正交实验设计基本思想

合集下载

正交试验设计法简介

正交试验设计法简介

正交试验设计法简介一、本文概述正交试验设计法是一种高效、系统的试验设计方法,广泛应用于科学研究、工程实践以及日常生产中的优化问题。

本文将对正交试验设计法的基本概念、原理、应用及其优势进行详细介绍,旨在帮助读者更好地理解和应用这一实用的试验设计方法。

正交试验设计法基于数理统计和正交表的理论,通过合理安排试验因素与水平,以较少的试验次数获得丰富的试验信息。

该方法的核心在于利用正交表的正交性,使得各试验因素之间互不干扰,从而能够准确地评估各因素对试验结果的影响程度。

本文将从正交试验设计法的基本原理出发,阐述其在实际应用中的操作步骤和方法。

通过具体案例的分析,展示正交试验设计法在解决实际问题中的优势和应用价值。

本文还将对正交试验设计法的局限性和改进方向进行探讨,以期为读者提供更为全面、深入的了解。

二、正交试验设计法的基本原理正交试验设计法是一种以数理统计和正交性原理为基础的高效试验设计方法。

其基本原理在于,通过选择一组具有代表性的试验点,即正交表中的行,来全面、均衡地考察多个因素在不同水平下的试验效果。

这种方法能够在保证试验全面性的大大减少试验次数,提高试验效率。

正交试验设计法主要基于两个核心原理:正交性原理和代表性原理。

正交性原理指的是在试验设计中,各因素之间应相互独立,互不影响,从而确保试验结果的准确性和可靠性。

代表性原理则是指在选择试验点时,应确保每个试验点都能代表一定的因素水平组合,以便全面考察各因素对试验结果的影响。

正交表是正交试验设计法的核心工具,它是一种具有特定结构的表格,用于安排试验因素和水平。

正交表具有均衡分散和整齐可比的特点,能够确保每个试验点都具有一定的代表性,并且各因素之间保持正交性。

通过正交表,可以方便地安排试验,并对试验结果进行分析和比较。

正交试验设计法的应用范围广泛,适用于多因素、多水平的试验场景。

它不仅可以用于新产品的开发和优化,还可以用于工艺改进、质量控制等领域。

通过正交试验设计法,可以更加高效地找出最优的参数组合,提高产品的性能和质量,降低生产成本,为企业带来更大的经济效益。

正交试验设计

正交试验设计
案仅包括9个水平组合,而全方面试验方案 包括27个水平。
4
上一张 下一张 主 页 退 出
表5-1
5
上一张 下一张 主 页 退 出
注:任意两列旳交互作用列为另外两 列
附:正交表L9(34)
试验号
列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1ห้องสมุดไป่ตู้
3
2
8
3
2
1
3
9
3
3
2
1
6
3
上一张 下一张 主 页 退 出
1.2 正交设计旳基本特点
❖ 用部分试验来替代全方面试验,经过对部分 试验成果旳分析,了解全方面试验旳情况。
❖ 当交互作用存在时,有可能出现交互作用旳 混杂。即忽视了部分交互作用来降低试验次 数。
如对于上述3原因3水平试验,若不考虑交
互作用,可利用正交表L9(34)安排,试验方
代表正交表;
❖ L右下角旳数字“8”表达有8行,用这张正交 表安排试验包括8个处理(水平组合);
❖ 括号内旳底数“2” 表达原因旳水平数,括 号内2旳指数“7”表达有7列,
❖ 用这张正交表最多能够安排7个2水平原因。 8
上一张 下一张 主 页 退 出
表5-2
9
上一张 下一张 主 页 退 出
L8(27)二列间交互作用列表
第五章 正交试验设计

正交实验设计基本思想

正交实验设计基本思想

正交实验设计法正交实验设计法1.正交试验设计法的基本思想正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。

它简单易行,计算表格化,使用者能够迅速掌握。

下边通过一个例子来说明正交试验设计法的基本想法。

[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A: 80-90 EB: 90-150 分钟C: 5-7 %试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率咼。

试制定试验方案。

这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A: Al = 80°C,A2= 85°C,A3=90CB: Bl = 90 分,B2= 120 分,B3=150分C: Cl = 5%,C2= 6% CA 7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。

而定量因子各水平间的距离可以相等,也可以不相等。

这个三因子三水平的条件试验,通常有两种试验进行方法:(I )取三因子所有水平之间的组合,即AIBIC1,A1BIC2, A1B2C1 ……,A3B3C3共有33=27次试验。

用图表示就是图1立方体的27个节点。

这种试验法叫做全面试验法。

全面试验对各因子与指标间的关系剖析得比较清楚。

但试验次数太多。

特别是当因子数目多,每个因子的水平数目也多时。

试验量大得惊人。

如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56二15625次试验,这实际上是不可能实现的。

如果应用正交实验法,只做25次试验就行了。

而且在某种意义上讲,这25次试验代表了15625次试验。

(n )简单对比法,即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl,使A变化之:/ A1B1C1 —A2\ A3 (好结果)如得出结果A3最好,贝U固定A于A3, C还是Cl,使B变化之:/ B1A3C1 —B2 (好结果)\ B3得出结果以B2为最好,则固定B于B2, A于A3,使C变化之:/ C1A3BPC2 (好结果)\ C3试验结果以C2最好。

正交试验设计中的方差分析

正交试验设计中的方差分析
方差分析(ANOVA)是一种统计技术, 用于比较三个或更多组数据的平均值 是否存在显著差异。
目的
通过方差分析,可以确定不同组之间 的平均值差异是否由随机误差引起, 还是由处理因素或自变量引起。
方差分析的数学模型
数学模型
方差分析使用数学模型来描述数据之间的关系,特别是不同组之间的平均值差异。模型通常包括组间差异和组内 差异两部分。
医学研究
通过正交试验设计中的方差分析,研究不同治疗方案、药物剂量等因素对疾病治疗效果的影响,为临床 治疗提供科学依据。
方差分析的局限性
04
方差分析对数据的要求
独立性
数据必须是相互独立的,不存 在相互关联或依赖关系。
正态性
数据应符合正态分布,才能保 证统计推断的准确性。
同方差性
各组数据的方差应相等,否则 可能导致误判。
制定试验方案
根据正交表设计试验方案,确定每个因素的每个 水平。
实施试验
按照试验方案进行试验,记录每个试验的结果。
方差分析
利用方差分析法对试验结果进行分析,确定各因 素对试验结果的影响程度和显著性。
优化方案
根据方差分析结果,优化试验方案,进行下一步试验。
方差分析的基本原理
02
方差分析的定义与目的
定义
拉丁方设计方差分

适用于需要控制试验条件的试验, 通过拉丁方设计平衡试验条件和 试验误差。
正交试验设计中的方差分析步骤
确定试验因素和水平
根据研究目的和实际情况确定试验因 素和水平。
制定正交表
根据试验因素和水平选择合适的正交 表。
安排试验
按照正交表进行试验,记录试验数据。
方差分析
对试验数据进行方差分析,包括自由 度、离均平方和、均方、F值等计算。

正交实验法的原理

正交实验法的原理

正交实验法的原理
正交实验法是一种多因素试验设计方法,用于确定多个因素对实验结果的影响。

该方法的原理基于以下理念:
1. 因素的独立性:正交实验法假设各个因素之间是相互独立的,即一个因素的变化不会影响其他因素的变化。

这使得实验结果能够准确地反映每个因素的影响。

2. 最小二乘法:正交实验法通过最小二乘法来构建试验矩阵。

最小二乘法是一种通过最小化实际数据与拟合曲线之间的差异来确定因素对结果的影响的方法。

正交实验法通过设计合适的试验矩阵,使得最小二乘法能够有效地判断因素对结果的影响。

3. 科学有效性:正交实验法基于数学统计学原理和设计思想,能够充分挖掘因素之间的关系,并减少试验的数量。

这使得实验结果更加科学可靠,并且能够提高实验效率。

通过正交实验法设计的实验,可以将多个因素进行有效控制,避免因素之间的相互干扰,从而准确地确定每个因素对实验结果的影响程度。

这对于优化生产工艺、改进产品性能和提高实验效率具有重要意义。

正交试验设计方法

正交试验设计方法
正交表常用拉丁字母(如L、N等)表示,字母的下方标有数字,表示该行的次数, 例如L4(2^3)表示一个四水平、三次方的正交表。
正交试验设计的核心思想
通过对试验条件的合理安排,减少试验次数,提 高试验效率,同时保证结果的准确性和可靠性。
通过正交试验设计,可以分析各因素对试验结果 的影响程度,找出最优的试验条件或最优组合。
均衡性
正交试验设计能够保证试验点在试验空间中均匀分布,使得试验结果 具有更好的均衡性和代表性。
简单易行
正交试验设计方法简单易行,易于理解和操作,不需要复杂的数学工 具和编程技能。
统计分析方便
正交试验设计的结果可以通过正交表进行统计分析,计算简单,结果 直观。
缺点
适用范围有限
正交试验设计适用于因子数量 和水平数量不太多的情况,对 于高维度的复杂问题可能不太 适用。
试验设计
采用正交表进行试验设计,确保每个 试验方案具有均衡的代表性。
结果分析
通过方差分析、极差分析等方法,找 出最优的混合肥料配方。
实例二:机械零件的加工工艺优化
目的因素与水平源自通过正交试验设计,优化机械零件的加工 工艺,提高生产效率。
选择切削速度、进给量、切削深度三个工 艺参数作为试验因素,每个因素选取四个 水平。
在农业领域,正交试验设计用于研究 不同种植条件和施肥方案对农作物产 量的影响。
化学工业
在化学工业中,正交试验设计用于确 定最佳的化学反应条件,提高生产效 率和产品质量。
02
正交试验设计的基本原理
正交表的概念
正交表是一套规则,用于安排多因素多水平的试验,其特点是每个因素在试验中 出现的次数相等,且在各次试验中因素的排列顺序相同。
正交试验设计方法

正交试验设计和分析

正交试验设计和分析

试验统计方法
正交试验设计和分析
第三节:正交试验设计的基本程序 第三节 正交试验设计的基本程序 二.选择合适的正交表 :
确定试验因素水平后,接下来的工作就是选择一张合适的正交表。所选的 正交表必须符合以下条件: 1.对等水平试验。所选正交表的水平数与试验因素的水平数应一致,正交 表的列数应大于或等于因素及所要考察的交互作用所占的列数。 2.不等水平试验,所选混合型正交表的某一水平的列数应大于或等于相应 水平的因素的个数。 选择正交表是一个很重要的问题,太小,试验因素和交互作用就可能放不 下;太大,试验次数过多。原则是:在能安排试验因素和要考察的交互作 用的前提下,尽可能选用小号正交表,以减少试验次数,最好有一列空列, 以考察试验误差,否则必须进行重复试验以考察试验误差。 此例是三因素三水平试验,因此选 L9 (3 4 ) 比较合适。
试 验 指 标
50
60
70 温度
试验统计方法
正交试验设计和分析
第三节:正交试验设计的基本程序 第三节 正交试验设计的基本程序 一.选择因素和水平,建立因素水平表: 因素和水平确定以后,就可建立因素水平表。我们来看一个 例子:为了提高某化工产品的转化率,选择了三个有关的因素, 反应温度(A).反应时间(B),用碱量(C),选取的水平如下:
试验统计方法
正交试验设计和分析
第三节:正交试验设计的基本程序 第三节 正交试验设计的基本程序 一.选择因素和水平,建立因素水平表: 优先选取对试验指标影响大的因素、尚未完全掌握其规律的 因素和未曾考察研究过的因素。水平数以2~4为宜,主要因素 或希望更多了解的试验因素可以多取水平。一般以3为好,水 平的制定应包括因素水平的最佳区域。
由上可以分析得到: (1)温度越高,转化率越高,以90度最好,还应进一步探索温度更高的情况。 (2)反应时间以120分转化率最高。 (3)用碱量以6%转化率最高。 综合起来A3B2C2可能是较好的工艺条件。但是,我们发现这个工艺条件 并不在九次试验之中,它是否好.还要通过实践来检验。我们将选出来的 工艺条件A3B2C2和九次试验中最好的9号试验(A3B3C2)进行比较,试验结果 A3B2C2的转化率是74%,A3B3C2的转化率是65%,说明选出的工艺是比较好 的。可以证明,当因素之间没有交互作用时,用这种方法选出来的工艺条 件就是全面试验中最好的。我们可以按正交表设计的试验方案进行部分试 验,而没有必要进行全面试验。

正交试验设计总结

正交试验设计总结

表1-1
图1-1
3因素3水平的全面试验水平组合数为33=27,4因 素3水平的全面试验水平组合数为34=81,5因素3水平 的全面试验水平组合数为35=243,这在科学试验中是 有可能做不到的。
正交设计就是从选优区全面试验点(水平组合) 中挑选出有代表性的部分试验点(水平组合)来进行 试验。图1-1中标有试验号的九个“(·)”,就是利用 正交表L9(34)从27个试验点中挑选出来的9个试验点。 即: (1)A1B1C1 (4)A1B2C2 (7)A1B3C3 (2)A2B1C2 (5)A2B2C3 (8)A2B3C1 (3)A3B1C3 (6)A3B2C1 (9)A3B3C2
1 2 3
此例有4个3水平因素,根据专业知识和经验可以选 用L9(34 )正交表。 表2-3 试验方案及试验结果
因 试验号 A 1 2 3 4 5 6 7 8 9 1 1 1 2 2 2 3 3 3 1 2 3 1 2 3 1 2 3 B 1 2 3 2 3 1 3 1 2 C 1 2 3 3 1 2 2 3 1 D 素 试验结果 (液化率 %) ) 0 17 24 12 47 28 1 18 42
(2)试验因素:在试验中对试验指标可能产生影响的 原因或要素称为试验因素,也称为因子。由于客观条 件的限制,在一次试验中不可能将每个因素都考虑进 去。我们把试验中对试验指标影响重要的因素称为试 验因素,通常用大写字母A,B,C…… 表示。
(3)因素水平:试验中试验因素所处的各种状态或 取值称为因素水平,简称水平。如某试验中,温度A选 定了30℃ ,50℃两种状态,就称A因素为2水平因素; 因素B选定了20min,40min,60min三种状态,就称B因素 为3水平因素。
2.1.4对正交表( 2.1.4对正交表(Ln(Sr))的要求 对正交表 ) (1)正交表中水平数S与每个因素水平数一致; (2)正交表中因素数r大于或等于实际因素数;

正交试验设计(内容详尽)

正交试验设计(内容详尽)
医学研究
用于探索最佳的药物剂量、治疗方案等。
农业科学研究
用于研究不同肥料、农药、种植方式等对农 作物产量的影响。
化学工业
用于研究不同反应条件对化学反应的影响, 提高产物的收率和质量。
正交试验设计的原则
1 2
均衡分布原则
确保每个因素每个水平的试验条件都有机会出现, 避免结果的片面性。
整齐可比原则
保证试验结果的可比性,以便进行数理统计分析。
案例二:化学反应中的正交试验设计
在化学反应中,正交试验设计用于研究不同反应条件 对产物收率和纯度的影响。
例如,在合成某种药物中间体的过程中,通过正交试 验设计来探究温度、压力、催化剂种类和浓度对产物
收率和纯度的影响。
通过优化反应条件,可以提高产物的收率和纯度,降 低生产成本并提高生产效率。
案例三:生物医学研究中的正交试验设计
安排试验计划
总结词:计划性
详细描述:根据正交表,安排详细的 试验计划。这一步骤包括确定试验的 各个水平、组合方式以及试验的顺序 等。合理的试验计划有助于提高试验 的效率和准确性。
实验结果分析
总结词:分析性
VS
详细描述:在完成试验后,对试验结 果进行统计分析。这一步骤包括数据 的整理、处理、分析和解释等。通过 结果分析,可以得出关于试验因素对 试验结果影响的结论,并据此优化试 验方案或进行进一步的研究。
正交试验设计案例分
05

案例一:材料科学中的正交试验设计
材料科学中,正交试验设计常用于研究不同材 料成分和工艺参数对材料性能的影响。
例如,在钢铁冶炼过程中,通过正交试验设计 来探究不同温度、压力、时间和合金元素对钢 材强度、韧性和耐腐蚀性的影响。
通过对试验结果的分析,可以确定最佳的工艺 参数组合,从而提高产品质量和降低生产成本。

4正交试验设计与均匀试验设计

4正交试验设计与均匀试验设计

表10-5 试验方案及试验结果
试验号
1 2 3 4 5 6 7 8 9
A 11(10) 1 1 22(50) 2 2 33(90) 3 3
因 B 11(1) 22(4) 33(7) 1 2 3 1 2 3
素 C
11(20) 22(35) 33(50) 2 3 1 3 1 2
D 11(1.5) 22(2.5) 33(3.5) 3 1 2 2 3 1
试验结果极差分析
试验结果方差分析
计计 算算
Kk 值值
计 算 极 差
R
绘 制 因 素 指 标 趋


计算各列偏差平方和、 自由度
列方差分析表,
进行F 检验
优水平 优组合
因素主次顺序
结论
分析检验结果, 写出结论
et2:为提高山楂原料的利用率,研究酶法液化工艺 制造山楂原汁,拟通过正交试验来寻找酶法液 化的最佳工艺条件。
正交设计就是从全面试验水平组合中挑选出有代 表性的部分试验水平组合来进行试验。图2中标有试验
号的九个“(·)”,就是利用正交表L9(34)从27个试
验点中挑选出来的9个试验点。即:
(1) A1B1C1 (4) A2B1C2 (7) A3B1C3
(2) A1B2C2 (5) A2B2C3 (8) A3B2C1
9个试验点均衡地分布于整个立方体内,有很强的代表性, 能够比较全面地反映选优区内的基本情况。
1.3 正交表及其基本性质
1.3.1 正交表 (Latin方)
表2是一张正交表,记号为L8(27),其中“L”
代表正交表;L右下角的数字“8”表示有8行,用这张 正交表安排试验包含8个处理(水平组合);括号内的底 数“2” 表示因素的水平数,括号内2的指数“7”表 示有7列 ,用这张正交表最多可以安排7个2水平因素。

正交实验设计

正交实验设计

正交试验设计法正交试验设计法的基本思想正交表正交表试验方案的设计试验数据的直观分析正交试验的方差分析补充内容1.正交试验设计法的基本思想正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。

它简单易行,计算表格化,使用者能够迅速掌握。

下边通过一个例子来说明正交试验设计法的基本想法。

[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃B:90-150分钟C:5-7%试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。

试制定试验方案。

这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al=80℃,A2=85℃,A3=90℃B:Bl=90分,B2=120分,B3=150分C:Cl=5%,C2=6%,C3=7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。

而定量因子各水平间的距离可以相等,也可以不相等。

这个三因子三水平的条件试验,通常有两种试验进行方法:(Ⅰ)取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有33=27次试验。

用图表示就是图1 立方体的27个节点。

这种试验法叫做全面试验法。

全面试验对各因子与指标间的关系剖析得比较清楚。

但试验次数太多。

特别是当因子数目多,每个因子的水平数目也多时。

试验量大得惊人。

如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。

如果应用正交实验法,只做25次试验就行了。

而且在某种意义上讲,这25次试验代表了15625次试验。

图1 全面试验法取点..........(Ⅱ)简单对比法,即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl,使A变化之:↗A1B1C1 →A2↘A3 (好结果)如得出结果A3最好,则固定A于A3,C还是Cl,使B变化之:↗B1A3C1 →B2 (好结果)↘B3得出结果以B2为最好,则固定B于B2,A于A3,使C变化之:↗C1A3B2→C2 (好结果)↘C3试验结果以C2最好。

正交试验原理

正交试验原理

正交试验原理
正交试验原理是一种统计学中常用的实验设计方法,用于确定和分析多个因素对实验结果的影响。

在正交试验中,各个因素以及不同水平的组合被称为处理,通过正交设计来保证每个处理在实验设计中出现的次数相等且均匀分布,从而有效地减少误差的影响。

正交试验原理的核心思想是通过合理的实验设计,将处理之间的相互影响最小化,从而得到准确、可靠以及可重复的结果。

具体而言,正交试验通过构建一个正交表(也称为正交阵)来确定实验中各个处理的安排顺序。

正交表是一种特殊的二维矩阵,其中每行和每列的组合都呈现出均匀、平衡的分布。

通过正交试验,可以同时考虑多个因素对实验结果的影响,减少实验所需的次数和资源,并且可以更好地控制和排除其他因素引起的误差。

同时,正交试验还可以通过对不同处理组合的比较分析,确定各个因素对实验结果的主次影响程度,进一步优化实验设计。

正交试验原理的应用广泛,特别适用于工程、科学研究以及生产过程中的设计与优化。

其优势在于提高实验效率、减少数据产生的随机性,从而提高数据的可信度和有效性。

同时,正交试验还可以通过响应面分析等方法,进一步对实验结果进行预测和优化,为决策提供科学依据。

正交试验设计法简介

正交试验设计法简介

正交试验设计法简介
正交试验设计法是一种优化实验设计的方法,通过设计数个试验因素的几个水平,可以快速、准确地确定这些因素对实验结果的影响关系。

其核心思想是通过一组不同的试验因素设置,找出影响因素和交互作用,从而得出最优解。

正交试验设计法主要包括以下几个步骤:
1.确定试验因素:根据实验目的,确定需要研究的试验因素及其水平数。

2.制定试验方案:根据试验因素及其水平数,设计出一组试验方案,即每个因素的不同水平组合。

3.执行实验:根据试验方案进行实验操作,并记录实验结果。

4.数据分析:将实验结果整理并进行统计分析,得出各因素之间的影响及交互作用。

5.确定最优方案:根据数据分析结果,确定最优的试验水平组合,以达到最佳实验效果。

总之,正交试验设计法可以大幅减少实验次数,提高数据准确性和可靠性,是一种广泛应用于工程、科研与优化方面的实验设计方法。

正交试验设计

正交试验设计

正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。

是一种高效率、快速、经济的实验设计方法。

日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。

例如作一个三因素三水平的实验,按全面实验要求,须进行33 = 27种组合的实验,且尚未考虑每一组合的重复数。

若按L9(3)正交表安排实验,只需作9次,按L18(3)正交表进行18次实验,显然大大减少了工作量。

因而正交实验设计在很多领域的研究中已经得到广泛应用。

正交表是一整套规则的设计表格,用L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。

例如L9(34),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。

一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L此表的5列中,有1列为4水平,4列为2水平。

正交试验设计表[1]正交试验因素水平表正交试验设计方案及试验结果极差分析表(或指标与因素关系图) 方差分析表(简单分析时可无)正交表的性质(1)每一列中,不同的数字出现的次数相等。

例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。

(2)任意两列中数字的排列方式齐全而且均衡。

例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。

每种对数出现次数相等。

在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。

以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。

正交实验法的原理

正交实验法的原理

正交实验法的原理
正交实验(Orthogonal Experiment)是一种试验设计方法,它按照经
验准则确定各个自变量的取值,从而控制变量的变化量。

它的基本原理是
把试验的变量拆分成多个独立的部分,然后确定每个部分的取值,从而获
得一组模型各参数变量互相正交的参数组合,使每个因素影响实验结果的
效果能够清楚的反映出来。

因此,正交实验不仅可以准确地确定影响和
反应变量的因素,也能有效的控制试验的变量,从而有效的控制实验结果。

正交实验设计的基本原理在于:它以参数组合作为基本单元,不改变
条件之间的正交关系,即每个因素都保持其变量能力,提高参数组合上的
数量;在每个参数组合上,只改变一个变量,以保持其他变量不变,从而
获得较为准确地实验结果;在每组参数组合上,可以选择不同程度的值,
以满足实验的各种需求;最后,根据实验的结果,可以进行合理的因素分析,有助于更加准确的判断实验结果。

正交试验设计的基本程序和步骤

正交试验设计的基本程序和步骤

正交试验设计的基本程序和步骤1、前言正交试验设计(Orthogonal experimental design,OED)是一种重要的统计学方法,它可以有效地降低试验次数和成本,并且在较短时间内获得较为全面的试验结果。

在实际的工程应用中,正交试验设计被广泛地应用于产品设计、工艺优化、性能分析等方面。

在本文中,将分析正交试验设计的基本程序和步骤,以便读者更好地了解和应用它。

2、正交试验设计的基本概念和目的正交试验设计是一种实验设计方法,它的核心思想是在尽量少的试验次数内,获得尽量全面的试验结果。

正交试验设计的目的是确定试验因素对试验结果的影响关系,以便在最短的时间内找到最优的试验方案。

在正交试验设计中,试验因素是指影响试验结果的因素,它包括五个要素,即A(B)、B(C)、C(A)、D(E)、E(D),其中ABC是三因素正交设计,DE是两因素正交设计。

试验因素水平是指了试验因素的取值,例如低水平(-1)和高水平(1)。

3、正交试验设计的基本步骤(1)确定试验因素和水平在正交试验设计中,首先需要明确试验的主要因素,以及试验因素的水平。

在实际的试验中,因素的数量和水平的设置应该根据具体试验问题来确定,同时,要注意试验因素个数的控制,以避免试验运行过多。

(2)构建试验方案矩阵试验方案矩阵是正交设计的核心,它是一种特殊的矩阵,将试验因素和水平按照一定的规则排列组合。

在构建试验方案矩阵时,需要考虑多个因素对试验结果的影响,以避免试验设计的偏差。

(3)实施试验方案并收集数据在实际的试验中,需要根据试验方案进行试验并收集数据。

在试验过程中要注意严格的试验控制和数据收集,以避免实验结果的不准确性。

(4)数据分析数据分析是正交试验设计的关键步骤,通过数据分析可以确定试验因素的影响关系,并找到最优的试验方案。

数据分析的过程一般包括方差分析、回归分析等统计学方法。

(5)确定优化方案根据数据分析结果,确定试验因素的优化方案,找到最优的试验方案。

正交试验设计法正交试验设计法的基本思想

正交试验设计法正交试验设计法的基本思想

正交试验设计法正交试验设计法的基本思想正交试验设计(Orthogonale某perimentaldeign)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了"均匀分散,齐整可比"的特点,正交试验设计是分析因式设计的主要方法。

是一种高效率、快速、经济的实验设计方法。

所以,下面就为大家推荐正交试验设计法,希望对大家有所帮助。

正交实验设计是利用已建立的正交表进行实验安排和数据分析的一种方法。

它简单、表格化,用户可以快速掌握。

下面以一个例子说明正交实验设计方法的基本思想。

【例1】为了提高某化工产品的转化率,选取反应温度(a)、反应时间(B)、碱含量(C)三个因素进行条件试验,确定其试验范围。

答:80-90CB:90-150分钟C:5-7%实验的目的是找出哪些因素,B和C的转化率,这是主要因素,哪些是次要因素,从而确定最优生产条件,如温度、时间和碱的用量,使转化率高。

试制试验计划。

这里,对于因子A,在实验范围内选取三个等级;因子B和因子C也有三个层次:A:Al=80c,A2=85C,A3=90cB:Bl=90,B2=120,B3=150C:Cl=5%,C2=6%,C3=7%当然,在正交实验设计中,因素是可以量化的。

它也可以是定性的。

这取决于数量因素的水平。

距离可以相等也可以不相等。

这个三因素三水平的实验通常有两种条件测试。

实验方法:(I)将各级别的三个因素,即AlBlC1、A1BlC2、A1B2C1、…A3B3C3、共享33=27倍实验。

图1中立方体的27个节点用图表表示。

这种测试方法称为综合测试方法。

综合测试中明确各因素与指标之间的关系。

但是有太多的实验。

特别是当因子数量较大时,各因子的水平也较大。

实验的数量是惊人的。

如果选择6个因子,每个因子选择5个水平,那么综合测试需要56=15625个试验,这在实际中是不可能实现的。

正交设计原理

正交设计原理

正交设计原理
正交设计原理是一种用于实验设计的方法,它的目的是通过少量的试验,同时独立地研究多个影响试验结果的因素,以便获取关于每个因素的准确而无偏的估计。

正交设计的主要思想是将试验因素(也称为处理)组合成一组试验方案,使得每个因素的各个水平均能够在每组试验中都能得到均衡地探索。

这样一来,不仅能够减少所需的试验次数,还能通过对比各个处理的效果来辨别出主要的因素和交互作用。

具体来说,正交设计要遵循以下几个原则:
1. 均衡性原则:每个试验因素的各个水平应该在试验方案中平衡地出现,以确保对每个因素的不同水平进行全面研究。

这可以通过构建正交表来实现,保证每个因素各个水平的均衡分布。

2. 独立性原则:试验中的各个因素应该相互独立地进行研究,以便准确估计每个因素的效应。

这就要求试验方案中,每个因素的各个水平在不同试验中都能独立自由地变化,而不受其他因素的限制。

3. 可重复性原则:为了验证试验结果的可信度,正交设计要求每个试验方案能够重复多次,以便通过对比不同试验的结果来分析每个因素的效应。

正交设计在各个领域都有广泛的应用,特别是在工艺优化、产品设计、实验研究等方面。

通过合理设计和分析实验,可以准
确地了解各个因素对试验结果的影响程度,从而指导后续的决策和改进。

《正交试验设计》课件

《正交试验设计》课件

,实现经济效益和环境效益的双重提升。
展望与挑战
技术更新换代
随着科技的快速发展,正交试验设计面临着技术更新换代的挑战。如何跟上科技发展的步 伐,不断更新和完善正交试验设计的方法和工具,是未来发展的重要课题。
数据安全与隐私保护
在大数据时代,数据安全和隐私保护成为越来越重要的问题。在进行正交试验设计的过程 中,如何确保数据的安全性和隐私性,防止数据泄露和滥用,是亟待解决的问题。
科学性
正交试验设计遵循科学的试验设计原则,能够保证试验结果的准确性 和可靠性,为后续的数据分析和解释提供坚实的基础。
实用性
正交试验设计广泛应用于各种领域,如工业、农业、医学等,能够解 决实际生产和科研中的各种问题,具有很高的实用价值。
易用性
正交试验设计的操作过程相对简单,容易掌握,不需要过多的数学和 统计知识。
利用正交表合理安排多因素多水 平试验,通过统计分析找到最优
的试验条件。
通过正交表的特点,保证试验的 均衡性和代表性,提高试验效率


通过正交试验设计,可以有效地 减少试验次数,降低试验成本,
缩短试验周期。
正交试验设计的应用领域
化工、制药、农业、食品等领域
01
在这些领域中,正交试验设计被广泛应用于产品研发、工艺优
《正交试验设计》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 正交试验设计简介 • 正交试验设计的基本原理 • 正交试验设计的实例分析 • 正交试验设计的优缺点 • 正交试验设计的未来发展与展望 • 总结与思考
01
正交试验设计简介
定义与特点
缺点
假设限制
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正交实验设计法正交实验设计法1.正交试验设计法的基本思想正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。

它简单易行,计算表格化,使用者能够迅速掌握。

下边通过一个例子来说明正交试验设计法的基本想法。

[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃B:90-150分钟C:5-7%试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。

试制定试验方案。

这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al=80℃,A2=85℃,A3=90℃B:Bl=90分,B2=120分,B3=150分C:Cl=5%,C2=6%,C3=7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。

而定量因子各水平间的距离可以相等,也可以不相等。

这个三因子三水平的条件试验,通常有两种试验进行方法:(Ⅰ)取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有33=27次试验。

用图表示就是图1 立方体的27个节点。

这种试验法叫做全面试验法。

全面试验对各因子与指标间的关系剖析得比较清楚。

但试验次数太多。

特别是当因子数目多,每个因子的水平数目也多时。

试验量大得惊人。

如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。

如果应用正交实验法,只做25次试验就行了。

而且在某种意义上讲,这25次试验代表了15625次试验。

(Ⅱ)简单对比法,即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl,使A变化之:↗A1B1C1 →A2↘A3 (好结果)如得出结果A3最好,则固定A于A3,C还是Cl,使B变化之:↗B1A3C1 →B2 (好结果)↘B3得出结果以B2为最好,则固定B于B2,A于A3,使C变化之:↗C1A3B2→C2 (好结果)↘C3试验结果以C2最好。

于是就认为最好的工艺条件是A3B2C2。

这种方法一般也有一定的效果,但缺点很多。

首先这种方法的选点代表性很差,如按上述方法进行试验,试验点完全分布在一个角上,而在一个很大的范围内没有选点。

因此这种试验方法不全面,所选的工艺条件A3B2C2不一定是27个组合中最好的。

其次,用这种方法比较条件好坏时,是把单个的试验数据拿来,进行数值上的简单比较,而试验数据中必然要包含着误差成分,所以单个数据的简单比较不能剔除误差的干扰,必然造成结论的不稳定。

简单对比法的最大优点就是试验次数少,例如六因子五水平试验,在不重复时,只用5+(6-1)×(5-1)=5+5×4=25次试验就可以了。

图1 全面试验法取点..........考虑兼顾这两种试验方法的优点,从全面试验的点中选择具有典型性、代表性的点,使试验点在试验范围内分布得很均匀,能反映全面情况。

但我们又希望试验点尽量地少,为此还要具体考虑一些问题。

如上例,对应于A有Al、A2、A3三个平面,对应于B、C也各有三个平面,共九个平面。

则这九个平面上的试验点都应当一样多,即对每个因子的每个水平都要同等看待。

具体来说,每个平面上都有三行、三列,要求在每行、每列上的点一样多。

这样,作出如图2所示的设计,试验点用⊙表示。

我们看到,在9个平面中每个平面上都恰好有三个点而每个平面的每行每列都有一个点,而且只有一个点,总共九个点。

这样的试验方案,试验点的分布很均匀,试验次数也不多。

当因子数和水平数都不太大时,尚可通过作图的办法来选择分布很均匀的试验点。

但是因子数和水平数多了,作图的方法就不行了。

试验工作者在长期的工作中总结出一套办法,创造出所谓的正交表。

按照正交表来安排试验,既能使试验点分布得很均匀,又能减少试验次数,图2正交试验设计图例而且计算分析简单,能够清晰地阐明试验条件与指标之间的关系。

用正交表来安排试验及分析试验结果,这种方法叫正交试验设计法。

2.正交表本书附录给出了常用的正交表。

为了叙述方便,用L代表正交表,常用的有L8(27),L9(34),L16(45),L8(4×24),L12(211),等等。

此符号各数字的意义如下:L8(27)7为此表列的数目(最多可安排的因子数)2为因子的水平数8为此表行的数目(试验次数)它表示需作8次实验,最多可观察7个因素,每个因素均为2水平L18(2×37)此表的8列中,有7列是3水平的有1列是2水平的L18(2×37)的数字告诉我们,用它来安排试验,做18个试验最多可以考察一个2水平因子和7个3水平因子。

在行数为mn型的正交表中(m,n是正整数),试验次数(行数)=Σ(每列水平数一1)+l (1)如L8(27),8=7×(2-1)+l利用上述关系式可以从所要考察的因子水平数来决定最低的试验次数,进而选择合适的正交表。

比如要考察五个3水平因子及一个2水平因子,则起码的试验次数为5×(3-1)+1×(2-1)+1=12(次)这就是说,要在行数不小于12,既有2水平列又有3水平列的正交表中选择,L18(2×37)适合。

正交表具有两条性质:(1)每一列中各数字出现的次数都一样多。

(2)任何两列所构成的各有序数对出现的次数都一样多。

所以称之谓正交表。

例如在L9(34)中(见表1),各列中的l、2、3都各自出现3次;任何两列,例如第3、4列,所构成的有序数对从上向下共有九种,既没有重复也没有遗漏。

其他任何两列所构成的有序数对也是这九种各出现一次。

这反映了试验点分布的均匀性。

3.试验方案的设计安排试验时,只要把所考察的每一个因子任意地对应于正交表的一列(一个因子对应一列,不能让两个因子对应同一列),然后把每列的数字"翻译"成所对应因子的水平。

这样,每一行的各水平组合就构成了一个试验条件(不考虑没安排因子的列)。

对于[例1],因子A、B、C都是三水平的,试验次数要不少于3×(3-1)+1=7(次)可考虑选用L9(34)。

因子A、B、C可任意地对应于L9(34)的某三列,例如A、B、C分别放在l、2、3列,然后试验按行进行,顺序不限,每一行中各因素的水平组合就是每一次的试验条件,从上到下就是这个正交试验的方案,见表2。

这个试验方案的几何解释正好是图2。

三个3水平的因子,做全面试验需要33=27次试验,现用L9(34)来设计试验方案,只要做9次,工作量减少了2/3,而在一定意义上代表了27次试验.。

再看一个用L9(34)安排四个3水平因子的例子。

[例2]某矿物气体还原试验中,要考虑还原时间(A)、还原温度(B)、还原气体比例(D)、气体流速(C)这四个因子对全铁合量X〔越高越好)、金属化率Y(越高超好)、二氧化钛含量Z(越低越好)这三项指标的影响。

希望通过试验找出主要影响因素,确定最适工艺条件。

首先根据专业知以确定各因子的水平:时间:A1=3(小时),A2=4(小时),A3=5(小时)温度:B1=1000(℃),B2=1100(℃),B3=1200(℃)流速:Cl=600(毫升/分),C2=400(毫升/分),C3=800(毫升/分)CO:H2:D1=1:2,D2=2:1,D3=1:1这是四因子3水平的多指标(X、Y、Z)问题,如果做全面试验需34=81次试验,而用L9(34)来做只要9次。

具体安排如表3。

同全面试验比较,工作量少了8/9。

由于缩短了试验周期,可以提高试验精度,时间越长误差于扰越大。

并且对于多指标问题,采用简单对比法,往往顾此失彼,最适工艺条件很难找;而应用正交表来设计试验时可对各指标通盘考虑,结论明确可靠。

4.试验数据的直观分析正交表的另一个好处是简化了试验数据的计算分折。

还是以[例1]为例来说明。

按照表2的试验方案进行试验,测得9个转化率数据,见表4。

通过9次试验,我们可以得两类收获。

第一类收获是拿到手的结果。

第9号试验的转化率为64,在所做过的试验中最好,可取用之。

因为通过L9(34)已经把试验条件均衡地打散到不同的部位,代表性是好的。

假如没有漏掉另外的重要因素,选用的水平变化范围也合适的话,那么,这9次试验中最好的结果在全体可能的结果中也应该是相当好的了,所以不要轻易放过。

第二类收获是认识和展望。

9次试验在全体可能的条件中(远不止33=27个组合,在试验范围内还可以取更多的水平组合)只是一小部分,所以还可能扩大。

精益求精。

寻求更好的条件。

利用正交表的计算分折,分辨出主次因素,预测更好的水平组合,为进一步的试验提供有份量的依据。

其中I、Ⅱ、Ⅲ分别为各对应列(因子)上1、2、3水平效应的估计值,其计算式是:Ⅰi(Ⅱi,Ⅲi)=第i列上对应水平1(2,3)的数据和K1 为1水平数据的综合平均=Ⅰ/水平1的重复次数Si为变动平方和=[例1]的转化率试验数据与计算分析见表4。

先考虑温度对转比率的影响。

但单个拿出不同温度的数据是不能比较的,因为造成数据差异的原因除温度外还有其他因素。

但从整体上看,80℃时三种反应时间和三种用碱量全遇到了,86℃时、90℃时也是如此。

这样,对于每种温度下的三个数据的综合数来说,反应时间与加碱量处于完全平等状态,这时温度就具有可比性。

所以算得三个温度下三次试验的转化率之和:80℃:ⅠA=xl+x2+x3=31+54+38=123;85℃:ⅡA=x4+x5+x6=53+49+42=144;90℃:ⅢA=x7+x8+x9=57+62+64=183。

分别填在A列下的Ⅰ、Ⅱ、Ⅲ三行。

再分别除以3,表示80℃、85℃、90℃时综合平均意义下的转化率,填入下三行Kl、K2、K3。

R行称为极差,表明因子对结果的影响幅度。

同样地,为了比较反应时间;用碱量对转化率的影响,也先算出同一水平下的数据和IB、ⅡB、ⅢB,Ic、Ⅱc、Ⅲc,再计算其平均值和极差。

都填入表4中;由此分别得出结论:温度越高转化率越好,以90℃为最好,但可以进一步探索温度更好的情况。

反应时间以120分转化率最高。

用碱量以6%转化率最高。

5.正交试验的方差分析(一)假设检验在数理统计中假设检验的思想方法是:提出一个假设,把它与数据进行对照,判断是否舍弃它。

其判断步骤如下:(1)设假设H。

正确,可导出一个理论结论,设此结论为R。

;(2)再根据试验得出一个试验结论,与理论结论相对应,设为R1;(3)比较R。

与Rl,若R。

与Rl没有大的差异,则没有理由怀疑H。

,从而判定为:"不舍弃H。

"(采用H。

);若R。

相关文档
最新文档