糖蛋白的作用

合集下载

p-gp(P-糖蛋白药物相互作用)

p-gp(P-糖蛋白药物相互作用)
奎尼丁 环孢素A 维拉帕米
抑制
P-糖蛋白介 导的地高辛 经肾分泌
P-糖蛋白在小肠中的表 达与肾小管十分相似
小肠上P-蛋 白同样被抑 制?
奎尼丁的肠道试验
当用奎尼丁对进行 P- 糖蛋白表达的肠道进行灌注时 , 地 高辛静脉给药后的血浆浓度提高到原来的 2倍,而肠腔中药物 量降低了 40%, 在奎尼丁作用下总清除率由 318.0±19.3ml/h 降低到 167.1±11.0ml/h, 而肠中的清除率由 28.8±1.7ml/h 降 低到 11.1±1.6ml/h 这表明奎尼丁不仅影响地高辛的肾排泄 , 也影响地高辛在肠中的吸收与分泌。
Polymorphisms in Human MDR1 (P-glycoprotein): Recent Advances and Clinical Relevance Clinical Pharmacology & Therapeutics 75, 13-33 (January 2004)
人体各部位P-糖蛋白的作用
地高辛的相互作用
5. 与奎尼丁同用,可使本品血药浓度提高约一倍, 提高程度与奎尼丁用量相关,甚至可达到中毒浓度, 即使停用地高辛,其血药浓度仍继续上升,这是奎 尼丁从组织结合处置换出地高辛,减少其分布容积 之故。两药合用时应酌减地高辛用量1/2~1/3。 6.与维拉帕米、地尔硫䓬、胺碘酮合用,由于降 低肾及全身对地高辛的清除率而提高其血药浓度, 可引起严重心动过缓。 7.螺内酯可延长本品半衰期,需调整剂量或给药 间期,随访监测本品的血药浓度。 8.血管紧张素转换酶抑制剂及其受体拮抗剂可使 本品血药浓度增高。
Polymorphisms in Human MDR1 (P-glycoprotein): Recent Advances and Clinical Relevance Clinical Pharmacology & Therapeutics 75, 13-33 (January 2004)

P_糖蛋白的生理作用及中药对其影响的研究进展

P_糖蛋白的生理作用及中药对其影响的研究进展

朴达 (valspodar ,PSC 833) 、比立考达 ( biricodar ,V X2 710) 等 。其中比较具有代表性的是伐司朴达和比立
P2gp 主要定位在脑毛细血管内皮细胞与血液 考达 。第三代 P2gp 抑制剂通过构效关系和组合化
循环接触的腔膜面上 (即毛细血管内皮细胞的顶端 学技术来弥补第二代 P2gp 抑制剂的不足 ,主要有 :
剂 、calcein 和罗丹明 123 等 。
( + / + ) 小鼠脑浓度高 87 倍 。当 BBB 上不存在 P2
P2gp 的药物外排作用主要有 4 大特点 : (1) P2 gp 时 ,伊维菌素和环孢霉素 A (Acyclosporin CsA) 在
gp 的作用底物广泛 ; (2) 2 种 P2gp 底物可以与 P2gp 脑中的浓度增加 ,即可通过 BBB 。BBB 处的 P2gp 具
合物 ,调节 A TP 的产生 ,使 P2gp 利用 A TP 水解的 全量的伊维菌素喷洒 ,许多 mdrla (2/ 2) 小鼠死亡 ,而
能量将疏水亲脂性药物泵出胞外 。P2gp 也能转运 mdrla ( + / + ) 小 鼠 和 mdrla ( + / 2) 小 鼠 没 有 死
其他外源性化合物 ,包括地高辛 、多环芳烃 、阿片制 亡 。[3H]伊维菌素在 mdrla (2/ 2) 小鼠脑浓度比 mdrla
BCECs 摄取[3H]CsA 大约增加 3 倍 。当静脉给予 P2 4. 2 单味中药对 P2gp 的影响 田晖等[15 ] 研究发
gp 抑制剂维拉帕米 1 mg/ kg 时 ,长春新碱在脑细胞 现防己 、北豆根等的有效成分之一汉防己甲素 ( te2
ቤተ መጻሕፍቲ ባይዱ

5生物化学习题(答案)

5生物化学习题(答案)

4脂类化学和生物膜一、名词解释1、外周蛋白:在细胞膜的细胞外侧或细胞质侧与细胞膜表面松散连接的膜蛋白,易于用不使膜破坏的温和方法提取。

2、内在蛋白:整合进入到细胞膜结构中的一类蛋白,它们可部分地或完全地穿过膜的磷脂双层,通常只有用剧烈的条件将膜破坏才能将这些蛋白质从膜上除去。

3、同向协同:物质运输方向与离子转移方向相同4、反向协同:物质运输方向与离子转移方向相反5、内吞作用:细胞从外界摄入的大分子或颗粒,逐渐被质膜的小部分包围,内陷,其后从质膜上脱落下来而形成含有摄入物质的细胞内囊泡的过程。

6、外排作用:细胞内物质先被囊泡裹入形成分泌泡,然后与细胞质膜接触、融合并向外释放被裹入的物质的过程。

7、细胞识别:细胞通过其表面的受体与胞外信号物质分子选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体地生物学效应的过程。

二、填空1、膜蛋白按其与脂双层相互作用的不同可分为内在蛋白与外周蛋白两类。

2、根据磷脂分子中所含的醇类,磷脂可分为甘油磷脂和鞘磷脂两种。

3、磷脂分子结构的特点是含一个极性的头部和两个非极性尾部。

4、神经酰胺是构成鞘磷脂的基本结构,它是由鞘氨醇以酰胺键与脂肪酸相连而成。

5、磷脂酰胆碱(卵磷脂)分子中磷酰胆碱为亲水端,脂肪酸的碳氢链为疏水端。

6、磷脂酰胆碱(卵磷脂)是由甘油、脂肪酸、磷酸和胆碱组成。

7、脑苷脂是由鞘氨醇、脂肪酸和单糖(葡萄糖/半乳糖)组成。

8、神经节苷脂是由鞘氨醇、脂肪酸、糖和唾液酸组成。

9、生物膜内的蛋白质疏水氨基酸朝向分子外侧,而亲水氨基酸朝向分子内侧。

10、生物膜主要由膜脂和膜蛋白组成。

11、膜脂一般包括磷脂、糖脂和固醇,其中以磷脂为主。

三、单项选择题鞘1、神经节苷脂是()A、糖脂 B、糖蛋白 C、脂蛋白 D、脂多糖2、下列关于生物膜的叙述正确的是()A、磷脂和蛋白质分子按夹心饼干的方式排列。

B、磷脂包裹着蛋白质,所以可限制水和极性分子跨膜转运。

C、磷脂双层结构中蛋白质镶嵌其中或与磷脂外层结合。

4脂类和生物膜(答案)

4脂类和生物膜(答案)

4脂类化学和生物膜一、名词解释1、外周蛋白:在细胞膜的细胞外侧或细胞质侧与细胞膜表面松散连接的膜蛋白,易于用不使膜破坏的温和方法提取。

2、内在蛋白:整合进入到细胞膜结构中的一类蛋白,它们可部分地或完全地穿过膜的磷脂双层,通常只有用剧烈的条件将膜破坏才能将这些蛋白质从膜上除去。

3、同向协同:物质运输方向与离子转移方向相同4、反向协同:物质运输方向与离子转移方向相反5、内吞作用:细胞从外界摄入的大分子或颗粒,逐渐被质膜的小部分包围,内陷,其后从质膜上脱落下来而形成含有摄入物质的细胞内囊泡的过程。

6、外排作用:细胞内物质先被囊泡裹入形成分泌泡,然后与细胞质膜接触、融合并向外释放被裹入的物质的过程。

7、细胞识别:细胞通过其表面的受体与胞外信号物质分子选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体地生物学效应的过程。

二、填空1、膜蛋白按其与脂双层相互作用的不同可分为内在蛋白与外周蛋白两类。

2、根据磷脂分子中所含的醇类,磷脂可分为甘油磷脂和鞘磷脂两种。

3、磷脂分子结构的特点是含一个极性的头部和两个非极性尾部。

4、神经酰胺是构成鞘磷脂的基本结构,它是由鞘氨醇以酰胺键与脂肪酸相连而成。

5、磷脂酰胆碱(卵磷脂)分子中磷酰胆碱为亲水端,脂肪酸的碳氢链为疏水端。

6、磷脂酰胆碱(卵磷脂)是由甘油、脂肪酸、磷酸和胆碱组成。

7、脑苷脂是由鞘氨醇、脂肪酸和单糖(葡萄糖/半乳糖)组成。

8、神经节苷脂是由鞘氨醇、脂肪酸、糖和唾液酸组成。

9、生物膜内的蛋白质疏水氨基酸朝向分子外侧,而亲水氨基酸朝向分子内侧。

10、生物膜主要由膜脂和膜蛋白组成。

11、膜脂一般包括磷脂、糖脂和固醇,其中以磷脂为主。

三、单项选择题鞘1、神经节苷脂是()A、糖脂 B、糖蛋白 C、脂蛋白 D、脂多糖2、下列关于生物膜的叙述正确的是()A、磷脂和蛋白质分子按夹心饼干的方式排列。

B、磷脂包裹着蛋白质,所以可限制水和极性分子跨膜转运。

C、磷脂双层结构中蛋白质镶嵌其中或与磷脂外层结合。

糖蛋白介绍

糖蛋白介绍
9.4%,9.8%和38%,而鹿和大鼠的此种酶却不含糖。
糖蛋白的基本概念
糖蛋白具有多种生物学功能和生理学效应,在生命体受精、 发生、发育、分化、神经系统、免疫系统过程的控制,在炎 症及自身免疫疾病、老化、癌细胞异常增殖及转移、病原体 感染等过程中起着重要的作用。
第二节 糖蛋白的组成和结构
糖蛋白分子由多肽链和糖链两部分组成,其中包括: N-连接糖蛋白和O-连接糖蛋白。
糖蛋白的基本概念
细胞中的糖蛋白有可溶性的,也有与膜结合的不溶形式, 生物体内大多数蛋白质都是糖蛋白。
其中包括: 动物血清的转铁蛋白,免疫球蛋白等; 细胞间质中纤连粘蛋白,层连粘蛋白等; 促绒毛膜性腺激素,促甲状腺素等激素;
糖蛋白的基本概念
红细胞生成素,白细胞介素等; 生长因子和细胞因子等粘蛋白; 多种酶类: 如真菌分泌的高峰淀粉酶、转化酶等。 牛、羊、猪的胰核糖核酸酶都是糖蛋白,糖的含量分别为
1、O-糖苷键结构
糖类环状结构的书写方式(W.N.Haworth)
1. 吡喃式写成六角平面形,呋喃式是写成五角平面形 2. 链式结构中左边的各基团写在环的平面上,右边的基团写 在环的平面下,即“左上右下” 3. 如有环外的碳原子,书写时D-型糖环外碳原子及所带基团 的环平面上,L-型糖环外碳原子所带基团写在环平面下, 即“D上L下” 4. α-D-醛糖C1的-OH在环平面下,β-D-醛糖C1的-OH在环平 面上,即C1的-OH写法是“α下 β上”
(4) N-糖链链成熟加工。
(1)多萜醇(Dol-P)寡糖前体的合成
(2)多萜醇寡糖前体向新生肽的转移
寡糖基转移酶
(3) N-糖肽链的后加工
(4) N-糖肽链的成熟加工
长萜醇-P-P聚糖的合成

糖蛋白抗肿瘤作用及其机制的研究进展

糖蛋白抗肿瘤作用及其机制的研究进展

在海洋 天然 产物 的开 发与研 究 中 ,人们 发现 有许 多具 有生 物活 性 的糖 蛋 白 , 些糖 蛋 白具有 结构 新 、 这 活性强 的特 点 , 抗肿 瘤 、 菌 、 在 抗 免疫 调 节 以及 免抑 制 等方 面起 着 非 常 重要 的作 用 。糖 蛋 白为糖链 和蛋 白质 的共 价复 合物 ,其糖 蛋 白在 生物 体 内种 类较 多 , 泛 地 分布 在 动物 、 物 、 广 植 微生 物 中 , 离或 结合 状态 广泛存 在 于细胞 内外 。 蛋 白糖链 以游 糖 具有 高度 不均一 性 。 一般 情况 下 , 糖所 占的 比例 跟蛋 白部分 相 比较小 。糖蛋 白中糖 类 和蛋 白类 的相互 作用参 与 了许多 生理 和病 理过程 ,在 生物体 内其 蛋 白质是 生理功 能 的主要 承担 者 , 链对 蛋 白质 的功能起 修饰 作用 『 糖 1 白质糖 基化 _ 。蛋
宁夏农 !. : i iJ n ga u a oA adFr. 三 e
鱼! ! !! 二
糖蛋白抗肿瘤作用及其机制的研究进展
王慧昀, 吴杰连 袁 野 ,
江西 科 技 师 范大 学 , 西 南 昌 30 1 江 30 3
修 饰是 最重 要 的翻译后 修饰 之一 ,许 多蛋 白质功 能 的实现
年备受 重视 ,但 糖链结 构 的复杂 和分 析 工具 的缺 乏阻 碍 了
研究的进展[ 然而蛋 白质组学和糖组学的技术发展已使糖 3 1 ,
蛋 白和糖链 的定 量成 为 可能 蛋 白质组 学 和糖 组学 正逐 渐 。 与肿 瘤 生物 标 记物 的选 择 和肿 瘤 侵袭 转 移 研究 相 结 合 , 推 动抗肿 瘤 医学 的发展 和 临床转 化圈 。 在 肿瘤 细胞 中 , 糖蛋 白和 糖链 变化 有多 种形 式 , 细胞 如

第4章糖蛋白1

第4章糖蛋白1

人类面临的世纪灾难——艾滋病,(获得性 免疫缺陷综合症AIDS)
1. 世界艾滋病流行形势严峻。1981年,美国发现首例艾滋 病——2000年底,艾滋病感染者5790万,死亡达2080万, 每年用于艾滋病的花费达5000亿美元。 2. 我国艾滋病流行的问题严重。1985年,国内发现首例外来 艾滋病病人,预计至2001年年底,艾滋病感染者超1000万。 每年以30%递增,说明我国艾滋病已进入快速增长期,艾 滋病很可能成为新世纪的国家性灾难。
分子识别:生物分子的选择性相互作用 Ig-Ag E-s 激素与受体 要求: 两分子结合部位结构互补 能产生作用力使酶分子结合
细胞识别:细胞表面两分子的识别 受体: 能与来自胞外的生物信息分子专一 结 合并将信息传递给效应器(离子通道 配体:被受体识别并结合的生物活性分子
识别—诱导细胞生理和代谢状态改变的扳 机 识别双方: 识别标记:以糖基为识别标记的生 命活动广泛存在 有识别能力:能识别糖基并与糖结合 多数为凝集素
Fuc
O型 Fuc Gal
A型 GalNAc
或 B型 Gal Gal A型 GalNAc 苏) GNAc Gal GalnAc 丝( Gal GNAc GNAc

B型 Gal Gal GNAc
Fuc
9、糖链与精卵识别
卵透明带糖蛋白ZP-3中GalNAC介导精卵识别及精卵结合
10、糖链与细胞粘着
一 糖类物质不仅是生物体的能源和结构材料, 还是重要的生物信息分子。
(一)结构材料: 纤维素:
甲壳质:
CH 2OH
乙酰氨基葡萄糖:
H OH H H
O
H OH
OH
H HN
COCH3
(二)糖参与了生命的全过程

糖蛋白的结构与功能

糖蛋白的结构与功能

1.2.1 N - 糖苷键
1.2.1.1 组成N - 糖苷键以β- N - 乙 酰葡萄糖胺- 天冬酰胺为连接点。在糖蛋白 中仅有N - 乙酰- β- D -葡萄糖胺残基与天 冬酰胺相连,生成的键是4 - N - (2 -乙酰氨 基- 2 - 脱氧-β- D - 吡喃葡萄糖基) - L - 天 冬酰胺。此键型最早在鸡卵清蛋白中发现。 在很多糖蛋白中都存在此连接键,例如血浆 糖蛋白中的血清类粘蛋白、免疫球蛋白、 激素类糖蛋白等。
1.2 糖肽键
糖肽键是糖链和肽链的连接键,是指糖基异头碳原子 上的羟基与肽链氨基酸残基上的酰胺基或羟基脱水形成 的糖苷键。可分为N - 糖苷键和O - 糖苷键两大类。参与 糖肽键的氨基酸残基主要有:天冬酰胺(Asn) 、丝氨酸 ( Ser ) 、苏氨酸( Thr ) 、羟赖氨酸( Hyl ) 和羟脯氨酸 (Hyp) 。它们可以与N - 乙酰葡萄糖胺、N - 乙酰半乳糖 胺、木糖、半乳糖及阿拉伯糖形成五种主要的糖肽键,分 别是:β- N - 乙酰葡萄糖胺- 天冬酰胺( GlcNAc - Asn) 、 α- N - 乙酰半乳糖胺- 丝氨酸/ 苏氨酸( GalNAc Ser/Thr) 、β- 木糖- 丝氨酸(Xyl - Ser) 、β- 半乳糖- 羟 赖氨酸( Gal - Hyl ) 、α - L - 阿拉伯糖- 羟脯氨酸(Ara Hyp) 。此外,还发现罕见的以N - 末端氨基酸残基为连接 点的糖肽键,存在于小鼠血红蛋白A1c中。
1.2.2 O - 糖苷键
1. His - His - Gly - Phe - Thr - Thr - Pro - Ser - Arg - Ala 11. lle - Ala - Val - Leu - Ser - Thr - Glu - Thr - lle - Arg 21. Gly - Asn - lle - Thr - Phe - Thr - Gln - Val - Gln - Asp 31. Gly - Lys - Val - His - Val - Gln - Gly - Gly - lle - Thr 41. Gly - Leu - Pro - Pro - Gly - Glu - Tyr - Gly - Phe - His 51. Val - His - Glu - Lys - Gly - Asp - Leu - Ser - Gly - Gly 61. Cys - Leu - Ser - Thr - Gly - Ser - His - Phe - Asn - Pro 71. Gly - His - Lys - Asp - His - Gly - His - Pro - Asn - Asp 81. Val - Asn - Arg - His - Val - Gly - Asp - Leu - Gly - Asn 91. Val - Val - Phe - Asp - Glu - Asn - His - Tyr - Ser - Arg 101. lle - Asp - Leu - Val - Asp - Asp - Gln - lle - Ser - Leu 111. Ser - Gly - Pro - His - Gly - lle - lle - Gly - Arg - Ala 121. Val - Val - Leu - His - Glu - Lys - Ala - Asp - Asp - Tyr 131. Gly - Lys - Ser - Asp - His - Pro - Asp - Ser - Arg - Lys 141. Thr - Gly - Asn - Ala - Gly - Gly - Arg - Val - Ala - Cys 151. Gly - Val - lle - Glu - 155 Tyr 图1 EaseA4 的氨基酸组成

糖蛋白的结构_功能及分析方法_武金霞

糖蛋白的结构_功能及分析方法_武金霞

糖蛋白的结构、功能及分析方法武金霞 赵晓瑜(河北大学生命科学学院,保定071002)摘 要: 综述了糖蛋白研究的重要意义、糖肽键的主要类型、糖链的主要类型、糖蛋白结构研究的一般策略及结构分析的最新进展。

关键词: 糖蛋白 糖链 结构分析Structure Function and Analysis Methods of GlycoproteinWu Jinxia Zhao Xiaoyu(College of Life Scienc e Hebei Un iversity ,Baoding 071002)Abstract : In this paper ,the impo rtance of gly coprotein research ,the types of gly co -peptide bonds ,the types of oligosaccharides chain ,the general methods of g lycopro tein structure research ,and the prog ress of analysis methods in this filed were summarized .Key words : G lycopro tein Oligosaccharide Structure analy sis1 糖蛋白的重要作用糖蛋白(g lycopro tein )是指由比较短,往往带分支的寡糖与多肽链某些特殊部位的羟基或酰氨基共价连接而成的一类结合蛋白质。

细胞中的糖蛋白有可溶性的,也有与膜结合的不溶形式,生物体内大多数蛋白质是糖蛋白[1]。

糖蛋白中蛋白质是生理功能的主要承担者,糖链对蛋白质的功能起修饰作用,即糖链影响蛋白质的整体构象,影响蛋白质的折叠、溶解度、半衰期、抗原性及生物活性等,糖链与蛋白质的相互作用介导细胞的专一性识别和调控各种生命过程如:受精、发生、发育、分化、神经系统、免疫系统恒态的维持等,在炎症及自身免疫疾病、老化、癌细胞异常增殖及转移、病原体感染等过程中起重要作用[2,3] 。

P-糖蛋白的生理作用及中药对其影响的研究进展

P-糖蛋白的生理作用及中药对其影响的研究进展

P-糖蛋白的生理作用及中药对其影响的研究进展
叶靖宇;黄玉芳
【期刊名称】《江西中医学院学报》
【年(卷),期】2008(20)2
【摘要】P-糖蛋白(P-glycoprotein,P-gP)是与肿瘤多药耐药(Multidrug Resistance,MDR)密切相关的糖蛋白,属于能量依赖型药物外排泵。

P-gP的主要作用是将药物或其它化学物质排出细胞外。

P-gP首先在肿瘤细胞中被发现了,1989年首次在血脑屏障上发现它的表达。

近年来,许多人研究发现某些中药能对P-gP的表达产生影响从而达到逆转多药耐药的作用。

现综述P-GP的结构、功能及其在血脑屏障上的作用以及一些中药对它的影响。

【总页数】4页(P88-91)
【作者】叶靖宇;黄玉芳
【作者单位】南京中医药大学,南京,210029;南京中医药大学病理教研室,南
京,210029
【正文语种】中文
【中图分类】R739.4
【相关文献】
1.从P-糖蛋白在血脑屏障的作用P-糖蛋白对肿瘤多药耐药的介导 [J], 令红艳;李军
2.P-糖蛋白中药抑制剂的研究进展 [J], 李峥;庄笑梅;李素云;张振清;阮金秀
3.中药对P-糖蛋白的影响及机制的研究进展 [J], 梁晓玲;冯立影;孙德春;刘高峰
4.专题报告 H1逆转P-糖蛋白介导肿瘤多药耐药作用及其对P-糖蛋白表达与功能的影响 [J], 魏宁;孙华;魏怀玲;刘耕陶
5.中药拮抗P-糖蛋白介导的肿瘤多药耐药机制的研究进展 [J], 梁文杰;单保恩因版权原因,仅展示原文概要,查看原文内容请购买。

P-糖蛋白在血脑屏障中的作用

P-糖蛋白在血脑屏障中的作用
大 鼠注射维拉 帕米 0 1 / g , . k 后 再按 0 1 、5 2 、5 5 g mg 、0 1 、 3 、0r / 5 a
脏 近曲小管 、 胰腺胰 导管 细胞 等 , 在血脑屏 障 的毛 细血管 内 皮细胞 、 妊娠子宫 内膜 、 盘及睾 丸也有 表 达。本文 结合 文 胎
献对 Pg —P在血脑屏障 中的作 用综述如下 。 1 Pg —P在 血脑屏障 中的表达 目前 , 许多研究发现 Pg -p定位于脑毛细血管 内皮 细胞 的
mr d2三种 , 二者 与 MD 前 R有 关 , 者参 与磷 脂转 运 。研 究 后
证 明 ,・p及 MD Pg R基 因编 码 产物 多表 达 于肝脏 胆 小管 、 肾
脑组织的浓度很低 , 脑缺血 l 、0r n , O 浓度分别增加 02 i 后 D M a 34 36倍 ; . 、. 同时注射 Pg — P逆转剂维拉帕米后 , 正常时和脑缺 血时的 D M浓度分别增 加 4 . 、33倍 J a 等 采用 O 264. 。B r t 正电子发射 断层成像技术研 究 P印 药物外排底物 可与之竞 争性结合 。 因此 , 当两个 亲 和力不 同的底物 同时存 在时 , 亲和 力大 的底物 易与 P 结合 后被 咽 泵出细胞膜外 ; 亲和力小 的底 物与 Pg —P结合 的少 , 易在细胞 内蓄积。 目前 , 在体外培养的 鼠、 猪等 脑毛细 血管 内皮 细胞 中 牛、
在顽 固性癫痫患者的星型胶质细胞 中发现 Pg -p表达 , 而正常 人的星型胶质 细胞 中却未见 Pg -p表达 。Tsrr i e 等在顽 固性 h 癫痫患者的脑毛细血管上 皮细胞 、 型胶质 细胞 及神经 细胞 星
中均发现 Pg -P表达 。K a w n等 采用 P R技术 发现 , 生大 C 野 鼠全脑均有 m ra dl 表达 , m rb仅在海马区表达 。 而 dl

糖蛋白的作用

糖蛋白的作用

糖蛋白的作用
糖蛋白是一种复杂的分子,由蛋白质和糖分子组成。

它们广泛存在于细胞表面、细胞间质和细胞外基质中,并在多种生理活动中发挥重要作用。

1. 细胞识别和信号传导:糖蛋白通过细胞表面的糖基部分与其他细胞或分子结合,参与细胞间的相互识别和信号传导。

这对于许多生理过程至关重要,如免疫反应、发育过程和细胞生长等。

2. 细胞黏附与迁移:糖蛋白可通过与其他细胞表面或组织基质的糖蛋白结合,参与细胞与细胞、细胞与基质之间的黏附和迁移。

这对于细胞的定位、组织结构的形成以及炎症反应等过程具有重要影响。

3. 免疫反应:糖蛋白在免疫系统中起着重要作用,参与抗原呈递、T细胞和B细胞的识别与激活等过程。

免疫系统中的糖蛋白具有巨大的结构多样性,这种多样性使得免疫系统能够识别和击败多样性的病原体。

4. 细胞分化和发育:糖蛋白在细胞分化和发育过程中发挥重要作用。

糖蛋白的表达模式和糖基的差异可导致细胞的不同分化状态和细胞类型的特异性。

5. 代谢调节:糖蛋白参与多种代谢调节过程,如餐后血糖调节、脂质代谢和胰岛素的释放等。

糖蛋白的异常表达或功能异常可能导致代谢紊乱和疾病的发生。

糖蛋白作为一种重要的生物分子,在细胞功能和生理过程中扮演着重要角色。

通过进一步研究和了解糖蛋白的结构和功能,可以为人类疾病的诊断和治疗提供新的思路和方法。

p-gp(P-糖蛋白药物相互作用)

p-gp(P-糖蛋白药物相互作用)

P-糖蛋白相关的肿瘤多耐药机制
刘治军等。药物不良反应杂志,2006,8(1):33-38
8
利福平对地高辛的影响
After administration of rifampin, AUC of oral digoxin was significantly decreased (P < 0.05). Maximal plasma levels were reduced by 58% (P < 0.01), and Tmax increased from 42 to 52 minutes (P < 0.05). Oral bioavailability (F) of digoxin decreased by 30.1% during rifampin therapy (P < 0.05). A smaller, although still significant, change (P < 0.05) was noted for the decrease of plasma AUC after intravenous administration, with digoxin’s systemic clearance increasing by 21% (P < 0.05). Renal clearance of digoxin and creatinine clearance were not altered by rifampin. Cumulative urinary excretion of orally and intravenously administered digoxin was lowered by 31% and 17%, respectively, during rifampin coadministration. No significant difference was detected in the terminal half-life.

糖蛋白组成

糖蛋白组成

糖蛋白组成
糖蛋白是植物和动物所合成的一类氨基酸混合物,也是生物体内最重要的营养物质之一。

它是无机物质和有机物质的混合物,在一定的环境中能够松散地结合,可以进行吸收,是重要的营养物质。

但具体的构成是什么呢?
糖蛋白的化学组成主要由氨基酸和糖苷组成。

氨基酸是糖蛋白的主要组成部分,是产生具有特殊功能的生物分子的重要基础,并可以调节机体的代谢。

每种氨基酸的结构和特性都不同,比如有些氨基酸具有抗氧化作用,有些则具有能改变蛋白质结构的作用。

另外,氨基酸也常常参与多种感受和反应,也可以使植物和动物维持生命活动。

另外,糖蛋白中还包含大量的糖苷,它们是糖蛋白的构成成分之一。

糖苷是一类植物特有的复合糖分子,具有酯键能力,能够在酸碱条件下稳定结构,有效地防止水份的过度失水,可以在小分子细胞膜外得到合成和吸收,从而保护小分子细胞膜,促进细胞分裂。

此外,糖蛋白中还含有一些碳水化合物,如葡萄糖、果糖、木糖等,这些碳水化合物通过植物和动物体内的代谢可以转化为氨基酸及其他碳水化合物,可以提供能量的同时,还可以促进化学反应的进行。

糖蛋白是植物和动物发育过程中不可缺少的营养物质,它们在生物体中的组成主要由氨基酸、糖苷和碳水化合物组成,它们的组成丰富多样,这些物质通过植物和动物体内的代谢作用,可以形成多种物质,能够满足生物体对营养物质的需求,是生物发育过程中不可缺少的营养物质。

糖蛋白组成

糖蛋白组成

糖蛋白组成糖蛋白是生物体的主要成分,人类的肌肉、血液、骨骼、膜等都是以糖蛋白为主要成分构成的。

糖蛋白是非常重要的生物分子,它是一种脂质和蛋白质的混合物,它是生物体组织结构和功能的基本成分。

糖蛋白由两种主要成分:蛋白质和脂质组成。

蛋白质由氨基酸组成,它们是糖蛋白结构中最主要的物质。

氨基酸分为三类:必需氨基酸,可选择性氨基酸和非必需氨基酸。

必需氨基酸是生物体本身无法合成的,必须从食物中摄取才能满足其需求;可选择性氨基酸是可以被合成的,但由于其饮食结构的不完整性,仍然需要从外界摄取;非必需氨基酸可以在生物体内被合成。

脂质是糖蛋白的另一个重要组成部分,它们主要由甘油三酯和磷脂组成,这些物质在膜结构中具有重要作用,参与细胞膜的维持、保护和调节功能。

糖蛋白在生物体中具有多种作用,它可以作为有机结构的支撑物;还可以作为细胞间质和细胞内质的基本组成成分;还可以作为一种生物功能的受体来控制生物体的各种生理活动,比如肌肉收缩和骨骼发育。

糖蛋白的组成和功能取决于其含氨基酸种类和甘油三酯磷脂的比例。

每种氨基酸都有特定的功能,比如谷氨酸和精氨酸可以抵抗疾病,而甘油三酯磷脂能够调节细胞间质和细胞内质的稳定性和流动性。

总之,糖蛋白组成和功能是复杂的,它们可以使生物体的结构和功能获得稳定和协调。

从上述讨论可以看出,糖蛋白是生物体结构和功能的基础,它的组成和功能是非常复杂的。

它不仅可以作为生物体的结构支撑物,还可以参与细胞间质和细胞内质的稳定性和流动性、受体的控制等功能。

要使糖蛋白组成和功能得到更好的发挥,只有充分了解它的成分和作用,才能更好地利用它们。

综上所述,糖蛋白是人类机体结构和功能的基本成分。

它由蛋白质和脂质两种主要成分组成。

它的组成和功能取决于其含氨基酸种类和甘油三酯磷脂的比例,它可以作为有机结构的支撑物,还可以作为细胞间质和细胞内质的基本组成成分,还可以作为一种生物功能的受体,参与控制生物体的各种生理活动。

只有充分了解它的成分和作用,才能更好地利用它们。

糖蛋白的作用

糖蛋白的作用

糖蛋白的感化含糖的蛋白质,由寡糖链与肽链中的必定氨基酸残基以糖苷键共价衔接而成.其重要生物学功效为细胞或分子的生物辨认,如卵子受精时精子需辨认卵子细胞膜上响应的糖蛋白.受体蛋白.肿瘤细胞概况抗原等亦均属糖蛋白.糖蛋白广泛消失于动物.植物及微生物中,种类繁多,功效广泛.可按消失方法分为三类:①可溶性糖蛋白,消失于细胞内液.各类体液及腔道腺体排泄的粘液中.血浆蛋白除白蛋白外皆为糖蛋白.可溶性糖蛋白包含酶(如核酸酶类.蛋白酶类.糖苷酶类).肽类激素(如绒毛膜促性腺激素.促黄体激素.促甲状腺素.促红细胞生成素).抗体.补体.以及某些发展因子.干扰素.抑素.凝聚素及毒素等.②膜联合糖蛋白,其肽链由疏水肽段及亲水肽段构成.疏水肽段可为一至数个,并经由过程疏水互相感化嵌入膜脂双层中.亲水肽段吐露于膜外.糖链衔接在亲水肽段并有严厉的偏向性.在质膜概况糖链一律朝外;在细胞内膜一般朝腔面.膜联合糖蛋白包含酶.受体.凝聚素及运载蛋白等.此类糖蛋白常介入细胞辨认,并可作为特定细胞或细胞在特定阶段的概况标记或概况抗原.③构造糖蛋白,为细胞外基质中的不溶性大分子糖蛋白,如胶原及各类非胶原糖蛋白(纤粘连蛋白.层粘连蛋白等).它们的功效不但仅是作为细胞外基质的结构成分起支撑.衔接及缓冲感化,更重要的是介入细胞的辨认.粘着及迁徙,并调控细胞的增殖及分化.寡糖链平日指由 2~10个单糖基借糖苷键连成的聚合体.糖蛋白的寡糖链多有分枝.因为单糖的端基碳(异头碳)原子有α.β两种构型,并且单糖分子中消失多个可形成糖苷键的羟基,是以,糖链构造的多样性超出多核苷酸及肽链.在糖链构造中可以贮存足够的辨认信息,从而在分子辨认及细胞辨认中起决议性感化.糖蛋白介入的心理功效包含凝血.免疫.排泄.内吞.物资转运.信息传递.神经传导.发展及分化的调节.细胞迁徙.细胞归巢.创伤修复及再生等.糖蛋白的糖链还介入保持其肽链处于有生物活性的自然构象及稳固肽链构造, 并付与全部糖蛋白分子以特定的理化性质(如润滑性.粘弹性.抗热掉活.抗蛋白酶水解及抗冻性等).糖蛋白与很多疾病如沾染.肿瘤.血汗管病.肝病.肾病.糖尿病以及某些遗传性疾病等的产生.成长有关.再者,细胞概况的糖蛋白及糖脂可“脱落”到四周情形或进入血轮回,它们可以作为平常的标记为临床诊断供给信息;患某些疾病时体液中的糖蛋白亦常有特异性或强或弱的转变,这可有助于诊断或预后的断定.糖蛋白还日益介入治疗.例如,针对特定细胞概况特异性糖构造的抗体可作为导向治疗药物的定向载体.应用糖类(单糖.寡糖或糖肽)抗沾染及抗肿瘤转移也已崭露头角.生物合成及降解糖蛋白的生物合成就蛋白质部分而言与一般排泄蛋白质雷同,在粗面内质网进行.糖链的生物合成在肽链延伸的同时和(或)以落后行.始于粗面内质网,经滑面内质网,完成于戈尔吉氏体,有的甚至在到达质膜后在那边最终完成.肽链的糖基化及糖链的延伸都在各类糖基转移酶的催化下进行.糖基转移酶有两个感化物.一个是活化情势的单糖,作为糖基的供体,另一个是肽链或寡糖链,作为糖基的接收体.糖基转移酶对供体及接收体皆有严厉的特异性.一种糖苷键由一种酶催化形成.糖链的构造及糖基分列次序无模板可循,而是由糖基转移酶的特异性(包含单糖基种类.端基碳构型.糖苷键衔接地位及接收体构造)及其感化的先后次序决议,是以是由基因经由过程糖基转移酶而间接掌握的,属于基因的次级产品.糖蛋白的降解可从糖链开端,亦可从肽链开端,糖蛋白肽链的降解同样是在各类蛋白水解酶的催化下进行的.糖链的水解由各类糖苷酶催化.糖苷酶分为外切及内切糖苷酸两大类.外切糖苷酶水解糖链非还原末尾的糖苷键,每次水解下一个单糖.这类糖苷酶重要消失于溶酶体中,介入糖蛋白.糖脂及蛋白聚糖的分化代谢.糖苷酶对于所水解的糖苷键及感化物的糖构造(有的不但请求必定的单糖,还请求必定的糖链构造)具有严厉的特异性.一条糖链的完整水解是在一系列糖苷酶依次感化下完成的,每种糖苷酶只能水解下来一个特定的单糖.假如缺乏一种糖苷酶,则下一步的糖苷水解被阻断,导致糖链水解不完整,而致分化代谢中央产品在细胞内聚积成为糖累积症.例如缺乏α-甘露糖苷酶或α-L岩藻糖苷酶可分离引起甘露糖苷或岩藻寡糖.糖肽的聚积.它们多为先本性酶缺掉所造成,属于遗传性疾病.血浆糖蛋白的降解在肝中进行,其非还原末尾唾液酸基直接掌握其消除率.内切糖苷酶可水解糖链中的糖苷键.常作为对象酶用于糖链构造的研讨.重要消失于微生物及植物中,动物组织中少见.其特异性十分严厉.除糖蛋白外,透明质酸及细菌壁胞壁酸的降解亦由内切糖苷酶(如透明质酸酶及溶菌酶)催化.生物学感化生物界种类繁多的糖蛋白履行着千差万此外生物学功效.如作为酶的糖蛋白催化体内的物资代谢;作为免疫分子的糖蛋白介入免疫进程;作为激素的糖蛋白介入体内心理.生物化学运动的调节等等.糖蛋白中糖链的生物学感化是研讨的热门,很多问题还未解释.大致可归纳为直接或间接介入生物学功效两种情形.直接介入生物学功效方面的感化与细胞或分子的生物辨认有关;间接感化则在于保持全部分子的自然构象,保持必定的活性寿期及决议理化特征等.糖蛋白糖链最奇特的生物学感化是介入生物辨认.细胞辨认无论对于个别产生照样成体性命运动的保持都具有决议性意义.例如,同种受精决议于精子概况和卵透明带糖蛋白糖构造的互相辨认.细胞概况糖蛋白还介入早期胚胎发育进程中内细胞团及滋养层的形成及随后组织.器官形成进程中同类细胞在辨认基本上所产生的集合.胚胎发育需万能细胞进行分化.通细致胞迁徙及生物辨认,雷同的细胞在必定部位集合成团,最后成长为特定的器官.这些进程依附于特异性的细胞辨认及选择性的细胞粘合.糖蛋白糖链是细胞辨认及粘合的分子根据.在构造多样的糖链中存贮着足够的各类辨认信息.克制糖蛋白糖链的生物合成则胚胎发育中断.在胚胎发育的不合阶段及细胞增殖的不合时相细胞概况糖蛋白不竭产生转变.某些细胞概况糖蛋白可以作为不合发育阶段或不合生涯状况的标记.例如,神经细胞粘合分子(N-CAM),是一种消失于细胞概况的质膜糖蛋白,其糖链含有多个唾液酸基.多唾液酸链随发育而缩短,至成年时代消掉.糖链中唾液酸的这些变更对不合时代细胞间的互相感化有必定调节意义. N-CAM可能在胚胎发育中对细胞间互相作器具有广泛性重要意义,对神经细胞间的突触接洽及神经—肌肉衔接的树立更具有特别重要感化.在若干恶性肿瘤细胞概况亦发明具有多唾液酸糖链的N-CAM.细胞归巢在造血.毁血及淋巴细胞再轮回中必不成缺.在血中轮回的造血干细胞(来自卵黄囊)需到骨髓中进行增殖.分化;淋巴细胞在血流及淋巴样器官(脾.淋凑趣及扁桃体)间保持再轮回.血循中造血干细胞及淋巴细胞的归巢都是通细致胞概况的受体(亦属于凝聚素)来认别靶组织中糖链上的糖基而进行.年轻红细胞“归巢”入脾是因为其概况的带Ⅲ糖蛋白糖链游离末尾的唾液酸基大为削减,导致次末尾的半乳糖基吐露.它可与免疫球蛋白G 联合,从而可被脾内的吞噬细胞辨认并内吞.至于致病微生物沾染寄主细胞亦必须起首粘附于靶细胞.微生物与靶细胞间的特异性粘合感化不但可以解释为沾染寄主的选择性,并且已有很多证据标明这种特异性粘合是由糖蛋白糖链介导的.还有一些粘合分子是细胞外的游离成分,由互相感化的细胞产生或由远处的某些细胞产生,排泄至细胞外并输送至细胞间.这些粘合分子作为桥梁介导细胞间的辨认及粘合.如出血时血小板的集合是由两种细胞外糖蛋白及其在血小板膜上响应的受体糖蛋白介导的辨认及粘合.这两种糖蛋白是血浆中的血小板反响蛋白及纤维蛋白原.它们彼此之间亦产生特异性辨认及联合,并为其糖构造所介导.糖链亦介入细胞与细胞外基质的粘着感化.细胞外基质的重要成分都是含糖的蛋白质,如胶原.非胶原糖蛋白及蛋白聚糖等.在各类细胞概况则分离消失着特异性联合必定基质成分的受体糖蛋白.这种联合是有选择性的.例如,上皮细胞与基膜中的Ⅳ型胶原.层粘连蛋白及硫酸乙酰肝素蛋白聚糖联合;成纤维细胞与Ⅰ或Ⅲ型胶原.纤粘连蛋白联合;软骨细胞与Ⅱ型胶原.软骨粘连蛋白及硫酸软骨素蛋白聚糖联合.细胞外基质成分对细胞的增殖.分化.形态.代谢及迁徙有决议感化.这对胚胎发育.细胞分化及创伤修复是十分症结的.例如,造血干细胞只有在适于它们增殖及分化的骨髓基质中才干进行造血进程.骨髓的体外长期造就亦必须为其供给响应的造血情形.细胞与细胞外基质之间借助于必定糖构造的联合,在恶性肿瘤细胞的转移进程中亦具有决议性感化.细胞与其外情形中可溶性糖蛋白(如激素.抑素.干扰素.抗体.发展因子.细胞因子.毒素等等)的感化不单对细胞的增殖.分化.代谢及功效产生深入影响,并且对保持全部机体内情形的稳固具有重要意义.已有一些试验证实某些可溶性糖蛋白与细胞的感化由糖链介导.糖蛋白激素在去除糖链后,则生物学活性损掉.迄今发明的20种血型体系中的 160多种血型抗原完整或重要由糖蛋白及糖脂的寡糖决议.A型.B型及 O型血者的抗原决议簇分离是α-D-N乙酰氨基半乳糖基. α-D半乳糖基及α-L岩藻糖基.组织相容性抗原亦为糖蛋白.其抗原特异性与糖链构造有关.糖链与免疫的关系日益受到看重.已发明补体系统可在无特异性抗体消失的情形下被必定的糖链构造活化.不单各类免疫球蛋白都是糖蛋白,其糖链构造反抗原-抗体联合的特异性有必定影响;并且很多免疫介质,如淋巴因子.单核因子.帮助因子.克制因子.活化因子.趋化因子.毒性因子.干扰素.白细胞介素等及其在免疫细胞概况的受体都是糖蛋白.很多证据标明糖链介入其互相辨认和联合.干扰素亦与靶细胞概况的糖构造相联合.凝聚素是广泛消失于动物.植物及微生物中的一类蛋白质,它由非免疫门路产生并特异地与必定糖构造相联合.很多凝聚素本身亦为糖蛋白.各类凝聚素辨认与联合糖构造的特异性强弱不等.必定的凝聚素可凝聚必定种类的细胞,并可选择性地刺激细胞的有丝决裂.凝聚素的上述感化可被特定的单糖或寡糖或糖肽克制.细胞概况的糖蛋白或糖脂在体外可被必定的外源性凝聚素辨认并联合,有人称之为凝聚素的受体.凝聚素即经由过程其多价性及细胞概况受体而引起细胞凝聚.凝聚素可消失于体液中及细胞概况.在各类原核细胞及真核细胞生物中发明的凝聚素已多达百余种.其生物学功效庞杂而多样.但根本感化都是对细胞或游离分子进行辨认.例如,在鼠.兔及人的肝细胞质膜中有辨认半乳糖的凝聚素(肝凝聚素).血浆中的蛋白质多为以唾液酸为非还原末尾的 N糖苷糖蛋白.去唾液酸后吐露出次末尾的半乳糖基,可敏捷被肝细胞经由过程肝凝聚素辨认而联合,进而引起内吞,从而将去唾液酸血浆糖蛋白摄取,从血中消除并在溶酶体中降解.乃至其半寿期缩短至若干分钟.轻微肝炎.肝硬变及肝癌的组织中缺乏肝凝聚素,从而导致血中去唾液酸糖蛋白的聚积.别的,在肾.肠上皮,甲状腺及骨髓细胞概况亦发明联合半乳糖的凝聚素.在肝库普弗氏细胞及脾.肺巨噬细胞概况消失辨认和联合甘露糖及乙酰氨基葡萄糖的凝聚素.这些细胞概况凝聚素一旦与响应配体联合即可引起内吞,内吞后配体在溶酶体中被消化.而凝聚素本身可再轮回至细胞概况.糖蛋白糖链对引诱在粗面内质网合成的蛋白质到达预定部位有决议性感化.很多排泄蛋白质必须经由糖基化才干排泄到细胞外.若糖基化被阻断则不克不及排泄出去.溶酶体的各类水解酶在内质网及戈尔吉氏体合成后分散在初级溶酶体内,这亦由其糖链决议.所有各类溶酶体酶,除组织蛋白酶B1外,都是高甘露糖型糖蛋白,其某些甘露糖基产生6位磷酸化.这些带有[6]磷酸甘露糖(Man-6-P) 标记的溶酶体酶与定位在戈尔吉氏体膜腔面必定部位的受体相联合.这些受体现实上是特异性辨认Man-6-P 的凝聚素.经由过程这些分散散布在必定膜区的受体带有M-6-P标记的溶酶体酶被分散起来,再经由过程该膜区的发泡,从戈尔吉氏体形成膜内面挂着全套溶酶体酶的初级溶酶体.溶酶体膜含有高度糖基化(每条肽链上带10余条糖链)的糖蛋白,其糖链富含唾液酸,并朝向腔面.这些糖蛋白糖链不单可以防止溶酶体膜被溶酶体内的水解酶降解损坏,并且可以在溶酶体腔面形成低pH值情形,使溶酶体酶与膜受体的联合减弱,然后溶酶体酶的糖链产生脱磷酸.因为脱磷酸去除了可被膜受体识此外标记,各类水解酶遂游离于溶酶体囊腔内.当初级溶酶体与内吞泡融会后溶酶体酶即可水解经内吞进入细胞的大分子及细胞.组织碎屑.此外,在细胞概况亦消失特异性辨认Man-6-P的受体.可将排泄至细胞外的溶酶体酶结归并内化收受接管.细胞概况辨认 Man-6-P的受体只占细胞总受体量的10%,其余90%消失于溶酶体.戈尔吉氏体及内质网.人类罹患的一种罕见病,I-细胞(inclusion-cell)病系在细胞内聚积大量的高分子量糖复合物,可造成早天.其缺点主如果缺乏UDP-N乙酰氨基葡萄糖基转移酶,因而溶酶体酶缺乏Man-6-P标记.乃至其各类溶酶体水解酶不消失于溶酶体内而被排泄至细胞外.其溶酶体膜及细胞概况虽消失正常的辨认 Man-6-P的受体,却不克不及将自身的溶酶体酶按正常路线输送.但可将外源性正常的带标记的溶酶体酶收受接管并运至溶酶体.植物凝聚素常有不合程度的细胞毒性.毒性强的凝聚素有蓖麻毒素.相思豆毒素等.它们都辨认并联合含半乳糖的糖链.这些毒素由 A.B两个亚单位构成.B亚单位与细胞概况的糖基联合,A 亚单位进入胞质与核糖核蛋白体联合从而克制蛋白质生物合成,其感化道理相似于酶的催化感化,催化核蛋白体因子掉活.胞质中只需几个分子细胞毒凝聚素即可完整阻断蛋白质的合成.因而仅少少量即可置人于逝世地.将细胞毒凝聚素与抗肿瘤细胞的特异性抗体偶联,可定向杀伤体内的肿瘤细胞.有些糖蛋白的糖链本身并没有直接的生物学功效.而可对肽链的加工及其构象施以掌握.一些多肽或蛋白质以伟大的前体情势在细胞内合成,然后被特异性蛋白酶水解释出成熟的有生物活性的分子,例如垂体的一些激素是以前体的情势生成的.前体上的糖链可掌握其在恰当的部位被蛋白酶水解,从而有用地产生生物活性成分.再如,若克制前胶原的糖链合成,则不克不及生成胶原.糖链又可以掌握肽链的折迭及稳固肽链的自然构象,去除糖链则某一区域的构象转变,影响其生物学活性.如免疫球蛋白G(IgG)去除糖链则与抗原联合的构象转变.此外,糖链还决议糖蛋白分子的理化性质,使其具有:①抗蛋白酶水解性,使糖蛋白分子在体内可保持必定的寿期.蛋白酶的糖链可呵护其肽链不被自家水解而保持催化活气.体液中的糖蛋白糖链可呵护其不至敏捷被体液中的各类蛋白酶水解而在必定的时代内保持其生物活性.很多种生物活性分子,如酶属此类.粘液中的糖蛋白糖链在呵护其自身不被水解的同时亦呵护了粘膜上皮细胞.②稳固性,不轻易产生热变性及冻融变性.③抗冻性,南极鱼的抗冻糖蛋白的密集式糖单位可防止冰晶形成而使鱼体在深低温海域不冻结.此外,粘液及滑液中的糖蛋白因为消失大量唾液酸化或硫酸化糖链而带有很多负电荷,乃至分子呈伸展状况并具有强亲水性,成为具有粘弹性的物资,起润滑呵护感化.糖蛋白分子的聚合才能亦为糖键所阁下.糖蛋白与肿瘤在肿瘤产生及成长(侵袭.转移)进程中细胞概况.细胞外基质及体液中的糖蛋白都有明显变更;克制体外造就的癌细胞的糖链合成,即可克制其在体内的试验性转移.尚未发明为一切肿瘤细胞所共有,而不为正常组织所有的肿瘤配合抗原,但已在很多种肿瘤组织细胞中发明为某种肿瘤所特有而不为响应正常分化组织所具有的肿瘤相干抗原.这些抗原常为在响应正常组织胚胎细胞一时性表达的糖蛋白.例如,癌胚抗原 (CEA)是分子量200KDd的糖脂蛋白质含糖50~60%.它消失于正常胎儿胃肠组织及消化道腺癌细胞概况,并可脱落进入血流,从而早期胃肠癌.胰腺癌.乳腺癌患者血中CEA含量即可升高.再如,甲胎蛋白(AFP)为分子量70KDa的糖蛋白.由胚胎的卵黄囊.肝及胃肠合成,是胎儿血中的重要蛋白质;70%的畸胎瘤及肝细胞癌患者血中AFP升高.肿瘤细胞概况的糖蛋白可全部地或部分地脱落,进入血轮回.是以可用于临床诊断及病情监测.这些脱落成分亦可中和寄主血中的抗体,减弱寄主机体的抗肿瘤才能.。

[应用]糖蛋白与蛋白多糖的异同

[应用]糖蛋白与蛋白多糖的异同

糖蛋白与蛋白多糖的异同复合糖类:(1)蛋白多糖:含糖多(2)糖蛋白:含蛋白多,糖蛋白(glycoprotein)是分支的寡糖链与多肽链共价相连所构成的复合糖,主链较短,在大多数情况下,糖的含量小于蛋白质。

同时,糖蛋白还是一种结合蛋白质,糖蛋白是由短的寡糖链与蛋白质共价相连构成的分子。

糖蛋白中的糖链变化较大,含有丰富的结构信息。

寡糖链往往是受体、酶类的识别位点。

1、 N-糖苷键型(N-连接)N-糖苷键型主要有三类寡糖链:① 高甘露糖型,由GlcNAc和甘露糖组成;② 复合型:除了Gl c NAc和甘露糖外、还有果糖、半乳糖、唾液酸;③ 杂合型,包含①和②的特征。

五糖核心2、 O-糖苷键型(O-连接)没有五糖核心。

如:人血纤维蛋白溶酶原;人免疫球蛋白IgA:N-糖肽键,如β- GlcNAc-Asn和O-糖肽链,如α-GalNAc-Thr/Ser, β-Gal-Hyl,β-L-Araf-Hyp,N-连接的寡糖链(N-糖链)都含有一个共同的结构花式称核心五糖或三甘露糖基核心,N-糖链可分为复杂型、高甘露糖型和杂合型三类,它们的区别王要在外周链。

O-糖链的结构比N-糖链简单,但连接形式比N-糖链的多。

蛋白聚糖(proteoglycan,PG):以糖为主,糖可占90-98%。

糖胺多糖(glycosaminoglycan, GAG,以前也称粘多糖)为二糖单位,重复连接组成的无分支多糖链,二糖中必有一种为氨基糖(氨基葡萄糖或氨基半乳糖:乙酰化),另一种为糖醛酸(葡萄糖醛酸或艾杜糖醛酸)。

糖胺多糖多含有硫酸。

已知有六种糖胺多糖:透明质酸(hyaluronic acid,HA)硫酸软骨素(chontroitin sulfate,CS)硫酸皮肤素(dermatin sulfate,DS)硫酸角质素(keratan sulfate,KS)硫酸乙酰肝素(heparan sulfate,HS)肝素(heparan,Hep)(一)蛋白聚糖的结构1. GAG:(1)HA:葡萄糖醛酸+乙酰氨基葡萄糖(GlcUA-GlcNAc)结构最简单的GAG,|β1→3| β-1,4 不含硫酸,HA分子量大,可达1000万(2万5千个重复二糖)。

肝素与糖蛋白结合

肝素与糖蛋白结合

肝素与糖蛋白结合肝素是一种由肝脏和其他组织合成的多糖类物质,具有抗凝血作用。

糖蛋白是一类含有糖基的蛋白质,常见于细胞膜上。

本文将探讨肝素与糖蛋白结合的相关内容。

肝素与糖蛋白结合是一种重要的分子相互作用方式。

糖蛋白具有多种功能,其中之一是参与细胞信号转导和黏附作用。

而肝素在体内主要通过与抗凝血因子结合,发挥抗凝血作用。

因此,肝素与糖蛋白结合的研究对于深入理解细胞信号转导和肝素的抗凝血机制具有重要意义。

肝素与糖蛋白结合是通过糖基和肝素结构中硫酸基之间的相互作用实现的。

肝素分子中的硫酸基可以与糖蛋白上的糖基发生强烈的静电相互作用,形成肝素-糖蛋白复合物。

这种结合方式使肝素能够与糖蛋白相互作用,从而发挥其生物学功能。

肝素与糖蛋白结合的生物学意义主要体现在以下几个方面。

首先,肝素与糖蛋白结合能够调节细胞的黏附作用。

糖蛋白上的糖基与肝素结构中的硫酸基结合后,可以调控细胞的黏附性,从而影响细胞间的相互作用。

其次,肝素与糖蛋白结合还能够调节细胞的信号转导。

糖蛋白作为细胞膜上的受体或信号分子,与肝素结合后,可以影响细胞内的信号传递过程,从而调节细胞的功能和生理过程。

肝素与糖蛋白结合的研究有助于揭示肝素的抗凝血机制。

肝素通过与抗凝血因子结合,抑制凝血酶的形成,从而发挥抗凝血作用。

而肝素与糖蛋白结合后的复合物可以进一步增强肝素的抗凝血效应。

研究发现,糖蛋白上的糖基结合肝素后,可以增加肝素与抗凝血因子的结合亲和力,提高抗凝血效果。

肝素与糖蛋白结合还与炎症反应和肿瘤转移等疾病的发生发展密切相关。

研究表明,肝素与糖蛋白结合后的复合物在炎症反应和肿瘤转移过程中发挥重要作用。

肝素与糖蛋白结合可以调节炎症反应的发生和发展,影响炎症细胞的黏附和迁移。

此外,肝素与糖蛋白结合还可以影响肿瘤细胞的黏附和浸润,参与肿瘤转移的调控。

肝素与糖蛋白结合是一种重要的分子相互作用方式,对于细胞信号转导、抗凝血机制以及炎症反应和肿瘤转移等疾病的发生发展具有重要意义。

生物矿化和生物降解的分子机制

生物矿化和生物降解的分子机制

生物矿化和生物降解的分子机制生物矿化和生物降解是两个看似矛盾性质的过程,但是它们在生命科学和生物技术领域都有重要的应用价值。

本文将深入探讨这两个过程的分子机制和应用前景。

一、生物矿化的分子机制生物矿化是指生物体内通过有机分子与无机分子相互作用,形成成骨、成壳等无机结构的过程。

这种过程一般存在于牙齿、骨骼和贝壳等生物体内。

生物矿化的分子机制十分复杂,涉及多个蛋白质、糖蛋白和糖类物质的相互作用。

1. 蛋白质的作用生物矿化的核心是蛋白质的作用。

在牙釉质中,蛋白质负责晶体的生长和定向排列。

而在贝壳中,蛋白质则起到一个模板的作用,使无机物质能够沉积在特定的部位。

在这个过程中,蛋白质性质和结构的变化十分重要。

一些亲水性氨基酸的暴露能够促进无机物质的沉积,而一些疏水性氨基酸的暴露则能够抑制无机物质的沉积。

研究发现,这种性质的变化十分微小,但却能够对晶体的形态和结构产生巨大的影响。

2. 糖蛋白的作用除了蛋白质,糖蛋白也在生物矿化过程中扮演重要角色。

糖蛋白一般存在于骨骼、牙齿和软组织中,它们能够通过糖基化反应,与钙离子、磷酸盐等无机物相结合,促进晶体的生长和形态发生变化。

3. 糖类物质的作用糖类物质也是生物矿化重要的组成部分。

它们能够通过氢键、离子键和范德华力等相互作用,与有机物和无机物发生作用,促进晶体的生长和形态的变化。

例如,葡萄糖、乳糖和唾液中的龙舌兰蛋白等物质,都能够在生物矿化过程中发挥重要的作用。

二、生物降解的分子机制生物降解是指生物体内通过微生物和酶的作用,将有机物质转化成无害物质的过程。

这种过程在生态、环保等方面具有重要意义。

生物降解的分子机制也十分复杂,涉及多个微生物和酶类的相互作用。

1. 微生物的作用植物、动物和微生物是三种借助生物降解过程分解有机物质的动力来源。

微生物发挥消化功能的主要感染因子是微生物本身的生长,可以降解有机物的菌株要比不能降解有机物的菌株多。

例如,土中细菌和真菌有多种代表性的菌种,如发酵菌和细菌等,它们能够将有机物质分解成二氧化碳、水和小量的深色残留物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

糖蛋白的作用含糖的蛋白质,由寡糖链与肽链中的一定氨基酸残基以糖苷键共价连接而成。

其主要生物学功能为细胞或分子的生物识别,如卵子受精时精子需识别卵子细胞膜上相应的糖蛋白。

受体蛋白、肿瘤细胞表面抗原等亦均属糖蛋白。

糖蛋白普遍存在于动物、植物及微生物中,种类繁多,功能广泛。

可按存在方式分为三类:①可溶性糖蛋白,存在于细胞内液、各种体液及腔道腺体分泌的粘液中。

血浆蛋白除白蛋白外皆为糖蛋白。

可溶性糖蛋白包括酶(如核酸酶类、蛋白酶类、糖苷酶类)、肽类激素(如绒毛膜促性腺激素、促黄体激素、促甲状腺素、促红细胞生成素)、抗体、补体、以及某些生长因子、干扰素、抑素、凝集素及毒素等。

②膜结合糖蛋白,其肽链由疏水肽段及亲水肽段组成。

疏水肽段可为一至数个,并通过疏水相互作用嵌入膜脂双层中。

亲水肽段暴露于膜外。

糖链连接在亲水肽段并有严格的方向性。

在质膜表面糖链一律朝外;在细胞内膜一般朝腔面。

膜结合糖蛋白包括酶、受体、凝集素及运载蛋白等。

此类糖蛋白常参与细胞识别,并可作为特定细胞或细胞在特定阶段的表面标志或表面抗原。

③结构糖蛋白,为细胞外基质中的不溶性大分子糖蛋白,如胶原及各种非胶原糖蛋白(纤粘连蛋白、层粘连蛋白等)。

它们的功能不仅仅是作为细胞外基质的结构成分起支持、连接及缓冲作用,更重要的是参与细胞的识别、粘着及迁移,并调控细胞的增殖及分化。

寡糖链通常指由2~10个单糖基借糖苷键连成的聚合体。

糖蛋白的寡糖链多有分枝。

由于单糖的端基碳(异头碳)原子有α、β两种构型,而且单糖分子中存在多个可形成糖苷键的羟基,因此,糖链结构的多样性超过多核苷酸及肽链。

在糖链结构中可以贮存足够的识别信息,从而在分子识别及细胞识别中起决定性作用。

糖蛋白参与的生理功能包括凝血、免疫、分泌、内吞、物质转运、信息传递、神经传导、生长及分化的调节、细胞迁移、细胞归巢、创伤修复及再生等。

糖蛋白的糖链还参与维持其肽链处于有生物活性的天然构象及稳定肽链结构,并赋予整个糖蛋白分子以特定的理化性质(如润滑性、粘弹性、抗热失活、抗蛋白酶水解及抗冻性等)。

糖蛋白与很多疾病如感染、肿瘤、心血管病、肝病、肾病、糖尿病以及某些遗传性疾病等的发生、发展有关。

再者,细胞表面的糖蛋白及糖脂可“脱落”到周围环境或进入血循环,它们可以作为异常的标志为临床诊断提供信息;患某些疾病时体液中的糖蛋白亦常有特异性或强或弱的改变,这可有助于诊断或预后的判断。

糖蛋白还日益介入治疗。

例如,针对特定细胞表面特异性糖结构的抗体可作为导向治疗药物的定向载体。

利用糖类(单糖、寡糖或糖肽)抗感染及抗肿瘤转移也已崭露头角。

生物合成及降解糖蛋白的生物合成就蛋白质部分而言与一般分泌蛋白质相同,在粗面内质网进行。

糖链的生物合成在肽链延长的同时和(或)以后进行。

始于粗面内质网,经滑面内质网,完成于戈尔吉氏体,有的甚至在到达质膜后在那里最终完成。

肽链的糖基化及糖链的延长都在各种糖基转移酶的催化下进行。

糖基转移酶有两个作用物。

一个是活化形式的单糖,作为糖基的供体,另一个是肽链或寡糖链,作为糖基的接受体。

糖基转移酶对供体及接受体皆有严格的特异性。

一种糖苷键由一种酶催化形成。

糖链的结构及糖基排列顺序无模板可循,而是由糖基转移酶的特异性(包括单糖基种类、端基碳构型、糖苷键连接位置及接受体结构)及其作用的先后顺序决定,因此是由基因通过糖基转移酶而间接控制的,属于基因的次级产物。

糖蛋白的降解可从糖链开始,亦可从肽链开始,糖蛋白肽链的降解同样是在各种蛋白水解酶的催化下进行的。

糖链的水解由各种糖苷酶催化。

糖苷酶分为外切及内切糖苷酸两大类。

外切糖苷酶水解糖链非还原末端的糖苷键,每次水解下一个单糖。

这类糖苷酶主要存在于溶酶体中,参与糖蛋白、糖脂及蛋白聚糖的分解代谢。

糖苷酶对于所水解的糖苷键及作用物的糖结构(有的不仅要求一定的单糖,还要求一定的糖链结构)具有严格的特异性。

一条糖链的完全水解是在一系列糖苷酶依次作用下完成的,每种糖苷酶只能水解下来一个特定的单糖。

如果缺少一种糖苷酶,则下一步的糖苷水解被阻断,导致糖链水解不完全,而致分解代谢中间产物在细胞内堆积成为糖累积症。

例如缺乏α-甘露糖苷酶或α-L岩藻糖苷酶可分别引起甘露糖苷或岩藻寡糖、糖肽的堆积。

它们多为先天性酶缺失所造成,属于遗传性疾病。

血浆糖蛋白的降解在肝中进行,其非还原末端唾液酸基直接控制其清除率。

内切糖苷酶可水解糖链中的糖苷键。

常作为工具酶用于糖链结构的研究。

主要存在于微生物及植物中,动物组织中少见。

其特异性十分严格。

除糖蛋白外,透明质酸及细菌壁胞壁酸的降解亦由内切糖苷酶(如透明质酸酶及溶菌酶)催化。

生物学作用生物界种类繁多的糖蛋白执行着千差万别的生物学功能。

如作为酶的糖蛋白催化体内的物质代谢;作为免疫分子的糖蛋白参与免疫过程;作为激素的糖蛋白参与体内生理、生物化学活动的调节等等。

糖蛋白中糖链的生物学作用是研究的热点,许多问题还未阐明。

大致可归纳为直接或间接参加生物学功能两种情况。

直接参与生物学功能方面的作用与细胞或分子的生物识别有关;间接作用则在于维持整个分子的天然构象,保持一定的活性寿期及决定理化特性等。

糖蛋白糖链最独特的生物学作用是参与生物识别。

细胞识别无论对于个体发生还是成体生命活动的维持都具有决定性意义。

例如,同种受精决定于精子表面和卵透明带糖蛋白糖结构的相互识别。

细胞表面糖蛋白还参与早期胚胎发育过程中内细胞团及滋养层的形成及随后组织、器官形成过程中同类细胞在识别基础上所发生的聚集。

胚胎发育需全能细胞进行分化。

通过细胞迁移及生物识别,相同的细胞在一定部位聚集成团,最后发展为特定的器官。

这些过程依赖于特异性的细胞识别及选择性的细胞粘合。

糖蛋白糖链是细胞识别及粘合的分子依据。

在结构多样的糖链中存贮着足够的各种识别信息。

抑制糖蛋白糖链的生物合成则胚胎发育中止。

在胚胎发育的不同阶段及细胞增殖的不同时相细胞表面糖蛋白不断发生改变。

某些细胞表面糖蛋白可以作为不同发育阶段或不同生活状态的标志。

例如,神经细胞粘合分子(N-CAM),是一种存在于细胞表面的质膜糖蛋白,其糖链含有多个唾液酸基。

多唾液酸链随发育而缩短,至成年时期消失。

糖链中唾液酸的这些变化对不同时期细胞间的相互作用有一定调节意义。

N-CAM可能在胚胎发育中对细胞间相互作用具有普遍性重要意义,对神经细胞间的突触联系及神经—肌肉连接的建立更具有特殊重要作用。

在若干恶性肿瘤细胞表面亦发现具有多唾液酸糖链的N-CAM。

细胞归巢在造血、毁血及淋巴细胞再循环中必不可缺。

在血中循环的造血干细胞(来自卵黄囊)需到骨髓中进行增殖、分化;淋巴细胞在血流及淋巴样器官(脾、淋巴结及扁桃体)间保持再循环。

血循中造血干细胞及淋巴细胞的归巢都是通过细胞表面的受体(亦属于凝集素)来认别靶组织中糖链上的糖基而进行。

衰老红细胞“归巢”入脾是由于其表面的带Ⅲ糖蛋白糖链游离末端的唾液酸基大为减少,导致次末端的半乳糖基暴露。

它可与免疫球蛋白G结合,从而可被脾内的吞噬细胞识别并内吞。

至于致病微生物感染寄主细胞亦必须首先粘附于靶细胞。

微生物与靶细胞间的特异性粘合作用不仅可以解释为感染寄主的选择性,而且已有不少证据表明这种特异性粘合是由糖蛋白糖链介导的。

还有一些粘合分子是细胞外的游离成分,由相互作用的细胞产生或由远处的某些细胞产生,分泌至细胞外并运送至细胞间。

这些粘合分子作为桥梁介导细胞间的识别及粘合。

如出血时血小板的聚集是由两种细胞外糖蛋白及其在血小板膜上相应的受体糖蛋白介导的识别及粘合。

这两种糖蛋白是血浆中的血小板反应蛋白及纤维蛋白原。

它们彼此之间亦发生特异性识别及结合,并为其糖结构所介导。

糖链亦参与细胞与细胞外基质的粘着作用。

细胞外基质的主要成分都是含糖的蛋白质,如胶原、非胶原糖蛋白及蛋白聚糖等。

在各种细胞表面则分别存在着特异性结合一定基质成分的受体糖蛋白。

这种结合是有选择性的。

例如,上皮细胞与基膜中的Ⅳ型胶原、层粘连蛋白及硫酸乙酰肝素蛋白聚糖结合;成纤维细胞与Ⅰ或Ⅲ型胶原、纤粘连蛋白结合;软骨细胞与Ⅱ型胶原、软骨粘连蛋白及硫酸软骨素蛋白聚糖结合。

细胞外基质成分对细胞的增殖、分化、形态、代谢及迁移有决定作用。

这对胚胎发育、细胞分化及创伤修复是十分关键的。

例如,造血干细胞只有在适于它们增殖及分化的骨髓基质中才能进行造血过程。

骨髓的体外长期培养亦必须为其提供相应的造血环境。

细胞与细胞外基质之间借助于一定糖结构的结合,在恶性肿瘤细胞的转移过程中亦具有决定性作用。

细胞与其外环境中可溶性糖蛋白(如激素、抑素、干扰素、抗体、生长因子、细胞因子、毒素等等)的作用不但对细胞的增殖、分化、代谢及功能产生深刻影响,而且对维持整个机体内环境的稳定具有重要意义。

已有一些实验证明某些可溶性糖蛋白与细胞的作用由糖链介导。

糖蛋白激素在去除糖链后,则生物学活性丧失。

迄今发现的20种血型体系中的160多种血型抗原完全或主要由糖蛋白及糖脂的寡糖决定。

A型、B型及O型血者的抗原决定簇分别是α-D-N乙酰氨基半乳糖基、α-D半乳糖基及α-L岩藻糖基。

组织相容性抗原亦为糖蛋白。

其抗原特异性与糖链结构有关。

糖链与免疫的关系日益受到重视。

已发现补体系统可在无特异性抗体存在的情况下被一定的糖链结构活化。

不但各种免疫球蛋白都是糖蛋白,其糖链结构对抗原-抗体结合的特异性有一定影响;而且很多免疫介质,如淋巴因子、单核因子、辅助因子、抑制因子、活化因子、趋化因子、毒性因子、干扰素、白细胞介素等及其在免疫细胞表面的受体都是糖蛋白。

不少证据表明糖链参与其相互识别和结合。

干扰素亦与靶细胞表面的糖结构相结合。

凝集素是广泛存在于动物、植物及微生物中的一类蛋白质,它由非免疫途径产生并特异地与一定糖结构相结合。

很多凝集素本身亦为糖蛋白。

各种凝集素识别与结合糖结构的特异性强弱不等。

一定的凝集素可凝集一定种类的细胞,并可选择性地刺激细胞的有丝分裂。

凝集素的上述作用可被特定的单糖或寡糖或糖肽抑制。

细胞表面的糖蛋白或糖脂在体外可被一定的外源性凝集素识别并结合,有人称之为凝集素的受体。

凝集素即通过其多价性及细胞表面受体而引起细胞凝集。

凝集素可存在于体液中及细胞表面。

在各种原核细胞及真核细胞生物中发现的凝集素已多达百余种。

其生物学功能复杂而多样。

但基本作用都是对细胞或游离分子进行识别。

例如,在鼠、兔及人的肝细胞质膜中有识别半乳糖的凝集素(肝凝集素)。

血浆中的蛋白质多为以唾液酸为非还原末端的N糖苷糖蛋白。

去唾液酸后暴露出次末端的半乳糖基,可迅速被肝细胞通过肝凝集素识别而结合,进而引起内吞,从而将去唾液酸血浆糖蛋白摄取,从血中清除并在溶酶体中降解。

以致其半寿期缩短至若干分钟。

严重肝炎、肝硬变及肝癌的组织中缺乏肝凝集素,从而导致血中去唾液酸糖蛋白的堆积。

另外,在肾、肠上皮,甲状腺及骨髓细胞表面亦发现结合半乳糖的凝集素。

相关文档
最新文档