立体几何高考真题大题上课讲义
高考数学复习讲义与习题:立体几何含详解
.
解析 设 O
为球心,
2 AOB
由题意知
AB
2
2
sin
AOB 2
AOB
2
AB 2 2
, 底面圆的半径为:
AB 2sin
2
2 3
26 3
3
, 则正三棱柱的高为 2
22
26 3
2
43 3
, 所以正三棱柱的
体积为 3 2 2 2 4 3 8 .
4
3
变 式 1 直 三 棱 柱 ABC A1B1C1 的 各 顶 点 都 在 同 一 球 面 上 , 若
长为( ).
A. 2 3
B. 3 2
3 3
.
V
1 3
3 a2h 4
4
故选 C.
变 式 1 已 知 S, A, B,C 是 球 O 表 面 上 的 点 , SA 平 面
ABC, AB BC, SA AB 1, BC 2 , 则球 O 的表面积等于( )
A. 4
B. 3
C. 2
D.
变式 2 已知三棱锥 S ABC 的所有顶点都在球 O 的球面上, ABC 是边长为 1 的正三
直线在平面外 直线在平面内 平行 相交
相交 平行
平行 相交
只有一个公共点 没有公共点 没有公共点
有公共点
平行关系的 相互转化
线线 平行
线面 平行
面面 平行
空间直角坐标系
垂直关系的 相互转化
线线 垂直
线面 垂直
面面 垂直
空间的角 空间的距离
异面直线所成的角 直线与平面所成的角 二面角
点到面的距离 直线与平面的距离 平行平面之间的距离
(一轮)立体几何高考大题规范解答系列4立体几何课件
【名师点评】 1.核心素养:本题主要考查线面平行的证明以及空间二面角的求解, 考查考生的逻辑推理能力与空间想象力,考查的核心素养是数学抽象、 逻辑推理、直观想象、数学运算. 2.解题技巧:(1)得步骤分:对于解题过程中得分点的步骤,有则给 分,无则没分,所以对于得分点步骤一定要写,如第(1)问中写出 OM∥ 平面 CB1A1 成立的条件,写不全则不能得全分.
【分析】 ①看到证明线线垂直(AC⊥BD),想到证明线面垂直,通 过线面垂直证明线线垂直.
②看到求四面体ABCE与四面体ACDE的体积比,想到确定同一平 面,转化为求高的比.
【标准答案】——规范答题 步步得分 (1)取 AC 的中点 O,连接 DO,BO.····························1 分 得分点① 因为 AD=CD,所以 AC⊥DO. 又由于△ABC 是正三角形, 所以 AC⊥BO. 又因为 DO∩BO=O, 从而 AC⊥平面 DOB,····················································3 分 得分点② 故 AC⊥BD. ···································································4 分 得分点③
[解析] (1)证明:由题设可知,PA=PB=PC. 由于△ABC 是正三角形, 故可得△PAC≌△PAB,△PAC≌△PBC. 又∠APC=90°,故∠APB=90°,∠BPC=90°, 从而 PB⊥PA,PB⊥PC,故 PB⊥平面 PAC, 所以平面 PAB⊥平面 PAC.
(2)设圆锥的底面半径为 r,母线长为 l. 由题设可得 rl= 3,l2-r2=2.解得 r=1,l= 3. 从而 AB= 3. 由(1)可得 PA2+PB2=AB2, 故 PA=PB=PC= 26. 所以三棱锥 P-ABC 的体积为13×12×PA×PB×PC=13×12× 263= 86.
高考复习立体几何ppt课件
(A) 有无数个 (B) 不能作出 (C) 只能作出一个 (D) 以上都有可能
BA
l
情况三
15
返回
例: 有以下四个命题: ① 若一条直线与另一条直线平行,则它就
与经过另一条直线的平面平行; ② 若一条直线垂直于一个平面的一条垂线,
则此直线平行于这个平面; ③ 若一条直线和一个平面内的两条直线都
垂直,则此直线必垂直于这个平面; ④ 平面内两条平行直线,若其中一条直线
求证:AC⊥面D1B1BD
D1
C1
பைடு நூலகம்A1
B1
D
C
O
A
B
40
返回
在正方体AC1中,O为下底面的中 心,B1H ⊥D1O, 求证:B1H⊥面D1AC
D1
C1
A1
H
B1
D
C
O
A
B
41
三垂线定理(逆) 复习:重要定理
如图,PA⊥平面,AO是平面的
P
斜线PO在平面内的射影, a
(1)若a⊥PO,则a⊥AO;
EH
∴ MN//CH
∴ MN //面BCE 22
返回
在正方体AC1中,O为平面ADD1A1的 中心,求证:CO // 面A1C1B
D1
C1
A1
B1
O
F
D
C
A
B
23
线面平行的性质
返回
(1)如果一条直线与一个平面平行, 则这条直线与这个平面无公共点
(2)如果一条直线与一个平面平行, 则这条直线与这个平面内的直线成 异面直线或平行直线
直线与平面 所成的角
定义
直线a、b是异面直线,经过空间任意 一点o,作直线a’、b’,并使a’//a, b’//b,我们把直线a’和b’所成的锐角 (或直角)叫做异面直线a和b所成的 角。
高三数学立体几何专题复习讲义资料
1平行关系例题讲解:例1:已知四面体ABCD 中:M 、N 分别是△ABC 和△ACD 的重心:求证:(1)MN ∥平面ABD : (2)BD ∥平面CMN 。
答案与提示:连CM 、CN 分别交AB 、AD 于E 、F :连EF :易证 MN ∥EF ∥BD例2.已知边长为10的等边三角形ABC 的顶点A 在平面α内:顶点B 、C 在平面α的上方:BD 为AC 边上的中线:B 、C 到平面α的距离BB 1=2:CC 1=4. (1)求证:BB 1∥平面ACC 1 (2)求证:BD ⊥平面ACC 1 (3)求四棱锥A -BCC 1B 1的体积 答案与提示:(3)307例3.已知P A ⊥平面ABCD :四边形ABCD 是矩形:M 、N 分别是AB 、PC 的中点.(1) 求证:MN ∥平面P AD : (2) 求证:MN ⊥CD :(3) 若平面PCD 与平面ABCD 所成二面角为θ:问能否确定θ的值:使得MN 是异面直线AB 与PC 的公垂线.答案与提示:(3)45°备用题如图,在三棱锥P -ABC 中:P A ⊥面ABC :△ABC 为正三角形: D 、E 分别为BC 、AC 的中点:设AB =2P A =2:(1)如何在BC 上找一点F :使AD ∥平面PEF ?说明理由: (2)对于(1)中的点F :求二面角P -EF -A 的大小: 答案与提示:(1)F 为CD 中点(2)arctan2作业D CB M AN P在正四棱柱ABCD -A 1B 1C 1D 1中:AA 1=12 AB :点E 、M 分别为A 1B 、C 1C 的中点:过A 1:B :M 三点的平面交C 1D 1于点N 。
(1)求证:EM ∥平面ABCD : (2)求二面角B -A 1N -B 1的正切值。
答案与提示:(2)arctan542垂直关系例题讲解:例1:如图,在三棱锥P -ABC 中:AB =BC =CA :P A ⊥底面ABC :D 为AB 的中点.(1)求证:CD ⊥PB :(2)设二面角A -PB -C 的平面角为α:且tan α=7:若底面边长为1:求三棱锥P -ABC 的体积. 答案与提示:(2)18例2:已知ABCD —A 1B 1C 1D 1是棱长为a 的正方体:E 、F 分别是棱AA 1和CC 1的中点:G 是A 1C 1的中点.(1)求证平面BFD 1E ⊥平面BGD 1: (2)求点G 到平面BFD 1E 的距离: (3)求四棱锥A 1-BFD 1E 的体积.答案与提示:(2)66a (3) 16a 3例3:四边形ABCD 中.AD ∥BC :AD =AB :∠BCD =45°:∠BAD =90°:将△ABD 沿对角线BD 折起:记折起点A 的位置为P :且使平面PBD ⊥平面BCD . (1)求证:CD ⊥平面PBD :(2)求证:平面PBC ⊥平面PDC : (3)求二面角P —BC —D 的大小.答案与提示:(2)先证PB ⊥面PCD (3)arctan 2备用题在三棱锥S -ABC 中:已知SA =4:AB =AC :BC =3 6 ,∠SAB =∠SAC =45°,SA 与底面ABC 所的角为30°.BA PD CE(1)求证:SA ⊥BC :(2)求二面角S —BC —A 的大小: (3)求三棱锥S —ABC 的体积. 答案与提示:(2)arctan 23 3 (3)9 2作业1.在四棱锥P -ABCD 中:已知PD ⊥底面ABCD :底面ABCD 为等腰梯形,且∠DAB =60°:AB =2CD :∠DCP =45°:设CD =a .(1)求四棱锥P -ABCD 的体积. (2)求证:AD ⊥PB . 答案与提示:(1)34a 32.如图:正三角形ABC 与直角三角形BCD 成直二面角:且∠BCD =90°:∠CBD =30°.(1)求证:AB ⊥CD :(2)求二面角D —AB —C 的大小: 答案与提示:(2)arctan 233 空间角例1、如图1:设ABC -A 1B 1C 1是直三棱柱:F 是A 1B 1的中点:且SC CBAAAB(1)求证:AF ⊥A 1C : (2)求二面角C -AF -B 的大小.解:(1)如图2:设E 是AB 的中点:连接CE :EA 1.由ABC -A 1B 1C 1是直三棱柱:知AA 1⊥平面ABC :而CE 平面ABC :所以CE ⊥AA 1:∵AB =2AA 1=2a :∴AA 1=a :AA 1⊥AE :知AA 1FE 是正方形:从而AF ⊥A 1E .而A 1E 是A 1C 在平面AA 1FE 上的射影:故AF ⊥A 1C :(2)设G 是AB 1与A 1E 的中点:连接CG .因为CE ⊥平面AA 1B 1B :AF ⊥A 1E :由三垂线定理:CG ⊥AF :所以∠CGE 就是二面角C -AF -B 的平面角.∵AA 1FE 是正方形:AA 1=a :∴11222EG EA a ==: ∴2216222CG a a =-=: ∴tan ∠CGE =6232CG EG a ===:∠CGE =60:从而二面角C -AF -B 的大小为60。
立体几何高考真题大题上课讲义
⽴体⼏何⾼考真题⼤题上课讲义⽴体⼏何⾼考真题⼤题1.(2016⾼考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五⾯体中,⾯ABEF 为正⽅形,AF=2FD, 90AFD ∠=o,且⼆⾯⾓D-AF-E 与⼆⾯⾓C-BE-F 都是60o.(Ⅰ)证明:平⾯ABEF ⊥平⾯EFDC ;(Ⅱ)求⼆⾯⾓E-BC-A 的余弦值.【答案】(Ⅰ)见解析;【解析】试题分析:(Ⅰ)先证明F A ⊥平⾯FDC E ,结合F A ?平⾯F ABE ,可得平⾯F ABE ⊥平⾯FDC E .(Ⅱ)建⽴空间坐标系,分别求出平⾯C B E 的法向量m u r及平⾯C B E 的法向量n r ,试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平⾯FDC E .⼜F A ?平⾯F ABE ,故平⾯F ABE ⊥平⾯FDC E .(Ⅱ)过D 作DG F ⊥E ,垂⾜为G ,由(Ⅰ)知DG ⊥平⾯F ABE .以G 为坐标原点,GF u u u r的⽅向为x 轴正⽅向u u u r ,建⽴如图所⽰的空间直⾓坐标系G xyz -.由(Ⅰ)知DF ∠E 为⼆⾯⾓D F -A -E 的平⾯⾓,故DF 60∠E =o,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,由已知,//F AB E ,所以//AB 平⾯FDC E .⼜平⾯CD AB I 平⾯FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平⾯FDC E ,所以C F ∠E 为⼆⾯⾓C F -BE -的平⾯⾓,C F 60∠E =o .从⽽可得,()0,4,0EB =u u u r ,,()4,0,0AB =-u u u r.设(),,n x y z =r是平⾯C B E 的法向量,则C 0n n ??E =EB =??u u u r r u u u r r ,设m r 是平⾯CD AB 的法向量,则C 0m m ??A =AB =??u u u r r u u u rr ,故⼆⾯⾓C E-B -A 的余弦值为考点:垂直问题的证明及空间向量的应⽤【名师点睛】⽴体⼏何解答题第⼀问通常考查线⾯位置关系的证明,空间中线⾯位置关系的证明主要包括线线、线⾯、⾯⾯三者的平⾏与垂直关系,其中推理论证的关键是结合空间想象能⼒进⾏推理,要防⽌步骤不完整或考虑不全致推理⽚⾯,该类题⽬难度不⼤,以中档题为主.第⼆问⼀般考查⾓度问题,多⽤空间向量解决.2.(2016⾼考新课标2理数)如图,菱形ABCD 的对⾓线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,,EF 交BD 于点H .将DEF ?沿EF 折到D EF '?位置,(Ⅰ)证明:D H '⊥平⾯ABCD ;(Ⅱ)求⼆⾯⾓B D A C '--的正弦值.【答案】(Ⅰ)详见解析;【解析】试题分析:(Ⅰ)证//AC EF ,再证'D H OH ⊥,最后证'D H ABCD ⊥平⾯;(Ⅱ)⽤向量法求解.试题解析:(Ⅰ)由已知得AC BD ⊥,AD CD =,⼜由AE CF =得//AC EF .因此EF HD ⊥,从⽽EF D H'⊥.由5AB =,6AC =得由//EF AC 得.所以1OH =,3D H DH '==.于是1OH =,22223110D H OH D O ''+=+==,故D H OH '⊥.⼜D H EF '⊥,⽽OH EF H ?=,所以D H ABCD '⊥平⾯.(Ⅱ)如图,以H 为坐标原点,HF u u u r的⽅向为x 轴的正⽅向,建⽴空间直⾓坐标系H xyz -,则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-u u u r,()6,0,0AC =u u u r ,()3,1,3AD '=u u u u r .设()111,,m x y z =u r是平⾯ABD '的法向量,则m AB m AD ??=??'?=??u r u u u r ur u u u u r ,即11111340330x y x y z -=??++=?,所以可以取()4,3,5m =-u r .设()222,,n x y z =r 是平⾯' ACD 的法向量,则00n AC n AD ??=??'?=??r u u u rr u u u u r,即222260330x x y z =??++=?,By所以可以取()0,3,1n =-r .于是,因此⼆⾯⾓B D A C '--的正弦值是考点:线⾯垂直的判定、⼆⾯⾓.【名师点睛】证明直线和平⾯垂直的常⽤⽅法有:①判定定理;②a ∥b ,a ⊥α?b ⊥α;③α∥β,a ⊥α?a ⊥β;④⾯⾯垂直的性质.线⾯垂直的性质,常⽤来证明线线垂直.求⼆⾯⾓最常⽤的⽅法就是分别求出⼆⾯⾓的两个⾯所在平⾯的法向量,然后通过两个平⾯的法向量的夹⾓得到⼆⾯⾓的⼤⼩,但要注意结合实际图形判断所求⾓是锐⾓还是钝⾓. 3.(2016⾼考⼭东理数)在如图所⽰的圆台中,AC 是下底⾯圆O 的直径,EF 是上底⾯圆O '的直径,FB 是圆台的⼀条母线.(Ⅰ)已知G,H 分别为EC ,FB 的中点,求证:GH ∥平⾯ABC ;(Ⅱ)已知AB=BC .求⼆⾯⾓F BC A --的余弦值.【答案】(Ⅰ)见解析;【解析】试题分析:(Ⅰ)根据线线、⾯⾯平⾏可得与直线GH 与平⾯ABC 平⾏;(Ⅱ)⽴体⼏何中的⾓与距离的计算问题,往往可以利⽤⼏何法、空间向量⽅法求解,其中解法⼀建⽴空间直⾓坐标系求解;解法⼆则是找到FNM ∠为⼆⾯⾓F BC A --的平⾯⾓直接求解.试题解析:(Ⅰ)证明:设FC 的中点为I ,连接,GI HI , 在CEF △,因为G 是CE 的中点,所以,GI F //E ⼜,F E //OB 所以,GI //OB在CFB △中,因为H 是FB 的中点,所以//HI BC ,⼜HI GI I ?=,所以平⾯//GHI 平⾯ABC ,因为GH ?平⾯GHI ,所以//GH 平⾯ABC .(Ⅱ)解法⼀:连接'OO ,则'OO ⊥平⾯ABC ,⼜,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥以O 为坐标原点,建⽴如图所⽰的空间直⾓坐标系O xyz -,,过点F 作FM OB 垂直于点M ,设(,,)m x y z =u r是平⾯BCF 的⼀个法向量.由0,0m BC m BF ??==??u r u u u r u r u u u r可得平⾯BCF 的⼀个法向量因为平⾯ABC 的⼀个法向量(0,0,1),n =r所以⼆⾯⾓F BC A --的余弦值为解法⼆:连接'OO ,过点F 作FM OB ⊥于点M ,则有//'FM OO ,⼜'OO ⊥平⾯ABC ,所以FM ⊥平⾯ABC,过点M 作MN BC 垂直于点N ,连接FN ,可得FN BC ⊥,从⽽FNM ∠为⼆⾯⾓F BC A --的平⾯⾓.⼜AB BC =,AC 是圆O 的直径,所以⼆⾯⾓F BC A --的余弦值为考点:1.平⾏关系;2.异⾯直线所成⾓的计算.【名师点睛】此类题⽬是⽴体⼏何中的常见问题.解答本题,关键在于能利⽤直线与直线、直线与平⾯、平⾯与平⾯关系的相互转化,通过严密推理,给出规范的证明.⽴体⼏何中的⾓与距离的计算问题,往往可以利⽤⼏何法、空间向量⽅法求解,应根据题⽬条件,灵活选择⽅法.本题能较好的考查考⽣的空间想象能⼒、逻辑推理能⼒\转化与化归思想及基本运算能⼒等.4.(2016⾼考天津理数)如图,正⽅形ABCD 的中⼼为O ,四边形OBEF 为矩形,平⾯OBEF ⊥平⾯ABCD ,点G 为AB 的中点,AB=BE=2.(Ⅰ)求证:EG ∥平⾯ADF ;(Ⅱ)求⼆⾯⾓O-EF-C 的正弦值;(Ⅲ)设H 为线段AF 上的点,且,求直线BH 和平⾯CEF 所成⾓的正弦值.【答案】【解析】试题分析:(Ⅰ)利⽤空间向量证明线⾯平⾏,关键是求出⾯的法向量,利⽤法向量与直线⽅向向量垂直进⾏论证(Ⅱ)利⽤空间向量求⼆⾯⾓,关键是求出⾯的法向量,再利⽤向量数量积求出法向量夹⾓,最后根据向量夹⾓与⼆⾯⾓相等或互补关系求正弦值(Ⅲ)利⽤空间向量证明线⾯平⾏,关键是求出⾯的法向量,再利⽤向量数量积求出法向量夹⾓,最后根据向量夹⾓与线⾯⾓互余关系求正弦值试题解析:依题意,OF ABCD ⊥平⾯,如图,以O 为点,分别以,,AD BA OF u u u r u u u r u u u r的⽅向为x 轴,y 轴、z 轴的正⽅向建⽴空间直⾓坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(Ⅰ)证明:依题意,()(2,0,0),1,1,2AD AF ==-u u u r u u u r .设()1,,n x y z =u r为平⾯ADF 的法向量,则110n AD n AF ??==??u r u u u r u r u u u r,即2020x x y z =??-+=? .不妨设1z =,可得()10,2,1n =u r,⼜()0,1,2EG =-u u u r ,可得10EG n ?=u u u r u r,⼜因为直线EG ADF ?平⾯,所以//EG ADF 平⾯.(Ⅱ)解:易证,()1,1,0OA =-u u u r为平⾯OEF 的⼀个法向量.依题意,()()1,1,0,1,1,2EF CF ==-u u u r u u u r .设()2,,n x y z =u u r 为平⾯CEF 的法向量,则220 n EF n CF ??==??u u r u u u r u u r u u u r,即020x y x y z +=??-++=?.不妨设1x =,可得()21,1,1n =-u u r .O EF C --的正弦值为(Ⅲ)解:由,得.因为()1,1,2AF =-u u u r ,所以.所以,直线BH 和平⾯CEF所成⾓的正弦值为考点:利⽤空间向量解决⽴体⼏何问题5.(2016年⾼考北京理数)如图,在四棱锥P ABCD -中,平⾯PAD ⊥平⾯ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,(1)求证:PD ⊥平⾯PAB ;(2)求直线PB 与平⾯PCD 所成⾓的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平⾯PCD不存在,说明理由.【答案】(1)见解析;(2(3【解析】试题分析:(1)由⾯⾯垂直性质定理知AB⊥平⾯PAD ;根据线⾯垂直性质定理可知PD AB ⊥,再由线⾯垂直判定定理可知⊥PD 平⾯PAB ;(2)取AD 的中点O ,连结PO ,CO ,以O 为坐标原点建⽴空间直⾓坐标系O xyz -,利⽤向量法可求出直线PB 与平⾯PCD 所成⾓的正弦值;(3)假设存在,根据A ,P ,M 三点共线,设AP AM λ=,根据//BM 平⾯PCD ,即0=?n BM ,求λ的值,即可求出试题解析:(1)因为平⾯PAD ⊥平⾯ABCD ,AB AD ⊥,所以⊥AB 平⾯PAD ,所以PD AB ⊥,⼜因为PD PA ⊥,所以⊥PD 平⾯PAB ;(2)取AD 的中点O ,连结PO ,CO ,因为PA PD =,所以AD PO ⊥.⼜因为?PO 平⾯PAD ,平⾯⊥PAD 平⾯ABCD ,所以⊥PO 平⾯ABCD .因为?CO 平⾯ABCD ,所以⊥PO CO .因为CD AC =,所以AD CO ⊥.如图建⽴空间直⾓坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平⾯PCD 的法向量为),,(z y x n =,则0,0,n PD n PC ??==??r u u u r r u u ur 即?=-=--,02,0z x z y 令2=z ,则2,1-==y x .所以)2,2,1(-=n .⼜)1,1,1(-=PB ,所以所以直线PB 与平⾯PCD 所成⾓的正弦值为。
10第一部分 板块二 专题三 立体几何 第2讲 立体几何(大题)
第2讲立体几何(大题)热点一平行、垂直关系的证明高考常考平行、垂直关系的解题策略:(1)证明空间中的平行、垂直关系的常用方法是转化,如证明面面平行时,可转化为证明线面平行,而证明线面平行时,可转化为证明线线平行,但有的时候证明线面平行时,也可先证明面面平行,然后再得出线面平行.(2)在证明时,常通过三角形、平行四边形、矩形等平面图形去寻找平行和垂直的关系.例1(2018·北京)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.跟踪演练1如图,在四棱锥P-ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE ∥平面P AD .热点二 体积、距离的计算高考常考体积和距离问题的解题策略:(1)求空间几何体的体积的常用方法有换底法,转化法,割补法.换底法的一般思路是找出几何体的底面和高,看底面积和高是否容易计算,若较难计算,则转换顶点和底面,使得底面积和高都比较容易求出;转化法是利用一个几何体与某几何体之间的关系,转化为求该几何体的体积;对于较复杂的几何体,有时也进行分割和补形,间接求得体积.(2)求立体几何中的距离问题时常利用等体积法,即把要求的距离转化成一个几何体的高,利用同一个几何体的体积相等,转换这个几何体的顶点去求解.例2 (2019·东北三省三校模拟)如图,四棱锥P -ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且AG =13GD ,BG ⊥GC ,GB =GC =2,四面体P -BCG的体积为83.(1)求点D 到平面PBG 的距离;(2)若点F 是棱PC 上一点,且DF ⊥GC ,求PFFC 的值.跟踪演练2 (2019·淄博模拟)如图,在四棱锥P -ABCD 中,AB ∥CD ,AB =1,CD =3,AP =2,DP =23,∠P AD =60°,AB ⊥平面P AD ,点M 在棱PC 上.(1)求证:平面P AB⊥平面PCD;(2)若直线P A∥平面MBD,求此时三棱锥P-MBD的体积.热点三翻折与探索性问题高考中翻折与探索性问题的解题策略:(1)翻折问题有一定的难度,在解题时,一定要先弄清楚在翻折过程中哪些量发生了变化,哪些量没有发生变化.一般情况下,长度不发生变化,而位置关系发生变化.再通过连线得到三棱锥、四棱锥等几何体,最后把问题转化到我们较熟悉的几何体中去解决.(2)对于探索性问题,一般根据问题的设问,首先假设其存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾就否定假设.例3如图1,已知菱形AECD的对角线AC,DE交于点F,点E为AB中点.将△ADE沿线段DE折起到△PDE的位置,如图2所示.(1)求证:DE⊥平面PCF;(2)求证:平面PBC⊥平面PCF;(3)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.跟踪演练3(2018·全国Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD 上异于C,D的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.真题体验(2019·全国Ⅰ,文,19)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.押题预测如图,在四棱锥P -ABCD 中,平面ABCD ⊥平面P AD ,AD ∥BC ,AB =BC =AP =12AD ,∠ADP=30°,∠BAD =90°.(1)证明:PD ⊥PB ;(2)设点M 在线段PC 上,且PM =13PC ,若△MBC 的面积为273,求四棱锥P -ABCD 的体积.A 组 专题通关1.(2019·全国Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥E -BB 1C 1C 的体积.2.(2019·哈尔滨模拟)如图,多面体ABCDEF 中,底面ABCD 是菱形,∠BCD =π3,四边形BDEF 是正方形,且DE ⊥平面ABCD .(1)求证:CF ∥平面AED ;(2)若AE =2,求多面体ABCDEF 的体积V .3.(2019·长沙模拟)如图,在多边形ABPCD 中(图1),ABCD 为长方形,△BPC 为正三角形,AB =3,BC =32,现以BC 为折痕将△BPC 折起,使点P 在平面ABCD 内的射影恰好在AD 上(图2).(1)证明:PD ⊥平面P AB ;(2)若点E 在线段PB 上,且PE =13PB ,当点Q 在线段AD 上运动时,求三棱锥Q -EBC 的体积.B组能力提高4.(2019·潍坊模拟)如图,三棱柱ABC-A1B1C1中,CA=CB,∠BAA1=45°,平面AA1C1C⊥平面AA1B1B.(1)求证:AA1⊥BC;(2)若BB1=2AB=2,∠A1AC=45°,D为CC1的中点,求三棱锥D-A1B1C1的体积.5.如图,在矩形AB′DE中,AE=6,DE=5,被截去一角(即△BB′C),AB=3,∠ABC=135°,平面P AE⊥平面ABCDE,P A+PE=10.(1)求五棱锥P-ABCDE的体积的最大值;(2)在(1)的情况下,证明:BC⊥PB.。
高考数学-立体几何(含22年真题讲解)
高考数学-立体几何(含22年真题讲解)1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,×2×2=12.则该直四棱柱的体积V=2+42故选:B.2.【2022年全国甲卷】在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B 所成的角均为30°,则()A.AB=2AD B.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°【解析】 【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】 如图所示:不妨设AB =a,AD =b,AA 1=c ,依题以及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=cB 1D=bB 1D ,即b =c ,B 1D =2c =√a 2+b 2+c 2,解得a =√2c .对于A ,AB =a ,AD =b ,AB =√2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan∠BAE =c a=√22,所以∠BAE ≠30∘,B 错误;对于C ,AC =√a 2+b 2=√3c ,CB 1=√b 2+c 2=√2c ,AC ≠CB 1,C 错误; 对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin∠DB 1C =CDB 1D=a2c =√22,而0<∠DB 1C <90∘,所以∠DB 1C =45∘.D 正确. 故选:D .3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104【答案】C 【解析】设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r1r 2=2, 所以r 1=2r 2, 又2πr 1l+2πr 2l=2π,则r 1+r 2l=1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l ,乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.4.【2022年全国乙卷】在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别为AB,BC 的中点,则( ) A .平面B 1EF ⊥平面BDD 1 B .平面B 1EF ⊥平面A 1BD C .平面B 1EF//平面A 1AC D .平面B 1EF//平面A 1C 1D【答案】A 【解析】 【分析】证明EF ⊥平面BDD 1,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设AB =2,分别求出平面B 1EF ,A 1BD ,A 1C 1D 的法向量,根据法向量的位置关系,即可判断BCD . 【详解】解:在正方体ABCD −A 1B 1C 1D 1中, AC ⊥BD 且DD 1⊥平面ABCD , 又EF ⊂平面ABCD ,所以EF ⊥DD 1,因为E,F 分别为AB,BC 的中点, 所以EF ∥AC ,所以EF ⊥BD , 又BD ∩DD 1=D , 所以EF ⊥平面BDD 1, 又EF ⊂平面B 1EF ,所以平面B 1EF ⊥平面BDD 1,故A 正确;如图,以点D 为原点,建立空间直角坐标系,设AB =2,则B 1(2,2,2),E (2,1,0),F (1,2,0),B (2,2,0),A 1(2,0,2),A (2,0,0),C (0,2,0), C 1(0,2,2),则EF ⃑⃑⃑⃑⃑ =(−1,1,0),EB 1⃑⃑⃑⃑⃑⃑⃑ =(0,1,2),DB ⃑⃑⃑⃑⃑⃑ =(2,2,0),DA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(2,0,2),AA 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,2),AC ⃑⃑⃑⃑⃑ =(−2,2,0),A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(−2,2,0),设平面B 1EF 的法向量为m ⃑⃑ =(x 1,y 1,z 1), 则有{m ⃑⃑ ⋅EF ⃑⃑⃑⃑⃑ =−x 1+y 1=0m ⃑⃑ ⋅EB 1⃑⃑⃑⃑⃑⃑⃑ =y 1+2z 1=0 ,可取m ⃑⃑ =(2,2,−1),同理可得平面A 1BD 的法向量为n 1⃑⃑⃑⃑ =(1,−1,−1), 平面A 1AC 的法向量为n 2⃑⃑⃑⃑ =(1,1,0), 平面A 1C 1D 的法向量为n 3⃑⃑⃑⃑ =(1,1,−1), 则m ⃑⃑ ⋅n 1⃑⃑⃑⃑ =2−2+1=1≠0,所以平面B 1EF 与平面A 1BD 不垂直,故B 错误; 因为m ⃑⃑ 与n 2⃑⃑⃑⃑ 不平行,所以平面B 1EF 与平面A 1AC 不平行,故C 错误; 因为m ⃑⃑ 与n 3⃑⃑⃑⃑ 不平行,所以平面B 1EF 与平面A 1C 1D 不平行,故D 错误, 故选:A.5.【2022年全国乙卷】已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.√33D.√22【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为α,则S ABCD=12⋅AC⋅BD⋅sinα≤12⋅AC⋅BD≤12⋅2r⋅2r=2r2(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2又r2+ℎ2=1则VO−ABCD =13⋅2r2⋅ℎ=√23√r2⋅r2⋅2ℎ2≤√23√(r2+r2+2ℎ23)3=4√327当且仅当r2=2ℎ2即ℎ=√33时等号成立,故选:C6.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3 B .1.2×109m 3 C .1.4×109m 3 D .1.6×109m 3【答案】C 【解析】 【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出. 【详解】依题意可知棱台的高为MN =157.5−148.5=9(m),所以增加的水量即为棱台的体积V . 棱台上底面积S =140.0km 2=140×106m 2,下底面积S ′=180.0km 2=180×106m 2, ∴V =13ℎ(S +S ′+√SS ′)=13×9×(140×106+180×106+√140×180×1012) =3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m 3).故选:C .7.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为ℎ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∵ 球的体积为36π,所以球的半径R =3, 设正四棱锥的底面边长为2a ,高为ℎ, 则l 2=2a 2+ℎ2,32=2a 2+(3−ℎ)2, 所以6ℎ=l 2,2a 2=l 2−ℎ2所以正四棱锥的体积V =13Sℎ=13×4a 2×ℎ=23×(l 2−l 436)×l 26=19(l 4−l 636), 所以V ′=19(4l 3−l 56)=19l 3(24−l 26),当3≤l ≤2√6时,V ′>0,当2√6<l ≤3√3时,V ′<0, 所以当l =2√6时,正四棱锥的体积V 取最大值,最大值为643, 又l =3时,V =274,l =3√3时,V =814,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是[274,643]. 故选:C.8.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100π B .128π C .144π D .192π【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径r 1,r 2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径r 1,r 2,所以2r 1=3√3sin60∘,2r 2=4√3sin60∘,即r 1=3,r 2=4,设球心到上下底面的距离分别为d 1,d 2,球的半径为R ,所以d 1=√R 2−9,d 2=√R 2−16,故|d 1−d 2|=1或d 1+d 2=1,即|√R 2−9−√R 2−16|=1或√R 2−9+√R 2−16=1,解得R2=25符合题意,所以球的表面积为S=4πR2=100π.故选:A.9.【2022年北京】已知正三棱锥P−ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={Q∈S|PQ≤5},则T表示的区域的面积为()A.3π4B.πC.2πD.3π【答案】B【解析】【分析】求出以P为球心,5为半径的球与底面ABC的截面圆的半径后可求区域的面积.【详解】设顶点P在底面上的投影为O,连接BO,则O为三角形ABC的中心,且BO=23×6×√32=2√3,故PO=√36−12=2√6.因为PQ=5,故OQ=1,故S的轨迹为以O为圆心,1为半径的圆,而三角形ABC内切圆的圆心为O,半径为2×√34×363×6=√3>1,故S的轨迹圆在三角形ABC内部,故其面积为π故选:B10.【2022年浙江】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.22πB.8πC.223πD.163π【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm,圆台的下底面半径为2cm,所以该几何体的体积V=12×43π×13+π×12×2+13×2×(π×22+π×12+√π×22×π×12)=22π3cm3.故选:C.11.【2022年浙江】如图,已知正三棱柱ABC−A1B1C1,AC=AA1,E,F分别是棱BC,A1C1上的点.记EF与AA1所成的角为α,EF与平面ABC所成的角为β,二面角F−BC−A的平面角为γ,则()A.α≤β≤γB.β≤α≤γC.β≤γ≤αD.α≤γ≤β【答案】A【解析】【分析】先用几何法表示出α,β,γ,再根据边长关系即可比较大小.【详解】如图所示,过点F作FP⊥AC于P,过P作PM⊥BC于M,连接PE,则α=∠EFP,β=∠FEP,γ=FMP,tanα=PEFP =PEAB≤1,tanβ=FPPE=ABPE≥1,tanγ=FPPM≥FPPE=tanβ,所以α≤β≤γ,故选:A.12.【2022年新高考1卷】(多选)已知正方体ABCD−A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可. 【详解】如图,连接B 1C 、BC 1,因为DA 1//B 1C ,所以直线BC 1与B 1C 所成的角即为直线BC 1与DA 1所成的角,因为四边形BB 1C 1C 为正方形,则B 1C ⊥ BC 1,故直线BC 1与DA 1所成的角为90°,A 正确;连接A 1C ,因为A 1B 1⊥平面BB 1C 1C ,BC 1⊂平面BB 1C 1C ,则A 1B 1⊥BC 1, 因为B 1C ⊥ BC 1,A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1C , 又A 1C ⊂平面A 1B 1C ,所以BC 1⊥CA 1,故B 正确; 连接A 1C 1,设A 1C 1∩B 1D 1=O ,连接BO ,因为BB 1⊥平面A 1B 1C 1D 1,C 1O ⊂平面A 1B 1C 1D 1,则C 1O ⊥B 1B , 因为C 1O ⊥B 1D 1,B 1D 1∩B 1B =B 1,所以C 1O ⊥平面BB 1D 1D , 所以∠C 1BO 为直线BC 1与平面BB 1D 1D 所成的角,设正方体棱长为1,则C 1O =√22,BC 1=√2,sin∠C 1BO =C 1O BC 1=12,所以,直线BC 1与平面BB 1D 1D 所成的角为30∘,故C 错误;因为C 1C ⊥平面ABCD ,所以∠C 1BC 为直线BC 1与平面ABCD 所成的角,易得∠C 1BC =45∘,故D 正确. 故选:ABD13.【2022年新高考2卷】(多选)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1【答案】CD【解析】【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=V A−EFM+V C−EFM计算出V3,依次判断选项即可.【详解】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√(2a)2+(√2a)2=√6a,FM=√a2+(√2a)2=√3a,EF=√a2+(2√2a)2=3a,EM2+FM2=EF2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.14.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2)6403√3.【解析】【分析】(1)分别取AB,BC的中点M,N,连接MN,由平面知识可知EM⊥AB,FN⊥BC,EM=FN,依题从而可证EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,于是EF//MN,最后根据线面平行的判定定理即可证出;(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL−EFGH的体积加上四棱锥B−MNFE体积的4倍,即可解出.(1)如图所示:,分别取AB,BC 的中点M,N ,连接MN ,因为△EAB,△FBC 为全等的正三角形,所以EM ⊥AB,FN ⊥BC ,EM =FN ,又平面EAB ⊥平面ABCD ,平面EAB ∩平面ABCD =AB ,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知EM//FN ,而EM =FN ,所以四边形EMNF 为平行四边形,所以EF//MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以EF//平面ABCD . (2)如图所示:,分别取AD,DC 中点K,L ,由(1)知,EF//MN 且EF =MN ,同理有,HE//KM,HE =KM ,HG//KL,HG =KL ,GF//LN,GF =LN ,由平面知识可知,BD ⊥MN ,MN ⊥MK ,KM =MN =NL =LK ,所以该几何体的体积等于长方体KMNL −EFGH 的体积加上四棱锥B −MNFE 体积的4倍.因为MN =NL =LK =KM =4√2,EM =8sin60∘=4√3,点B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =2√2,所以该几何体的体积V =(4√2)2×4√3+4×13×4√2×4√3×2√2=128√3+2563√3=6403√3.15.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)√55.【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=12,故DE=√32,BD=√DE2+BE2=√3,所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD ⊥平面PAD , 又因PA ⊂平面PAD , 所以BD ⊥PA ;(2)解:如图,以点D 为原点建立空间直角坐标系, BD =√3,则A(1,0,0),B(0,√3,0),P(0,0,√3),则AP⃑⃑⃑⃑⃑ =(−1,0,√3),BP ⃑⃑⃑⃑⃑ =(0,−√3,√3),DP ⃑⃑⃑⃑⃑ =(0,0,√3), 设平面PAB 的法向量n⃑ =(x,y,z), 则有{n →⋅AP →=−x +√3z =0n →⋅BP →=−√3y +√3z =0,可取n ⃑ =(√3,1,1), 则cos〈n ⃑ ,DP ⃑⃑⃑⃑⃑ 〉=n ⃑ ⋅DP ⃑⃑⃑⃑⃑⃑|n ⃑ ||DP ⃑⃑⃑⃑⃑⃑ |=√55, 所以PD 与平面PAB 所成角的正弦值为√55.16.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F−ABC 的体积.【答案】(1)证明详见解析(2)√34【解析】【分析】(1)通过证明AC⊥平面BED来证得平面BED⊥平面ACD.(2)首先判断出三角形AFC的面积最小时F点的位置,然后求得F到平面ABC的距离,从而求得三棱锥F−ABC的体积.(1)由于AD=CD,E是AC的中点,所以AC⊥DE.由于{AD=CDBD=BD∠ADB=∠CDB,所以△ADB≅△CDB,所以AB=CB,故AC⊥BD,由于DE∩BD=D,DE,BD⊂平面BED,所以AC⊥平面BED,由于AC⊂平面ACD,所以平面BED⊥平面ACD.(2)依题意AB=BD=BC=2,∠ACB=60°,三角形ABC是等边三角形,所以AC=2,AE=CE=1,BE=√3,由于AD=CD,AD⊥CD,所以三角形ACD是等腰直角三角形,所以DE=1. DE2+BE2=BD2,所以DE⊥BE,由于AC∩BE=E,AC,BE⊂平面ABC,所以DE⊥平面ABC.由于△ADB ≅△CDB ,所以∠FBA =∠FBC , 由于{BF =BF∠FBA =∠FBC AB =CB ,所以△FBA ≅△FBC ,所以AF =CF ,所以EF ⊥AC ,由于S △AFC =12⋅AC ⋅EF ,所以当EF 最短时,三角形AFC 的面积最小值. 过E 作EF ⊥BD ,垂足为F ,在Rt △BED 中,12⋅BE ⋅DE =12⋅BD ⋅EF ,解得EF =√32,所以DF =√12−(√32)2=12,BF =2−DF =32,所以BF BD =34.过F 作FH ⊥BE ,垂足为H ,则FH //DE ,所以FH ⊥平面ABC ,且FHDE =BFBD =34, 所以FH =34,所以V F−ABC =13⋅S △ABC ⋅FH =13×12×2×√3×34=√34.17.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的正弦值为4√37【解析】 【分析】(1)根据已知关系证明△ABD ≌△CBD ,得到AB =CB ,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE ⊥DE ,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. (1)因为AD =CD ,E 为AC 的中点,所以AC ⊥DE ;在△ABD 和△CBD 中,因为AD =CD,∠ADB =∠CDB,DB =DB ,所以△ABD ≌△CBD ,所以AB =CB ,又因为E 为AC 的中点,所以AC ⊥BE ; 又因为DE,BE ⊂平面BED ,DE ∩BE =E ,所以AC ⊥平面BED , 因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC ⊥EF ,所以S △AFC =12AC ⋅EF , 当EF ⊥BD 时,EF 最小,即△AFC 的面积最小. 因为△ABD ≌△CBD ,所以CB =AB =2, 又因为∠ACB =60°,所以△ABC 是等边三角形, 因为E 为AC 的中点,所以AE =EC =1,BE =√3, 因为AD ⊥CD ,所以DE =12AC =1,在△DEB 中,DE 2+BE 2=BD 2,所以BE ⊥DE .以E 为坐标原点建立如图所示的空间直角坐标系E −xyz ,则A (1,0,0),B(0,√3,0),D (0,0,1),所以AD ⃑⃑⃑⃑⃑ =(−1,0,1),AB ⃑⃑⃑⃑⃑ =(−1,√3,0), 设平面ABD 的一个法向量为n⃑ =(x,y,z ), 则{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =−x +z =0n ⃑ ⋅AB⃑⃑⃑⃑⃑ =−x +√3y =0,取y =√3,则n ⃑ =(3,√3,3),又因为C (−1,0,0),F (0,√34,34),所以CF⃑⃑⃑⃑⃑ =(1,√34,34), 所以cos⟨n ⃑ ,CF ⃑⃑⃑⃑⃑ ⟩=n ⃑ ⋅CF⃑⃑⃑⃑⃑|n ⃑ ||CF⃑⃑⃑⃑⃑ |=√21×√74=4√37,设CF 与平面ABD 所成的角的正弦值为θ(0≤θ≤π2), 所以sinθ=|cos⟨n ⃑ ,CF⃑⃑⃑⃑⃑ ⟩|=4√37, 所以CF 与平面ABD 所成的角的正弦值为4√37.18.【2022年新高考1卷】如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值. 【答案】(1)√2 (2)√32【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面ABB 1A 1,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱ABC −A 1B 1C 1中,设点A 到平面A 1BC 的距离为h , 则V A−A 1BC =13S △A 1BC ⋅ℎ=2√23ℎ=V A 1−ABC =13S △ABC ⋅A 1A =13V ABC−A 1B 1C 1=43,解得ℎ=√2,所以点A 到平面A 1BC 的距离为√2; (2)取A 1B 的中点E ,连接AE ,如图,因为AA 1=AB ,所以AE ⊥A 1B , 又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B , 且AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC , 在直三棱柱ABC −A 1B 1C 1中,BB 1⊥平面ABC ,由BC ⊂平面A 1BC ,BC ⊂平面ABC 可得AE ⊥BC ,BB 1⊥BC , 又AE,BB 1⊂平面ABB 1A 1且相交,所以BC ⊥平面ABB 1A 1,所以BC,BA,BB 1两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以AA 1=AB =2,A 1B =2√2,所以BC =2, 则A(0,2,0),A 1(0,2,2),B(0,0,0),C(2,0,0),所以A 1C 的中点D(1,1,1), 则BD⃑⃑⃑⃑⃑⃑ =(1,1,1),BA ⃑⃑⃑⃑⃑ =(0,2,0),BC ⃑⃑⃑⃑⃑ =(2,0,0), 设平面ABD 的一个法向量m ⃑⃑ =(x,y,z),则{m ⃑⃑ ⋅BD ⃑⃑⃑⃑⃑⃑ =x +y +z =0m ⃑⃑ ⋅BA ⃑⃑⃑⃑⃑ =2y =0,可取m⃑⃑ =(1,0,−1),设平面BDC 的一个法向量n ⃑ =(a,b,c),则{m ⃑⃑ ⋅BD ⃑⃑⃑⃑⃑⃑ =a +b +c =0m ⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =2a =0, 可取n⃑ =(0,1,−1), 则cos〈m ⃑⃑ ,n ⃑ 〉=m⃑⃑⃑ ⋅n ⃑ |m ⃑⃑⃑ |⋅|n ⃑ |=√2×√2=12, 所以二面角A −BD −C 的正弦值为√1−(12)2=√32.19.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 【答案】(1)证明见解析 (2)1113 【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA =OB ,再根据直角三角形的性质得到AO =DO ,即可得到O 为BD 的中点从而得到OE //PD ,即可得证; (2)过点A 作Az //OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得; (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P −ABC 的高,所以PO ⊥平面ABC ,AO,BO ⊂平面ABC , 所以PO ⊥AO 、PO ⊥BO ,又PA =PB ,所以△POA ≅△POB ,即OA =OB ,所以∠OAB =∠OBA ,又AB ⊥AC ,即∠BAC =90°,所以∠OAB +∠OAD =90°,∠OBA +∠ODA =90°, 所以∠ODA =∠OAD所以AO =DO ,即AO =DO =OB ,所以O 为BD 的中点,又E 为PB 的中点,所以OE //PD ,又OE ⊄平面PAC ,PD ⊂平面PAC , 所以OE //平面PAC(2)解:过点A 作Az //OP ,如图建立平面直角坐标系, 因为PO =3,AP =5,所以OA =√AP 2−PO 2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =4√3,所以AC =12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C (0,12,0),所以E (3√3,1,32), 则AE ⃑⃑⃑⃑⃑ =(3√3,1,32),AB ⃑⃑⃑⃑⃑ =(4√3,0,0),AC ⃑⃑⃑⃑⃑ =(0,12,0), 设平面AEB 的法向量为n ⃑ =(x,y,z ),则{n ⃑ ⋅AE ⃑⃑⃑⃑⃑ =3√3x +y +32z =0n ⃑ ⋅AB ⃑⃑⃑⃑⃑ =4√3x =0 ,令z =2,则y =−3,x =0,所以n ⃑ =(0,−3,2);设平面AEC 的法向量为m⃑⃑ =(a,b,c ),则{m ⃑⃑ ⋅AE ⃑⃑⃑⃑⃑ =3√3a +b +32c =0m ⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =12b =0 ,令a =√3,则c =−6,b =0,所以m ⃑⃑ =(√3,0,−6);所以cos⟨n⃑ ,m⃑⃑ ⟩=n⃑ ⋅m⃑⃑⃑|n⃑ ||m⃑⃑⃑ |=√13×√39=−4√313设二面角C−AE−B为θ,由图可知二面角C−AE−B为钝二面角,所以cosθ=−4√313,所以sinθ=√1−cos2θ=1113故二面角C−AE−B的正弦值为1113;20.【2022年北京】如图,在三棱柱ABC−A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【解析】【分析】(1)取AB的中点为K,连接MK,NK,可证平面MKN//平面CBB1C1,从而可证MN//平面CB B1C1.(2)选①②均可证明BB1⊥平面ABC,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.(1)取AB的中点为K,连接MK,NK,由三棱柱ABC −A 1B 1C 1可得四边形ABB 1A 1为平行四边形, 而B 1M =MA 1,BK =KA ,则MK //BB 1,而MK ⊄平面CBB 1C 1,BB 1⊂平面CBB 1C 1,故MK //平面CBB 1C 1, 而CN =NA,BK =KA ,则NK //BC ,同理可得NK //平面CBB 1C 1, 而NK ∩MK =K,NK,MK ⊂平面MKN ,故平面MKN //平面CBB 1C 1,而MN ⊂平面MKN ,故MN //平面CBB 1C 1, (2)因为侧面CBB 1C 1为正方形,故CB ⊥BB 1, 而CB ⊂平面CBB 1C 1,平面CBB 1C 1⊥平面ABB 1A 1, 平面CBB 1C 1∩平面ABB 1A 1=BB 1,故CB ⊥平面ABB 1A 1, 因为NK //BC ,故NK ⊥平面ABB 1A 1, 因为AB ⊂平面ABB 1A 1,故NK ⊥AB ,若选①,则AB ⊥MN ,而NK ⊥AB ,NK ∩MN =N , 故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB ⊥MK ,所以AB ⊥BB 1,而CB ⊥BB 1,CB ∩AB =B ,故BB 1⊥平面ABC ,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2), 故BA ⃑⃑⃑⃑⃑ =(0,2,0),BN ⃑⃑⃑⃑⃑⃑ =(1,1,0),BM ⃑⃑⃑⃑⃑⃑ =(0,1,2), 设平面BNM 的法向量为n⃑ =(x,y,z), 则{n ⃑ ⋅BN ⃑⃑⃑⃑⃑⃑ =0n ⃑ ⋅BM ⃑⃑⃑⃑⃑⃑ =0,从而{x +y =0y +2z =0,取z =−1,则n⃑ =(−2,2,−1), 设直线AB 与平面BNM 所成的角为θ,则 sinθ=|cos〈n ⃑ ,AB ⃑⃑⃑⃑⃑ 〉|=42×3=23. 若选②,因为NK //BC ,故NK ⊥平面ABB 1A 1,而KM ⊂平面MKN , 故NK ⊥KM ,而B 1M =BK =1,NK =1,故B 1M =NK , 而B 1B =MK =2,MB =MN ,故△BB 1M ≅△MKN , 所以∠BB 1M =∠MKN =90°,故A 1B 1⊥BB 1, 而CB ⊥BB 1,CB ∩AB =B ,故BB 1⊥平面ABC ,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2), 故BA⃑⃑⃑⃑⃑ =(0,2,0),BN ⃑⃑⃑⃑⃑⃑ =(1,1,0),BM ⃑⃑⃑⃑⃑⃑ =(0,1,2), 设平面BNM 的法向量为n⃑ =(x,y,z),则{n ⃑ ⋅BN ⃑⃑⃑⃑⃑⃑ =0n ⃑ ⋅BM ⃑⃑⃑⃑⃑⃑ =0,从而{x +y =0y +2z =0,取z =−1,则n ⃑ =(−2,2,−1), 设直线AB 与平面BNM 所成的角为θ,则 sinθ=|cos〈n ⃑ ,AB⃑⃑⃑⃑⃑ 〉|=42×3=23.21.【2022年浙江】如图,已知ABCD 和CDEF 都是直角梯形,AB//DC ,DC//EF ,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,二面角F −DC −B 的平面角为60°.设M ,N 分别为AE,BC 的中点.(1)证明:FN ⊥AD ;(2)求直线BM 与平面ADE 所成角的正弦值. 【答案】(1)证明见解析; (2)5√714.【解析】 【分析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H ,由平面知识易得FC =BC ,再根据二面角的定义可知,∠BCF =60∘,由此可知,FN ⊥BC ,FN ⊥CD ,从而可证得FN ⊥平面ABCD ,即得FN ⊥AD ;(2)由(1)可知FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N −xyz ,求出平面ADE 的一个法向量,以及BM ⃑⃑⃑⃑⃑⃑ ,即可利用线面角的向量公式解出. (1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,AB//DC,CD//EF,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,由平面几何知识易知,DG =AH =2,∠EFC =∠DCF =∠DCB =∠ABC =90°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt △EGD 和Rt △DHA ,EG =DH =2√3, ∵DC ⊥CF,DC ⊥CB ,且CF ∩CB =C ,∴DC ⊥平面BCF,∠BCF 是二面角F −DC −B 的平面角,则∠BCF =60∘, ∴△BCF 是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴ FN ⊥BC ,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD ,而BC ∩CD =C ,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD ∴FN ⊥AD . (2)因为FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N −xyz ,设A(5,√3,0),B(0,√3,0),D(3,−√3,0),E(1,0,3),则M (3,√32,32),∴BM ⃑⃑⃑⃑⃑⃑ =(3,−√32,32),AD ⃑⃑⃑⃑⃑ =(−2,−2√3,0),DE⃑⃑⃑⃑⃑ =(−2,√3,3) 设平面ADE 的法向量为n⃑ =(x,y,z) 由{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =0n ⃑ ⋅DE ⃑⃑⃑⃑⃑ =0 ,得{−2x −2√3y =0−2x +√3y +3z =0 ,取n ⃑ =(√3,−1,√3),设直线BM 与平面ADE 所成角为θ, ∴sinθ=|cos〈n⃑ ,BM ⃑⃑⃑⃑⃑⃑ 〉|=|n⃑ ⋅BM ⃑⃑⃑⃑⃑⃑⃑ ||n⃑ |⋅BM ⃑⃑⃑⃑⃑⃑⃑ |=|3√3+√32+3√32|√3+1+3⋅√9+34+94=√3√7⋅2√3=5√714.1.(2022·全国·模拟预测)已知正方体中1111ABCD A B C D -,E ,G 分别为11A D ,11C D 的中点,则直线1A G ,CE 所成角的余弦值为( )A B C D 【答案】C 【解析】 【分析】根据异面直线所成角的定义,取AB 的中点F ,则∠ECF (或其补角)为直线1A G 与CE 所成角,再解三角形即可得解. 【详解】如图所示:,取AB 的中点F ,连接EF ,CF ,易知1A G CF ∥,则∠ECF (或其补角)为直线1A G 与CE 所成角.不妨设2AB =,则CF =EF =3EC =,由余弦定理得cosECF ∠==,即直线1A G 与CE 故选:C .2.(2022·全国·模拟预测(理))如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90ABC ∠=︒,111111AA A B B C ===,2AB =,则AC 与平面11BCC B 所成的角为( )A .30B .45︒C .60︒D .90︒【答案】A 【解析】 【分析】将棱台补全为棱锥,利用等体积法求A 到面11BCC B 的距离,结合线面角的定义求AC 与平面11BCC B 所成角的大小. 【详解】将棱台补全为如下棱锥D ABC -,由90ABC ∠=︒,111111AA A B B C ===,2AB =,易知:2DA BC ==,AC = 由1AA ⊥平面ABC ,,AB AC ⊥平面ABC ,则1AA AB ⊥,1AA AC ⊥,所以BD =CD =222BC BD CD +=,所以122BCD S =⨯⨯=△A 到面11BCC B 的距离为h ,又D ABC A BCD V V --=,则111222323h ⨯⨯⨯⨯=⨯h = 综上,AC 与平面11BCC B 所成角[0,]2πθ∈,则1sin 2h AC θ==,即6πθ=. 故选:A3.(2022·浙江湖州·模拟预测)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒ D .四面体PBCD 【答案】C 【解析】 【分析】对于A ,取BD 的中点M ,即可得到BD ⊥面PMC ,A 选项可判断对于B ,采用反证法,假设DP BC ⊥,则BC ⊥面PCD ,再根据题目所给的长度即可判断;对于C ,当面PBD ⊥面BCD 时,此时直线DP 与平面BCD 所成角有最大值,判断即可;对于D ,当面PBD ⊥面BCD 时,此时四面体PBCD 的体积有最大值,计算最大体积判断即可 【详解】如图所示,取BD 的中点M ,连接,PM CMBCD △是以BD 为斜边的等腰直角三角形,BD CM ∴⊥ABD △为等边三角形,BD PM ∴⊥BD ∴⊥面PMC ,BD PC ∴⊥ ,故A 正确 对于B ,假设DP BC ⊥,又BC CD ⊥BC ∴⊥面PCD ,BC PC ∴⊥,又2,PB BC ==1PC ⎤⎦,故DP 与BC 可能垂直,故B 正确当面PBD ⊥面BCD 时,此时PM ⊥面BCD ,PDB ∠即为直线DP 与平面BCD 所成角 此时60PDB ︒∠=,故C 错误当面PBD ⊥面BCD 时,此时四面体PBCD 的体积最大,此时的体积为:111(332BCDV S PM ==⨯=,故D 正确 故选:C4.(2022·河南安阳·模拟预测(理))已知球O 的体积为125π6,高为1的圆锥内接于球O ,经过圆锥顶点的平面α截球O 和圆锥所得的截面面积分别为12,S S ,若125π8S =,则2S =( )A .2BCD .【答案】C 【解析】 【分析】根据给定条件,求出球O 半径,平面α截球O 所得截面小圆半径,圆锥底面圆半径,再求出平面α截圆锥所得的截面等腰三角形底边长及高即可计算作答. 【详解】球O 半径为R ,由34π125π36R =得52R =,平面α截球O 所得截面小圆半径1r ,由21128π5πS r ==得1r =因此,球心O 到平面α的距离1d r ===,而球心O 在圆锥的轴上,则圆锥的轴与平面α所成的角为45,因圆锥的高为1,则球心O 到圆锥底面圆的距离为132d =,于是得圆锥底面圆半径2r =,令平面α截圆锥所得截面为等腰PAB △,线段AB 为圆锥底面圆1O 的弦,点C 为弦AB 中点,依题意,145CPO ∠=,111CO PO ==,PC =AB ==所以212AB S PC =⋅=. 故选:C 【点睛】关键点睛:解决与球有关的内切或外接问题时,关键是确定球心的位置,再利用球的截面小圆性质求解.5.(2022·浙江·模拟预测)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2,1BD DE ==,点P 在线段EF 上,给出下列命题:①存在点P ,使得直线//DP 平面ACF ②存在点P ,使得直线DP ⊥平面ACF③直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦④三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π 其中所有真命题的序号是( ) A .①③ B .①④C .②④D .①③④ 【答案】D 【解析】 【分析】取EF 中点推理判断①;假定DP ⊥平面ACF ,分析判断②;确定直线DP 与平面ABCD 所成角,求出临界值判断③;求出ACF 外接圆面积判断④作答.令AC BD O =,连接,FO DF ,令EF 中点为G ,连DG ,如图,依题意,O 是,BD AC 的中点,对于①,在矩形BDEF 中,//DO FG ,DO FG =,四边形DOFG 是平行四边形,直线//DG OF ,OF ⊂平面ACF ,DG ⊄平面ACF ,则//DG 平面ACF ,当P 是线段EF 中点G 时,直线//DP 平面ACF ,①正确;对于②,假定直线DP ⊥平面ACF ,由①知,DP OF ⊥,DP DG ⊥,当点P 在线段EF 上任意位置(除点G 外),PDG ∠均为锐角,即DP 不垂直于DG ,也不垂直于OF ,因此,不存在点P ,使得直线DP ⊥平面ACF ,②不正确;对于③,平面BDEF ⊥平面ABCD ,DP 在平面ABCD 内射影在直线BD 上,直线DP 与平面ABCD 所成角为PDB ∠,当点P 由点E 运动到点F 的过程中,PDB ∠逐渐减小,当P 与E 重合时,PDB ∠最大,为90EDB ∠=,max (sin )1PDB ∠=,当P 与F 重合时,PDB ∠最小,为FDB ∠,min (sin )BF PDB DF ∠==所以直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦,③正确;对于④,在ACF 中,2AC =,|AF CF ==FO sin OF FAC AF ∠==由正弦定理得ACF 外接圆直径2sin FC r FAC ==∠半径r =圆面积为298S r ππ==,三棱锥A CDE -的外接球被平面ACF 所截取的截面是ACF 外接圆, 因此三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π,④正确, 所以所有真命题的序号是①③④. 故选:D6.(2022·四川省泸县第二中学模拟预测(文))已知1O 是正方体1111ABCD A B C D -的中心O 关于平面1111D C B A 的对称点,则下列说法中正确的是( )A .11O C 与1A C 是异面直线B .11OC ∥平面11A BCD C .11O C AD ⊥ D .11O C ⊥平面11BDD B【答案】B 【解析】 【分析】根据正方体的性质、空间直线与平面的位置关系,即可对选项做出判断. 【详解】连接1A C 、1AC ,交于点O ,连接11A C 、11B D ,交于点P . 连接AC 、BD 、1A B 、1D C 、1O O .由题可知,1O 在平面11A C CA 上,所以11O C 与1A C 共面,故A 错误;在四边形11OO C C 中,11//O O C C 且11O O C C =,所以四边形11OO C C 为平行四边形. 11//O C OC ∴.OC ⊂平面11A BCD ,11O C ⊄平面11A BCD ,11O C ∴∥平面11A BCD ,故B 正确;由正方体的性质可得1111AC B D ⊥,因为1111O B O D =,所以111O P B D ⊥,又111O P AC P =,11B D ∴⊥平面111O AC , 1111B D O C ∴⊥,又11//B D BD , 11BD O C ∴⊥,而AD 与BD 所成角为45︒,所以显然11O C 与AD 不垂直,故C 错误;显然11O C 与11O B 不垂直,而11O B ⊂平面11BDD B ,所以11O C 与平面11BDD B 不垂直,故D 错误. 故选:B.7.(2022·北京·北大附中三模)已知平面,,αβγ,直线m 和n ,则下列命题中正确的是( ) A .若,m m αβ⊥⊥,则αβ∥ B .若,αγβγ⊥⊥,则αβ∥ C .若,m n m α⊥⊥,则n α∥ D .若,m n αα∥∥,则m n ∥ 【答案】A 【解析】 【分析】对于A 选项,垂直于同一条直线的两个平面互相平行;对于B 选项,垂直于同一个平面的两个平面有可能相交,也有可能互相平行; 对于C 选项,由线面垂直的性质即可判断;对于D 选项,平行于同一个平面的两条直线有可能相交、平行或异面. 【详解】选项A 正确,因为垂直于同一直线的两个平面互相平行; 选项B 错误,平面α和β也可以相交; 选项C 错误,直线n 可能在平面α内; 选项D 错误,直线m 和n 还可能相交或者异面. 故选:A.8.(2022·云南师大附中模拟预测(理))已知正方形ABCD 的边长为ABC 沿对角线AC 折起,使得二面角B AC D --的大小为90°.若三棱锥B ACD -的四个顶点都在球O 的球面上,G 为AC 边的中点,E ,F 分别为线段BG ,DC 上的动点(不包括端点),且BE ,当三棱锥E ACF -的体积最大时,过点F 作球O 的截面,则截面面积的最小值为( )A .B .2πC .32πD .89π【答案】D 【解析】 【分析】根据面面垂直的判定定理得BG ⊥平面ACD ,继而表示出三棱锥E ACF -的体积,求出x =V 取得最大值,在∠GCF 中,由余弦定理,得GF =当GF 垂直于截面时,截面圆的面积最小,继而得解. 【详解】因为正方形ABCD 的边长为4AC =.如图,由于平面ABC ⊥平面ACD ,平面ABC 平面ACD AC =,又G 为AC 边的中点,则有BG AC ⊥,所以BG ⊥平面ACD .设CF x =(0x <<,则BE =,所以三棱锥E ACF -的体积13ACF V S EG ==△2111122sin 4(22))323223AC CF ACF EG x x x ⨯∠=⨯⨯-=-,当x =时,V 取得最大值.由于GA GB GC GD ===,则球O 的球心即为G ,且球O 的半径2R =.又在△GCF中,由余弦定理,得cos GF GC CF ACF =∠=。
大题考法立体几何PPT精选文档
[演练冲关] 2.(2018·温州 5 月高三测试)如图,斜三棱柱
ABC -A1B1C1,∠BAC=90°,AB=2AC, B1C⊥A1C1,且△A1B1C 为等边三角形. (1)求证:平面 A1B1C⊥平面 ABC; (2)求直线 BB1 与平面 ABC 所成角的正弦值. 解:(1)证明:∵AC∥A1C1,B1C⊥A1,∴AC⊥B1A1. 又∵B1A1∩B1C=B1,∴AC⊥平面 A1B1C, ∵AC⊂平面 ABC,∴平面 A1B1C⊥平面 ABC.
设 P(x,0,z)(z>0),由 PC=2,OP=1,
得xx2-+1z2=2+11,+z2=4,
得
x=-12,z=
3 2.
即点 P -12,0, 23,而 E 为 PD 的中点, ∴E -14,12, 43.
设平面 PAB 的法向量为 n =(x1,y1,z1),
∵―A→P =-12,1, 23,―A→B =(1,1,0),
(2)算:sin θ=hd,如图(4),θ 为二面角的大小,h 为点 A 到平 面 β 的距离,d 为点 A 到棱 l 的距离.
3.利用空间向量求线线角、线面角的思路 (1)异面直线所成的角 θ,可以通过两直线的方向向量的夹角 φ 求得,即 cos θ=|cos φ|. (2)直线与平面所成的角 θ,主要通过直线的方向向量与平面 的法向量的夹角 φ 求得,即 sin θ=|cos φ|. 4.利用空间向量求二面角的方法 (1)分别求出二面角的两个面所在平面的法向量,然后通过两 个平面的法向量的夹角得到二面角的大小,但要注意结合实际图 形判断所求角的大小. (2)分别在二面角的两个半平面内找到与棱垂直且以垂足为 起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.
立体几何(向量法)—建系讲义
立体几何(向量法)—建系引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、利用共顶点的互相垂直的三条线构建直角坐标系例1(2012高考真题重庆理19)(本小题满分12分 如图,在直三棱柱111C B A ABC - 中,AB=4,AC=BC=3,D 为AB 的中点(Ⅰ)求点C 到平面11ABB A 的距离;(Ⅱ)若11AB A C ⊥求二面角 的平面角的余弦值.【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB 。
又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =错误!=错误!.(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1。
又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此错误!=错误!,即AA 错误!=AD ·A 1B 1=8,得AA 1=2错误!.从而A1D=错误!=2错误!。
所以,在Rt△A1DD1中,cos∠A1DD1=错误!=错误!=错误!。
解法二:如图,过D作DD1∥AA1交A1B1于点D1,在直三棱柱中,易知DB,DC,DD1两两垂直.以D为原点,射线DB,DC,DD1分别为x轴、y轴、z轴的正半轴建立空间直角坐标系D-xyz.设直三棱柱的高为h,则A(-2,0,0),A1(-2,0,h),B1(2,0,h),C(0,错误!,0),C1(0,错误!,h),从而错误!=(4,0,h),错误!=(2,错误!,-h).由错误!⊥错误!,有8-h2=0,h=2错误!。
立体几何—建系讲义
立体几何(向量法)—建系引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、利用共顶点的互相垂直的三条线构建直角坐标系例1(2012高考真题重庆理19)(本小题满分12分 如图,在直三棱柱111C B A ABC - 中,AB=4,AC=BC=3,D 为AB 的中点(Ⅰ)求点C 到平面11ABB A 的距离;(Ⅱ)若11AB A C ⊥求二面角 的平面角的余弦值.【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2= 5.(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此AA 1AD =A 1B 1AA 1,即AA 21=AD ·A 1B 1=8,得AA 1=2 2.从而A 1D =AA 21+AD 2=2 3.所以,在Rt △A 1DD 1中, cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.解法二:如图,过D 作DD 1∥AA 1交A 1B 1于点D 1,在直三棱柱中,易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →,有8-h 2=0,h =2 2. 故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →= (0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即 ⎩⎨⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1),设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即⎩⎨⎧5y 2=0,22z 2=0, 取x 2=1,得n =(1,0,0),所以 cos 〈m ,n 〉=m·n |m ||n |=22+1·1=63. 所以二面角A 1-CD -C 1的平面角的余弦值为63.二、利用线面垂直关系构建直角坐标系例 2.如图所示,AF 、DE 分别是圆O 、圆1O 的直径,AD 与两圆所在的平面均垂直,8AD =.BC 是圆O 的直径,6AB AC ==,//OE AD .(I)求二面角B AD F --的大小; (II)求直线BD 与EF 所成的角的余弦值. 19.解:(Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD⊥AB, AD⊥AF,故∠BAD 是二面角B —AD —F 的平面角, 依题意可知,ABCD 是正方形,所以∠BAD=450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=FE BD10828210064180||||,cos =⨯++=•>=<FE BD FE BD EF BD 设异面直线BD 与EF 所成角为α,则1082|,cos |cos =><=EF BD α直线BD 与EF 所成的角为余弦值为8210.三、利用图形中的对称关系建立坐标系例3(2013年重庆数学(理))如图,四棱锥P ABCD -中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sinπ3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ⎝⎛⎭⎫0,-1,z 2,又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|P A →|=2 3.(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为1=(x 1,y 1,z 1),平面F AB 的法向量为2=(x 2,y 2,z 2).由1·AD →=0,1·AF →=0,得⎩⎨⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取1=(3,3,-2). 由2·AB →=0,2·AF →=0,得⎩⎨⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为 cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.四、利用正棱锥的中心与高所在直线,投影构建直角坐标系 例4-1(2013大纲版数学(理))如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的余弦值.【答案】解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连FG . 则FG ∥CD ,FG ⊥PD .联结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 联结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =22,EG =12PB =1,故AG =AE 2+EG 2=3,在△AFG 中,FG =12CD =2,AF =3,AG =3.所以cos ∠AFG =FG 2+AF 2-AG 22·FG ·AF =-63.解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE →的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB →|=2,则A (-2,0,0),D (0,-2,0), C (22,-2,0),P (0,0,2),PC →=(22,-2,-2),PD →=(0,-2,-2), AP →=(2,0,2),AD →=(2,-2,0). 设平面PCD 的法向量为1=(x ,y ,z ),则 1·PC →=(x ,y ,z )·(22,-2,-2)=0,1·PD →=(x ,y ,z )·(0,-2,-2)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故1=(0,-1,1). 设平面P AD 的法向量为2=(m ,p ,q ),则 2·AP →=(m ,p ,q )·(2,0,2)=0, 2·AD →=(m ,p ,q )·(2,-2,0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故2=(1,1,-1). 于是cos 〈,2〉=n 1·n 2|n 1||n 2|=-63. 例4-2如图1-5,在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长; (2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.图1-5【答案】解:(1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1 于点E ,因为AA 1∥BB 1,所以OE ⊥BB 1.因为A 1O ⊥平面ABC ,所以A 1O ⊥BC . 因为AB =AC ,OB =OC ,所以AO ⊥BC , 所以BC ⊥平面AA 1O . 所以BC ⊥OE ,所以OE ⊥平面BB 1C 1C ,又AO =AB 2-BO 2=1,AA 1=5, 得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),由AE →=15AA 1→得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE→=⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量=(x ,y ,z ),由⎩⎪⎨⎪⎧·AB →=0,n ·A 1C →=0得⎩⎨⎧-x +2y =0,y +z =0,令y =1,得x =2,z =-1,即=(2,1,-1),所以 cos 〈OE →,〉=OE →·n |OE →|·|n |=3010.即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是3010三、利用面面垂直关系构建直角坐标系 例5(2012高考真题安徽理18)(本小题满分12分)平面图形ABB 1A 1C 1C 如图1-4(1)所示,其中BB 1C 1C 是矩形,BC =2,BB 1=4,AB=AC=2,A1B1=A1C1= 5.图1-4现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图1-4(2)所示的空间图形.对此空间图形解答下列问题.(1)证明:AA1⊥BC;(2)求AA1的长;(3)求二面角A-BC-A1的余弦值.【答案】解:(向量法):(1)证明:取BCB1C1的中点分别为D和D1,连接A1D1,DD1,AD.由BB1C1C为矩形知,DD1⊥B1C1,因为平面BB1C1C⊥平面A1B1C1,所以DD1⊥平面A1B1C1,又由A1B1=A1C1知,A1D1⊥B1C1.故以D1为坐标原点,可建立如图所示的空间直角坐标系D1-xyz.由题设,可得A1D1=2,AD=1.由以上可知AD⊥平面BB1C1C,A1D1⊥平面BB1C1C,于是AD∥A1D1.所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4). 故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0, 因此AA 1→⊥BC →,即AA 1⊥BC . (2)因为AA 1→=(0,3,-4), 所以||AA 1→=5,即AA 1=5. (3)连接A 1D ,由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.因为DA →=(0,-1,0),DA 1→=(0,2,-4),所以 cos 〈DA →,DA 1→〉=-21×22+(-4)2=-55. 即二面角A -BC -A 1的余弦值为-55.(综合法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD ,A 1D .由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1, 由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C . 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.(2)延长A 1D 1到G 点,使GD 1=AD ,连接AG . 因为AD 綊GD 1,所以AG 綊DD 1綊BB 1. 由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G .由条件可知,A 1G =A 1D 1+D 1G =3,AG =4, 所以AA 1=5.(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角. 在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得 sin ∠D 1DA 1=55,cos ∠ADA 1=cos ⎝ ⎛⎭⎪⎫π2+∠D 1DA 1=-55.即二面角A -BC -A 1的余弦值为-55.。
高中数学理科专题讲解高考大题专项(四)《立体几何》教学课件
所以ON=AF.因为BE∥AF,所以ON∥AF,所以四边形AONF是平行四边形,所以FN∥AO,且AO⊂平面MAC,所以FN∥平面MAC.因为FN∩BF=F,所以平面BFN∥平面MAC.
--
证法二:因为AD∥BC,AB=2,BC=1,AD=2,CD= ,所以AB⊥AD.因为BE∥AF,BE⊥平面ABCD,所以AF⊥平面ABCD,所以AF⊥AB,AF⊥AD,取AB所在直线为x轴,取AD所在直线为y轴,取AF所在直线为z轴,建立如图所示的空间直角坐标系,
--
--
解题心得求线面角可以用几何法,即“先找,后证,再求”,也可以通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.
--
对点训练1(2018全国2,理20)如图,在三棱锥P-ABC中,AB=BC=2 ,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM所成角的正弦值.
--
对点训练1(2016全国3,理19)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.
--
--
--
题型二 证明平行关系求二面角例2(2019全国1,理18)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.
--
方法一:(1)证明:连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何高考真题大题1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=o,且二面角D-AF-E 与二面角C-BE-F 都是60o.(Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;【解析】试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ⊂平面F ABE ,可得平面F ABE ⊥平面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m u r及平面C B E 的法向量n r ,试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE .以G 为坐标原点,GF u u u r的方向为x 轴正方向u u u r ,建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,由已知,//F AB E ,所以//AB 平面FDC E .又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角,C F 60∠E =o .从而可得,()0,4,0EB =u u u r ,,()4,0,0AB =-u u u r.设(),,n x y z =r是平面C B E 的法向量,则C 0n n ⎧⋅E =⎪⎨⋅EB =⎪⎩u u u r r u u u r r ,设m r 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩u u u r r u u u rr ,故二面角C E-B -A 的余弦值为考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.2.(2016高考新课标2理数)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值. 【答案】(Ⅰ)详见解析;【解析】试题分析:(Ⅰ)证//AC EF ,再证'D H OH ⊥,最后证'D H ABCD ⊥平面;(Ⅱ)用向量法求解.试题解析:(Ⅰ)由已知得AC BD ⊥,AD CD =,又由AE CF =得//AC EF .因此EF HD ⊥,从而EF D H'⊥.由5AB =,6AC =得由//EF AC 得.所以1OH =,3D H DH '==. 于是1OH =,22223110D H OH D O ''+=+==, 故D H OH '⊥.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.(Ⅱ)如图,以H 为坐标原点,HF u u u r的方向为x 轴的正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-u u u r,()6,0,0AC =u u u r ,()3,1,3AD '=u u u u r .设()111,,m x y z =u r是平面ABD '的法向量,则m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩u r u u u r ur u u u u r ,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-u r .设()222,,n x y z =r 是平面'ACD 的法向量,则00n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩r u u u rr u u u u r, 即222260330x x y z =⎧⎨++=⎩,By所以可以取()0,3,1n =-r .于是,因此二面角B D A C '--的正弦值是考点:线面垂直的判定、二面角. 【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直. 求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 3.(2016高考山东理数)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(Ⅰ)已知G,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (Ⅱ)已知AB=BC .求二面角F BC A --的余弦值. 【答案】(Ⅰ)见解析;【解析】 试题分析:(Ⅰ)根据线线、面面平行可得与直线GH 与平面ABC 平行;(Ⅱ)立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,其中解法一建立空间直角坐标系求解;解法二则是找到FNM ∠为二面角F BC A --的平面角直接求解.试题解析:(Ⅰ)证明:设FC 的中点为I ,连接,GI HI , 在CEF △,因为G 是CE 的中点,所以,GI F //E 又,F E //OB 所以,GI //OB在CFB △中,因为H 是FB 的中点,所以//HI BC , 又HI GI I ⋂=,所以平面//GHI 平面ABC , 因为GH ⊂平面GHI ,所以//GH 平面ABC . (Ⅱ)解法一:连接'OO ,则'OO ⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥ 以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,,过点F 作FM OB 垂直于点M ,设(,,)m x y z =u r是平面BCF 的一个法向量.由0,0m BC m BF ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u r可得平面BCF 的一个法向量因为平面ABC 的一个法向量(0,0,1),n =r所以二面角F BC A --的余弦值为解法二:连接'OO ,过点F 作FM OB ⊥于点M , 则有//'FM OO ,又'OO ⊥平面ABC , 所以FM ⊥平面ABC,过点M 作MN BC 垂直于点N ,连接FN , 可得FN BC ⊥,从而FNM ∠为二面角F BC A --的平面角. 又AB BC =,AC 是圆O 的直径,所以二面角F BC A --的余弦值为考点:1.平行关系;2.异面直线所成角的计算.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等. 4.(2016高考天津理数)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB=BE=2.(Ⅰ)求证:EG ∥平面ADF ;(Ⅱ)求二面角O-EF-C 的正弦值; (Ⅲ)设H 为线段AF 上的点,且,求直线BH 和平面CEF 所成角的正弦值. 【答案】【解析】试题分析:(Ⅰ)利用空间向量证明线面平行,关键是求出面的法向量,利用法向量与直线方向向量垂直进行论证(Ⅱ)利用空间向量求二面角,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与二面角相等或互补关系求正弦值(Ⅲ)利用空间向量证明线面平行,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与线面角互余关系求正弦值试题解析:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF u u u r u u u r u u u r的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(Ⅰ)证明:依题意,()(2,0,0),1,1,2AD AF ==-u u u r u u u r .设()1,,n x y z =u r为平面ADF 的法向量,则110n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u r,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =u r,又()0,1,2EG =-u u u r ,可得10EG n ⋅=u u u r u r,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(Ⅱ)解:易证,()1,1,0OA =-u u u r为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-u u u r u u u r .设()2,,n x y z =u u r 为平面CEF 的法向量,则220n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u r u u r u u u r,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =-u u r .O EF C --的正弦值为(Ⅲ)解:由,得.因为()1,1,2AF =-u u u r ,所以.所以,直线BH 和平面CEF所成角的正弦值为 考点:利用空间向量解决立体几何问题5.(2016年高考北京理数)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD不存在,说明理由. 【答案】(1)见解析;(2(3【解析】试题分析:(1)由面面垂直性质定理知AB⊥平面PAD ;根据线面垂直性质定理可知PD AB ⊥,再由线面垂直判定定理可知⊥PD 平面PAB ;(2)取AD 的中点O ,连结PO ,CO ,以O 为坐标原点建立空间直角坐标系O xyz -,利用向量法可求出直线PB 与平面PCD 所成角的正弦值;(3)假设存在,根据A ,P ,M 三点共线,设AP AM λ=,根据//BM 平面PCD ,即0=⋅n BM ,求λ的值,即可求出 试题解析:(1)因为平面PAD ⊥平面ABCD ,AB AD ⊥,所以⊥AB 平面PAD ,所以PD AB ⊥, 又因为PD PA ⊥,所以⊥PD 平面PAB ; (2)取AD 的中点O ,连结PO ,CO , 因为PA PD =,所以AD PO ⊥.又因为⊂PO 平面PAD ,平面⊥PAD 平面ABCD , 所以⊥PO 平面ABCD .因为⊂CO 平面ABCD ,所以⊥PO CO . 因为CD AC =,所以AD CO ⊥.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平面PCD 的法向量为),,(z y x n =,则0,0,n PD n PC ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u ur 即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x . 所以)2,2,1(-=n .又)1,1,1(-=PB ,所以 所以直线PB 与平面PCD 所成角的正弦值为(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=. 因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用. 【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.6.(2016高考新课标3理数)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC P ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC的中点.(Ⅰ)证明MN P 平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MN AT P ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角. 试题解析:,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //, 又BC AD //,故,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥,且以A 为坐标原点,AE uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M , (0,2,4)PM =-u u u u r,设(,,)n x y z =r 为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,可取(0,2,1)n =r,考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积. 【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理. 7.(2016高考浙江理数)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠o ,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:EF ⊥平面ACFD ;(Ⅱ)求二面角B-AD-F 的平面角的余弦值.【答案】(Ⅰ)证明见解析; 【解析】试题分析:(Ⅰ)先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(Ⅱ)方法一:先找二面角D F B-A -的平面角,再在Rt QF ∆B 中计算,即可得二面角D F B-A -的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B-A -的平面角的余弦值. 试题解析:(Ⅰ)延长D A ,BE ,CF 相交于一点K ,如图所示.因为平面CF B E ⊥平面C AB ,且C C A ⊥B ,所以, C A ⊥平面C B K ,因此, F C B ⊥A .又因为F//C E B ,F FC 1BE =E ==,C 2B =,所以C ∆B K 为等边三角形,且F 为C K 的中点,则 F C B ⊥K .所以F B ⊥平面CFD A .(Ⅱ)方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK . 所以,QF ∠B 是二面角D F B-A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得 在Rt QF ∆B 中,所以,二面角D F B-A -的平面角的余弦值为 方法二:如图,延长D A ,BE ,CF 相交于一点K ,则C ∆B K 为等边三角形. 取C B 的中点O ,则C KO ⊥B ,又平面CF B E ⊥平面C AB ,所以,KO ⊥平面C AB . 以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向, 建立空间直角坐标系xyz O . 由题意得()1,0,0B ,()C 1,0,0-,()1,3,0A --, 因此,()C 0,3,0A =u u u r ,,()2,3,0AB =u u u r.设平面C A K 的法向量为()111,,m x y z =r ,平面ABK 的法向量为()222,,n x y z =r.由C 0m m ⎧A ⋅=⎪⎨AK ⋅=⎪⎩u u u r r u u u r r,得 由00n n⎧AB⋅=⎪⎨AK ⋅=⎪⎩u u u r r u u u r r,得所以,二面角D F B-A -的平面角的余弦值为考点:1、线面垂直;2、二面角.【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线. 8.(2016年高考四川理数)如图,在四棱锥P-ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,,E 为边AD 的中点,异面直线PA 与CD 所成的角为90°.(Ⅰ)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(Ⅱ)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值. 【答案】(Ⅰ)详见解析;【解析】 试题分析:(Ⅰ)探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,而这可以利用已知的平行,易得CD ∥EB ;从而知M 为DC 和AB 的交点;(Ⅱ)求线面角,可以先找到这个角,即作出直线在平面内的射影,再在三角形中解出,也可以利用已知图形中的垂直建立空间直角坐标系,用向量法求出线面角(通过平面的法向量与直线的方向向量的夹角来求得). 试题解析:(Ⅰ)在梯形ABCD 中,AB 与CD 不平行. 延长AB ,DC ,相交于点M (M ∈平面PAB ),点M 即为所求的一个点.理由如下: 由已知,BC ∥ED ,且BC=ED . 所以四边形BCDE 是平行四边形.,所以CD ∥EB 从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP=PN ,则所找的点可以是直线MN 上任意一点) (Ⅱ)方法一:由已知,CD ⊥PA ,CD ⊥AD ,PA ⋂AD=A , 所以CD ⊥平面PAD . 从而CD ⊥PD .所以∠PDA 是二面角P-CD-A 的平面角. 所以∠PDA=45°.设BC=1,则在Rt △PAD 中,PA=AD=2.EDCBPA过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH . 易知PA ⊥平面ABCD , 从而PA ⊥CE .于是CE ⊥平面PAH .所以平面PCE ⊥平面PAH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE . 所以∠APH 是PA 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH=45°,AE=1, 所以在Rt △PAH 中,, 所以sin ∠方法二:由已知,CD ⊥PA ,CD ⊥AD ,PA ⋂AD=A , 所以CD ⊥平面PAD . 于是CD ⊥PD .从而∠PDA 是二面角P-CD-A 的平面角. 所以∠PDA=45°.由PA ⊥AB ,可得PA ⊥平面ABCD . 设BC=1,则在Rt △PAD 中,PA=AD=2.作Ay ⊥AD ,以A 为原点,以AD u u u r ,AP u u u r的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以PE u u u r =(1,0,-2),EC uuu r =(1,1,0),AP u u u r =(0,0,2)设平面PCE 的法向量为n=(x,y,z ),由0,0,PE EC ⎧⋅=⎪⎨⋅=⎪⎩u u u u u u u u r u u u rn n 得20,0,x z x y -=⎧⎨+=⎩ 设x=2,解得n=(2,-2,1).设直线PA 与平面PCE 所成角为α,则sin α.所以直线PA 与平面PCE.考点:线线平行、线面平行、向量法.【名师点睛】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),一种方法可根据定义作出这个角(注意还要证明),然后通过解三角形求出这个角.另一种方法建立空间直角坐标系,用向量法求角,这种方法主要是计算,不需要“作角、证明”,关键是记住相应公式即可. 9.(2016高考上海理数)将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,»AC 长为3,¼11A B 长为3其中1B 与C 在平面11AAO O 的同侧。