,只需f ⎝ ⎛⎭⎪⎫1p =ln 1p ≤0,∴p ≥1,即p 的取值范围为[1,+∞).(3)证明:令p =1,由(2)知,当x >0时,ln x -x +1≤0, ∴ln x ≤x -1.∵n ∈N ,n ≥2,∴ln n 2≤n 2-1,∴ln n 2n 2≤n 2-1n 2=1-1n 2,∴ln 2222+ln 3232+…+ln n 2n 2 ≤⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫1-132+…+⎝ ⎛⎭⎪⎫1-1n 2 =(n -1)-⎝ ⎛⎭⎪⎫122+132+…+1n 2 <(n -1)-⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n (n +1) =(n -1)-⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1=(n -1)-⎝ ⎛⎭⎪⎫12-1n +1=2n 2-n -12(n +1).即ln 2222+ln 3232+…+ln n 2n 2<2n 2-n -12(n +1)(n ∈N ,n ≥2).【名师点睛】 使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上构造正负相消是此法的根源与目的.有关数列的不等式的证明要注意两点:一:灵活构造函数,通过函数的单调性、极值、最值等得出不等式,再通过此不等式赋值得出数列中的初始不等式,进而利用不等式的性质证明.二:对数列不等式需对中间过程及最后结果进行适当放缩,转化为熟悉的数列求和问题.1.(2016·湖南长沙联考,21,12分)已知函数f (x )=x (1+a ln x )x -1(x >1).(1)若g (x )=(x -1)2f ′(x )在(1,+∞)是增函数,求实数a 的取值范围; (2)当a =1时,若f (x )>n 恒成立,求满足条件的正整数n 的最大值;(3)求证:(1+1×3)×(1+3×5)×…×[1+(2n -1)(2n +1)]>e 2n -32.1.解:(1)f ′(x )=ax -a ln x -a -1(x -1)2所以g (x )=ax -a ln x -a -1, 由g ′(x )=a -a x =a (x -1)x≥0⇒a ≥0,所以a >0时,g (x )在(1,+∞)上单调递增;又a =0时,g (x )=-1为常函数,不具有单调性,故a >0.(2)a =1时,g (x )=x -ln x -2, g (3)=3-ln 3-2=ln e3<0, g (4)=4-ln 4-2=ln e 24>0. 设g (b )=0,则b ∈(3,4),因为此时g (x )在(1,+∞)上单调递增,可知当x ∈(1,b )时,g (x )<0;当x ∈(b ,+∞)时,g (x )>0, 所以当x ∈(1,b )时,f ′(x )<0; 当x ∈(b ,+∞)时,f ′(x )>0,所以当x =b 时,f (x )min =f (b )=b (1+ln b )b -1,g (b )=0,所以b -ln b -2=0,即b -1=ln b +1,所以f (b )=b . 因为b ∈(3,4),所以f (b )∈(3,4),所以n ≤3, 故满足条件的正整数n 的最大值为3.(3)证明:由(2)知,当a =1时,f (x )>3恒成立,即x (1+ln x )x -1 >3,1+lnx >3(x -1)x ,ln x >3(x -1)x -1=2-3x (x >1). 令x =1+(2n -1)(2n +1), ln[1+(2n -1)(2n +1)] >2-31+(2n -1)(2n +1)>2-3(2n -1)(2n +1)=2-32⎝ ⎛⎭⎪⎫12n -1-12n +1, ln(1+1×3)>2-32⎝ ⎛⎭⎪⎫11-13,…,ln[1+(2n -1)(2n +1)]>2-32⎝ ⎛⎭⎪⎫12n -1-12n +1,以上n 个式子相加得:ln(1+1×3)+ln(1+3×5)+…+ln[1+(2n -1)(2n +1)]>2n -32⎝ ⎛⎭⎪⎫1-12n +1 >2n -32,ln(1+1×3)×(1+3×5)×…×[1+(2n -1)(2n +1)]>2n -32,即(1+1×3)×(1+3×5)×…×[1+(2n -1)(2n +1)]>e 2n -32.2.(2016·江西上饶模拟,21,12分)已知函数f (x )=x sin x +cos x (x >0). (1)当x ∈(0,2π)时,求f (x )的极值;(2)记x i 为f (x )的从小到大的第i (i ∈N *)个极值点,证明:1x 22+1x 23+…+1x 2n<29(n ≥2,n ∈N ).2.解:(1)f ′(x )=sin x +x cos x -sin x =x cos x ,x ∈(0,2π). 令f ′(x )=0,得x =π2或3π2.∴f (x )在⎝ ⎛⎭⎪⎫0,π2或⎝ ⎛⎭⎪⎫3π2,2π上单调递增,在⎝ ⎛⎭⎪⎫π2,3π2上单调递减, f (x )极小值=f ⎝ ⎛⎭⎪⎫3π2=3π2sin 3π2+cos 3π2=-3π2,f (x )极大值=f ⎝ ⎛⎭⎪⎫π2=π2sin π2+cos π2=π2.(2)证明:∵f ′(x )=0,x >0, ∴x i =(2n -1)π2, ∴94×1x 2i =⎣⎢⎡⎦⎥⎤3(2n -1)π2<1(2n -1)2, ∴94⎝ ⎛⎭⎪⎫1x 22+1x 23+…+1x 2n <132+152+…+1(2n -1)2 <11×3+13×5+15×7+…+1(2n -3)(2n -1)=12⎝ ⎛11-13+13-⎭⎪⎫15+15-17+…+12n -3-12n -1=12⎝⎛⎭⎪⎫1-12n -1=12-14n -2<12, ∴1x 22+1x 23+…+1x 2n<49×12=29(n ≥2,n ∈N ). 3.(2016·陕西西安模拟,21,12分)设函数f (x )=e x -ax -1. (1)若函数f (x )在R 上单调递增,求a 的取值范围; (2)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0;(3)求证:对任意的正整数n ,都有⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<1. 3.解:(1)由题意得f ′(x )=e x -a ≥0对x ∈R 均成立,且e x >0, 故a 的取值范围是a ≤0.(2)证明:由a >0及f ′(x )=e x -a 可得函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故函数f (x )的最小值为g (a )=f (ln a )=e ln a -a ln a -1=a -a ln a -1, 则g ′(a )=-ln a ,故当a ∈(0,1)时,g ′(a )>0,当a ∈(1,+∞)时,g ′(a )<0,所以g (a )在(0,1)上单调递增,在(1,+∞)上单调递减.则g (a )在x =1处取得极大值,也为最大值.又g (1)=0,故g (a )≤0.(3)证明:由(2)可知当a =1时,总有f (x )=e x -x -1≥0,当且仅当x =0时,等号成立.当x >0时,总有e x >x +1, 所以(x +1)n +1<(e x )n +1=e (n +1)x .令x +1=1n +1,即x =-n n +1,可得⎝ ⎛⎭⎪⎫1n +1n +1<e -n ;令x +1=2n +1,即x =-n -1n +1,可得⎝ ⎛⎭⎪⎫2n +1n +1<e -(n -1);令x +1=3n +1,即x =-n -2n +1,可得⎝ ⎛⎭⎪⎫3n +1n +1<e -n -2;……令x +1=n n +1,即x =-1n +1,可得⎝ ⎛⎭⎪⎫n n +1n +1<e -1.以上各式相加得⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<e -n +e -(n -1)+e -(n -2)+…+e -1=e -n (1-e n )1-e =e -n -11-e =1-e -n e -1<1e -1<1,故对任意的正整数n ,都有⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<1成立.。

名师揭秘2020年高考数学冲刺(理)12 导数的综合应用(原卷版)

名师揭秘2020年高考数学冲刺(理)12 导数的综合应用(原卷版)

专题12导数的综合应用[高考定位] 高考中考查导数几何意义的题目多以选择题、填空题的形式出现,有时出现在解答题的第一问,难度较小.高考重点考查导数的应用,即利用导数研究函数的单调性、极值、最值等,题目多出现在选择题、填空题的后几题中,有时也出现在解答题中,难度中等. 考点一 导数的几何意义及定积分 [核心提炼] 1.导数的几何意义函数f (x )在x 0处的导数是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率,曲线f (x )在点P 处的切线的斜率k =f ′(x 0),相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.4个易出错的导数公式 (1)(sin x )′=cos x . (2)(cos x )′=-sin x .(3)(a x )′=a x ln a (a >0,且a ≠1). (4)(log a x )′=1x ln a(a >0,且a ≠1,x >0). [规律方法]曲线y =f (x )的切线方程的3种类型及求解方法 (1)已知切点P (x 0,y 0),求切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程.(2)已知切线的斜率k ,求切线方程:设切点P (x 0,y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程.(3)已知切线上一点(非切点),求切线方程:设切点P (x 0,y 0),利用导数求得切线斜率f ′(x 0),再由斜率公式求得切线斜率,列方程(组)解得x 0,再由点斜式或两点式写出方程.考点二 利用导数研究函数的单调性 [核心提炼]导数与函数单调性的关系(1)f′(x )>0是f(x)为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但f′(x )≥0. (2)f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f′(x )=0时,f (x )为常数函数,函数不具有单调性. [规律方法]求解或讨论函数单调性问题的解题策略讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为讨论含有参数的一元二次不等式的解集:(1)若能够通过因式分解求出不等式对应方程的根,则依据根的大小进行分类讨论.(2)若不能通过因式分解求出不等式对应方程的根,则根据不等式对应方程的判别式进行分类讨论. [注意] 讨论函数的单调性需在函数的定义域内进行,千万不要忽视了定义域的限制. 考点三 利用导数研究函数的极值(最值) [核心提炼]导数与函数的极值、最值的关系(1)若在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.(2)设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值,且在极值点或端点处取得. [规律方法]利用导数研究函数极值、最值的方法(1)若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. (2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解.(3)求函数f (x )在闭区间[a ,b ]的最值时,先求出极值,再将区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值. 【题型】一、多变量的解题策略 二.极值点偏移的解题方法 三.零点判断与参数四.xe 与ln x 共存的解题方法五.'()0f x =的替代 六. 多次求导的灵活应用 七.导数与不等式的综合 八.导数与放缩法 【方法规律总结】 一、多变量的解题策略例1.已知函数()()ln 0f x a x a =≠与212y x e=的图象在它们的交点(),P s t 处具有相同的切线. (1)求()f x 的解析式;(2)若函数()()()21g x x mf x =-+有两个极值点1x ,2x ,且12x x <,求()21g x x 的取值范围.练习1.已知函数221()2ln (0)2f x ax x a x a =-+≠. (1)讨论()f x 的单调性;(2)当13a =时,设()f x 的两个极值点为1x ,2x ,证明:121212()()11f x f x x x x x -+-<.练习2.已知函数()()2ln ,1f x x ax g x ax =-=+,其中e 为自然对数的底数.(1)讨论函数()f x 在区间[]1,e 上的单调性;(2)已知()0,a e ∉,若对任意[]12,1,x x e ∈,有()()12f x g x >,求实数a 的取值范围.二.极值点偏移的解题方法 例2.已知函数()21xf x x ae =--.(1)若()f x 有两个不同的极值点1x ,2x ,求实数a 的取值范围; (2)在(1)的条件下,求证:124xx e e a+>.练习1.已知函数1()ln xf x ea x -=+有两个极值点()1212,x x x x <.(1)求实数a 的取值范围; (2)求证:122x x +>; (3)求证:121x x <.练习2.已知函数2()()tf x e ax a =-∈R .(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在区间(0,)+∞有两个零点,分别为12x x ,,求证:124x x +>.三.零点判断与参数例3. 已知函数()2ln f x ax x x -=-,其中a R ∈.(1)若函数()f x 在()01,内单调递减,求实数a 的取值范围;(2)试讨论函数()f x 的零点个数.练习1.已知函数()ln f x x =,()21212g x x x =-+. (1)求函数()()()3x g x f x ϕ=-的单调递减区间; (2)设()()()h x af x g x =-,a R ∈. ①求证:函数()y h x =存在零点;②设0a <,若函数()y h x =的一个零点为m .问:是否存在a ,使得当()0,x m ∈时,函数()y h x =有且仅有一个零点,且总有()0h x ≥恒成立?如果存在,试确定a 的个数;如果不存在,请说明理由.四.xe 与ln x 共存的解题方法例4. 已知函数()()1xf x alnx x e =--,其中a 为非零常数.()1讨论()f x 的极值点个数,并说明理由;()2若a e >,()i 证明:()f x 在区间()1,+∞内有且仅有1个零点;()ii 设0x 为()f x 的极值点,1x 为()f x 的零点且11x >,求证:0012x lnx x +>.练习1.已知函数()ln()xf x ax a=-. (1)求()f x 的极值; (2)若()2ln 10x xe x mx e x m ++-+≤,求正实数m 的取值范围.五.'()0f x =的替代例5. 设函数()()()12xxf x x e a e e=-+-,(1)求()f x 的单调区间;(2)若不等式()0f x >对()2,x ∈+∞恒成立,求整数a 的最大值.练习1.已知函数21()ln 2f x x ax =-,a R ∈. (1)求函数()f x 的单调区间;(2)若关于x 的不等式()(1)1f x a x ≤--恒成立,求整数a 的最小值.六. 多次求导的灵活应用 例6. 已知函数()3211132f x x x ax =-++-. (1)讨论函数的单调性;(2)若1a ≤,证明:当[)0,x ∈+∞时,()sin cos f x x x ≤-.练习1.已知函数()()22xf x e x a b x R =-++∈的图象在0x =处的切线为y bx =.(e 为自然对数的底数).(1)求a ,b 的值;(2)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围.七.导数与不等式的综合 例7. 设函数()()()1ln 10x f x x x++=>.(1)若()1kf x x >+恒成立,求整数k 的最大值; (2)求证:()()()2311212311n n n e -+⨯⋅+⨯+⨯+>⎡⎤⎣⎦L .练习1.设函数2()ln(1)f x x b x =++,其中0b ≠.(1)当2b =时,求函数()y f x =的图象在点(0,0)处的切线方程; (2)讨论函数()f x 的单调性;(3)当*n ∈N ,且n 2≥时,证明不等式33311111111ln (1)(1)(1)232321n n n ⎡⎤+++++++>-⎢⎥+⎣⎦…….八.导数与放缩法例8. 已知函数()ln 1,af x x a x=+-∈R . (1)若函数()f x 的最小值为2,求a 的值;(2)当(0,)x π∈时,证明:1ln sin xe x x>-.练习1.已知函数()()1e xf x x a =+-,a R ∈.(1)讨论()f x 的单调性;(2)当1a ≥时,证明:()ln 1f x a a a -+≤.。

浙江省2020版高考数学专题3导数及其应用3.2导数的应用课件

浙江省2020版高考数学专题3导数及其应用3.2导数的应用课件
3.当求出的函数单调区间(如单调增区间)有多个时,不能把这些区间取 并集. 4.f '(x)>0(或f '(x)<0)是f(x)在某一区间上为增函数(或减函数)的充分不必 要条件.
5.f '(x)≥0(或f '(x)≤0)是f(x)在某一区间上为增函数(或减函数)的必要不 充分条件. 考向突破 考向一 单调性的判断 例1 (2018浙江温州二模(3月),8)已知函数f(x)与f '(x)的图象如图所示,
1 1 1 3 (i)若1≤x≤2,则ln x≥0, f(x)=aln x+x- ≤x- ≤2- = . x x 2 2
当a=0,x=2时取等号. (10分)
(ii)若 ≤x<1,则ln x<0, f(x)=aln x+x- ≤- ln x+x- .
1 2 1 3 1 5 所以当 ≤x<1时,g(x)≤g = ln 2 . (13分) 2 2 2 2 5 3 5 3 3 3 因为 ln 2- < - =1< ,所以f(x)≤ . 2 2 2 2 2 2 3 综上, f(x)max= . 2 3 于是bmin= . (15分) 2
答案 C
考点二
考向基础
导数与极值、最值
1.设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)< f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所 有的点,都有f(x)>f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极 大值与极小值统称为极值. 2.当函数f(x)在x=x0处连续时,判断f(x0)是极大(小)值的方法: (1)如果x<x0时有f '(x)>0,x>x0时有f '(x)<0,则f(x0)是① 极大值 ; (2)如果x<x0时有f '(x)<0,x>x0时有f '(x)>0,则f(x0)是② 极小值 . 3.函数的最大值与最小值 设函数f(x)在[a,b]上连续,在(a,b)内可导,先求f(x)在(a,b)内的极值;将f(x)

2020高考数学复习专题13+函数与导数大题-冲刺高考最后一个月(理科数学)名师押题高端精品

2020高考数学复习专题13+函数与导数大题-冲刺高考最后一个月(理科数学)名师押题高端精品

(一)命题特点和预测:分析近8年的全国新课标1的函数与导数大题,发现8年8考,每年1题,第1小题主要考查函数的切线、函数的单调性、极值、最值,第2小题主要考查零点个数、方程解得个数、切线的条数、极值点个数、不等式的证明、函数能成立与恒成立问题、范围问题,考查分类整合思想与分析解决问题的能力,第1小题是基础题,第2小题是压轴题,为难题.2019年函数与导数大题仍为压轴题,主要考查导数的几何意义、常见函数的导数及导数的运算法则、利用导数研究函数的图象与性质,进而研究零点个数、方程解得个数、切线的条数、极值点个数、不等式的证明、函数能成立与恒成立问题、范围问题,考查分类整合思想与分析解决问题的能力,难度为难题.(二)历年试题比较: 年份 题目2018年【2018新课标1,理21】已知函数.(1)讨论的单调性;(2)若存在两个极值点,证明:.2017年 【2017新课标1,理21】(12分)已知函数.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.2016年【2016高考新课标理数1】已知函数有两个零点.(I )求a 的取值范围;(II )设x 1,x 2是()f x 的两个零点,证明:122x x +<.2015年【2015高考新课标1,理21】已知函数f (x )=.(Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数,讨论h (x )零点的个数.2014年【2014课标Ⅰ,理21】(12分)设函数,曲线()y f x =在点(1,(1))f 处的切线方程为(I )求,;a b(II )证明:() 1.f x >2013年 【2013课标全国Ⅰ,理21】(本小题满分12分)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2. (1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.2012年【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2. (1)求f (x )的解析式及单调区间; (2)若f (x )≥12x 2+ax +b ,求(a +1)b 的最大值. 2011年【2011全国新课标,理21】已知函数,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0. (1)求a ,b 的值;(2)如果当x >0,且x ≠1时,,求k 的取值范围.【解析与点睛】(2018年)(21)【解析】(1)的定义域为,.(i )若,则,当且仅当,时,所以在单调递减.(ii )若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.(2017年)【解析】(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-. 当时,()0f x '<;当时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,综上,a 的取值范围为(0,1).当x =1时,若54a ≥-,则,,故x =1是()h x 的零点;若54a <-,则,,故x =1不是()h x 的零点.当(0,1)x ∈时,,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(0,3a -)单调递减,在(3a-,1)单调递增,故当x =3a -时,()f x【考点定位】利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想(2014年)【答案】(I )1,2a b ==;(II )详见解析.【解析】(I )函数的定义域为(0,)+∞..由题意可得,.故1,2a b ==.(II )由(I )知,,从而()1f x >等价于,设函数,则.所以当1(0,)x e∈时,'()0g x <;当1(,)x e ∈+∞时,'()0g x >.故()g x 在1(0,)e递减,在1(,)e +∞递增,从而()g x 在(0,)+∞的最小值为11()g e e=-.设,则.所以当(0,1)x ∈时,'()0h x >;当(1,)x ∈+∞时,'()0h x <.故()h x 在(0,1)递增,在(1,)+∞递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.综上,当0x >时,()()g x h x >,即() 1.f x >.(2013年)【解析】:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2,则F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0得x1=-ln k,x2=-2.①若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增.故F(x)在[-2,+∞)的最小值为F(x1).x-4x1-2=-x1(x1+2)≥0.而F(x1)=2x1+2-21故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].则g′(x)=e x-(a+1).当x∈(-∞,ln(a+1))时,g′(x)<0;当x∈(ln(a+1),+∞)时,g′(x)>0.从而g(x)在(-∞,ln(a+1))上单调递减,在(ln(a+1),+∞)上单调递增.(2011年)【解析】:(1).由于直线x+2y-3=0的斜率为-12,且过点(1,1),故即解得11ab=⎧⎨=⎩(2)(理)由(1)知,所以. 考虑函数(x>0),则(三)命题专家押题 题号试题1. 已知函数,.(1)若,求函数在区间(其中,是自然对数的底数)上的最小值;(2)若存在与函数,的图象都相切的直线,求实数的取值范围.2.设函数.(1)证明的图象过一个定点,并求在点处的切线方程;(2)已知,讨论的零点个数.3.已知函数,其中,.(1)判断函数的单调性;(2)设, 是函数的两个零点,求证:;4.已知函数.(1)讨论极值点的个数;(2)若有两个极值点,,且,求实数的取值范围.5.已知函数.(1)若,求曲线在点处的切线方程;(2)求函数的极值点个数.6 设函数.(1)判断的单调性,并求极值;(2)若,且对所有都成立,求实数m的取值范围.7 已知函数,其中为自然对数的底数,.(1)当时,求的极值;(2)若存在实数,使得,且,求证:.8 设函数.(1)讨论的极值;(2)若曲线和曲线在点处有相同的切线,且当时,,求的取值范围9 已知函数(为自然对数的底,,为常数且)(1)当时,讨论函数在区间上的单调性;(2)当时,若对任意的,恒成立,求实数的取值范围.10 已知函数.(1)若函数在上单调递增,求实数的取值范围;(2)当时,若方程有两个不等实数根,,求实数的取值范围,并证明.【详细解析】1.【解析】(1)由题意,可得,,令,得.①当时,在上单调递减,∴.②当时,在上单调递减,在上单调递增,∴.综上,当时,,当时,.(2)设函数在点处与函数在点处有相同的切线,则,∴,∴,代入得.∴问题转化为:关于的方程有解,设,则函数有零点,∵,当时,,∴. ∴问题转化为:的最小值小于或等于0.,设,则当时,,当时,.∴ 在 上单调递减,在上单调递增,∴ 的最小值为.由知,故.设,则∵,∴当∴ 的最小值,故 在时,,等价于.上单调递增,又∵函数在 上单调递增,∴.2.【解析】(1) ,,的图象经过定点在点 处的切线方程为(2) 则,令,在上单调递增,由 且当在,时,即上单调递减,在, 唯一,使;当时,即上单调递增,=令,则 在上递减,且①时,即时,,,在②时,即 时,,在上存在唯一零点③时,即时,上无零点,,即,又令,则,在上单增,,在上恒成立,,又 ,,即在 综上所述,,上各存在一个零点时, 无零点; 时,有一个零点;时, 有另一个零点.3.【解析】(1)①当时,,,,,∴,∴ 在 上递减;②当 综上可知,时,,在 上递减, 在,∴,∴ 在上递增.上递增.(2)不妨设,由题意及(I)可知,,,且,令,,则,即,∴,,∴,,由(1)知 在上递增,∴,∴.4.【解析】(1)由,得.令,得,即,令,则,且,由得.当 时,,在单调递增;当 时,,在单调递减.所以,且当时,;当时,.所以,当,方程 故当 当 当有两解,不妨设为时,,故 单调递减,时,,故 单调递增,时,,故 单调递减,即时, 有两个极值点;当,恒成立,故 单调递减,即 时, (2)不妨设没有极值点. ,由(1)知,,则,两边取对数,所以,所以,即.令,,则,.因为,即,所以,即,设 ,则 ,且.易知 .记,则,且 考查函数,,.①当时, ,则,即,所以 在上单调递减,所以当 时,,所以当时符合题意.②当时, ,有两个不同零点 , ,且,,不妨设 ,则,当时,,则,所以 在 上单调递增,故存在,使得,所以,当时,不符合题意,综上, 的取值范围是.5.【解析】(1)依题意,,故,又,故所求切线方程为.(2)依题意.令,则,且当时,当 时,,所以函数 在 单调递减,在单调递增,,当 时, 函数 在区间恒成立, 单调递增,. 无极值点;当 时,,故存在和,使得,当时,,当时,,当时,,所以函数 在单调递减,在 和单调递增,所以 为函数的极大值点, 为函数 的极小值点.综上所述,当 时, 无极值点;当 时, 有 个极值点.6.【解析】(1) 当 a≤0 时, 当 a>0 时,由,, 在 R 上单调递增,函数无极值;得,,若,, 单调递减,若,f'(x)>0, 单调递增,的极小值为.(2)令,依题意,对所有的 x≥0,都有 F(x)≥0,易知,F(0)=0,求导可得,,令,由得,H(x)在[0,+∞)上为递增函数,即 F'(x)在 x∈[0,+∞)上为递增函数,若 m≤2,,得 在 x∈[0,+∞)上为递增函数,有 ≥F(0)=0,符合题意,若 m>2,令 <0,得.所以 在 综上,实数 m 的取值范围为 7.【解析】(1))上单调递减,有 .舍去,当 时,得.当时,当时,所以当时, 单调递减, 当可得当时, 有极小值(2)由(1)时, 单调递增,当 时,此时 单调递增,若,可得,与矛盾;当 时, 由(1) 知当时, 单调递减, 当同理不存在或,使得时, 单调递增, ;不妨设,则有因为时, 单调递减, 当时, 单调递增,且,所以当时,由且,可得,故,又在单调递减,且所以,所以.同理即 解得 综上所述,命题得证.8.【解析】(1)∵,∴.①当 时,恒成立,所以 在 上单调递增,无极值.②当 时,由得,且当时,单调递减;当所以当时, 有极小值,且③当 时,由得,且当时,单调递增;当所以当时, 有极大值,且综上所述,当 时, 无极值;当 时,,无极大值;时,单调递增.,无极大值.时,单调递减.,无极小值.当 时,(2)由题意得∵和,无极小值. ,在点处有相同的切线,∴,即,解得 ,∴.令,则 由题意可得由得, ,解得 . .①当,即时,则,∴当时,单调递减;当时,∴上的最小值为②当,即时,则,∴当 又 ∴当 ③当时, ,时,在 ,即,即时,上单调递增, 恒成立.则有 从而当时,综上所述 的取值范围为, 不可能恒成立. .9.【解析】(1)由题知 时,,,①当 时,得函数 在上单调递减;②当 时,由,得,由,得 ,单调递增, ,∴恒成立.,Ⅰ.当 Ⅱ.当(2)时,函数 在区间 时,函数 在区间时,上单调递减,在区间 上单调递增.,则 由(1)知,函数 所以当 时,,在区间上单调递增,,即,上单调递增;∴ ①当 ∴ ②当时,在区间(合题意).时,. 上恒成立,即 在上单调递增,由,得,且 在上单调递增,又,,,,故在上存在唯一的零点 ,当时,,即在上递减,此时,知 在此时与已知矛盾(不合题意),综上:满足条件的实数 的取值范围是.上递减,10.【解析】(1),∵函数 在 上单调递增,∴在恒成立,即对恒成立,∴对恒成立,即,,令,则,∴ 在 上单调递减,∴ 在 上的最大值为.∴ 的取值范围是.(2)∵当 时,方程令当时,,则,,故 单调递减,当时,,故 单调递增,∴.若方程有两个不等实根,则有当 时,,,,令,则, 单调递增,∴,∴原方程有两个不等实根,∴实数 的取值范围是., ,即 ,,不妨设,则,,∴,∵,∴, .令,则,∴在上单调递增,∴当时,,即,∴,∴.。

(江苏专版)2020年高考数学三轮冲刺专题导数及其应用点对点试卷(无答案)

(江苏专版)2020年高考数学三轮冲刺专题导数及其应用点对点试卷(无答案)

导数及其应用2.已知函数:一呼-:- ■:■,其中e 为自然对数的底数,若不等式 ';恒成立,则b/a 的最大值为【答案】1/e 3•已知函数f xx 3 ax 2 a 2x 1在 1,1上单调递减,则 a 的取值范围是 【答案】 ,33,【答案】1,49.定义在R 上的函数f x 的导函数为f ' x ,满足xf ' x f x x ,则不等式1若函数f x 在a , b 上存在唯一的x (ax b)满足b af a ,那么称函数f x 是a, b 上的“单值函数”.已知函数f x321 x x m 是0,a (a _)上的“单值函数”,当实数 a 取最小值2时,函数f x 在0, a 上恰好有两点零点, 则实数m 的取值范围是【答案】0, 274.若曲线yxlnx 在x 1与x t 处的切线互相垂直,则正数t 的值为【答案】e 25•定义在R 上的奇函数f x 的导函数满足f' x式f x e x的解集为 _________________ . f x ,且 fx f x 3 1,若 f 2015 e ,则不等【答案】1,36.函数f X x3x 2 9x 3,若函数 g x f【答案】(-24 , 8)7.已知函数g x x 22ax ,f x13x ln3成立,则实数a 的取值范围是x m 在R 上有3个零点,则m 的取值范围为 ____________________x 1 ,若存在为 0,1,存在X 2 1,2使得f & g X 2&函数f xkx 4 lnx x(x 1),若 f x范围为o11 4【答案】2,——ln2 ln3 30的解集为 s,t ,且s,t 中只有一个整数,则实数 k 的取值x 4 f x 44f 42x24x的解集为【答案】,810•设函数f(x)3x (1a)x2ax有两个不同的极值点x, , x2,且对不等式f(xj f (x2) 0恒成立,则实数a的取值范围是______________ .1【答案】(,1]U ',221 211.已知函数f(x) kx , g(x) 21 nx 2e(— x e2),若f(x)与g(x)的图象上分别存在点M,N,使得MNe关于直线y e对称,则实数k的取值范围是___________________ .2【答案】[2,2e]ef h f o12. ---------------------------------------------------------------------------------------------------------- 设函数f x In x m, m R ,若对任意b a 0,1恒成立,则m的取值范围为x b a1【答案】丄4,13.设定义域为0, 的单调函数f x,对任意x 0, ,都有f f x log 2x 6,若x是方程f x f x4的一个解, 且a,a 1 a N*,则实数a【答案】114.已知方程ln x2|| m x22 , 有且仅有四个解X1,X2,X3,x , 则m x1 x2x3x4.4【答案】4e15.已知函数f(x) 1 3 -x 2 x3x 4,直线1 : 9x2y c 0, 若当x [ 2,2]时, 函数y f (x)的图象恒33在直线l下方,则c的取值范围是________________ .【答案】,616•定义在R上的函数f (x)的导函数为f'(x),且满足f(3) 1 , f( 2) 3,当x 0时有x f '(x) 0恒成立, 若非负实数a、b满足f(2a b) 1 , f( a 2b) 3,则^2的取值范围为 _______________________________ .a 14【答案】4 ,3517•已知a, b为正实数,直线y x a与曲线y ln(x b)相切,则的取值范围【答案】(0,1)22 2. 218•设函数f(x) ex一, g(x) e j,对X「X2 (0,x e范围为【答案】1,),不等式g(Xl) f (X2)恒成立,则正数k的取值k k 1。

(新课改省份专用)2020版高考数学 导数及其应用 必备方法——破解导数问题常用到的4种方法讲义(含解析)

(新课改省份专用)2020版高考数学 导数及其应用 必备方法——破解导数问题常用到的4种方法讲义(含解析)

第2课时 必备方法——破解导数问题常用到的4种方法构造函数法解决抽象不等式问题以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f xg x”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.类型一 构造y =f (x )±g (x )型可导函数[例1] 设奇函数f (x )是R 上的可导函数,当x >0时有f ′(x )+cos x <0,则当x ≤0时,有( )A .f (x )+sin x ≥f (0)B .f (x )+sin x ≤f (0)C .f (x )-sin x ≥f (0)D .f (x )-sin x ≤f (0)[解析] 观察条件中“f ′(x )+cos x ”与选项中的式子“f (x )+sin x ”,发现二者之间是导函数与原函数之间的关系,于是不妨令F (x )=f (x )+sin x ,因为当x >0时,f ′(x )+cos x <0,即F ′(x )<0,所以F (x )在(0,+∞)上单调递减,又F (-x )=f (-x )+sin(-x )=-[f (x )+sin x ]=-F (x ),所以F (x )是R 上的奇函数,且F (x )在(-∞,0)上单调递减, F (0)=0,并且当x ≤0时有F (x )≥F (0),即f (x )+sin x ≥f (0)+sin 0=f (0),故选A.[答案] A [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )±g ′(x )”时,不妨联想、逆用“f ′(x )±g ′(x )=[f (x )±g (x )]′”.构造可导函数y =f (x )±g (x ),然后利用该函数的性质巧妙地解决问题.类型二 构造f (x )·g (x )型可导函数[例2] 设函数f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0,则不等式f (x )g (x )>0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)[解析] 利用构造条件中“f ′(x )g (x )+f (x )g ′(x )”与待解不等式中“f (x )g (x )”两个代数式之间的关系,可构造函数F (x )=f (x )g (x ),由题意可知,当x <0时,F ′(x )>0,所以F (x )在(-∞,0)上单调递增.又因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以F (x )是定义在R 上的奇函数,从而F (x )在(0,+∞)上单调递增,而F (3)=f (3)g (3)=0,所以F (-3)=-F (3),结合图象可知不等式f (x )g (x )>0⇔F (x )>0的解集为(-3,0)∪(3,+∞),故选A.[答案] A [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )+f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )+f (x )g ′(x )=[f (x )g (x )]′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题.类型三 构造f xg x型可导函数[例3] 已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0.若a ,b ∈R +且a ≠b ,则有( )A .f ⎝ ⎛⎭⎪⎫a +b 2g ⎝ ⎛⎭⎪⎫a +b 2>f (ab )g (ab )B .f ⎝ ⎛⎭⎪⎫a +b 2g ⎝ ⎛⎭⎪⎫a +b 2<f (ab )g (ab )C .f ⎝ ⎛⎭⎪⎫a +b 2g (ab )>g ⎝ ⎛⎭⎪⎫a +b 2f (ab )D .f ⎝⎛⎭⎪⎫a +b 2g (ab )<g ⎝ ⎛⎭⎪⎫a +b 2f (ab )[解析] 根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f xg x ,因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=f ′x g x -f x g ′x [g x ]2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝ ⎛⎭⎪⎫a +b 2<F (ab ),即f ⎝⎛⎭⎪⎫a +b 2g ⎝ ⎛⎭⎪⎫a +b 2<f abgab,所以f ⎝⎛⎭⎪⎫a +b 2g (ab )<g ⎝ ⎛⎭⎪⎫a +b 2·f (ab ),故选D.[答案] D [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“f ′x g x -f x g ′x [g x ]2=⎣⎢⎡⎦⎥⎤f x g x ′”,构造可导函数y =f x g x ,然后利用该函数的性质巧妙地解决问题.[方法技巧]构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax . (2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ).(3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e xf (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f xex.(5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f xx. [针对训练]1.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0,则不等式f (log 2|3x-1|)<3-log2|3x-1|的解集为( ) A .(-∞,0)∪(0,1) B .(0,+∞) C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0,故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log 2|3x -1|可化为f (log 2|3x -1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1,从而0<|3x-1|<2,解得x <1且x ≠0,故选A.2.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x,且f (0)=0,则下列结论正确的是( )A .f (x )在R 上单调递减B .f (x )在R 上单调递增C .f (x )在R 上有最大值D .f (x )在R 上有最小值解析:选C 根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e xf (x ),则有F ′(x )=e x[f ′(x )+f (x )]=e x·3x 2e -x=3x 2,故F (x )=x 3+c (c 为常数),所以f (x )=x 3+cex,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3, +∞)上单调递减,f (x )max =f (3)=27e3,无最小值,故选C. 3.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝ ⎛⎭⎪⎫1x -f (x )<0的解集为________.解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f x x ,则F ′(x )=xf ′x -f xx 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝ ⎛⎭⎪⎫1x -f (x )<0可化为xf ⎝ ⎛⎭⎪⎫1x -f x x <0,即f ⎝ ⎛⎭⎪⎫1x 1x-f x x <0,即f ⎝ ⎛⎭⎪⎫1x 1x<f x x ,即F ⎝ ⎛⎭⎪⎫1x <F (x ),所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝ ⎛⎭⎪⎫1x-f (x )<0的解集为(0,1).答案:(0,1)分类讨论法解决含参函数单调性问题结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整.[例1] 已知函数f (x )=x 3+ax 2+x +1. (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围.[解] (1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增;②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.x (-∞,x 1)(x 1,x 2) (x 2,+∞)f ′(x )+-+所以f (x 121,x 2). (2)因为f (x )在⎝ ⎛⎭⎪⎫-23,-13内是减函数,所以⎝ ⎛⎭⎪⎫-23,-13⊆(x 1,x 2).所以f ′(x )=3x 2+2ax +1≤0在⎝ ⎛⎭⎪⎫-23,-13上恒成立.所以2a ≥-3x -1x 在⎝ ⎛⎭⎪⎫-23,-13上恒成立,所以a ≥2.[题后悟通]本题求导后,转化为一个二次型函数的含参问题,首先考虑二次三项式是否存在零点,即对判别式Δ进行Δ≤0和Δ>0两类讨论,可归纳为“有无实根判别式,两种情形需知晓”.[例2] 函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.[解] 因为f ′(x )=-2ax 2+2a 2-1x +2ax 2+12=-2a x 2+12·(x -a )⎝⎛⎭⎪⎫x +1a .(1)a >0时x (-∞,-a -1)(-a -1,a )(a ,+∞)f ′(x )-+-f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.(2)当a <0时,x (-∞,a )(a ,-a -1)(-a -1,+∞)f ′(x )+-+f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ), (-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.[题后悟通]求导后,若导函数中的二次三项式能因式分解需考虑首项系数是否含有参数.若首项系数有参数,就按首项系数为零、为正、为负进行讨论.可归纳为“首项系数含参数,先证系数零正负”.[例3] 已知函数f (x )=ln(x +1)-axx +a(a >1),讨论f (x )的单调性.[解] f ′(x )=x x -a 2-2ax +1x +a2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.x (-1,a 2-2a )(a 2-2a,0)(0,+∞)f ′(x )+-+②当a =2时,f ′(x )=2x +1x +22≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,x (-1,0) (0,a 2-2a )(a 2-2a ,+∞)f ′(x )+-+2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增.[题后悟通]求导后且导函数可分解且首项系数无参数可求出f ′(x )的根后比较两根大小,注意两根是否在定义域内,可归纳为“首项系数无参数,根的大小定胜负.定义域,紧跟踪,两根是否在其中”.[方法技巧]利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程[口诀记忆] 导数取零把根找,先定有无后大小; 有无实根判别式,两种情形需知晓. 因式分解见两根,逻辑分类有区分; 首项系数含参数,先论系数零正负. 首项系数无参数,根的大小定胜负; 定义域,紧跟踪,两根是否在其中.[针对训练]4.已知函数f (x )=e x(e x-a )-a 2x ,讨论f (x )的单调性. 解:函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.转移法解决求解最值中计算困难问题[典例(x )>0,求b 的最大值.[解题观摩] 因为g (x )=e 2x-e-2x-4x -4b e x +4b e -x+8bx ,所以g ′(x )=2(e x+e -x-2)(e x+e -x-2b +2). 因为e x +e -x ≥2e x ·e -x=2.①当b ≤2时,g ′(x )≥0,所以g (x )在R 上递增. 所以当x >0时,g (x )>g (0)=0.②当b >2时,由e x+e -x-2b +2=0⇒x 1=ln(b -1+b 2-2b )>0,x 2=ln(b -1-b 2-2b )<0.所以当0<x <ln(b -1+b 2-2b )时,g ′(x )<0. 所以g (ln(b -1+b 2-2b ))<g (0)=0,不合题意. 综上,b ≤2,∴b max =2. [题后悟通]在一些不等式证明或恒成立的问题中,通常需要判定函数极值或最值的正负.有时直接计算函数的极值涉及复杂的运算,甚至无法算出一个显性的数值.这时可以考虑不直接计算函数极值,通过计算另一个特殊点的函数值来确定函数极值或最值的正负,这个特殊点通常在解题过程中已出现过.如在本题②中要直接算出g (ln(b -1+b 2-2b ))很难,转移到计算g (0)就很简单,而且g (0)在解题过程中已出现过,这就是转移法.[口诀记忆] 最值运算入逆境,位置挪移绕道行; 挪动位置到何处,解题过程曾途经.[针对训练]5.函数f (x )=1+x 1-x e -ax,对任意x ∈(0,1)恒有f (x )>1,求a 的取值范围.解:①当a ≤0时,因为x ∈(0,1), 所以1+x 1-x>1且e -ax>1,所以f (x )>1.因为f ′(x )=a e -ax1-x2⎝ ⎛⎭⎪⎫x 2-1+2a =0⇒x 2=1-2a . ②当0<a ≤2时,f ′(x )≥0,所以f (x )在(0,1)上递增, 所以f (x )>f (0)=1. ③当a >2时,f (x )在⎝⎛⎭⎪⎫-1-2a,1-2a 上递减.所以当x ∈⎣⎢⎡⎭⎪⎫0, 1-2a 时,f (x )<f (0)=1,不合题意.综上a ≤2.二次求导法解决判断f ′(x )符号困难问题[例1] 若函数f (x )=x,0<x 1<x 2<π.设a =f (x 1),b =f (x 2),试比较a ,b 的大小.[解题观摩] 由f (x )=sin x x ,得f ′(x )=x cos x -sin x x2, 设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数. ∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数, ∴当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b . [题后悟通]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin xx 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[例2] 已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数.(1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围. [解题观摩] (1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1, 则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1), 即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x-tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立,即t ≤e x+x -e x +x ln x x2对任意的x ∈(0,+∞)恒成立. 令F (x )=e x+x -e x +x ln x x2, 则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝ ⎛⎭⎪⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2exx-ln x ,则G ′(x )=e x-2x e x -e x x 2-1x =e x x -12+e x-xx 2>0,对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2exx-ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0,∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1]. [题后悟通]本题从题目形式来看,是极其常规的一道导数考题,第(2)问要求参数t 的范围问题,实际上是求F (x )=e x+x -e x +x ln x x 2极值问题,问题是F ′(x )=1x 2( e x+e -2e xx-ln x )这个方程求解不易,这时我们可以尝试对G (x )=x 2·F ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.[方法技巧]判定函数的单调性和求函数极值,都需要判定导函数的正负.有些导函数形式很复杂,它的正负很难直接判定,常常需要建立新函数再次求导,通过探求新函数的最值,以此确定导函数的正负.[针对训练]6.讨论函数f (x )=(x +1)ln x -x +1的单调性.解:由f (x )=(x +1)ln x -x +1,可知函数f (x )的定义域为(0,+∞).易得f ′(x )=ln x +x +1x -1=ln x +1x,用f ′(x )去分析f (x )的单调性受阻.因此再对f ′(x )=ln x +1x求导,得f ″(x )=1x -1x2=x -1x2.令f ″(x )=x -1x2=0,得x =1.当0<x ≤1时,f ″(x )≤0,即f ′(x )=ln x +1x 在区间(0,1)上为减函数;当x >1时,f ″(x )>0,即f ′(x )=ln x +1x在区间(1,+∞)上为增函数.因此f′(x)min=f′(1)=1>0,所以函数f(x)在(0,+∞)上单调递增.。

2020版高考数学第三单元 导数及其应用 课时4 导数的综合应用——导数与不等式教案 文(含解析)

2020版高考数学第三单元 导数及其应用 课时4 导数的综合应用——导数与不等式教案 文(含解析)

导数的综合应用—-导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x∈[a,b]内的最小值≥0。

(填“最小值”“最大值”“极小值”或“极大值”)2.若f′(x)〉0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b),f(x)〈0的x的取值范围为(a,x0).3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值〉m。

(填“最小值”“最大值"“极小值"或“极大值”)若f(x)〈m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最大值<m。

(填“最小值”“最大值”“极小值"或“极大值")4.若f(x)>m在x∈[a,b]有解,则函数f(x)在x∈[a,b]的最大值>m.(填“最小值"“最大值”“极小值”或“极大值")热身练习1.对于∀x∈[0,+∞),则e x与1+x的大小关系为(A)A.e x≥1+x B.e x〈1+xC.e x=1+x D.e x与1+x大小关系不确定令f(x)=e x-(1+x),因为f′(x)=e x-1,所以对∀x∈[0,+∞),f′(x)≥0,故f(x)在[0,+∞)上递增,故f(x)≥f(0)=0,即e x≥1+x。

2.对于R上可导的任意函数f(x),若满足(x-1)f′(x)〉0,则必有(B)A.f(0)+f(2)<2f(1)B.f(0)+f(2)〉2f(1)C.f(0)+f(2)=2f(1)D.f(0)+f(2)与2f(1)的大小不确定依题意,当x>1时,f′(x)>0,f(x)在(1,+∞)上是增函数;当x<1时,f′(x)<0,f(x)在(-∞,1)上是减函数,故当x=1时,f(x)取最小值,所以f(0)>f(1),f(2)>f(1),所以f(0)+f(2)>2f(1).3.已知定义在R上函数f(x)满足f(-x)=-f(x),且x>0时,f′(x)<0,则f(x)>0的解集为(A)A.(-∞,0) B.(0,+∞)C.(-∞,-1)D.(1,+∞)因为f(x)是定义在R上的奇函数,所以f(0)=0,又x〉0时,f′(x)〈0,所以f(x)在(-∞,+∞)上单调递减,所以f(x)>0的解集为(-∞,0).4.若函数h(x)=2x-错误!+错误!在[1,+∞)上是增函数,则实数k的取值范围是[-2,+∞)。

2020届高考数学(文)专题强化:导数及其应用

2020届高考数学(文)专题强化:导数及其应用
x
上单调递增,所以当
x 1时, f ' x k 1 0 恒成立,即 k 1 在区间 1,
x
x
上恒成立,因为 x 1,所以
0 1 1 ,所以 k 1,故选 D x
2 答案及解析: 答案: A 解析:
3 答案及解析: 答案: D
解析: (f x)是在( π,0)(0,π)上的偶函数,
∴ g( x)
f x 是奇函数,在(0, π)上 g(' x) sin x
“凸函数” .已知 f x
x4 t x3 3 x 2 在 1,4 上为“凸函数”,则实数 43 2
t 的取值范围是
________.
12、已知 f ( x) a ln x 1 x2 (a 0) ,若对任意两个不等的正实数 2
x1, x2 都有 f ( x1 ) f ( x2 ) 2 x1 x2
恒成立,则 a 取值范围是 ________。
) 恒成
1
立,则实数 a 的取值范围是(

A. 0, e
B. e2 1 , e
C. 2e 1,
8、函数 f ( x) e x x 2 的零点所在的一个区间是 ( )
D. 2
e
1 e2

A. ( 2, 1)
B. ( 1,0)
C. (0,1)
D. (1,2)
9、函数 y= f x 在定义域
3 ,3 内可导, 其图像如图所示. 记 y= f x 的导函数为 y= f ' x , 2
则不等式 f x 0 的解集为 ( )
1
A.
,1 [2,3]
3
C. 3 , 1 [1,2) 22
1
48
B. 1,

2020年高考数学(理)函数与导数 专题12 导数的概念及运算(解析版)

2020年高考数学(理)函数与导数 专题12 导数的概念及运算(解析版)

函数与导数12 导数及其应用 导数的概念及运算一、具体目标:1.导数概念及其几何意义:(1)了解导数概念的实际背景;(2)理解导数的几何意义.2.导数的运算:(1)根据导数定义,求函数y c y x ==,,2y x =,1y x=的导数; (2)能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数. 【考点透析】 【备考重点】(1) 熟练掌握基本初等函数的导数公式及导数的四则运算法则; (2) 熟练掌握直线的倾斜角、斜率及直线方程的点斜式. 二、知识概述: 1.由0()()'()limx f x x f x f x x∆→+∆-=∆可以知道,函数的导数是函数的瞬时变化率,函数的瞬时变化率是平均变化率的极限.2.基本初等函数的导数公式及导数的运算法则原函数导函数 f (x )=c (c 为常数)f ′(x )=0()()Q n x x f n ∈= ()1-='n nx x f()x x f sin = ()x x f cos =' ()x x f cos =()x x f sin -=' ()x a x f =()a a x f x ln ='【考点讲解】1)基本初等函数的导数公式2)导数的运算法则(1) [f (x )±g (x )]′=f ′(x )±g ′(x );(和或差的导数是导数的和与差)(2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(积的导数是,前导后不导加上后导前不导) (3)2()'()()'()()'()()f x f x g x g x f x g x g x ⎡⎤⋅-⋅=⎢⎥⎣⎦(g (x )≠0).(商的导数是上导下不导减去上不导下导与分母平方的商)(4) 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.函数()y f x =在0x x =处的导数几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).【温馨提示】1.求函数()f x 图象上点00(,())P x f x 处的切线方程的关键在于确定该点切线处的斜率k ,由导数的几何意义知0'()k f x =,故当0'()f x 存在时,切线方程为000()'()()y f x f x x x -=-.()x e x f = ()x e x f ='()x x f a log =()a x x f ln 1=' ()x x f ln =()xx f 1='2.可以利用导数求曲线的切线方程,由于函数()y f x =在0x x =处的导数表示曲线在点00(,())P x f x 处切线的斜率,因此,曲线()y f x =在点00(,())P x f x 处的切线方程,可按如下方式求得:第一,求出函数()y f x =在0x x =处的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率; 第二,在已知切点坐标和切线斜率的条件下,求得切线方程000'()()y y f x x x =+-;如果曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(此时导数不存在)时,由切线的定义可知,切线的方程为0x x =. 【提示】解导数的几何意义问题时一定要抓住切点的三重作用:①切点在曲线上;②切点在切线上;③切点处的导数值等于切线的斜率.1. 【2019年高考全国Ⅲ卷】已知曲线e ln xy a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( ) A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【解析】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-.故选D . 【答案】D2.【2019年高考全国Ⅱ卷】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【解析】本题要注意已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.【真题分析】2cos sin ,y x x '=-Q π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【答案】C3.【2018年高考全国Ⅰ卷】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x = 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得.故选D. 【答案】D4.【2017年高考浙江】函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )【解析】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f x '的正负,得出原函数()f x 的单调区间.原函数先减再增,再减再增,且0x =位于增区间内,因此选D . 【答案】D5.【2019年高考全国Ⅰ卷】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.【解析】223(21)e 3()e 3(31)e ,x x xy x x x x x '=+++=++所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 【答案】30x y -=6.【变式】【2018年理数全国卷II 】曲线()1ln 2+=x y在点()00,处的切线方程为__________. 【解析】本题主要考查导数的计算和导数的几何意义,先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.由题中条件可得:12+='x y ,所以切线的斜率为2102=+=k ,切线方程为()020-=-x y ,即x y 2=.【答案】x y 2=7.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 【解析】∵1sin 2y x '=--,∴01|sin 0212x y ='=---=,故所求的切线方程为112y x -=-,即220x y +-=. 【答案】220x y +-=8.【2018年高考天津文数】已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 【解析】由函数的解析式可得,则.即的值为e.【答案】e9.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点()00,A x y , 则00ln y x =.又1y x'=,当0x x =时,01y x '=,则曲线ln y x =在点A 处的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,将点()e,1--代入,得00e 1ln 1x x ---=-,即00ln e x x =, 考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()ln 1H x x '=+, 当1x >时,()()0,H x H x '>单调递增,注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1. 【答案】(e, 1)10.【2018年全国卷Ⅲ理】曲线()()x e ax x f 1+=在点()10,处的切线的斜率为2-,则=a ________.【解析】本题主要考查导数的计算和导数的几何意义,并利用导数的几何意义求参数的值.由题意可知:()()x x e ax ae x f 1++=',则()210-=+='a f ,所以3-=a ,故答案为-3.【答案】3-【变式】已知函数错误!未找到引用源。

2020版高考数学总复习第三章导数及其应用第17讲导数与函数的极值最值练习文

2020版高考数学总复习第三章导数及其应用第17讲导数与函数的极值最值练习文

导数与函数的极值、最值讲第17】【p夯实基础41【学习目标】会用导数求函数的极值和某闭区间上的最值.【基础检测】)( 1.下列说法正确的是A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值.闭区间上的连续函数一定存在最值D【解析】结合本题构造一个具体函数,理解函数的极值点与最值点是不相同的两个概念.是极大值点,但不是最大值点,Bx )在B 、D 处分别存在极值,其中如图所示,函数y =f (是最值点,但不是极值点.闭区间上的连续函数一定存在CD 是极小值点,但不是最小值点; 最值. D 【答案】).下列函数中,既是奇函数又存在极值的是2(3)y =ln (-xA .y =x B .2x.y =+xC .y =xe D x 2≥0,在定义域上单调递增,没有极值;【解析】A 项,y ′=3x ),显然不是奇函数;-x )的定义域为(-∞,0yB 项,=ln (xx -xe ≠-f (x ),不是奇函数;-)C 项,设f (x =y =xe ,则f (x )=-22 x ),故为奇函数,),则f (-x =-x -=-f (=xD 项,设f ()=yx + xx2 ,=±2时,y ′=0,当=又y ′1-x 2x 02,)上递减,-原函数在区间(∞2,-)上递增,在区间(- 是一个极大值点,22所以点(2-),- 是极小值点.2,2)2同理,点( 项正确.D 故 D 【答案】.123.函数f(x)=x -ln x 的最小值为( )21A. B .1 C .0 D .不存在 2【解析】函数f(x)的定义域为(0,+∞),11f ′(x)=x -,令x -=0得x =1, xx 当x ∈(0,1)时,f ′(x)<0,f(x)在(0,1)上递减;当x ∈(1,+∞)时,f ′(x)>0,f(x)在(1,+∞)上递增,1所以当x =1时,f(x)取得最小值f(1)=. 2【答案】A2234.已知x =0是函数f(x)=(x -2a)(x +ax +2a)的极小值点,则实数a 的取值范围是__________.3224【解析】因为f(x)=x +(a -2a)x -4a ,2)2a (a -2??22??+x3xx ==x)3x +2(a -2a)=0, 所以令f ′(??32)2aa -2(4232,x =-)x -4a 的两个极值点分别为x =0,x 可得函数f()=x +(a -2a32)2aa -2(2或a>2.-2a>0,解之得a<0由题意-<0,即a3 或a<0【答案】a>2 【知识要点】 1.函数的极值与导数′附近的其他点的函数值都小,fx =a 在点f(x)x =a 的函数值f(a)比它在(1)函数y =y 叫作函数=,则点xaf ′(x)<0__,右侧__f ′(x)>0__,且在点(a)=0x =a 附近的左侧__ .__极小值__f(a)叫作函数y =f(x)的=f(x)的__极小值点__,′fa 附近的其他点的函数值都大,的函数值f(a)比它在x =a(2)函数y =f(x)在点x =y 叫作函数=af ′(x)<0__,则点xa ,且在点x =附近的左侧__f ′(x)>0__,右侧__(a)=0 __.f(x)的__极大值__极大值点__,f(a)叫作函数y ==f(x)的2.函数的最值与导数,[a =f(x)在闭区间上的图象是一条连续不断的曲线,在闭区间[a ,b]则y 若函数y =f(x)minmax f ,{f(a),f(b)},f(x)=b]上必存在最大值和最小值,且f(x)=f{f(a),(x)minmax极大值f(b)},.(x)极小值p 】【 析 典 例剖41考点1 利用导数研究函数的极值a 例1fx )的极值.( e(-1+a ∈R ,为自然对数的底数),求函数x)(已知函数fx = xe axf .-1【解析】′()=xeafxfx )在R (时,上单调递增,′( )>0①当,≤0fx )无极值.所以函数 (xafxaxa . =,即ln )=0,得e ②当时,令>0=′(xafx )<0; 当′∈(-∞,ln ()时,xafx )>0. ′,+∞)时,当(∈(lnfxa)上单调递减, (所以-∞,(ln )在区间a,+∞)上单调递增,(ln 在区间fxxa处取得极小值,=故ln ()在faa,无极大值. )且极小值为=(ln lnafx)无极值;(综上,当≤0时,函数afxxaa,无极大值.处取得极小值)在ln 当时,>0=(ln 【小结】含参函数的极值的讨论步骤:(1)求函数的定义域;(2)求导函数;(3)以导函数的零点存在性进行讨论;(4)当导数存在多个零点时,讨论它们的大小关系及与区间的位置关系;(5)画出导函数的同号函数的草图,从而判断其导函数的符号;fxfxx变化的情况表,并写出函数的单调区间; ),)(6)由上一步的草图,列出(′(随(7)综合上述讨论的情形,完整地写出函数的单调区间,从而可得极值.考点2利用导数研究函数的最值++2xx2例.∞)∈[1,+f已知函数(x)=,x x1的最小值;x)=时,求函数2af((1)当a2a的取值范围.)>0恒成立,试求实数1,+∞),f(x(2)若对于任意x∈[21ax+2x+1.,+∞)+2,x∈[11)当a=时,f(x)==x+(【解析】2xx22112x - ).∈[1,+∞x由f′(x)=1-=>0,222x2x是增函数.x∴函数f()7.f(x)的最小值为∴当x=1时,2)>0恒成立,xx∈[1,+∞),f((2)对任意2a++2xx)恒成立.x ∈>0对任意[1,+∞即x2[1,+∞)恒成立.0∴x+2x+a>对任意x∈2,+2(+2x+a,则g′x)=2x=g设(x)x,∴函数0g(x)是增函数.x时,1当x∈[,+∞)g′()>a,取得最小值gx∴当=1时,(x)3+03.,∴a>->+由题意得3a )(【小结】求函数在无穷区间或开区间上的最值的方法:上的最值,不仅要研究其极值情况,还要研究其单调性,)或开区间(求函数在无穷区间.并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.考点3函数的极值与最值的综合应用2例3已知函数f(x)=ax--3ln x,其中a为常数.x232????????????3,f,上的)在处的切线的斜率为1(1)当函数f(x)的图象在点时,求函数f(x????32??3最小值;(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围.23【解析】(1)∵f′(x)=a+-,2xx2????=a=1∴f′,??32(x-1)(x-2)故f(x)=x--3ln x,则f′(x)=. 2xx由f′(x)=0得x=1或x=2.当x变化时,f′(x),f(x)的变化情况如下表:33????2 (2,x 3) 3 2,??22-+0 f′(x)3ln 21- f(x)3????3,上,f(x从而在)有最小值,??2且最小值为f(2)=1-3ln 2.+3ax-2,>0)(=a+-=x(2)f′(x)22xxx2=0有两个不等的正实根,223x由题设可得方程ax-3x+222,=ax-3x+x不妨设这两个根为x,x,并令h()21Δ=9-8a>0,?,>0Δ=9-8a???33-,0=>xx+9??21a,0-><.解得0<则或a??2?,00h()>0>xx=21a9????,0.故所求a的取值范围为??8【小结】求函2a8?数f(x)在[a,b]上的最大值和最小值3步骤:(1)求函数在(a,b)内的极值;(2)求函数在区间端点的函数值f(a),f(b);(3)将函数f(x)的极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.【能力提升】.例+ax-2.)=-x x)=xln x,g(x已知函数f((1)求函数f(x)在[t,t+2](t>0)上的最小24值;(2)若函数y=f(x)+g(x)有两个不同的极值点x,x(x<x)且x-x>ln 2,求实数a122112的取值范围.1【解析】(1)由题意f′(x)=ln x+1=0,得x=. e111????????2t+,t,上单调递增,上单调递减,在 x①当0<t<时,函数f()在????eee11????=-f. ,t+2]上的最小值为x此时函数f()在[t??ee1②当t≥时,函数f(x)在[t,t+2]上单调递增,e此时函数f(x)在[t,t+2]上的最小值为f(t)=tln t.由题意y=f(x)+g(x)=xln x-x+ax-2,2(2)则y′=ln x-2x+a+1,知y′=ln x-2x+a+1=0有两个不同的实根x,x,21等价于a=-ln x+2x-1有两个不同的实根x,x,21等价于直线y=a与函数G(x)=-ln x+2x-1的图象有两个不同的交点.111????????∞0,,+上单调递增,上单调递减,在)在 x由G′(x)=-+2,知G( ????22x画出函数G(x)图象的大致形状如图,1????==G 由图易知,当a>G(x)min??2ln 2时,x,x存在,且x-x的值随a的增大而增大.1212而当x-x=ln 2时,12ln x-2x+a+1=0,??11由题意得?ln x-2x+a+1=0.??22x2两式相减可得ln=2(x-x)=2ln 2,得x=4x,1212x14代入x-x=ln 2得x=4x=ln 2,11223ln 22????ln =ln 2--1,此时实数a??33ln 22????lna>ln 2-a1.-所以实数的取值范围为??33方法总结【p 】42.1.求函数的极值可分为以下几步:①求出可疑点,即f′(x)=0的解x与不可导的点;0②用求极值的方法确定极值;③计算求值.2.函数的最值①连续函数f(x)在闭区间[a,b]上必有最大值与最小值;②最值的求法:先求f(x)在(a,b)上的极值,再将各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.3.极值与最值的区别和联系①函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的整体情况,是对函数在整个区间上的函数值的比较;②函数的极值不一定是最值,须与端点函数值作比较方可确定是否为最值;③如果连续函数在区间[a,b]内只有一个极值(单峰函数),则极大值即是[a,b]上的最大值,极小值即是[a,b]上的最小值.走进高考【p】422x.2]e1)x+3a+)设函数f(x)=[ax-(3a+.1(2018·北京,求a;f(2))处的切线斜率为0y1)若曲线=f(x)在点(2,( 处取得极小值,求a的取值范围.x)在x=1(2)若f(x2]e,x+3a+2x)=[ax-(3a+1)【解析】(1)因为f(x2e.)x+1]x)=[ax-(a+1所以f′(2e,(2a-1)f′(2)=12=.=0,解得a=0,即(2a-1)e由题设知f′(2)2x2e1]-(a+1)x +(2)方法一:由(1)得f′(x)=[ax x e.1ax-)(x-1)=(1????1,时,f′(x)<0;若a>1,则当x∈??a当x∈(1,+∞)时,f′(x)>0.所以f(x)在x=1处取得极小值.若a≤1,则当x∈(0,1)时,ax-1≤x-1<0,所以f′(x)>0.所以1不是f(x)的极小值点.综上可知,a的取值范围是(1,+∞).f′(x)=(ax-1)(x-1)e.x方法二:当a=0时,令f′(x)=0得x=1.f′(x),f(x)随x的变化情况如下表:x (-∞,1) 1 (1,+∞)- (f′x) + 0极大值 f(x)∴f(x)在x=1处取得极大值,不合题意.1当a>0时,令f′(x)=0得x=,x=1. 21a0,x-1)e1,即a=时,f′(x)=(①当x=x21在R上单调递增,∴f(x)xf )∴的无极值,2x≥不合题意.(xfxxxafx (0<的变化情况如下表:<1时,)′(随②当)>,,即21fx 极小值)(极大值fxx=1处取得极大值,不合题意.)在∴(xxafxfxx的变化情况如下表:随(′( ③当)<,即,>1时,)21fx 极大值)极小值 (fxxa>1满足题意.=1∴(处取得极小值,即)在1afxxx=,得时,令1.′(=)=当0<021afxfxx的变化情况如下表: ()),随(′x ?????? 1 a ?????? 1 (1,+∞)fx 极小值极大值 )(xxf处取得极大值,不合题意.)在1=∴(a,+∞).(1综上所述,的取值范围为。

2020高考数学最后冲刺 导数及其应用

2020高考数学最后冲刺 导数及其应用

最后冲刺【高考预测】 1.导数的概念与运算 2.导数几何意义的运用 3.导数的应用 4.利用导数的几何意义 5.利用导数探讨函数的单调性 6.利用导数求函数的极值勤最值 易错点 1导数的概念与运算1.(2020精选模拟)设f 0(x)=sinx,f 1(x)=f ’0(x),f 2(x)=f ’1(x),…,f n+1(x)=f ’n (x),n ∈N,则f 2020(x) ( )A.sinxB.-sinxC.cosxD.-cosx 【错误解答】 选A 【错解分析】由f ’1(x)=f ’0(x)=(sinx)’=cosx,f2(x)=(cosx)’=-sinx,f3(x)=(-sinx)’=-cosx,f4(x)=(-cosx)’=sinx,…,f2020(x)=f ’2020(x)=…=f0(x0=sinx 前面解答思路是正确的,但在归纳时发生了错误。

因f4(x)=f0(x)=f8(x0=…=f2020(x),所以f2020(x)=f1(x)=cosx.【错误解答】 选B ∵f(x)=2x+1,∴f ’(x)=(2x+1)’=2x+1|x=1=3.【错解分析】上面解答错误原因是导数公式不熟悉,认为(2x+1)’=2x+1.正确的是(2x+1)’=2,所以x=1时的导数是2,不是3。

【正确解答】 选A ∵f(x)=(x-1)3+3(x-1)f ’(x)=3(x-1)2+3,当 x=1时,f ’(1)=33.(2020精选模拟题) 已知f(3)=2f ’(3)=-2,则3)(32lim3--→x x f x x 的值为 ( )A .-4B .0C .8D .不存在【错误解答】 选D ∵x →3,x-3→0 ∴3)(32lim3--→x x f x x 不存在。

【错解分析】限不存在是错误的,事实上,求00型的极限要通过将式子变形的可求的。

[对诊下药] 选C3)(32lim3--→x x f x x =326)]3()([3lim3-+---→x xf x f x =32]3)3()(32[lim 3-=---→x f x f x .8)2(32)3('32]3)3()([lim 3=-⨯-=-=--→f x f x f x【特别提醒】1.理解导数的概念时应注意导数定义的另一种形式:设函数f(x)在x=a 处可导,则)(')()(lima f a x a f x f n =--∞→ 的运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最后冲刺【高考预测】 1.导数的概念与运算 2.导数几何意义的运用 3.导数的应用 4.利用导数的几何意义 5.利用导数探讨函数的单调性 6.利用导数求函数的极值勤最值 易错点 1导数的概念与运算1.(2020精选模拟)设f 0(x)=sinx,f 1(x)=f ’0(x),f 2(x)=f ’1(x),…,f n+1(x)=f ’n (x),n ∈N,则f 2020(x) ( )A.sinxB.-sinxC.cosxD.-cosx 【错误解答】 选A 【错解分析】由f ’1(x)=f ’0(x)=(sinx)’=cosx,f2(x)=(cosx)’=-sinx,f3(x)=(-sinx)’=-cosx,f4(x)=(-cosx)’=sinx,…,f2020(x)=f ’2020(x)=…=f0(x0=sinx 前面解答思路是正确的,但在归纳时发生了错误。

因f4(x)=f0(x)=f8(x0=…=f2020(x),所以f2020(x)=f1(x)=cosx.【错误解答】 选B ∵f(x)=2x+1,∴f ’(x)=(2x+1)’=2x+1|x=1=3.【错解分析】上面解答错误原因是导数公式不熟悉,认为(2x+1)’=2x+1.正确的是(2x+1)’=2,所以x=1时的导数是2,不是3。

【正确解答】 选A ∵f(x)=(x-1)3+3(x-1)f ’(x)=3(x-1)2+3,当 x=1时,f ’(1)=33.(2020精选模拟题) 已知f(3)=2f ’(3)=-2,则3)(32lim3--→x x f x x 的值为 ( )A .-4B .0C .8D .不存在【错误解答】 选D ∵x →3,x-3→0 ∴3)(32lim3--→x x f x x 不存在。

【错解分析】限不存在是错误的,事实上,求00型的极限要通过将式子变形的可求的。

[对诊下药] 选C3)(32lim3--→x x f x x =326)]3()([3lim3-+---→x xf x f x =32]3)3()(32[lim 3-=---→x f x f x .8)2(32)3('32]3)3()([lim 3=-⨯-=-=--→f x f x f x【特别提醒】1.理解导数的概念时应注意导数定义的另一种形式:设函数f(x)在x=a 处可导,则)(')()(lima f a x a f x f n =--∞→ 的运用。

2.复合函数的求导,关键是搞清复合关系,求导应从外层到内层进行,注意不要遗漏 3.求导数时,先化简再求导是运算的基本方法,一般地,分式函数求导,先看是否化为整式函数或较简单的分式函数;对数函数求导先化为和或差形式;多项式的积的求导,先展开再求导等等。

【变式训练】1 函数f(x)=x3+ax2+3x-9.已在f(x)在x=-3时取得极值,则a= ( )A.2B.3C.4D.54 已知f(x)=ln|2x|, 则f ’(x)= ( )A.x 1B. x 21C. ||1xD. |2|1x答案: A 解析:当x>0时,f(x)=ln(2x), ∴f ′(x)=c ∴f ′(x)=x x 1)2(21=-•-.5已知函数f(x)=ln(x-2)-)0(22≠a a a x 为常数且(1)求导数f ’(x)答案: f ′(x)=).2(21>•--x a xx(2)解不等式:f ’(x)>0答案:令f ′(x)=).2(021>>--x a xx即.440202022a a x x a x x x +=∆=-+⎪⎩⎪⎨⎧>-+>的(i )当a ≤-1时,x 2+2x-a>恒成立,∴x>2.(ii)当a>-1时,02,02>-+>∆a x x 的解集为{x|x>1111-+-<-+a x a 或}∴当-1<a ≤8时,.2,211>∴≤-+x a 当a>8时,11-+a >2, ∴x>11-+a .综合得,当a ≤8时,f ′(x)>0的解集为(2,+∞). 当a>8时,f ′(x)>0的解集为(11-+a ,+∞). 易错点 2导数几何意义的运用1.(2020精选模拟题)曲线y=x 3在点(1,1)的切线与x 轴、直线x=2所围成的三角形面积为_________.【错误解答】 填2 由曲线y=x 3在点(1,1)的切线斜率为1,∴切线方程为y-1==x-1,y=x.所以三条直线y=x,x=0,x=2所围成的三角形面积为S=21×2×2=2。

【错解分析】根据导数的几何意义,曲线在某点处的切线斜率等于函数在这点处的导数,上面的解答显然是不知道这点,无故得出切线的斜率为1显然是错误的。

【错误解答】 (1)∵函数f(x)=x 3+ax 与g(x)=bx 2+c 的图像的一个公共点P(t,0).∴f(t)=g(t)⇒t 3+at=bt 2+c. ①又两函数的图像在点P 处有相同的切线,∴f ’(t)=g ’(t)⇒3t 3+a=2bt. ②由①得b=t,代入②得a=-t 2.∴c=-t 3.【错解分析】上面解答中得b=t 理由不充足,事实上只由①、②两式是不可用t 表示a 、b 、c ,其实错解在使用两函数有公共点P ,只是利用f(t)=g(t)是不准确的,准确的结论应是f(t)=0,即t 3+at=0,因为t ≠0,所以a=-t 2.g(t)=0即bt 2+c=0,所以c=ab又因为f(x)、g(x)在(t,0)处有相同的切线,所以f ’(t)=g;(t).即3t 2+a=2bt, ∵a=-t 2, ∴b=t.因此c=ab=-t 2·t=-t 3. 故a=-t 2,b=t,c=-t 3(2)解法1 y=f(x)-g(x)=x 3-t 2x-tx 2+t 3y ’=3x 2-2tx-t 2=(3x+t)(x-t).当y ’=(3x+t)(x-t)<0时,函数y=f(d)-g(x)单调递减。

由y ’<0,若t<0,则t<x<-3t ,若t>0,则-3t<x<t.则题意,函数y=f(x)-g(x)在(-1,3)上单调递减,则(-1,3)⊂(-3t,t )或(-1,3)⊂(t ,-3t)所以t ≥3或-3t≥3。

即t ≤-9或t ≥3。

又当-9<t<3时,函数y=f(x0-g(x)在(-1,3)上单调递增,所以t 的取值范围(-∞,-9)∪(3,+∞)解法2 y=f(x)-g(x)=x 3-t 2x-tx 2+t 3, y ’=3x 2-3tx-t 2=(3x+t)(x-t).∵函数y=f(x)-g(x)在(-1,3)上单调递减,且y ’=(3x+t)(x-t)≤0在(-1,3)上恒成立,∴⎩⎨⎧≤-+≤--+-⎩⎨⎧≤≤=-=0)3)(9(0)1)(3(0|'0|'31t t t t y y x x 即若x ∈(-1,1),则f ’(x)<0.故f(x)在(-1,1)上是减函数,所以f(-1)=2是极大值;f(1)=-2是极小值。

(2)∵ f ’(x)=3x 2-3,∴过点A (0,16),因此过点A 的切线斜率为k=-3.∴所求的切线方程是y=-3【错解分析】上面解答第(2)问错了,错误原因是把A (0,16)当成了切点,其实A (0,16),不可能成为切点。

因此过点A 不在曲线,因此根求方程必须先求切点坐标。

【正确解答】 (1)f ’(x)=3ax 2+2bx-3,依题意f ’(1)=f ’(-1)=0即⎩⎨⎧=--=-+03230323b a b a 解得 a=1,b=0∴f(x)=x 3+3x,f ’(x)=3x 2-3=0.解得x=±1. 又∵x ∈(-∞,-1) ∪(1,+∞)f ’(x)>0 ∴f(x)在(-∞,-1)与(1,+∞)上是增函数。

若x ∈[-1,1]时,f ’(x) ≤0,故f9x)在[-1,1]上是减函数。

∴f(-1)=2是极大值。

f(1)=-2是极小值。

(2)解:曲线方程为y=f(x)=x 3-3x,点A (0,16)不在曲线上。

设切点M (x 0,y 0),则点则a=___________.答案:±1 解析:∵曲线在(a,a 3)处的切线斜率为3a 2.∴切线方程为y-a 3=3a 2(x-a).且它与x 轴.x=a 的交点为(0,32a )、(a,a 3),S=.613213=••a a∴a 4=1,解得a=±1.3 已知函数f(x)=lnx,g(x)= 21ax 2+bx(a ≠0)(1)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a 的取值范围。

答案: b=2时,h(x)=lnx-21ax 2-2x, 则h ′(x)=x 1-ax-2=-.122x x ax -+∵函数 h(x)存在单调逆减区间,∴h ′(x)<0有解. 又∵x>0,则ax2+2x-1>0有x>0的理. ①当a>0时,ax2+2x-1>0总有>0的解. ②当a<0,要ax2+2x-1>0总有>0的解.则△=4+4a>0,且方程ax2+2x-1=0至少有一正根,此时-1<a<0. 综上所述,a 的取值范围是(-1,0)∪(0,+∞)(2)设函数f(x)的图像C 1与函数g(x)图像C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1、C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行。

则lnt=)1(.0,1)1(_2>+-t tt令r (t )=lnt-.1,1)1(2>+-t t t则r ’(t)=t 1-.)1()1()1(4222+-=+t t t t因为t>1时,r ’(t)>0,所以r(t)在[1,+∞]上单调递增,故r(t)>r(1)=0.则lnt>t t +-1)1(2.这与①矛盾,假设不成立.故C 1在点M 处的切线与C 2在点N 处的切线不平行,证法1得(x 2+x 1)(lnx 2-lnx 1)=2(x 2-x 1).因为x 1>0,所以(112+x x )ln(112-x x ).令t=12x x ,得(t+1)lnt=2(t-1),t>1 ②令r(t)=(t+1)lnt-2(t-1),t>1,则r ’(t)=lnt+t 1-1.因为(lnt-t 1)’=2211t t t-=-,所以t>1时,(lnt+t 1)’>0. 故lnt+t 1在[1, + ∞]上单调递增.从而lnt+t 1-1>0,即r 1(t)>0.于是r(t)在[1,+∞]上单调递增.故r(t)>r(1)=0.即(t+1)lnt>2(t-1). 与②矛盾,假设不成立。

相关文档
最新文档