分组分解因式分解练习题

合集下载

分组分解法因式分解

分组分解法因式分解
1.超过三项,分成几组; 2.每一组先进行分解; 3.两组之间再分解。
1、计算
(1)(x +1) ( x + 2 ) = x2 + ( 1 + 2 )x + 1×2
(2)(x -1) ( x + 2 )= x2 +[(-1) + 2]x + (-1)×2
(3)(x + a) ( x + b )= x2 + ( a + b )x + a b
②交叉相乘,和相加; 竖分常数交叉验,
③检验确定,横写因式. 横写因式不能乱. 符号规律:
当q>0时,a、b同号,且a、b的符号与p的符号相同;
当q<0时,a、b异号,且绝对值较大的因数与p的符 号相同.
例2 分解因式 3x2-10x+3
解:3x 2-10x+3
x
-3
=(x-3)(3x-1) 3x
= (6x 2+x-5) (12x 2+2x-1 )
解1:原式= (mx+my)-(nx+ny) =m(x+y)-n(x+y) =(x+y)(m-n)
①③,②④两组,得(mx-nx)+(my-ny) 解2:原式= (mx-nx)+(my-ny)
=x(m-n)+y(m-n) = (m-n) (x+y)
注 意
(1)分组时小组内能提公因式要保证组与组 之间还有公因式可以提.
=(x+1)(x+2)
分析:(2)二次项系数为1,常数项6=1×6 =(-1)×(-6) =2×3
=(-2) ×(-3),
一次项系数-7 =(-1)+(-6) ≠2+3 ≠(-2) +(-3)

中考数学专题练习因式分解分组分解法(含解析)

中考数学专题练习因式分解分组分解法(含解析)

2019中考数学专题练习-因式分解分组分解法(含解析)一、单选题1.把ab﹣a﹣b+1分解因式的结果为()A. (a+1)(b+1)B. (a+1)(b﹣1)C. (a﹣1)(b﹣1)D. (a﹣1)(b+1)2.把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A. (4x2﹣y)﹣(2x+y2)B. (4x2﹣y2)﹣(2x+y)C. 4x2﹣(2x+y2+y)D. (4x2﹣2x)﹣(y2+y)3.分解因式4﹣x2+2x3﹣x4 ,分组合理的是()A. (4﹣x2)+(2x3﹣x4)B. (4﹣x2﹣x4)+2x3C. (4﹣x4)+(﹣x2+2x3)D. (4﹣x2+2x3)﹣x44.下列分解因式错误的是()A. 15a2+5a=5a(3a+1)B. ﹣x2+y2=(y+x)(y﹣x)C. ax+x+ay+y=(a+1)(x+y) D. ﹣a2﹣4ax+4x2=﹣a(a+4x)+4x25.把多项式a3+2a2b+ab2﹣a分解因式正确的是()A. (a2+ab+a)(a+b+1)B. a(a+b+1)(a+b﹣1)C. a(a2+2ab+b2﹣1)D. (a2+ab+a)(a2+ab﹣a)6.能分解成(x+2)(y﹣3)的多项式是()A. xy﹣2x+3y﹣6B. xy﹣3y+2x﹣y C. ﹣6+2y﹣3x+xy D. ﹣6+2x﹣3y+xy7.把多项式ac-bc+a2-b2分解因式的结果是()A. (a-b)(a+b+c)B. (a-b)(a+b-c)C. (a+b)(a-b-c)D. (a+b)(a-b+c)8.若m>﹣1,则多项式m3﹣m2﹣m+1的值为()A. 正数B. 负数C. 非负数D. 非正数9.把多项式x2﹣y2﹣2x﹣4y﹣3因式分解之后,正确的结果是()A. (x+y+3)(x﹣y﹣1)B. (x+y﹣1)(x﹣y+3)C. (x+y﹣3)(x﹣y+1)D. (x+y+1)(x﹣y﹣3)10.分解因式:x2+y2+2xy-1=( )A. (x+y+1)(x+y-1)B. (x+y-1)(x-y-1)C. (x+y-1)(x-y+1)D. (x-y+1)(x+y+1)11.把多项式ab﹣1+a﹣b因式分解的结果是()A. (a+1)(b+1)B. (a﹣1)(b﹣1)C. (a+1)(b﹣1)D. (a﹣1)(b+1)12.把多项式a2-2ab+b2-1分解因式,结果是( )A.B.C.D.13.下列因式分解错误的是()A. x2﹣y2=(x+y)(x﹣y)B. x2+y2=(x+y)(x+y)C. x2﹣xy+xz﹣yz=(x﹣y)(x+z) D. x2﹣3x﹣10=(x+2)(x﹣5)14.下列四个等式中错误的是()A. 1﹣a﹣b+ab=(1﹣a)(1﹣b) B. 1+a+b+ab=(1+a)(1+b)C. 1﹣a+b+ab=(1﹣a)(1+b) D. 1+a﹣b﹣ab=(1+a)(1﹣b)二、填空题15.若x2﹣y2﹣x+y=(x﹣y)•A,则A=________.16.分解因式:x2﹣y2=________.ab﹣a﹣b+1=________.17.分解因式:a2﹣6a+9﹣b2=________.18.分解因式:x2+3x(x﹣3)﹣9=________.19.分解因式:xy﹣x﹣y+1=________.20.分解因式:=________21.分解因式x2﹣2xy+y2﹣4x+4y+3=________.22.分解因式:x2﹣y2﹣3x﹣3y=________三、计算题23.因式分解:(1)x2﹣xy﹣12y2;(2)a2﹣6a+9﹣b224.若|m﹣4|与n2﹣8n+16互为相反数,把多项式a2+4b2﹣mab﹣n因式分解.25.因式分解(1)3ax+6ay(2)25m2﹣4n2(3)3a2+a﹣10(4)ax2+2a2x+a3(5)x3+8y3(6)b2+c2﹣2bc﹣a2(7)(a2﹣4ab+4b2)﹣(2a﹣4b)+1(8)(x2﹣x)(x2﹣x﹣8)+12.四、解答题26.先阅读以下材料,然后解答问题.分解因式mx+nxmy+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y);也可以mx+nxmy+ny=(mx+my)+( nx+ny)=m(x+y)+n(x+y)=(m+n)(x+y).以上分解因式的方法称为分组分解法.请用分组分解法分解因式:a3﹣b3+a2b ﹣ab2 .27.已知a,b,c是△ABC的三边长,且满足,试判断△ABC 的形状。

三十道因式分解练习题

三十道因式分解练习题

三十道因式分解练习题一、提取公因式类1. 因式分解:$6x^2 + 9x$2. 因式分解:$8a^3 12a^2$3. 因式分解:$15xy 20xz$4. 因式分解:$21m^2n 35mn^2$5. 因式分解:$4ab^2 + 6a^2b$二、公式法类6. 因式分解:$x^2 9$7. 因式分解:$a^2 4$8. 因式分解:$4x^2 25y^2$9. 因式分解:$9m^2 16n^2$10. 因式分解:$25p^2 49q^2$三、分组分解类11. 因式分解:$x^3 + x^2 2x 2$12. 因式分解:$a^3 a^2 3a + 3$13. 因式分解:$3x^2 + 3x 2x 2$14. 因式分解:$4m^2 4m 3m + 3$15. 因式分解:$5n^3 10n^2 + 3n 6$四、十字相乘法类16. 因式分解:$x^2 + 5x + 6$17. 因式分解:$a^2 7a + 10$18. 因式分解:$2x^2 9x 5$20. 因式分解:$4n^2 13n + 3$五、综合运用类21. 因式分解:$x^3 2x^2 5x + 10$22. 因式分解:$a^3 + 3a^2 4a 12$23. 因式分解:$2x^2 + 5x 3$24. 因式分解:$3m^2 7m + 2$25. 因式分解:$4n^2 + 10n 6$六、特殊因式分解类26. 因式分解:$x^4 16$27. 因式分解:$a^4 81$28. 因式分解:$16x^4 81y^4$29. 因式分解:$25m^4 49n^4$30. 因式分解:$64p^4 81q^4$一、平方差公式类1. 因式分解:$x^2 25$2. 因式分解:$4y^2 9$3. 因式分解:$49z^2 100$4. 因式分解:$25a^2 121b^2$5. 因式分解:$16m^2 36n^2$二、完全平方公式类6. 因式分解:$x^2 + 8x + 16$7. 因式分解:$y^2 10y + 25$8. 因式分解:$z^2 + 14z + 49$10. 因式分解:$b^2 + 22b + 121$三、交叉相乘法类11. 因式分解:$x^2 + 7x + 12$12. 因式分解:$y^2 5y 14$13. 因式分解:$z^2 + 11z + 30$14. 因式分解:$a^2 13a 42$15. 因式分解:$b^2 + 17b + 60$四、多项式乘法公式类16. 因式分解:$x^3 + 3x^2 + 3x + 1$17. 因式分解:$y^3 3y^2 + 3y 1$18. 因式分解:$z^3 + 6z^2 + 12z + 8$19. 因式分解:$a^3 6a^2 + 12a 8$20. 因式分解:$b^3 + 9b^2 + 27b + 27$五、分组分解法类21. 因式分解:$x^4 + 4x^3 + 6x^2 + 4x + 1$22. 因式分解:$y^4 4y^3 + 6y^2 4y + 1$23. 因式分解:$z^4 + 8z^3 + 18z^2 + 8z + 1$24. 因式分解:$a^4 8a^3 + 18a^2 8a + 1$25. 因式分解:$b^4 + 12b^3 + 54b^2 + 108b + 81$六、多项式长除法类26. 因式分解:$x^5 x^4 2x^3 + 2x^2 + x 1$27. 因式分解:$y^5 + y^4 + 2y^3 2y^2 y + 1$28. 因式分解:$z^5 3z^4 + 3z^3 z^2 + z 1$29. 因式分解:$a^5 + 3a^4 3a^3 + a^2 a + 1$30. 因式分解:$b^5 5b^4 + 10b^3 10b^2 + 5b 1$答案一、提取公因式类1. $6x^2 + 9x = 3x(2x + 3)$2. $8a^3 12a^2 = 4a^2(2a 3)$3. $15xy 20xz = 5x(3y 4z)$4. $21m^2n 35mn^2 = 7mn(3m 5n)$5. $4ab^2 + 6a^2b = 2ab(2b + 3a)$二、公式法类6. $x^2 9 = (x + 3)(x 3)$7. $a^2 4 = (a + 2)(a 2)$8. $4x^2 25y^2 = (2x + 5y)(2x 5y)$9. $9m^2 16n^2 = (3m + 4n)(3m 4n)$10. $25p^2 49q^2 = (5p + 7q)(5p 7q)$三、分组分解类11. $x^3 + x^2 2x 2 = (x^2 + 2)(x 1)$12. $a^3 a^2 3a + 3 = (a^2 3)(a 1)$13. $3x^2 + 3x 2x 2 = (3x 2)(x + 1)$14. $4m^2 4m 3m + 3 = (4m 3)(m 1)$15. $5n^3 10n^2 + 3n 6 = (5n^2 3)(n 2)$四、十字相乘法类16. $x^2 + 5x + 6 = (x + 2)(x + 3)$17. $a^2 7a + 10 = (a 2)(a 5)$18. $2x^2 9x 5 = (2x + 1)(x 5)$19. $3m^2 + 11m + 4 = (3m + 1)(m + 4)$20. $4n^2 13n + 3 = (4n 1)(n 3)$五、综合运用类21. $x^3 2x^2 5x + 10 = (x^2 5)(x 2)$22. $a^3 + 3a^2 4a 12 = (a^2 + 4)(a 3)$23. $2x^2 + 5x 3 = (2x 1)(x + 3)$24. $3m^2 7m + 2 = (3m 1)(m 2)$25. $4n^2 + 10n 6 = (2n 1)(2n + 6)$六、特殊因式分解类26. $x^4 16 = (x^2 + 4)(x + 2)(x 2)$27. $a^4 81 = (a^2 + 9)(a + 3)(a 3)$28. $16x^4 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x 3y)$29. $25m^4 49n^4 = (5m^2 + 7n^2)(5m + 7n)(5m 7n)$30. $64p^4 81q^4 = (8p^2 + 9q^2)(4p + 3q)(4p 3q)$一、平方差公式类1. $x^2 25 = (x + 5)(x 5)$2. $4y^2 9 = (2y + 3)(2y 3)$3. $49z^2 100 = (7z + 10)(7z 10)$4. $25a。

分组法 因式分解专项练习30题(有答案)

分组法 因式分解专项练习30题(有答案)
=(2x2﹣3x)(2x2﹣3x﹣9)=x(2x﹣3)(2x+3)(x﹣3); (2)x4+7x3+14x2+7x+1=x4+4x3+6x2+4x+1+3x3+6x2+3x+2x2=[(x+1)2]2+3x(x+1)2+2x2,
=[(x+1)2+2x][(x+1)2+x]=(x2+4x+1)(x2+3x+1); (3)(x+y)3+2xy(1﹣x﹣y)﹣1=[(x+y)3﹣1]+2xy(1﹣x﹣y)=(x+y﹣1)[(x+y)2+x+y+1]﹣2xy(x+y﹣1)
分组法分解因式---- 2
26.m2﹣2mn+n2﹣am+an. 27.x2﹣2xy+y2+3x﹣3y+2. 28.(1)a2﹣2ab+b2﹣4; (2)x3﹣x2﹣4x+4. 29.a2x2﹣4+a2y2﹣2a2xy 30.(1)x2+9y2+4z2﹣6xy+4xz﹣12yz
(2)(a2+5a+4)(a25a+6)﹣120.
本小题可以稍加变形,直接使用公式,解法如下: 原式=a2+(﹣b)2+c2+2(﹣b)c+2ca+2a(﹣b)=(a﹣b+c)2. (4)原式=(a7﹣a5b2)+(a2b5﹣b7)=a5(a2﹣b2)+b5(a2﹣b2)=(a2﹣b2)(a5+b5)
=(a+b)(a﹣b)(a+b)(a4﹣a3b+a2b2﹣ab3+b4)=(a+b)2(a﹣b)(a4﹣a3b+a2b2﹣ab3+b4) 12.6x2﹣5xy﹣6y2+2x+23y﹣20=6x2﹣x(5y﹣2)﹣(6y2﹣23y+20)=6x2﹣x(5y﹣2)﹣(2y﹣5)(3y﹣4)

因式分解50题(配完整解析)

因式分解50题(配完整解析)

因式分解50题(配完整解析)考点卡片一.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.二.因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.22平方差公式:a ﹣b =(a +b )(a ﹣b );222完全平方公式:a ±2ab +b =(a ±b );2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.三.因式分解-分组分解法1、分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.2、对于常见的四项式,一般的分组分解有两种形式:①二二分法,②三一分法.例如:①ax +ay +bx +by =x (a +b )+y (a +b )=(a +b )(x +y )22②2xy ﹣x +1﹣y 22=﹣(x ﹣2xy +y )+12=1﹣(x ﹣y )=(1+x ﹣y )(1﹣x +y )四.因式分解-十字相乘法等借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.2①x +(p +q )x +pq 型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x 2+(p +q )x +pq =(x +p )(x +q )2②ax +bx +c (a ≠0)型的式子的因式分解这种方法的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一2次项b ,那么可以直接写成结果:ax +bx +c =(a 1x +c 1)(a 2x +c 2).五.实数范围内分解因式实数范围内分解因式是指可以把因式分解到实数的范围(可用无理数的形式来表示),一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.例如:x ﹣2在有理数范围内不能分解,如果把数的范围扩大到实数范围则可分解2x 2﹣2=x 2﹣(2)2=(x+2)(x-2)一.填空题(共5小题)1.因式分解:-2x 2+2x =.2.因式分解:a 3+2a =.3.分解因式:8x 2-8xy +2y 2=.4.分解因式:ab 2+a 2b =.5.因式分解2x 2y -8y =.二.解答题(共45小题)6.分解因式(1)n 2(m -2)-n (2-m )(2)(a 2+4b 2)2-16a 2b 2.7.因式分解(1)(2a +b )2-(a +2b )2(2)16x 4-8x 2y 2+y 48.已知m -2n =-2,求下列多项式的值:(1)5m -10n +10m 2(2)+n 2-mn -3.49.因式分解:(x 2-3)2+2(3-x 2)+1.10.因式分解:m 2(m -4)2+8m (m -4)+16.11.分解因式:4(a +2)2-9(a -1)2.12.(x 2+4)2-16x 2.13.因式分解:(x -6x )+18(x -6x )+81.14.分解因式:(1)x 4-2x 2+1;(2)a 4-8a 2b 2+16b 4;(3)(a 2+4)2-16a 2;(4)(m 2-4m )2+8(m 2-4m )+16.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )217.分解因式:(x +3)2-(x -3)2.18.(x -5y )2-(x +5y )219.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 221.分解因式:(1)-3x 2+6xy -3y 2;222222222(2)(a +b )(a -b )+4(b -1).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 223.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+927.把下列各式因式分解:(1)12x 4-6x 3-168x 2(2)a 5(2-3a )+2a 3(3a -2)2+a (2-3a )3(3)abc (a 3+b 3+c 3+2abc )+(a 3b 3+b 3c 3+c 3a 3)28.分解因式(1)16-a 4(2)y 3-6xy 2+9x 2y(3)(m +n )2-4m (m +n )+4m 2(4)9-a 2+4ab -4b 229.因式分解(1)-a 2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;124242(4)(x -4x +1)(x +3x +1)+10x 4;31.分解因式:(1)12abc -2bc 2(2)2a 3-12a 2+18a (3)9a (x -y )+3b (x -y )(4)(x +y )2+2(x +y )+1(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .(6)(a+b)(a-b)+4(b-1)32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b235.把下列多项式分解因式:(1)27xy2-3x121x+xy+y22222(3)a-b-1+2b(4)x2+3x-436.因式分解:(1)x2-xy-12y2;(2)(2)a2-6a+9-b237.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(5)p2-5p-36(6)x5-x3(7)(x-1)(x-2)-6(8)a2-2ab+b2-c238.把下列各式分解因式:(1)4x3-31x+15;(2)2a2b2+2a2c2+2b2c2-a4-b4-c4;(3)x5+x+1;(4)x3+5x2+3x-9;(5)2a4-a3-6a2-a+2.39.分解因式(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m40.分解因式:(x 2+x +1)(x 2+x +2)-12.41.分解因式:(x 2+4x +8)2+3x (x 2+4x +8)+2x 2.42.分解因式:(1)2a (y -z )-3b (z -y );(2)-x 2+4xy -4y 2;(3)x 2-2(在实数范围内分解因式);(4)4-12(x -y )+9(x -y )2.43.阅读下面的问题,然后回答,分解因式:x 2+2x -3,解:原式=x 2+2x +1-1-3=(x 2+2x +1)-4=(x +1)2-4=(x +1+2)(x +1-2)=(x +3)(x -1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x 2-4x +3(2)4x 2+12x -7.44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:22x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a+2a)(x+a-2a)=(x+3a)(x-a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2-8a+15;(2)若a+b=6,ab=4,求:①a2+b2;②a4+b4的值;(3)已知x是实数,试比较x2-6x+11与-x2+6x-10的大小,说明理由.11146.小亮在对a4+分解因式时,步骤如下:a4+=a4+a2+-a2(添加a2与-a2,前444三项可利用完全平方公式)1=(a2+)2-a2(写成完全平方式与最后一项又符合平方差公式)211=(a2+a+)(a2-a+).22请你利用上述方法分解因式4x4+1.47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.因式分解50题(配完整解析)参考答案与试题解析一.填空题(共5小题)1.因式分解:-2x2+2x=-2x(x-1).【解答】解:-2x2+2x=-2x(x-1),故答案为:-2x(x-1).2.因式分解:a3+2a=a(a2+2).【解答】解:a3+2a=a(a2+2),故答案为a(a2+2).3.分解因式:8x2-8xy+2y2=2(2x-y)2.【解答】解:原式=2(4x2-4xy+y2)=2(2x-y)2.故答案为:2(2x-y)2.4.分解因式:ab2+a2b=ab(a+b).【解答】解:原式=ab(a+b).故答案是:ab(a+b).5.因式分解2x2y-8y=2y(x+2)(x-2).【解答】解:2x2y-8y=2y(x2-4)=2y(x+2)(x-2)故答案为:2y(x+2)(x-2).二.解答题(共45小题)6.分解因式(1)n2(m-2)-n(2-m)(2)(a2+4b2)2-16a2b2.【解答】解:(1)原式=n(m-2)(n+1);(2)原式=(a2+4b2+4ab)(a2+4b2-4ab)=(a+2b)2(a-2b)2.7.因式分解(1)(2a+b)2-(a+2b)2(2)16x4-8x2y2+y4【解答】解:(1)(2a+b)2-(a+2b)2=(2a+b-a-2b)(2a+b+a+2b)=3(a-b)(a+b);(2)16x4-8x2y2+y4=(4x2-y2)2=(2x+y)2(2x-y)2.8.已知m-2n=-2,求下列多项式的值:(1)5m-10n+10m2(2)+n2-mn-3.4【解答】解:(1)m-2n=-2,∴原式=5(m-2n)+10=-10+10=0;m-2n=-2,(2)11∴原式=(m2+4n2-4mn)=(m-2n)2-3=1-3=-2.449.因式分解:(x2-3)2+2(3-x2)+1.【解答】解:(x2-3)2+2(3-x2)+1=(x2-3)2-2(x2-3)+1=(x2-3-1)2=(x2-4)2=(x+2)2(x-2)2.10.因式分解:m2(m-4)2+8m(m-4)+16.【解答】解:原式=[m(m-4)]2+2⨯m(m-4)⨯4+42=[m(m-4)+4]2=(m2-4m+4)2=[(m-2)2]2=(m-4)4.11.分解因式:4(a+2)2-9(a-1)2.【解答】解:4(a+2)2-9(a-1)2=[2(a+2)-3(a-1)][2(a+2)+3(a-1)]=(7-a)(5a+1).12.(x2+4)2-16x2.【解答】解:(x2+4)2-16x2=(x2+4-4x)(x2+4+4x)=(x-2)2(x+2)2.13.因式分解:(x-6x)+18(x-6x)+81.222【解答】解:(x-6x)+18(x-6x)+81222=(x2-6x+9)2=(x-3)4.14.分解因式:(1)x4-2x2+1;(2)a4-8a2b2+16b4;(3)(a2+4)2-16a2;(4)(m2-4m)2+8(m2-4m)+16.【解答】解:(1)原式=(x2-1)2=[(x+1)(x-1)]2=(x+1)2(x-1)2;(2)原式=(a2-4b2)2=[(a+2b)(a-2b)]2=(a+2b)2(a-2b)2;(3)原式=(a2+4-4a)(a2+4+4a)=(a-2)2(a+2)2;(4)原式=(m2-4m+4)2=[(m -2)2]2=(m -2)4.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.【解答】解:(1)x -4xy +4y =(x -2y );(2)4a -12ab +9b =(2a -3b );(3)a b +2ab +1=(ab +1).16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )2【解答】解:(1)(2x -y +z )(2x -y -z )222222222222222=(2x -y )2-z 2=4x 2+y 2-4xy -z 2;(2)25(a +b )2-16(a -b )2=[5(a +b )-4(a -b )][5(a +b )+4(a -b )]=(a +9b )(9a +b ).17.分解因式:(x +3)2-(x -3)2.【解答】解:(x +3)2-(x -3)2=(x +3-x +3)(x +3+x -3)=12x .18.(x -5y )2-(x +5y )2【解答】解:(x -5y )2-(x +5y )2=(x -5y +x +5y )(x -5y -x -5y )=-20xy .19.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.【解答】解:(1)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(2)(3m +2n )2-(2m +3n )2=[(3m +2n )-(2m +3n )][(3m +2n )+(2m +3n )]=(m -n )(5m +5n )=5(m -n )(m +n ).20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 2【解答】解:(1)原式=(a -b )(x -y +x +y )=2x (a -b ).(2)原式=5m (2x -y +n )(2x -y -n ).21.分解因式:(1)-3x 2+6xy -3y 2;(2)(a +b )(a -b )+4(b -1).【解答】解:(1)-3x 2+6xy -3y 2=-3(x 2-2xy +y 2)=-3(x -y )2;(2)(a +b )(a -b )+4(b -1)=a 2-b 2+4b -4=a 2-(b -2)2=(a +b -2)(a -b +2).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 2【解答】解:(1)原式=9a 2(x -y )-4b 2(x -y )=(x -y )(3a +2b )(3a -2b );(2)原式=-(4a 2-4ab +b 2)=-(2a -b )2.23.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.【解答】解:(1)a 4-16=(a 2+4)(a 2-4)=(a 2+4)(a +2)(a -2);(2)ax 2-4axy +4ay 2=a (x 2-4xy +4y )=a (x -2y )2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )【解答】解:(1)原式=-a (25x 2-10x +1)=-a (5x -1)2;(2)原式=4x 2(a -b )-y 2(a -b )=(a -b )(2x +y )(2x -y ).25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)【解答】解:(1)原式=5(x 2+2x +1)=5(x +1)2;(2)原式=a 2-16+3a +6=a 2+3a -10=(a -2)(a +5).26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+9【解答】解:(1)9m 2-25n 2=(3m +5n )(3m -5n );(2)m 2-mn +n 2141=(m-n)2;2(3)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2;(4)(y2-1)2+6(1-y2)+9=[(1-y2)+3]2=(1-y2+3)2.=(4-y2)2=(2+y)2(2-y)2.27.把下列各式因式分解:(1)12x4-6x3-168x2(2)a5(2-3a)+2a3(3a-2)2+a(2-3a)3(3)abc(a3+b3+c3+2abc)+(a3b3+b3c3+c3a3)【解答】解:(1)原式=6x2(2x2-x-28)=6x2(2x+7)(x-4);(2)原式=a5(2-3a)+2a3(2-3a)2+a(2-3a)3=a(2-3a)[a4+2a2(2-3a)+(2-3a)2]=a(2-3a)(a2+2-3a)2=a(2-3a)(a-1)2(a-2)2;(3)原式=a4bc+a3(b3+c3)+2a2b2c2+abc(b3+c3)+b3c3=bc(a4+2a2bc+b2c2)+a(b3+c3)(a2+bc)=bc(a2+bc)2+a(b3+c3)(a2+bc)=(a2+bc)[bc(a2+bc)+a(b3+c3)]=(a2+bc)[(bca2+ab3)+(b2c2+ac3)]=(a2+bc)[ab(ca+b2)+c2(b2+ac)]=(a2+bc)(b2+ac)(c2+ab).28.分解因式(1)16-a4(2)y3-6xy2+9x2y(3)(m+n)2-4m(m+n)+4m2(4)9-a2+4ab-4b2【解答】解:(1)原式=(4+a2)(4-a2)=(4+a2)(2+a2)(2-a2);(2)原式=y(y2-6xy+9x2)=y(y-3x)2;(3)原式=(m+n-2m)2=(n-m)2;(4)原式=9-(a-2b)2=(3-a+2b)(3+a-2b).29.因式分解(1)-a2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.【解答】解:(1)-a 2-a =-a (a +1)(2)(x +y )(5m +3n )2-(x +y )(m -n )2=(x +y )(5m +3n +m -n )(5m +3n -m +n )=(x +y )(6m +2n )(4m +4n )=8(x +y )(3m +n )(m +n )(3)(a 2+6a )2+18(a 2+6a )+81=(a 2+6a +9)2=(a +3)4(4)x 2-4x -y 2+4=(x -2)2-y 2=(x -2+y )(x -2-y )30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;12(4)(x 4-4x 2+1)(x 4+3x 2+1)+10x 4;【解答】解:(1)令a 2+1=b ,则原式=(b +a )(b -6a )+12a 2(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .=b 2-5ab -6a 2+12a 2=b 2-5ab +6a 2=(b -2a )(b -3a )=(a 2+1-2a )(a 2+1-3a )=(a -1)2(a 2-3a +1);(2)原式=[(2a +5)(a -3)][(a +3)(2a -7)]-91=(2a 2-a -15)(2a 2-a -21)-91=(2a 2-a )2-36(2a 2-a )+224=(2a 2-a -28)(2a 2-a -8)=(a -4)(2a +7)(2a 2-a -8);(3)设x +y =a ,xy =b ,则原式=b (b +1)+(b +3)-2(a +)-(a -1)212=(b 2+2b +1)-a 2=(b +1+a )(b +1-a )=(xy +1+x +y )(xy +1-x -y );(4)令x 4+1=a ,则原式=(a -4x 2)(a +3x 2)+10x 4=a 2-x 2a -2x 4=(a -2x 2)(a +x 2)=(x 4+1-2x 2)(x 4+1+x 2)=(x +1)2(x -1)2(x 2+x +1)(x 2-x +1);(5)原式=(2x3-x2z)+(-4x2y+2xyz)+(2xy2-y2z) =x2(2x-z)-2xy(2x-z)+y2(2x-z)=(2x-z)(x2-2xy+y2)=(2x-z)(x-y)2.31.分解因式:(1)12abc-2bc2(2)2a3-12a2+18a(3)9a(x-y)+3b(x-y)(4)(x+y)2+2(x+y)+1(5)x2-1+y2-2xy(6)(a+b)(a-b)+4(b-1)【解答】解:(1)12abc-2bc2=2bc(6a-c);(2)2a3-12a2+18a=2a(a2-6a+9)=2a(a-3)2;(3)9a(x-y)+3b(x-y)=3(x-y)(3a+b);(4)(x+y)2+2(x+y)+1=(x+y+1)2;(5)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(6)(a+b)(a-b)+4(b-1)=a2-b2+4b-4=a2-(b-2)2=(a-b+2)(a+b-2).32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.【解答】解:(1)a4-16=(a2+4)(a2-4)=(a2+4)(a+2)(a-2);(2)16(a-b)2-9(a+b)2=[4(a-b)+3(a+b)][4(a-b)-3(a+b)]=(4a-4b+3a+3b)(4a-4b-3a-3b)=(7a-b)(a-7b);(3)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(4)(m+n)2-2(m2-n2)+(m-n)2=[(m+n)-(m-n)]2=(m+n-m+n)2=(2n)2=4n2;(5)x2-5x+6=(x-2)(x-3);(6)x2-5x-6=(x-6)(x+1);(7)x2+5x-6=(x+6)(x-1);(8)x2+5x+6=(x+2)(x+3).33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.【解答】解:(1)-3x3-6x2y-3xy2;=-3x(x2+2xy+y2)=-3x(x+y)2;(2)(a2+9)2-36a2=(a2+9+6a)(a2+9-6a)=(a+3)2(a-3)2;(3)25m2-(4m-3n)2=(5m)2-(4m-3n)2,=(5m+4m-3n)(5m-4m+3n)=3(3m-n)(m+3n);(4)(x2-2x)2-2(x2-2x)-3=(x2-2x-3)(x2-2x+1)=(x-3)(x+1)(x-1)2.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b2【解答】解:(1)x2-5x-6=(x-3)(x+2);(2)9a2(x-y)+4b2(y-x)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);=y2-(x2-6x+9)=y2-(x-3)2=(y+x-3)(y-x+3);(4)(a2+4b2)2-16a2b2=(a2+4b2+4ab)(a2+4b2-4ab) =(a+2b)2(a-2b)2.35.把下列多项式分解因式:(1)27xy2-3x(2)12x2+xy+12y2(3)a2-b2-1+2b(4)x2+3x-4【解答】解:(1)27xy2-3x =3x(9y2-1)=3x(3y+1)(3y-1);(2)12x2+xy+12y2=1(x2+2xy+y2 2)=1(x+y)22;(3)a2-b2-1+2b=a2-(b2-2b+1)=a2-(b-1)2=(a+b-1)(a-b+1);(4)x2+3x-4=(x+4)(x-1).36.因式分解:(1)x2-xy-12y2;(2)a2-6a+9-b2【解答】解:(1)x2-xy-12y2,=(x+3y)(x-4y);(2)a2-6a+9-b2,=(a-3)2-b2,=(a-3+b)(a-3-b).37.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(6)x 5-x 3(7)(x -1)(x -2)-6(8)a 2-2ab +b 2-c 2【解答】解:(1)8a 3b 2-12ab 3c =4ab 2(2a 2-3bc );(2)-3ma 3+6ma 2-12ma =-3ma (a 2-2a +4)=-3ma (a -2)2;(3)2(x -y )2-x (x -y )=(x -y )(2x -2y -x )=(x -y )(x -2y );(4)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(5)p 2-5p -36=(p -9)(p +4);(6)x 5-x 3=x 3(x 2-1)=x 3(x +1)(x -1);(7)(x -1)(x -2)-6=x 2-3x +2-6=(x -4)(x +1);(8)a 2-2ab +b 2-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).38.把下列各式分解因式:(1)4x 3-31x +15;(2)2a 2b 2+2a 2c 2+2b 2c 2-a 4-b 4-c 4;(3)x 5+x +1;(4)x 3+5x 2+3x -9;(5)2a 4-a 3-6a 2-a +2.【解答;(;(5522232】解:(1)4x 3-31x +15=4x 3-x -30x +15=x (2x +1)(2x -1)-15(2x -1)=(2x -1)(2x 2+x -15)=(2x -1)(2x -5)(x +3)2)2a b +2a c +2b c -a -b -c =4a b -(a +b +c +2a b -2a c -2b c )=(2ab )-(a +b -c )=(2ab +a +b -c )(2ab -a -b +c )=(a +b +c )(a +b -c )(c +a -b )(c -a +b )32222)3x +x +1=x -x +x +x +1=x (x -1)+(x +x +1)=x (x -1)(x +x +1)+(x +x +1)=(x +x +1)(x -x 2+1);(;(4)x 3+5x 2+3x -9=(x 3-x 2)+(6x 2-6x )+(9x -9)=x 2(x -1)+6x (x -1)+9(x -1)=(x -1)(x +3)25)2a -a -6a -a +2=a (2a -1)-(2a -1)(3a +2)=(2a -1)(a -3a -2)=(2a -1)(a +a -a -a -2a -2)=(2a -1)[a (a +1)-a (a +1)-2(a +1)]=(2a -1)(a +1)(a 2-a -2)=(a +1)(a -2)(2a -1).39.分解因式(1)20a 3x -45ay 2x(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m【解答】解:(1)原式=5ax (4a 2-9y 2)=5ax (2a +3y )(2a -3y );(2)原式=(1+3x )(1-3x );(3)原式=(2x )2-12x +9=(2x -3)2;(4)原式=(2xy-1)2;(5)原式=(p+4)(p-9);(6)原式=(y-3)(y-4);(7)原式=3(x2-2x+1)=3(x-1)2;(8)原式=-a(a2-2a+1)=-a(a-1)2;(9)原式=m(m2-m-20)=m(m+4)(m-5).40.分解因式:(x2+x+1)(x2+x+2)-12.【解答】解:设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x-1)(x+2)(x2+x+5)41.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.【解答】解:设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).42.分解因式:(1)2a(y-z)-3b(z-y);(2)-x2+4xy-4y2;(3)x2-2(在实数范围内分解因式);(4)4-12(x-y)+9(x-y)2.【解答】解:(1)原式=2a(y-z)+3b(y-z)=(y-z)(2a+3b);(2)原式=-(x2-4xy+4y2)=-(x-2y)2;(3)原式=(x+2)(x-2);(4)原式=[3(x-y)-2]2=(3x-3y-2)2.43.阅读下面的问题,然后回答,分解因式:x2+2x-3,解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2-4x+3(2)4x2+12x-7.【解答】解:(1)x2-4x+3=x2-4x+4-4+3=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2)4x 2+12x -7=4x 2+12x +9-9-7=(2x +3)2-16=(2x +3+4)(2x +3-4)=(2x +7)(2x -1)44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?不彻底(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.【解答】解:(1)(2)设x -2x =y原式=y (y +2)+1222(x 2-4x +4)2=(x -2)4,∴该同学因式分解的结果不彻底.=y 2+2y +1=(y +1)2=(x 2-2x +1)2=(x -1)4.故答案为:不彻底.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:x 2+2ax -3a 2=(x 2+2ax +a 2)-a 2-3a 2=(x +a )2-4a 2=(x +a +2a )(x +a -2a )=(x +3a )(x -a )像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a 2-8a +15;(2)若a +b =6,ab =4,求:①a 2+b 2;②a 4+b 4的值;(3)已知x 是实数,试比较x 2-6x +11与-x 2+6x -10的大小,说明理由.【解答】解:(1)a 2-8a +15=(a 2-8a +16)-1=(a -4)2-12=(a -3)(a -5);(2)a +b =6,ab =4,a2+b2=(a+b)2-2ab=36-8=28.a4+b4=(a2+b2)2-2a2b2=282-2⨯16=752.(3)x2-6x+11=(x-3)2+22,-x2+6x-10=-(x-3)2-1-1,∴x2-6x+11>-x2+6x-10.46.小亮在对a4+1114分解因式时,步骤如下:a4+4=a4+a2+4-a2三项可利用完全平方公式)=(a2+12)2-a2(写成完全平方式与最后一项又符合平方差公式)=(a2+a+12)(a2-a+12).请你利用上述方法分解因式4x4+1.【解答】解:4x4+1=4x4+4x2+1-4x2=(2x2+1)2-4x2=(2x2+2x+1)(2x2-2x+1).47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.【解答】解:(1)x2+3x+2=(x+1)(x+2);(2)x2-3x+2=(x-1)(x-2);(3)x2+2x-3=(x+3)(x-1);(4)x2-2x-3=(x-3)(x+1);(5)x2+5x+6=(x+3)(x+2);(6)x2-5x-6=(x-6)(x+1);(7)x2+x-6=(x+3)(x-2);a2与-a2,前(添加(8)x2-x-6=(x-3)(x+2);(9)x2-5x-36=(x-9)(x+4);(10)x2+3x-18=(x+6)(x-3);(11)2x2-3x+1=(2x-1)(x-1);(12)6x2+5x-6=(2x+3)(3x-2).48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.【解答】解:(x+1)(x+3)(x+6)(x+8)+9=[(x+1)(x+8)][(x+3)(x+6)]+9=(x2+9x+8)(x2+9x+18)+9=(x2+9x)2+26(x2+9x)+153=(x2+9x+9)(x2+9x+17).49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.【解答】解:(1)x4-7x2+6=(x2-1)(x2-6)=(x+1)(x-1)(x+6)(x-6);(2)x4-5x2-36=(x2-9)(x2+4)=(x+3)(x-3)(x2+4)(3)4x4-65x2y2+16y4=(2x2-4y2)2-49x2y2=(2x2-4y2+7xy)(2x2-4y2-7xy)=(2x-1)(2x+1)(1-4y)(1+4y);(4)a6-7a3b3-8b6=(a3-8b3)(a3+b3)=(a-2b)(a2+2ab+b2)(a+b)(a2-ab+b2)=(a-2b)(a+b)3(a2-ab+b2);(5)6a4-5a3-4a3=6a4-9a3=3a3(2a-3);(6)4a6-37a4b2+9a2b4=a2(4a4-37a2b2+9b4)=a2(4a4-12a2b2+9b4-25a2b2)=a2[(2a2-3b2)2-25a2b2]=a2(2a+1)(2a-1)(1-3b)(1+3b).50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.【解答】解:(1)原式=[(x+y)2-4][(x+y)2+5]=(x+y+2)(x+y-2)(x2+y2+2xy+5);(2)原式=(x2-2x)2-11(x2-2x)+24=(x2-2x-3)(x2-2x-8)=(x-3)(x+1)(x-4)(x+2);(3)原式=(x+1)(x+3)(x-5)(x-7)-105=(x2-4x-5)(x2-4x-21)-105=(x2-4x)2-26(x2-4x)=(x2-4x)(x2-4x-26)=x(x-4)(x2-4x-26)(4)原式=(x2-6-5x)(x2-6+x)=(x-6)(x+1)(x-2)(x+3).第21页(共21页)。

分组分解法的概念以及例题讲解

分组分解法的概念以及例题讲解

分组分解法的概念以及例题讲解:思考:如何将多项式by bx ay ax +++和1222-++b ab a 分解因式呢?师生共同分析并解答得出分组分解法的概念:利用分组来分解因式的方法叫做分组分解法.例1. 分解因式:(1)bd bc ad ac 362-+- (2)kn mn km k 46962--+(3)x y y x x 882223-+- (4)44422-+-y xy x随堂练习:1.填空:(1)=+++)(3)(2b a a b a ( )(b a +)(2))()()(b a b a y b a x -=---( )(3))()()(2y x y x y x --=----( )2.分解因式:(1)c b ac ab -+- (2)b a ab a 222+-- (3) bc ac b a 6293-+-(4) 84632--+x xy y x (5)x xy y x 332--+ (6)y x y x x 189223--+(7)2412)2()2(2--+++y x y x y (8) 22222222x n y m y n x m --+分组分解法因式分解专项练习(基础题)(1) 1+++b ab ab(2) 1+--b a ab(3) z x y x xyz x 223-+-(4) x y y x x 27273323-+-(5) b a b a 2422---(6) b a a b a -+-23(7) 1222-++b ab a(8) 4424-+-a a a(9) 2224b b a a --+(10) 2212q p pq -+-(11) 233222+--++y x y xy x(12) by bx ay ax +++(13) a ab b a 552-+-(14) a ab b a 552--+(15) bx ay xy ab 6767+++ (16) x y y x x 553323-+-(17) n m n m --+2)((18) bc ac ab a -+-222(19) xy xz x yz 62342+-+-(20) c d b d c a b a 2222--+提高题(21)2222bx ay by ax +-- (22)ab b b ab 5631022-+- (23)nb na mn m mb ma -+++-2(24)222233y xy y x x -+- (25)n m n mn m +-+-222 (26)22444b ab a ---(27)123+--n n n x x x(28))()(22x y n m y x mn --- (29)123--+x x x(30)y x y x +--22 (31)y x y x 557722++- (32)22)()(xy ab ay ax -++(33)2322b b a b a --+ (34) 22414y x xy --+ (35)yz z y x x +++)((36)a b b a a 882223-+- (37)ab a ab a 212133223--- (38)3222364a xa a x +--(39)2216881b a ab ++-- (40)2222224)(b a c b a -++ (41)2224964a y ax y x +--+-自我检测一.基础巩固1.用分组分解法把1224---a a a 分解因式,正确的分组方法是( ) (A) )12()(24+--a a a (B) )1()2(24+--a a a (C))2()1(24a a a +-- (D))12(24++-a a a2. 多项式ab bx ax x +--2 可分解为 ( )(A) ))((b x a x ++ (B)))((b x a x +- (C) ))((b x a x -- (D)))((b x a x -+3.将22233y x xy x -+-分解因式,结果是 ( )(A) )3)(1(y x x -+ (B) )3)(1(2y x x -+ (C) )3)(1(2y x x -- (D))3)(1(22y x x +-4.在以下多项式中:b a b a 2422+-+, 14422-+-b b a ,22244c ab b a -+-,18161622++-a b a , 222162494c bc b a ++-。

分组分解法知识点及习题优秀版

分组分解法知识点及习题优秀版

分组分解法知识点及习题优秀版第(1)题分组后,两组各提取公因式,两组之间继续提取公因式.第(2)题把前三项分为一组,利用完全平方公式分解因式,再与第四项运用平方差公式继续分解因式.第(3)题把前两项分为一组,提取公因式,后两项分为一组,用平方差公式分解因式,然后两组之间再提取公因式.第(4)题把第一、二、三项分为一组,提出一个“-”号,利用完全平方公式分解因式,第四项与这一组再运用平方差公式分解因式.把含有四项的多项式进行因式分解时,先根据所给的多项式的特点恰当分解,再运用提公因式或分式法进行因式分解.在添括号时,要注意符号的变化.这节课我们就来讨论应用所学过的各种因式分解的方法把一个多项式分解因式.二、新课例1 把分解因式.问:根据这个多项式的特点怎样分组才能达到因式分解的目的?答:这个多项式共有四项,可以把其中的两项分为一组,所以有两种分解因式的方法.解方法一方法二;例2 把分解因式.问:观察这个多项式有什么特点?是否可以直接运用分组法进行因式分解?答:这个多项式的各项都有公式因ab,可以先提取这个公因式,再设法运用分组法继续分解因式.解:====因式分解专项练习题一定要记住的公式大全:平方差公式:a^2-b^2=(a+b)(a-b);完全平方公式:a^2±2ab +b^2=(a±b )^2;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);完全立方公式:a^3±3a^2b +3ab^2±b^3=(a±b)^3.公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)*十字相乘法初步公式:x^2+(p+q)x+pq=(x+p)(x+q) .*(可不记)十字相乘法通用公式:如果有k=ac ,n=bd ,且有ad+bc=m 时,那么kx^2+mx+n=(ax+b)(cx+d).因式分解方法(重要:因式分解法的结果一定是多个因式相乘): 方法一:分组分解法步骤类型一 分组后能直接提取公因式1.分组后能直接提取公因式2.提完公因式之后,每组之间应该还可以提公因式(此时,应注意观察)。

因式分解专项练习题

因式分解专项练习题

因式分解专项练习题(一)提取公因式一、分解因式1、2x 2y -xy2、6a 2b 3-9ab23、 x (a -b )+y (b -a )4、9m 2n-3m 2n 25、4x 2-4xy+8xz 6、-7ab-14abx+56aby7、6m 2n-15mn 2+30m 2n 28、-4m 4n+16m 3n-28m 2n9、x n+1-2x n-110、a n-a n+2+a 3n11、p(a-b)+q(b-a) 12、a(b-c)+c-b13、(a-b)2(a+b)+(a-b)(a+b)2= 14、ab +b 2-ac -bc15、3xy(a-b)2+9x(b-a) 16、(2x-1)y 2+(1-2x)2y17、6m(m-n)2-8(n-m)318、15b(2a-b)2+25(b-2a)319、a 3-a 2b+a 2c-abc 20、2ax +3am -10bx -15bm21、m (x -2)-n (2-x )-x +2 22、(m -a )2+3x (m -a )-(x +y )(a -m )23、 ab(c 2+d 2)+cd(a 2+b 2) 24、(ax+by)2+(bx-ay)225、-+--+++a x abx acx ax m m m m 2213 26、a ab a b a ab b a ()()()-+---32222二、应用简便方法计算1、4.3×199.8+7.6×199.8-1.9×199.82、9×10100-101013、2002×20012002-2001×200220024、1368987521136898745613689872681368987123⨯+⨯+⨯+⨯三、先化简再求值(2x +1)2(3x -2)-(2x +1)(3x -2)2-x (2x +1)(2-3x )(其中,32x =)四、在代数证明题中的应用例:证明:对于任意正整数n ,323222n n n n ++-+-一定是10的倍数。

因式分解(分组分解法)

因式分解(分组分解法)
43;ac)-(ab+bc)
=(2ax-bx)+(5by-10ay)
=a(a+c)-b(a+c)
=(2ax-bx)+(-10ay +5by)
= (a+c)(a-b)
=x(2a-b)-5y(2a-b)
= (2a-b)(x-5y)
分组规律: 在有公因式的前提下,按对应项系数成
比例分组,或按对应项的次数成比例分组。
解: 2ax-10ay+5by-bx
=(2ax-10ay)+(5by-bx)
=(2ax-10ay)+(-bx +5by)
=2a(x-5y)-b(x- 5y)
=(x-5y)(2a-b)
例1,例3种还有没有其他分组的方法;如果有, 因式分解的结果是不是一样。
例1解(2):a2-ab+ac-bc 例2解(2): 2ax-10ay+5by-bx
先提公因式;
2. 如果各项没有公因式,那么可以尝试运用 公式来分解;
3.如果用上述方法不能分解,那么可以尝试 用分组来分解;
4.分解因式,必须进行到每一个多项式都不 能再分解为止. 口诀: 一提 二套 三分 四彻底
教学重点:掌握分组分解法的 分组规律和步骤。 主要内容:
学习分组分解法的概念,用分组分解法分 组之后,可以用提公因式的多项式进行因式分 解。
例2把多项式 a2-2ab+b2-c2 分解因式.
【分析】观察多项式,前 三项符合完全平方公式.
例3把2ax-10ay+5by-bx分解因式 分析:把这个多项式的四项按前两项与后两项分成
两组,并使两组的项都按x的降幂排列,然后从两
组分别提出公因式2a与-b,这时,另一个因式正好

分组法因式分解试题练习(含答案)

分组法因式分解试题练习(含答案)

分组法因式分解试题练习(含答案)分组法因式分解试题练一、单选题1.对于a²-2ab+b²-c²的分组中,分组正确的是()A.(a²-c²)+(-2ab+b²)B.(a²-2ab+b²)-c²C。

a²+(-2ab+b²-c²)D.(a²+b²)+(-2ab-c²)2.把多项式ab⁻¹+a⁻b因式分解的结果是()A.(a+1)(b+1)B.(a⁻¹)(b⁻¹)C.(a+1)(b⁻¹)D.(a⁻¹)(b+1)3.把ab-a-b+1分解因式的结果为()A.(a+1)(b+1)B.(a+1)(b⁻¹)C.(a⁻¹)(b⁻¹)D.(a⁻¹)(b+1)4.把ab+a⁻b⁻¹分解因式的结果为()A.(a+b)(b+1)B.(a⁻¹)(b⁻¹)C.(a+1)(b⁻¹)D.(a⁻¹)(b+1)5.把多项式a²-b²+2a+1分解因式得()A.(a+b)(a-b)+(2a+1)B.(a-b+1)(a+b-1)C.(a-b+1)(a+b+1)D.(a-b-1)(a+b+1)6.将多项式a²-9b²+2a-6b分解因式为()A.(a+2)(3b+2)(a-3b)B.(a-9b)(a+9b)C.(a-9b)(a+9b+2)D.(a-3b)(a+3b+2)7.分解因式:x²-2xy+y²+x-y的结果是()A.(x-y)(x-y+1)B.(x-y)(x-y-1)C.(x+y)(x-y+1)D.(x+y)(x-y-1)8.分解因式a²-b²+4bc-4c²的结果是()A.(a-2b+c)(a-2b-c)B.(a+2b-c)(a-2b+c)C.(a+b-2c)(a-b+2c)D.(a+b+2c)(a-b+2c)9.把x²-y²+2y-1分解因式结果正确的是()A.(x+y+1)(x-y-1)B.(x+y-1)(x-y+1)C.(x+y-1)(x+y+1)D.(x-y+1)(x+y+1)10.分解因式a²-2a+1-b²正确的是()A.(a-1)²-b² B。

因式分解 分组分解法精选

因式分解 分组分解法精选

因式分解-分组分解法精选题20道一.选择题(共2小题)1.多项式x2﹣10xy+25y2+2(x﹣5y)﹣8分解因式的结果是()A.(x﹣5y+1)(x﹣5y﹣8)B.(x﹣5y+4)(x﹣5y﹣2)C.(x﹣5y﹣4)(x﹣5y﹣2)D.(x﹣5y﹣4)(x﹣5y+2)2.把多项式x2﹣y2﹣2x﹣4y﹣3因式分解之后,正确的结果是()A.(x+y+3)(x﹣y﹣1)B.(x+y﹣1)(x﹣y+3)C.(x+y﹣3)(x﹣y+1)D.(x+y+1)(x﹣y﹣3)二.填空题(共8小题)3.因式分解:m2﹣my+mx﹣yx=.4.因式分解b2﹣2bc+c2﹣1=.5.已知m,n,p均为实数,若x﹣1,x+4均为多项式x3+mx2+nx+p的因式,则2m﹣2n﹣p+86=.6.因式分解:m2﹣n2﹣2m+1=.7.分解因式:a2﹣1+b2﹣2ab=.8.因式分解:(1)﹣3ab+6ab2﹣3b3=;(2)a2b﹣25b=;(3)4a2﹣12a+9=;(4)x2﹣y2﹣2x+2y=.9.分解因式:(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2=.10.分解因式:xy﹣3x+y﹣3=.三.解答题(共10小题)11.分解因式:(1)1﹣a2﹣b2﹣2ab;(2)9a2(x﹣y)+4b2(y﹣x).12.因式分解:(1)3a2b2﹣6ab3;(2)﹣27a3b+18a2b2﹣3ab3;(3)x3+5x2﹣x﹣5;(4)(x2﹣4)2﹣9x2.13.因式分解:(1)2mx2﹣4mxy+2my2;(2)x2﹣4x+4﹣y2.14.因式分解:(1)4xy﹣2x2y;(2)3x3﹣12xy2;(3)9x2﹣3x﹣4y2+2y;(4)(x﹣y)2+4xy.15.因式分解:(1)x3﹣6x2y+9xy2;(2)x2﹣y2﹣ax﹣ay.16.分解因式:(1)2a2﹣16a+32.(2)x2﹣4xy﹣1+4y2.17.因式分解(1)(a﹣b)x2+(b﹣a);(2)4x2﹣y2﹣1+2y.18.因式分解:64a6﹣48a4b2+12a2b4﹣b6.19.请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)20.分解因式:x2﹣2x﹣4y﹣4y2.因式分解-分组分解法精选题20道参考答案与试题解析一.选择题(共2小题)1.多项式x2﹣10xy+25y2+2(x﹣5y)﹣8分解因式的结果是()A.(x﹣5y+1)(x﹣5y﹣8)B.(x﹣5y+4)(x﹣5y﹣2)C.(x﹣5y﹣4)(x﹣5y﹣2)D.(x﹣5y﹣4)(x﹣5y+2)【解答】解:x2﹣10xy+25y2+2(x﹣5y)﹣8=(x﹣5y)2+2(x﹣5y)﹣8=(x﹣5y+4)(x﹣5y﹣2).故选:B.2.把多项式x2﹣y2﹣2x﹣4y﹣3因式分解之后,正确的结果是()A.(x+y+3)(x﹣y﹣1)B.(x+y﹣1)(x﹣y+3)C.(x+y﹣3)(x﹣y+1)D.(x+y+1)(x﹣y﹣3)【解答】解:x2﹣y2﹣2x﹣4y﹣3=(x2﹣2x+1)﹣(y2+4y+4)=(x﹣1)2﹣(y+2)2=[(x﹣1)+(y+2)][(x﹣1)﹣(y+2)]=(x+y+1)(x﹣y﹣3).故选:D.二.填空题(共8小题)3.因式分解:m2﹣my+mx﹣yx=(m﹣y)(m+x).【解答】解:原式=(m2﹣my)+(mx﹣yx)=m(m﹣y)+x(m﹣y)=(m﹣y)(m+x),故答案为:(m﹣y)(m+x).4.因式分解b2﹣2bc+c2﹣1=(b﹣c+1)(b﹣c﹣1).【解答】解:b2﹣2bc+c2﹣1=(b﹣c)2﹣1=(b﹣c+1)(b﹣c﹣1).故答案为:(b﹣c+1)(b﹣c﹣1).5.已知m,n,p均为实数,若x﹣1,x+4均为多项式x3+mx2+nx+p的因式,则2m﹣2n﹣p+86=100.【解答】解:∵x﹣1,x+4均为多项式x3+mx2+nx+p的因式,且三次项系数为1,∴设另一个因式为(x+k),则x3+mx2+nx+p=(x﹣1)(x+4)(x+k)=x3+(k+3)x2+(3k﹣4)x﹣4k,∴,∴2m﹣2n﹣p+86=2(k+3)﹣2(3k﹣4)+4k+86=2k+6﹣6k+8+4k+86=100,故答案为:100.6.因式分解:m2﹣n2﹣2m+1=(m﹣1+n)(m﹣1﹣n).【解答】解:原式=m2﹣2m+1﹣n2=(m﹣1)2﹣n2=(m﹣1+n)(m﹣1﹣n).故答案为(m﹣1+n)(m﹣1﹣n).7.分解因式:a2﹣1+b2﹣2ab=(a﹣b+1)(a﹣b﹣1).【解答】解:a2﹣1+b2﹣2ab=(a2+b2﹣2ab)﹣1=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1).故答案为:(a﹣b+1)(a﹣b﹣1).8.因式分解:(1)﹣3ab+6ab2﹣3b3=﹣3b(a﹣2ab+b2);(2)a2b﹣25b=b(a+5)(a﹣5);(3)4a2﹣12a+9=(2a﹣3)2;(4)x2﹣y2﹣2x+2y=(x﹣y)(x+y﹣2).【解答】解:(1)﹣3ab+6ab2﹣3b3=﹣3b(a﹣2ab+b2),故答案为:﹣3b(a﹣2ab+b2);(2)a2b﹣25b=b(a2﹣25)=b(a+5)(a﹣5),故答案为:b(a+5)(a﹣5);(3)4a2﹣12a+9=(2a﹣3)2,故答案为:(2a﹣3)2;(4)x2﹣y2﹣2x+2y=(x2﹣y2)﹣(2x﹣2y)=(x+y)(x﹣y)﹣2(x﹣y)=(x﹣y)(x+y﹣2),故答案为:(x﹣y)(x+y﹣2).9.分解因式:(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2=(x﹣1)2(y﹣1)2.【解答】解:原式=(x+y)2﹣2(x+y)﹣2xy(x+y)+4xy+(xy)2﹣2xy+1=(x+y)2﹣2(x+y)﹣2xy(x+y)+(xy)2+2xy+1=(x+y)2﹣2(x+y)(xy+1)+(xy+1)2=[(x+y)﹣(xy+1)]2=(x+y﹣xy﹣1)2=(x﹣1)2(y﹣1)2.故答案为(x﹣1)2(y﹣1)2.10.分解因式:xy﹣3x+y﹣3=(x+1)(y﹣3).【解答】解:xy﹣3x+y﹣3=x(y﹣3)+(y﹣3)=(y﹣3)(x+1).故答案为:(y﹣3)(x+1).三.解答题(共10小题)11.分解因式:(1)1﹣a2﹣b2﹣2ab;(2)9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)原式=1﹣(a+b)2=(1+a+b)(1﹣a﹣b);(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)•(3a ﹣2b).12.因式分解:(1)3a2b2﹣6ab3;(2)﹣27a3b+18a2b2﹣3ab3;(3)x3+5x2﹣x﹣5;(4)(x2﹣4)2﹣9x2.【解答】解:(1)3a2b2﹣6ab3=3ab2(a﹣2b);(2)﹣27a3b+18a2b2﹣3ab3=﹣3ab(9a2﹣6ab+b2)=﹣3ab(3a﹣b)2;(3)x3+5x2﹣x﹣5=x2(x+5)﹣(x+5)=(x+5)(x+1)(x﹣1);(4)(x2﹣4)2﹣9x2=(x2﹣4+3x)(x2﹣4﹣3x)=(x+4)(x﹣1)(x﹣4)(x+1).13.因式分解:(1)2mx2﹣4mxy+2my2;(2)x2﹣4x+4﹣y2.【解答】解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)原式=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).14.因式分解:(1)4xy﹣2x2y;(2)3x3﹣12xy2;(3)9x2﹣3x﹣4y2+2y;(4)(x﹣y)2+4xy.【解答】解:(1)4xy﹣2x2y=2xy(2﹣x);(2)3x3﹣12xy2=3x(x2﹣4y2)=3x(x+2y)(x﹣2y);(3)9x2﹣3x﹣4y2+2y=(9x2﹣4y2)﹣(3x﹣2y)=(3x+2y)(3x﹣2y)﹣(3x﹣2y)=(3x﹣2y)(3x+2y﹣1);(4)(x﹣y)2+4xy=x2﹣2xy+y2+4xy=x2+2xy+y2=(x+y)2.15.因式分解:(1)x3﹣6x2y+9xy2;(2)x2﹣y2﹣ax﹣ay.【解答】解:(1)原式=x(x2﹣6xy+9y2)=x(x﹣3y)2;(2)原式=(x+y)(x﹣y)﹣a(x+y)=(x+y)(x﹣y﹣a).16.分解因式:(1)2a2﹣16a+32.(2)x2﹣4xy﹣1+4y2.【解答】解:(1)2a2﹣16a+32=2(a2﹣8a+16)=2(a﹣4)2;(2)x2﹣4xy﹣1+4y2=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.因式分解(1)(a﹣b)x2+(b﹣a);(2)4x2﹣y2﹣1+2y.【解答】解:(1)(a﹣b)x2+(b﹣a)=(a﹣b)x2﹣(a﹣b)=(a﹣b)(x2﹣1)=(a﹣b)(x+1)(x﹣1);(2)4x2﹣y2﹣1+2y=4x2﹣(y2﹣2y+1)=4x2﹣(y﹣1)2=(2x+y﹣1)(2x﹣y+1).18.因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解答】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.19.请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解答】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).20.分解因式:x2﹣2x﹣4y﹣4y2.【解答】解:原式=(x2﹣4y2)﹣(2x+4y)=(x+2y)(x﹣2y)﹣2(x+2y)=(x+2y)(x﹣2y﹣2).。

因式分解(提公因式法、公式法、十字相乘法、分组分解法)

因式分解(提公因式法、公式法、十字相乘法、分组分解法)
十字相乘法
整式乘法中,有 (x+a)(x+b)=x2+(a+b)x+ab
口答计算结果
(1) (x+3)(x+4) (2) (x+3)(x-4) (3) (x-3)(x+4) (4) (x-3)(x-4)
x2 px q
=
x2 (a b)x ab (x + a )(x + b)
“头” 平方, “尾” 平方, “头” “尾”两倍中间放.
判别下列各式是不是 完全平方式
1x2 2xy y2 是 2A2 2AB B2 是 3甲2 2甲乙 乙2 是 42 2 2 是
a2 2abb2 a2 2abb2
完全平方式的特点:
1.20042+2004能被2005整除吗?
2.先分解因式,再求值
4a2(x 7) 3(x 7), 其中a 5, x 3.
20023 2 20022 2000 20023 20022 2003
六.利用分解因式计算: (1)-4.2×3.14-3.5×3.14+17.7×3.14 解:原式 =-3.14 ×(4.2+3.5-17.7)=-3.14×(-10)=-31.4
思维延伸
2. 对于任意的自然数n, (n+7)2- (n-5)2能被 24整除吗? 为什么?
巩固练习:
1.选择题:
1)下列各式能用平方差公式分解因式的是( D )
A. 4X²+y² B. 4 x- (-y)² C. -4 X²-y³ D. - X²+ y²
2) -4a²+1分解因式的结果应是 ( D )

分组法因式分解精彩试题练习(含问题详解)

分组法因式分解精彩试题练习(含问题详解)

分组法因式分解试题练习一、单选题1.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A. (a2﹣c2)+(﹣2ab+b2)B. (a2﹣2ab+b2)﹣c2C. a2+(﹣2ab+b2﹣c2)D. (a2+b2)+(﹣2ab﹣c2)2.把多项式ab﹣1+a﹣b因式分解的结果是()A. (a+1)(b+1)B. (a﹣1)(b﹣1)C. (a+1)(b﹣1)D. (a﹣1)(b+1)3.把ab﹣a﹣b+1分解因式的结果为()A. (a+1)(b+1)B. (a+1)(b﹣1)C. (a﹣1)(b﹣1)D. (a﹣1)(b+1)4.把ab+a﹣b﹣1分解因式的结果为()A. (a+b)(b+1)B. (a﹣1)(b﹣1)C. (a+1)(b﹣1)D. (a﹣1)(b+1)5.把多项式a2﹣b2+2a+1分解因式得()A. (a+b)(a﹣b)+(2a+1)B. (a﹣b+1)(a+b﹣1)C. (a﹣b+1)(a+b+1)D. (a﹣b﹣1)(a+b+1)6.将多项式a2﹣9b2+2a﹣6b分解因式为()A. (a+2)(3b+2)(a﹣3b)B. (a﹣9b)(a+9b)C. (a﹣9b)(a+9b+2)D. (a﹣3b)(a+3b+2)7.分解因式:x2﹣2xy+y2+x﹣y的结果是()A. (x﹣y)(x﹣y+1)B. (x﹣y)(x﹣y﹣1)C. (x+y)(x﹣y+1)D. (x+y)(x﹣y﹣1)8.分解因式a2﹣b2+4bc﹣4c2的结果是()A. (a﹣2b+c)(a﹣2b﹣c)B. (a+2b﹣c)(a﹣2b+c)C. (a+b﹣2c)(a﹣b+2c)D. (a+b+2c)(a﹣b+2c)9.把x2﹣y2+2y﹣1分解因式结果正确的是()A. (x+y+1)(x﹣y﹣1)B. (x+y﹣1)(x﹣y+1)C. (x+y﹣1)(x+y+1)D. (x﹣y+1)(x+y+1)10.分解因式a2﹣2a+1﹣b2正确的是()A. (a﹣1)2﹣b2B. a(a﹣2)﹣(b+1)(b﹣1)C. (a+b﹣1)(a﹣b﹣1)D. (a+b)(a﹣b)﹣2a+1二、填空题11.分解因式:________.12.分解因式:x2﹣2x﹣2y2+4y﹣xy=________.13.分解因式:b2﹣ab+a﹣b=________.14.分解因式a2﹣2ab+b2﹣c2=________.15.因式分解:________16.因式分解:b2-ab+a-b=________.17.分解因式x2﹣2xy+y2﹣4x+4y+3=________.18.分解因式:x2﹣y2﹣3x﹣3y=________三、计算题19.因式分解.(1)a2-4a+4-b2;(2)a2-b2+a-b.20.把下列各式因式分解(1)(2)(3)21.分解因式(1)x3﹣2x2+3x﹣2(2)2x3+x2﹣5x﹣4(3)x3﹣x2+2x﹣8.22.把下列各式分解因式:(1)x2(a-1)+y2(1-a);(2)18(m+n)2-8(m-n)2;(3)x2-y2-z2+2yz.23.因式分解:24.分解因式(1)81m3-54m2+9m;(2)a2(x-y)+b2(y-x);(3)a2-b2-2b-1四、综合题25.因式分解:(1)﹣2ax2+8ay2;(2)4m2﹣n2+6n﹣9.答案解析部分一、单选题1.【答案】B【解析】【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故答案为:B.【分析】根据完全平方公式的特点,这个多项式含有-2ab,因此将a2、﹣2ab、b2这三项分为一组,即(a2﹣2ab+b2)﹣c2即可。

分组分解法专项训练

分组分解法专项训练

分组分解法专项训练一、基础概念:1.应用题型:整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解. 2.三步曲:我们用上面的整式来说明如何进行分组分解: 【例1】分解因式:ax by bx ay --+.解:()() ()() ax by bx ayax bx ay by x a b y a b x y a b --+=-+-=-+-=+-【分为两组】【提公因式】【再提公因式】一般地,分组分解大致分为三步: (1)将原式进行适当分组;(2)对每一组分别进行处理(“提”或“代”);(3)将经过处理后的每一组当作一项,再采取“提”或“代”进行分解.高明的棋手,在下棋时绝不会只看一步.同样,在进行分组时,不仅要看到第二步,而且也要看第三 步.一个整式的项有许多种分组的方法,初学者往往需要经过尝试才能找到适当的分组方法,但是只要努力实践,多加练习,就会成为有经验的“行家”. 3.殊途同归:分组的方法并不是唯一的,对于上面的整式ax by bx ay --+,也可以采用下面的做法:()()()()()ax by bx ay ax ay bx by a x y b x y x y a b --+=+-+=+-+=+-两种做法的效果十一样,殊途同归!可以说,一种按照x 与y 来分组(含x 的项在一组,含y 的项在另 一组);另一种是按a 和b 来分组.【例2】分解因式:221x ax x ax a +++--.解法一:按字母x 的幂来分组. 解法二:按字母a 的幂来分组222222 1()()(1)(1)(1)(1)(1)(1)x ax x ax a x ax x ax a x a x a a a x x +++--=+++-+=+++-+=++- 2222222 11(1)1(1)(1)x ax x ax a ax ax a x x a x x x x a x x +++--=+-++-=+-++-=++-3.平均分配:在例2中,原式的6项是平均分配的,或者分成三组,每组两项;或者分成两组,每组三项.如果分组的目的是使第二步与第三步都有公因式可提,那么就必须平均分配.两种做法的效果十一样,殊途同归!可以说,一种按照x 与y 来分组(含x 的项在一组,含y 的项在另 一组);另一种是按a 和b 来分组.【例3】分解因式:3254222x x x x x --++-.解:6项可以分成三组,每组两项,我们把幂次相近的项放在一起,即:325454324242 222222(2)(2)(2)(2)(1)x x x x x x x x x x x x x x x x x x --++-=-+--+=-+---=-+-本例也可以将6项分成两组,每组三项,即将系数为1的放在一组,系数为2-的放在另一组.详细过程请大家自己完成.【例4】分解因式:2222ac bd ad bc +--. 解:22222222222222 ()()()()()()()ac bd ad bc ac ad bd bc a c d b d c a b c d a b c d c d +--=-+-=-+-=--=-+- 你可以考虑另一种分组分解呢. 4.利用公式:如果在第二步或者第三步中需要应用乘法公式,那么各组的项数不一定相等,应根据公式的特点来确定.【例5】分解因式:2212x x y ---+.解:利用完全平方公式和平方差公式来分组进行因式分解.22222212(21)(1)(1)(1)x x y y x x y x y x y x ---+=-++=-+=++--【例6】分解因式:31ax x a +++.解:根据a 的幂来分组是可以行得通的,恰好能用上立方和公式,并为下一步提取公因式奠好基础.3322 1()(1)(1)(1)(1)(1)(1)ax x a ax a x a x x x x x ax ax a +++=+++=+-+++=+-++【例7】分解因式:43221x x x x ++++.解:利用完全平方公式及提公因式法进行因式分解.43242322222 21(21)(1)(1)(1)(1)x x x x x x x x x x x x x x ++++=++++=+++=+++5.从零开始:如果分组分得不恰当,因式分解无法进行下去,那么就应当回到分组前的状况,从零开始,考虑新的分组.【例8】分解因式:3232x x y y +--.解:如果把有x 的项集中在一起,有y 的项集合到一起,那么3232323222 ()(1)(1)x x y y x x y y x x y y +--=+-+=+-+ 虽然每一组都有公因式可提,但是两组之间却无公因式可提,也没有公式可以利用,分解无法进行下去.这时,必须从零开始,重新分组. 这次将次数相同的项放在一起,我们有:323233222222 ()()()()()()()()x x y y x y x y x y x xy y x y x y x y x xy y x y +--=-+-=-+++-+=-++++【例9】分解因式:2222()()ab c d a b cd ---.解:此式无法直接进行分解,必须先用乘法分配律将原式变为四项,再进行分组.222222222222 ()()()()()()ab c d a b cd abc abd a cd b cd abc a cd b cd abd ac bc ad bd bc ad ac bd bc ad ---=--+=-+-=-+-=+- 从这个例子可以看出,错误的分组还不如不分组.一定先确定好思路再下笔,会事半功倍哟~二、强化训练:1.ax ay bx cy cx by -++-- 2.4321x x x ++-3.22(1)1a b b b b -+-+- 4.222224()x a x a x +--5.22abx bxy axy y +-- 6.232232a b abc d ab cd c d -+-7.222332154810ac cx ax c +-- 8.22(3)(43)x ab x a b -+-9.33x x y y -+- 10.33222x y x xy y ++++11.22224946a b c d ac bd -+-++ 12.222(1)12a b b b --+-13.()()x x z y y z +-+ 14.32x bx ax ab +++15.32acx bcx adx bd +++ 16.433422a a b ab b +--17.4334a a b ab b --+ 18.22221a b a b --+19.2222224x y x z y z z --+ 20.222221x y z x z y z --+21.4333x x y xz yz +++ 22.4231x x -+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分组分解因式分解练习题
1. 按字母特征分组a?b?ab?1 a2-ab+ac-bc
2. 按系数特征分组7x2?3y?xy?21x ac?6ad
3. 按指数特点分组a2?9b2?2a?6bx2?x?4y2?2y
2224.按公式特点分组a-2ab+b-c a2?4b2?12bc?9c2
四.总结规律
1.合理分组;
2.组内分解
3.组间再分解
4.如果一个多项式中有三项是一个完全平方式或通过提取负号是一个完全平方式,一般就选用“三一分组”的方法进行分组分解。

因此在分组分解过程中要特别注意符号的变化.
五.练习巩固
1.用分组分解法把ab-c+b-ac分解因式分组的方法有 A.1种B.2种C.3种D.4种
2. 用分组分解a2-b2-c2+2bc的因式,分组正确的是
A.?bc)
C.?222222?bc?3bd B.?2bc
D.a?222222
3.填空:
ax+ay-bx-by=- =
x2-2y-4y2+x= + =
4a2-b2-4c2+4bc= - =
4.把下列各式分解因式
ax25x?6y?15x?2xy ?3x?4a?1227a?ab?21a?3bm2-6m +2n-n2
4x-4xy-a+y22 1―m―n+2mn2
分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。

使用这种方法的关键在于分组适当,而在分组时,必须有预见性。

能预见到下一步能继续分解。

而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。

应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。

下面我们就来学习用分组分解法进行因式分解。

1. 在数学计算、化简、证明题中的应用
242aaa1 例1. 把多项式2分解因式,所得的结果为
3254
式后,再进一步分解;此题也可把x,x分别看作一组,
此?x和x?1?x
时的六项式变成三项式,提取公因式后再进行分解。

解法1:
原式??
?
?
解法2:
原式
?x4?x2?
??[?x2]?
22
A.22C.22
B.
22
D.
分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。

242
2aaa1 解:原式?
2. 在几何学中的应用
222
?,a?c?b?2ac 例:已知三条线段长分别为a、b、c,
且满足ab
?a4?2a3?3a2?2a?1
1
222
??2?1
?
2
2
证明:以a、b、c为三边能构成三角形
分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边”
222acb2ac 证明:?
故选择C
5432
例2. 分解因式xxxxx 1
分析:这是一个六项式,很显然要先进行分组,此题可把
5432x?x?x和?x?x?1分别看成一组,此时六项式变成二项式,提取公因
?a2?c2?b2?2ac?0
?a?2ac?c?b?0,即?b?0??0又?a?c?b?a?c?b?a?c?b?0,a?c?b?0?a?b?c,a?b?c即a?b?c?a?b
?以a、b、c为三边能构成三角形
2
2
2
2
2
22
例1.分解因式:1_____________。

?m?n?2mn?2解:1 ?mn??2mn
?1?
?1?2
?
说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。

例2.分解因式:x2?y2?x?y?____________
2解:x2?y2?x?y??
3. 在方程中的应用例:求方程x的整数解 ?y?xy
分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x与y,故可考虑借助因式分解求解解:? x?y?xy
?xy?x?y?0?xy?x?y?1??1即x1
??
?
说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。

例3. 分解因式:x3?3x2?4x?12?____________
32
解:x3?3x2?4x?12?x ?4x?3x?12
1
?x,y是整数?x?1?1
??或?y?1??1
?x?1??1?
?y?1?1
2
?xx?3
?
说明:分组的目的是能够继续分解。

5、题型展示:
222?mn?n?1 例1. 分解因式:m
x?0?x??2?
或 ? ??y?0?y?2?
4、中考点拨
222?mn?n?1 解:m
222?mn?m?4mn?n2?1
解一:
333
xx ?2?3?33x??22xx?
222
??
??
22
?
22
?3?2x
2
?
说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn分成2mn和2mn,配成完全平方和平方差公式。

2222
?b?1,c?d?1,且ac?bd?0 例2. 已知:a,求ab+cd 的值。

解二:
3322
x?2x?3?x?x?x?2x?3
2
?x??
解:ab+cd=a b?1?cd?1
?ab?cd
?abc2?abd2?cda2?cdb2
说明:拆添项法也是分解因式的一种常见方法,请同学们试拆一次项和常数项,看看是否可解?
1. 填空题:?mn?
2222
?b?1,c?d?1 说明:首先要充分利用已知条件a中的1,其次利用分解因式将式子变形成含有ac+bd因式乘积的形式,由ac+bd=0可算出结果。

3
例3. 分解因式:x ?2x?3
分析:此题无法用常规思路分解,需拆添项。

观察多项式发现当x=1时,
3
?1是x?2x?3它的值为0,这就意味着x的一个因式,因此变形的目的是凑
2. 已知:a?b?c?0,求a3?a2c?abc?b2c?b3的值。

x?1这个因式。

3. 分解因式:a?a?1.



5
222
5. 证明:??a?11b?
222333
x?y?z?0,A是一个关于x,y,z的一次多项式,且x?y?z?A
,试求A的表达式。

1. 解:原式??3
??3?
解:原式??2
?2?2?
解:原式?1?mn?m2n2
?m3n3
??m2n2
?
2. 解:原式??c
?
?a?b?c?0?原式?0
说明:因式分解是一种重要的恒等变形,在代数式求值中有很大作用。

. 解:a5
?a?1
?a5?a2?a2?a?1
?a2?
?a2
?
?
4. 解:?x2?y2?z2
?0
?y2?x2?z2,z2?x2?y2
?x3?y3?z3??z?z2
2
??z
?[x2?xy?y2?z]?[x?y?]??
?A?2x??yz
5. 证明:?2
?a2?ab?2a?abb?2?2b?2a2b?2ab2?4ab?12?aba?22b ?a2?b2?2a?2b?2a2b?2ab2?4ab?1?a22
b
精品文档
?2?2?2
?
[?]2
?2
?2?2
2
1
2
3
4
5
11/ 11。

相关文档
最新文档