光模块及组件测试简介

合集下载

光器件和芯片的结构介绍

光器件和芯片的结构介绍

LOS
第四十三页,共七十二页。
数字诊断(DDM)模块特点
第四十四页,共七十二页。
光收发合一模块(XFP)功能框图
TxDisable
Data In
I2C
CDR
Driver
TOSA
APC/AEC/ATC
MCU+EEPROM
Data Out
CDR
MA
ROSA
LOS
Optical In Optical Out
在数字通信系统中,码元同步是系统正常工作的必要条件。 时钟和数据恢复电路(Clock and Data Recovery —CDR)的作用就 是在输入数据信号中提取时钟信号并找出数据和时钟正确的相 位关系
D Flip-Flop
第二十一页,共七十二页。
驱动芯片
➢ 激光器驱动(电流)
➢ 调制器驱动(电压)
特点:
▪ 工作速率:10Gb/s ▪ 波长:1310nm,1550nm,DWDM ▪ 传输距离可达80km ▪ 带数字诊断功能
应用:
▪ 数据通信:10G以太网,10G光纤通道 ▪ 电信: OC -192/STM -64
第三十五页,共七十二页。
300-pin Transponder模块
特点: ▪ 速率可达10Gb/s ▪ 波长:1550nm,DWDM ▪ 传输距离可达80km ▪ 带数字诊断功能
▪ 按封装划分:1×9/ 2×9/SFF/GBIC/SFP/XFP/300pin等 ▪ 按使用条件划分:热插拔 (GBIC/SFP/XFP) 带插针 (1×9/2×9/SFF) ▪ 按应用划分:SDH/SONET, Ethernet, Fiber Channel, CWDM, DWDM
等 ▪ 按工作模式划分:连续和突发(OLT:Optic Line Terminal,光线路终端;

光模块基础知识

光模块基础知识

其中是纤芯的折射率,是包层的折射率。 越大,时延差就会越大,光脉冲展宽也 越大。从减小光纤时延差的观点上看, 希望较小为好,这种小的光纤称为弱导 光纤。通信用光纤都是弱导光纤。另外, 光纤越长,时延差也越大,色散也越大。
材料色散 材料色散是由光纤材料自身特性造成的。石英玻璃的折射率,严格来说,并 不是一个固定的常数,而是对不同的传输波长有不同的值。光纤通信实际上用的光 源发出的光,并不是只有理想的单一波长(如FP多纵模激光器),而是有一定的波 谱宽度。当光在折射率为n的介质中传播时,其速度v与空气中的光速C之间的关系 为: v=C/n 光的波长不同,折射率n就不同,光传输的速度也就不同。(找下折射率公式) 因此,当把具有一定光谱宽度的光源发出的光脉冲射入光纤内传输时,光的传输速 度将随光波长的不同而改变,到达终端时将产生时延差,从而引起脉冲波形展宽。 波导色散 光纤的第三类色散是波导色散。由于光纤的纤芯与包层的折射率差很小,因此 在交界面产生全反射时,就可能有一部分光进入包层之内。这部分光在包层内传输 一定距离后,又可能回到纤芯中继续传输。进入包层内的这部分光强的大小与光波 长有关,这就相当于光传输路径长度随光波波长的不同而异。把有一定波谱宽度的 光源发出的光脉冲射入光纤后,由于不同波长的光传输路径不完全相同,所以到达 终点的时间也不相同,从而出现脉冲展宽。具体来说,入射光的波长越长,进入包 层中的光强比例就越大,这部分光走过的距离就越长。这种色散是由光纤中的光波 导引起的,由此产生的脉冲展宽现象叫做波导色散。
1550FP 1.25G模块在G652光纤里 传输示意图。
色散的分类 光纤的色散主要由模式色散、材料色散和波导色散组成。其中,材料色散与波导色 散都与波长有关,所以又统称为波长色散。 模式色散

光模块测试技术

光模块测试技术
激光器 光信号输出 电信号 驱动器 输入 光纤
图五 激光器直接调制方式 2.4.3 外调制方式 主要利用晶体旋光特性,实现的几种外调制。 1. 横向线性光电效应相位调制;
激光源 调制器 光信号输出 电信号输入 光纤
2. 横向线性光电效应幅度调制; 3. 相位调制器; 4. 马赫-曾得尔幅度调制器. 图六 激光器外调制方式
P P(N) P
光/电 或 O/E 转换
光输出光电流IO光流-+
R
暗 电 流
图三 雪崩光电二极管原理
0
反向偏压U
UB
第三节 光纤通信的特点及应用
1.3.1 光纤通信的特点 光纤通信有很多独特的优点: a.容许频带很宽,传输容量很大; b.损耗很小,中继距离很长且误码率很小; c.重量轻,体积小; e.泄露小,保密性能好 1.3.2 光纤通信的应用 光纤通信的各种应用可以概括如下: a.通信网 b.因特网 c.有线电视网 d.综合业务光纤接入网 d.抗电磁干扰性能好; f.节约金属材料,有利于资源合理使用
纤芯尺寸失配
数字孔径失配
纤芯不同心
折射率分布失配
端面间隙
轴向倾角
横向偏移
菲涅尔反射
端面粗糙
PC
APC
图一 连接损耗的机理
第二节 光偶合器
2.2.1 偶合器 耦合器的功能是把一个或多个光输入分配给多个或一个光输出. 2.2.2 偶合器的种类 1.T型偶合器是一种三端耦合或2x2耦合器. 它的功能是把一根光纤输入的光功率分配给两根光纤.
再生段层
光层
物理层(光纤)
物理层(光纤)
光模块的位置
第七节 全光通信网络
1.7.1 全光通信网络 它是指用户与用户之间的信号传输与交换全部采用光波技术,即数据从源节点 到目的节点的传输过程都在光域内进行,而其在个网络节点的交换则使用高可靠,大 容量和高度灵活的光交叉连接设备(OXC). 7网络优点 全光通信网络和传统通信网络相比具有下列优点: 1.全光网络可提供更大的带宽,可最大限度地利用光纤的传输容量; 2.全光网络具有传输透明性,对信号形式无限制,允许采用不同的速率、协议; 3.全光网络具有良好的兼容性; 4.全光网络具备可重构性,可以根据通信容量的需求,动态地改变网络结构, 可进行恢复.建立,拆除光波长的连接; 5.光网络层采用了较多无源光器件,省去了庞大的光-电-光转换的设备, 可大幅提升网络整体的交换速度,提高可靠性。

光模块

光模块

自动光功率控制
PIN/TIA
MA
2R 功能(Reshape, Reamplify)
PIN/TIA
MA
CDR
3R 功能(Reshape, Reamplify, Retime)
High Voltage Generation
APD/TIA
MA
2R 功能(Reshape, Reamplify)
High Voltage Generation
APD/TIA
MA
CDR
3R 功能(Reshape, Reamplify, Retime)
TxDisable
TxPower
Data In
Driver
APC/AEC
TOSA
Optical In
Data Out
MA
ROSA
Optical Out
LOS
RxPower
TxDisable
Data In
Driver APC/AEC
D Flip-Flop
光模块简介 光模块内部主要元器件 光模块调制方式
光模块的特点及应用
光模块原理框图
光模块主要性能指标
光模块接口电平
P1
P0
利用电信号的‘1’和‘0’ 控制激光器的电流大小。
激光器一直处于发光状态,电信号‘1’、‘0’ 作用于电吸 收调制器。 来控制激光器出光大小。
SDH等级 STM-1 STM-4 STM-16 STM-64 系列比特率 155.52Mb/s 622.08Mb/s 2.48832Gb/s 9.95328Gb/s
传输距离
传输距离指模块在特定光纤传输系统中能够无差错传输的最大距离 影响传输距离的因素:光纤(损耗、色散等),激光器(功率,波长, 工作方式),探测器灵敏度,传输速率等

光模块介绍 简介

光模块介绍 简介

按摩对类风湿有效吗文章目录*一、按摩对类风湿有效吗1. 按摩对类风湿有效吗2. 类风湿怎样才能确诊3. 类风湿严重会导致什么后果*二、导致类风湿出现的主要原因*三、类风湿患者什么不能吃呢按摩对类风湿有效吗1、按摩对类风湿有效吗可以先用推、理、揉手法,轻轻按摩,先使患部肌肉松弛,气血畅行;继而使用点、按、捏、拿手法、达到舒筋活络止痛的目的,最后用摇、滚、揉等手法。

每次治疗时间15到30分钟,2到3天一次。

由此可见,按摩对类风湿是有效的。

2、类风湿怎样才能确诊其实现在对于类风湿的检查,一般都是进行对于血象的检查,因为类风湿的发病的过程,一般都是比较慢的,并且如果是比较严重的类风湿的话一般都是会出现比较轻的中度的贫血,如果是活动期的话一般病人还会出现血小板的增高。

并且如果是比较严重的类风湿的话,还有可能还会有一些人还会出现全部血细胞的减少,其实对于类风湿的确诊的方法还可以做血沉和C反应蛋白的检查,类风湿关节活动期,并且血沈加快。

3、类风湿严重会导致什么后果类风湿连累人的关节主要是表现出类风湿性关节炎,发病的具体部位是关节滑膜,并且还会进一步连累到关节软骨,会使得关节的骨质遭到破坏,最后使得关节发生畸形。

类风湿如果不积极治疗,有75%的人会在发病过后三年左右出现关节残废的现象。

导致类风湿出现的主要原因1、环境因素长期居住在寒冷潮湿环境中的人类风湿的发病率远远高于其它人,类风湿主要是由于外部风邪入侵所致,此外,强烈的精神刺激、外伤、营养不良和过度劳累等都会增加类风湿的发病几率。

2、性激素研究表明,类风湿性关节炎存在明显性别差异,男女发病比例越为1:3,且女性患者在妊娠期症状减轻,服用避孕药的女性较少患病,因此认为性激素在类风湿的产生过程中起到了一定作用。

3、内分泌因素类风湿多发生于女性,患者在怀孕期间症状有所减轻,应用肾上腺皮质激素可以抑制该病,因此推断类风湿的发生于内分泌因素存在关系。

4、免疫因素类风湿的产生是由于感染原侵入关节腔,刺激滑膜或者浆细胞,从而产生特异性免疫球蛋白抗体,当抗原抗体复合物形成后抗体就会转化为异体,再次刺激浆细胞就会产生新的抗体,即类风湿因子,从而导致类风湿发生。

光模块基础知识介绍

光模块基础知识介绍

接收部分原理
接收部分
光 信 号 放 光电 电信号 大 检测 器 均 衡 器 判 决 器 时 钟 恢 复
输出部分
解 码 扰 码 码型 反变换 电 信 号
AGC
输入输出缓冲
告警阈值设置 及判决输出
四、光模块设计及调试关键要素
LD接口电路:
交流耦合 直流耦合 优势:提高边沿速度、降低EMI 幅射及高频噪 优势:多速率兼容、更少的元件数量、低功耗、 声、调制电流范围宽、增大了电感容限。 易于匹配 不足:功耗大、引入了低频截止、元件数量多。 不足:调制电流范围窄、低负载阻抗遇高内阻 器件时对指标要求高。 注意事项:考虑是否需要加入补偿网络来消除 振铃和过冲?交耦电容的参数值在不同速率下 注意事项:布线尽可能的短,OUT-端负载要与 使用需要进行适当调整,特别是低频条件下 OUT+到LD的负载匹配,725型器件适用性高。 (<155M),应用于SDH、SONET系统时频 率要求更高。
数字光模块基础知识介绍
内容提要
一、光模块的定义 二、光模块的分类 三、光模块的主要功能原理 四、光模块设计及调试的关键要素
一、光收发一体模块定义
光收发一体模块由光电子器件、功能电路和 光接口等组成,光电子器件包括发射和接收两部 分。发射部分是:输入一定码率的电信号经内部 的驱动芯片处理后驱动半导体激光器(LD)或发 光二极管(LED)发射出相应速率的调制光信号, 其内部带有光功率自动控制电路,使输出的光信 号功率保持稳定。接收部分是:一定码率的光信 号输入模块后由光探测二极管转换为电信号。经 前置放大器后输出相应码率的电信号,输出的信 号一般为PECL电平。同时在输入光功率小于一定 值后会输出一个告警信号。
ATC部分
当由于某种原因,使LD的输出光功率降低时,耦合至光电二极管的电流也同比例减小,这样,通常状态下的平衡被打破,使得运放 输出端的电压增大,于是,三极管的基极电流增大,集电极电流也随之增大,而集电极电流正是流入LD的偏置电流。因此,流入激 光器的电流增大,输出光功率相应增大,从而使输出光功率保持不变。 通过以上描述,理论上我们是可以通过驱动器的APC控制来实现TE的性能指标。而由于热胀冷缩有可能导致PD机械位移等多种因 素,使得LD的出光与PD的监测光电流不是理论上的线性关系。故此现在很多光模块的TE指标控制在高端客户需求的±1dB很困难。

光模块参数测试

光模块参数测试

光收发模块要求及进展目前以小型封装SFP的方式将传统发射,收发组件合二为一。

是实现低成本双向传输和光互连的最佳方案。

分别完成发射模块:APC,温度补偿,驱动,慢启动保护等功能,和接收模块:前置放大,信号告警,限幅放大等功能。

SPF光收发模块的设计要求必须满足:1 设计出数据速率为1. 25G bit/s的光收发器件,并满足千兆以太网标准;2 研究符合MSA的光接口、电接口及机械接口等标准的SFP收发器的结构;3 研究满足具有热插拔和自诊断功能的电路设计。

SFP光收发模块仿真SFP光收发模块的仿真分析包括原理图仿真分析和PCB仿真分析2个部分。

其中,原理图的仿真分析主要是功能验证,验证电路是否满足总体设计要求。

而PCB仿真分析是原理图在物理实现上的验证,主要是为了验证信号的质量和时序是否满足设计要求,以确保信号的完整性。

原理图采用器件的SPICE模型进行仿真分析,而PCB的仿真使用IBIS模型。

模块的构成及设计简述2.1 光发射电路设计光发射电路是将数据信号转变为光信号送入光纤进行传输. 它主要包括信号的调制、静态工作点调节和自动功率控制APC 等子电路.数据通信中的数据信号通常是电压信号而驱动LD 需要电流信号,因而需要将电压信号调制成电流信号输出,这通常利用三级管的开关特性来实现.为了使激光器正常工作,还必须在它静态工作时加上一偏置电流,如果缺少这一环节,激光器将工作在荧光区,此时输出的功率将很小,信号将严重失真,调整激光器的静态电流保证数据的正常输出至关重要.LD 输出光功率很容易受到温度和激光器老化的影响,为了获得稳定的光功率,APC 是必不可少的.在模块中LD 的同一基片上有背向光电探测器PIN,用来监测LD 的光功率,通过它的光反馈自动调节偏置电流,可保持输出的光功率稳定.同时当光信号低于一定阈值时告警电路将发出指示.2.2 光接收电路设计光接收电路的功能是将光纤传输中的微弱光信号转变为电信号.它主要由前放、后放以及判决电路组成。

超详细的光模块介绍(请收藏)

超详细的光模块介绍(请收藏)

超详细的光模块介绍(请收藏)一、光模块发展简述1、光模块分类按封装:1*9 、GBIC、 SFF、SFP、XFP、SFP+、X2、XENPARK、300pin等。

按速率:155M、622M、1.25G、2.5G、4.25G、10G、40G等。

按波长:常规波长、CWDM、DWDM等。

按模式:单模光纤(黄色)、多模光纤(橘红色)。

按使用性:热插拔(GBIC、 SFP、XFP、XENPAK)和非热插拔(1*9、SFF)。

封装形式二、光模块基本原理1、光收发一体模块(Optical Transceiver)光收发一体模块是光通信的核心器件,完成对光信号的光-电/电-光转换。

由两部分组成:接收部分和发射部分。

接收部分实现光-电变换,发射部分实现电-光变换。

发射部分:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路(APC),使输出的光信号功率保持稳定。

接收部分:一定码率的光信号输入模块后由光探测二极管转换为电信号,经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。

同时在输入光功率小于一定值后会输出一个告警信号。

2、光模块内部结构三、光模块的主要参数1. 传输速率传输速率指每秒传输比特数,单位Mb/s 或Gb/s。

主要速率:百兆、千兆、2.5G、4.25G和万兆。

2.传输距离光模块的传输距离分为短距、中距和长距三种。

一般认为2km 及以下的为短距离,10~20km 的为中距离,30km、40km 及以上的为长距离。

■光模块的传输距离受到限制,主要是因为光信号在光纤中传输时会有一定的损耗和色散。

注意:· 损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。

· 色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。

光模块测试基础

光模块测试基础
损耗和反射系数)有关;对于光模块测试的均为差分的网络,即差分回损就是两根线上反射能量的差值 比上入射能量的插损,而差分的插损就是传输能量的差值比上入射能量的差值;SDD/SCD/SDC...其中的 D表示差模,C表示共模
RIN决定了ER的最小值,通道代价决定了ER的最大值
8/39
基本参数测试方法
3. 光眼图模板 在进行眼图模板余量测试时,一般16G及以下使用hit ratio<1E-12,25G及以上使用hit count=0
或者hit ratio<5E-5;同时要注意设置屏幕的采样率不能太低,一般为2048
9/39
SR
SR10 SR4/eSR4/SWDM4 SR2
200GAUI-4 200GAUI-2
SR4
400GAUI-16 400GAUI-8 400GAUI-4
SR16 SR8/SR4.2?
PSM4
PSM4 DR DR4
DR4
2km SMF
基本参数测试方法 10km SMF
40km SMF
80km SMF
Name IEEE 802.3 ITU-T SFF TA TWG OSFP COBO
SWDM alliance
/3/ http://www.itu.int/en/ITU-T https:///sff / /
基本参数测试方法
4. 眼图上升/下降时间 理想信号的最大频率=1/(TF+TR)=0.5/TR (或者0.5/TF),而我们通常说的上升/下降时间是
10%~90%(或者是20%~80%),所以实际上的上升时间Tr=TR*80% (或者TR*60%),从上面的公式 就知道Tr=0.4/频率 (或者0.3/频率),频率就是周期的倒数,Tr=0.4*周期,周期=(1bit)/ (10Gbps)=UI,那么Tr=0.4UI,下降时间也一样。 5. 光眼图的过冲(回冲)和抖动

光模块测试方案

光模块测试方案

以我给的标题写文档,最低1503字,要求以Markdown 文本格式输出,不要带图片,标题为:光模块测试方案# 光模块测试方案## 1. 引言光模块是在光通信系统中起到传输光信号的关键组件之一。

为了确保光模块的质量和性能达到预期要求,需要进行详细的测试和验证工作。

本文档将介绍光模块的测试方案,包括测试环境、测试仪器和测试流程等内容。

## 2. 测试环境### 2.1. 实验室设备在进行光模块测试之前,需要准备以下实验室设备:- 光功率计:用于测量光模块的输出功率和接收功率。

- 光频谱仪:用于测量光模块输出的光频谱特性,包括中心波长、光谱宽度等。

- 眼图仪:用于测量光模块的眼图参数,包括垂直和水平眼高、眼宽等。

- 模拟信号发生器:用于产生模拟信号,模拟光模块的输入信号。

- 数据分析仪:用于分析光模块的输出数据,包括误码率、帧误码、帧丢失率等。

### 2.2. 光模块接口光模块一般提供多种接口类型,包括SC、LC、FC等。

在测试时需要根据光模块的接口类型准备相应的连接器和适配器。

### 2.3. 测试环境要求为了保证测试的准确性和可重复性,需要满足以下测试环境要求:- 温度控制:测试环境的温度应控制在一定范围内,通常为25±3℃。

- 光源稳定性:测试光源应具有较高的稳定性,光功率的稳定性要求小于1%。

- 背景光影响:测试环境中应尽量降低背景光的干扰,特别是对于接收功率的测试。

- 噪声控制:测试环境中应控制噪声的影响,以保证测试结果的准确性。

## 3. 测试项目### 3.1. 光功率测试光功率测试是对光模块输出功率的测量,其主要测试项包括:- 发射功率:测试光模块的输出光功率,通常以dBm为单位进行表示。

- 接收功率:测试光模块的接收灵敏度,即接收到的光功率的最小值,通常以dBm为单位进行表示。

### 3.2. 光谱特性测试光谱特性测试是对光模块输出光频谱的测量,主要测试项包括:- 中心波长:测量光模块输出光的中心波长,通常以nm为单位进行表示。

SFP光模块研发与测试方法

SFP光模块研发与测试方法

SFP光模块分类
根据传输速率,SFP光模块可分为 1Gbps、10Gbps和40Gbps等不同 类型。
根据传输距离,SFP光模块可分为多模 和单模两种类型,多模适用于短距离 传输,单模适用于长距离传输。
SFP光模块应用领域
SFP光模块广泛应用于数据中心、 云计算、通信网络等领域,用于 实现高速数据传输和网络连接。
粉尘和污染物测试
检测光模块在存在粉尘和污染物环境中的性能表现。
极端温度测试
在极高温和极低温条件下运行光模块,评估其在极端环境下的适应 性。
SFP光模块发展趋势
04
与挑战
技术发展趋势
高速率
随着数据传输需求的增长,SFP光模块正朝着更高的速率 (如40Gbps、100Gbps)发展,以满足数据中心和云计 算等领域的带宽需求。
可靠性测试
通过长时间运行、加 速老化等方式测试光 模块的可靠性。
案例三:SFP光模块在数据中心的应用
小体积、低功耗
适合高密度数据中心部署。
兼容性强
可与不同厂商的设备进行互通。
应用场景
数据中心的高速数据传输。
高可靠性
提供稳定、可靠的数据传输。
应用挑战
如何确保在长时间运行中保持 稳定性能,以及在多厂商环境 下实现互操作性。
批量生产
经过多次迭代和优化,开始批量 生产SFP光模块。
案例二:某公司SFP光模块测试方法
测试目的
确保SFP光模块的性 能和质量满足客户要 求。
光学性能测试
测试光模块的发射光 功率、接收灵敏度、 消光比等参数。
机械性能测试
测试光模块的插拔次 数、振动、冲击等机 械性能。
环境适应性测试
测试光模块在高低温、 湿度等环境下的性能 表现。

光模块技术指标解读及测试方法光测试部分

光模块技术指标解读及测试方法光测试部分

光模块技术指标解读及测试方法随着通信技术的不断发展,光模块作为数据传输的重要组成部分,其技术指标与测试方法也变得愈发重要。

本文将就光模块技术指标进行解读,并对光测试部分进行详细介绍。

一、光模块技术指标解读1. 光功率输出光功率输出是光模块的一个重要指标,它表示光模块输出的光功率大小。

一般来说,光功率输出越大,说明光模块的传输距离越远,传输性能越好。

在光功率输出测试时,通常使用光功率计进行测试,测试时需保证测试环境的稳定性和一致性,以获得准确的测试结果。

2. 调制带宽调制带宽是指光模块在传输过程中能够支持的最大频率范围。

调制带宽越大,说明光模块可以支持更高的数据传输速率。

在进行调制带宽测试时,通常使用高频示波器进行测试,测试时需要保证测试仪器的灵敏度和准确性,以获得准确的测试结果。

3. 驱动电流驱动电流是光模块工作时所需的电流大小。

合理的驱动电流可以确保光模块的正常工作,同时也可以影响光模块的功耗和工作稳定性。

在进行驱动电流测试时,通常需要使用电流表进行测试,同时需要关注测试环境的温度和湿度等因素,以获得准确的测试结果。

二、光测试部分1. 光功率输出测试方法光功率输出测试是光模块测试中的重要环节,一般使用光功率计进行测试。

测试时需注意以下几点:1)保证测试环境的稳定性和一致性,避免外界光线或其他干扰因素对测试结果的影响;2)根据光模块的工作波长选择合适的光功率计进行测试;3)测试前需对光功率计进行校准,确保测试结果的准确性;4)测试时需按照光模块的工作参数进行设置,包括波长、光功率范围等。

2. 调制带宽测试方法调制带宽测试是用于评估光模块传输性能的重要测试项目,一般使用高频示波器进行测试。

测试时需注意以下几点:1)保证测试仪器的灵敏度和准确性,避免测试结果的误差;2)根据光模块的工作频率选择合适的高频示波器进行测试;3)在测试过程中,需要保持信号的稳定性和一致性,以获得准确的测试结果;4)测试时需按照光模块的工作参数进行设置,包括频率范围、输入电平等。

光模块知识(全)

光模块知识(全)
VCCT 和 VCCR可以在模块内相连。发射和接收的地可以在模块内相连。 26
光模块基础知识介绍
• TD-/+ 是发射部分差分信号输入,采用交流耦合,差分线具有100欧姆输入阻抗. 差分输入信号摆幅范围500mV~2400mV
• RD-/+ 接受部分差分信号输出,采用交流耦合,差分线具有100欧姆输入阻抗. 差分输出信号摆幅范围370~2000mV
3
光模块基础知识介绍
• 2.1 发射部分
4
光模块基础知识介绍
2.1.1 激光二极管的特性
• 激光二极管(LD—Laser diode) 是一个电流器件,只在它通过 的正向电流超过阈值电流Ith (Threhold current)时它发出 激光
• 为了使LD高速开关工作,必须 对它加上略大于阈值电流的直 流偏置电流IBIAS
响应度:
响应速度:要能够检测高频调制的光信号,响应速度就要足够快。响应速度通常用响 应时间来表示。响应时间为光电二极管对矩形光脉冲的响应——电脉冲的上升或下降 时间。
灵敏度:是指在保证一定通信质量条件下所需接收的最小信号功率(Ps)。
影响光接收组件的灵敏度的因素很多,和系统相关的主要有: ▪ 比特速率对灵敏度影响(比特速率越大,灵敏度下降越多) ▪ 输入脉冲波形对灵敏度影响 (输入脉冲波形越宽,灵敏度下降越大 )
阈值电流ith和斜效率sslopeefficiency是温度的函数且具有离散性212激光二极管驱动电路驱动电路实质上就是一个高速电流开关213自动功率控制apc原理通过检测背光二极管md产生的光电流平均值来实现闭环控制apc调节偏置电流来保持平均输出光功率稳定214tec温度控制电路dwdm密集波分复用技术不断发展为了尽可能地传输更多的信道要求光源峰值波长的间隔尽可能地小这就对激光器波长的稳定性提出了更高的要求

超详细的光模块介绍(完)

超详细的光模块介绍(完)

超详细的光模块介绍(完)GBIC光模块GBIC是Giga Bitrate Interface Converter的缩写,是将千兆位电信号转换为光信号的接口器件。

GBIC设计上可以为热插拔使用,是一种符合国际标准的可互换产品。

Xenpak光模块Xenpak光模块通过70pin的SFP连接器与电路板连接,其数据通道是XAUI接口;Xenpak支持所有IEEE 802.3ae定义的光接口,在线路端可以提供10.3 Gb/s、9.95 Gb/s或4×3.125 Gb/s的速率。

Xpak和X2光模块Xpak和X2光模块都是从Xenpak标准演进而来的,其内部功能模块与Xenpak基本相同,在电路板上的应用也相同,都是使用一个模块即可实现10G以太网光接口的功能。

由于Xenpak光模块安装到电路板上时需要在电路板上开槽,实现较复杂,无法实现高密度应用。

而Xpak和X2光模块经过改进后体积只有Xenpak的一半左右,可以直接放到电路板上,因此适用于高密度的机架系统和PCI网卡应用。

SFP光模块的选用光模块的传输距离分为短距、中距和长距三种。

模块型号标称的传输距离只作为一种分类方法,实际应用中不能直接套用。

因为光信号在光纤中传输时会有一定的损耗和色散,无法达到标称的传输距离。

损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。

色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。

因此,用户需要根据自己的实际组网情况选择合适的光模块,以满足不同的传输距离要求。

实际传输距离取决于对应型号光模块的实际发射功率、光路上的传输衰减和光口的接收灵敏度。

发射光功率和接收灵敏度是影响传输距离的重要参数。

损耗限制可以根据公式来估算:损耗受限距离=(发射光功率-接收灵敏度)/光纤衰减量光纤衰减量和实际选用的光纤相关:G.652光纤可以做到:1310nm波段0.5dB/km1550nm波段0.25dB/km50um多模光纤:850nm波段3.5dB/km1310nm波段2dB/km。

光模块基础知识介绍

光模块基础知识介绍

光模块基础知识介绍目录一、光模块概述 (2)1.1 光模块的定义 (3)1.2 光模块的作用 (4)1.3 光模块的应用领域 (5)二、光模块的分类 (6)2.1 按传输速率分类 (7)2.1.1 低速光模块 (8)2.1.2 中速光模块 (9)2.1.3 高速光模块 (11)2.2 按接口类型分类 (12)2.2.1 SC型光模块 (13)2.2.2 LC型光模块 (13)2.2.3 MPO型光模块 (14)2.2.4 TO型光模块 (16)2.3 按传输距离分类 (17)2.3.1 短途光模块 (18)2.3.2 中长途光模块 (19)三、光模块的工作原理 (20)3.1 光模块的信号传输过程 (22)3.2 光模块的信号编码与解码 (23)3.3 光模块的电源管理 (24)四、光模块的性能指标 (25)4.1 传输速率 (26)4.2 传输距离 (27)五、光模块的选购与使用 (28)5.1 如何根据应用场景选择合适的光模块 (29)5.2 光模块的安装与调试 (30)5.3 光模块的维护与保养 (31)六、光模块市场与发展趋势 (32)6.1 光模块市场的现状 (33)6.2 光模块市场的发展趋势 (34)6.3 光模块技术的发展动态 (35)一、光模块概述随着信息技术的飞速发展,光通信作为现代通信的主要手段,在全球范围内得到了广泛的应用和推广。

在光通信系统中,光模块作为核心组件之一,起着至关重要的作用。

本文将对光模块的基础知识进行简要介绍。

光模块是一种将电信号转换为光信号并进行传输的器件,它实现了光与电之间的转换,为光通信系统提供了稳定、高效的数据传输通道。

光模块广泛应用于光纤通信、数据中心、局域网络等领域,为各种应用场景提供高速、大容量的数据传输解决方案。

光模块的基本构成包括光发射器、光接收器以及光放大器等部分。

光发射器负责将电信号转换为光信号,并发射出去;光接收器则负责将接收到的光信号转换为电信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档