2013运筹学试题及答案

合集下载

《运筹学》试题及答案大全

《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。

2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。

4、在图论中,称无圈的连通图为树。

5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。

⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。

上海海事大学运筹学通论试卷--2013A

上海海事大学运筹学通论试卷--2013A

2
3
000
由于检验数σ1、σ2 大于零,P1、P2 有正分量,进入下一步. 计算得 max{σ1, σ2}= max{2, 3}=3,故选取 x2 为入基变量. 又, θ= min{bi/ai2 | ai2 >0}= min{4, 3}=3. 故选取 x5 为出基变量。进行基变换,得到新单纯形表如下:
1. 使用图解法求解下述线性规划问题,得其最优解是( x1=2, x2=6 )。
max z = 2x1 + 5x2
装 订
⎧x1 ≤ 4
s.t.
⎪⎪⎨⎪32xx12
≤ 12 + 2x2
≤ 18
min w = 4y1 +12 y2 +18y3
⎪⎩x1, x2 ≥ 0
线
s.t. ⎧⎪⎨2y1y2++32y3y3≥≥25
故选取 x3 为出基变量. 进行基变换,得到新单纯表如下:
cj→
CB
XB
b
2
x1
2
0
x4
8
3
x2
3
cj−zj
23 0 0
0
θi
x1 x2 x3 x4
x5
1 0 1 0 −1/2
0 0 −4 1
[2]
4
0 1 0 0 1/4 12
0 0 −2 0 1/4
第 3 页 共 10 页
由于检验数σ5 大于零,进入下一步. 选取 x5 为入基变量. 又,θ= min{bi/ai5 | ai5 >0}= min{4, 12}=4. 故选取 x4 为出基变量. 进行基变换,得到新单纯表如下:
D. 若对偶问题无可行解,则其原问题有无界解。

2012--2013运筹学期末考试试题及答案

2012--2013运筹学期末考试试题及答案

楚大2012---2013上学期经济信息管理及计算机应用系《运筹学》期末考试试题及答案班级: 学号一、单项选择题:1、在下面的数学模型中,属于线性规划模型的为( A )。

⎪⎩⎪⎨⎧≥-≥-+=0Y ,X 1Y X 2.t .s Y X 3S min .B ⎪⎩⎪⎨⎧≥≤+=0Y ,X 3XY .t .s Y X 4S max .A ⎪⎩⎪⎨⎧≥≤-+=0Y ,X 2Y X .t .s Y X S max .C 22⎪⎩⎪⎨⎧≥≥+=0Y ,X 3Y X .t .s XY 2S min .D 2、线性规划问题若有最优解,则一定可以在可行域的 ( A )上达到。

A .顶点B .内点C .外点D .几何点3、在线性规划模型中,没有非负约束的变量称为 ( C )A .多余变量B .松弛变量 C.自由变量 D .人工变量4、若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为( C )。

A.两个B.零个C.无穷多个D.有限多个5、线性规划具有唯一最优解是指( B )A .最优表中存在常数项为零B .最优表中非基变量检验数全部非零C .最优表中存在非基变量的检验数为零D .可行解集合有界6、设线性规划的约束条件为⎪⎩⎪⎨⎧≥=++=++0,,422341421321x x x x x x x x 则基本可行解为( C )。

A .(0, 0, 4, 3)B . (3, 4, 0, 0)C .(2, 0, 1, 0)D . (3, 0, 4, 0)7、若运输问题已求得最优解,此时所求出的检验数一定是全部( D )A 、小于或等于零B .大于零C .小于零D .大于或等于零8、对于m 个发点、n 个收点的运输问题,叙述错误的是( D )A .该问题的系数矩阵有m ×n 列B .该问题的系数矩阵有m+n 行C .该问题的系数矩阵的秩必为m+n-1D .该问题的最优解必唯一9、关于动态规划问题的下列命题中错误的是( A )A 、动态规划分阶段顺序不同,则结果不同B 、状态对决策有影响C 、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D 、动态规划的求解过程都可以用列表形式实现10、若P 为网络G 的一条流量增广链,则P 中所有正向弧都为G 的( D )A.对边B.饱和边C.邻边D.不饱和边一、判断题。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案一、名词解释1、需求:对存储来说,需求就是输出。

最基本的需求模式是确定性的,在这种情况下,某一种货物的未来需求都是已知的。

2、决策活动:决策活动是人们生活中最常见的一种综合活动,是为了达到特定的目标,运用科学的理论和方法,分析主客观条件,提出各种不同的方案,并从中选取最优方案的过程。

3、行动方案:在实际生活和生产活动中,对同一问题,可能出现几种自然情况及几种反感供决策者选择,这几构成了一个决策问题,出现的几种可供选择的方案,称作行动方案(简称方案),记作Ai 。

4、损益值:把各种方案在不同的自然因素影响下所产生的效果的数量,称作损益值(也有人称为益损值,它因效果的含义不同而不同,效果可以是费用的数量,也可以是利润的数量),用符号ija 表示。

5、确定型决策:确定型决策就是指在知道某个自然因素必然发生的前提下所作的决策。

6、风险型决策:风险型决策问题是指决策者根据以往的经验及历史统计资料,可以判明各种自然因素出现的可能性大小(即概率)。

通过自然因素出现的概率来做决策,这样做是需冒一定的风险的,故称风险型决策。

7、期望值法:期望值法就是决策者根据各个方案的期望值大小,来选择最优方案。

如果损益值代表的是损失,则选择期望值最小的方案作为最优方案;如果损益值代表的是收益,则选择期望值最大的作为最优方案。

8、不确定型决策:不确定型决策问题是指决策者对各种自然因素发生的概率是未知的,存在两个或两个以上的自然因素,并且各个自然因素出现的概率是不知道的。

二、选择题1、在实际工作中,企业为了保证生产的连续性和均衡性,需要存储一定数量的物资,对于存储方案,下列说法正确的是( C )A 应尽可能多的存储物资,以零风险保证生产的连续性B 应尽可能少的存储物资,以降低库存造成的浪费C 应从多方面考虑,制定最优的存储方案D 以上说法都错误2、对于第一类存储模型——进货能力无限,不允许缺货,下列哪项不属于起假设前提条件( A ) A 假设每种物品的短缺费忽略不计 B 假设需求是连续,均匀的C 假设当存储降至0时,可以立即得到补充D 假设全部定货量一次供应3、对于第二类存储模型——进货能力有限,不允许缺货,下列哪项不属于起假设前提条件( D )A、需求是连续,均匀的B、进货是连续,均匀的C、当存储降至零时,可以立即得到补充D、每个周期的定货量需要一次性进入存储,一次性满足4、对于同一个目标,决策者“选优”原则不同,导致所选的最优方案的不同,而影响“选优”原则确定的是决策者对各种自然因素出现的可能性的了解程度。

2013运筹学期末复习题1

2013运筹学期末复习题1

运筹学试题及答案填空 1. 线性规划问题MaxZ=C X ;A X =b ,X ≥0(A 为k x l 的矩阵,且l >k )的基的最多个数为___,基的可行解的最多个数为_____.2.指派问题的最优解的性质________________________________3.线性规划问题的所有可行解构成的集合是__________,它们有有限个______________________,线性规划问题的每个基可行解对应可行域的___________,若线性规划问题有最优解,必在______________得到。

4影子价格的经济含义______.在完全市场经济的条件下,当某种资源的市场价格低于影子价格时,企业应_____该资源,而当某种资源的市场价格高于影子价格时,则企业应___该资源,可见影子价格对市场有____作用。

5. 运输问题的产销平衡表中有m 个产地n 个销地,其决策变量的个数有____个,其数值格有____个 答案1:C l k , C l k2设指派问题的效率矩阵为C= n n ij c ⨯)(,若将该矩阵的某一行(或某一列)的各个元素都减去统一常数,得到新的效率矩阵()ij n n B b ⨯=,则以B 为效率矩阵的新的指派问题与原指派问题的最优解相同。

3 凸集,顶点,顶点,顶点4其它条件不变的情况下,单位第i 种资源变化所引起目标函数值的变化量。

买进,卖出。

5 m n ⨯,1m n +-计算 1. 对下列线性规划问题 Max z=2x 1+x 2+3x 3 x 1+ x 2+2x 3 ≤5 s.t. 2x 1+3x 2+4x 3=12x 1, x 2, x 3≥0(1) 写出其对偶问题;(5分)(2) 已知(3,2,0)T 是上述问题的最优解,根据互补松弛理论求出对偶问题的最优解;(10分) 解:(1)(5分)写出其对偶问题; Minw=5y 1+12y 2 s.t. y 1+2y 2≥2 y 1+3y 2≥1 2y 1+4y 2≥3y 1≥0, y 2 无约束(2) (10分)已知(3,2,0)T 是上述问题的最优解,根据互补松弛理论求出对偶问题的最优解; 由于原问题x 1和x 2为正,根据互补松弛理论,有对偶问题取最优解时 (1)、(2)取严格等式,即为y 1+2y2=2y 1+3y 2=1解得y2=-1 y1=4故对偶问题最优解为Y*=(4,-1),w*=82. (15分)运用单纯形法求解下面线性规划问题。

2013《运筹学》考试题及其答案

2013《运筹学》考试题及其答案
oo
T()
15
{10}
oo
11
00
00
6
P( )+Wi
j
10+0
10
+4
10+0
10+0
10+0
T()
15
14
{11}
00
00
7
P( )+Wi
j
11+0
11+0
11+0
11+9
T()
15
{14}
00
20
8
P( )+Wi
j
14+o
14+
1
14+o
T()
{15}
{15}
11
9
P( )+wi
j
15+
4
T()
0
1
0
3/5
1/5
0
6/5
0
X3
0
0
1
1
1
1
0
rj(-z)
0
0
0
1/5
—M+7/5
——M
18
/5
表中所有检验数rj0,根据最优解定理,问题存在唯一的最优解X(3,§,0,0,0,0)t,目标函
5 5
数的最优值maxz43 618。
555
二、试用表上作业法求解下列运输问题的最优解。
'产
B1
B2
B3
B4
初始值
T(
)
{0}
00
00
oo
oo
OO
oo

《运筹学》习题与答案

《运筹学》习题与答案

《运筹学》习题与答案(解答仅供参考)一、名词解释1. 线性规划:线性规划是运筹学的一个重要分支,它主要研究在一系列线性约束条件下,如何使某个线性目标函数达到最大值或最小值的问题。

2. 动态规划:动态规划是一种解决多阶段决策问题的优化方法,通过把原问题分解为相互联系的子问题来求解,对每一个子问题只解一次,并将其结果保存起来以备后续使用,避免了重复计算。

3. 整数规划:整数规划是在线性规划的基础上,要求决策变量取值为整数的一种优化模型,用于解决实际问题中决策变量只能取整数值的情形。

4. 马尔可夫决策过程:马尔可夫决策过程是一种随机环境下的决策模型,其中系统的状态转移具有无后效性(即下一状态的概率分布仅与当前状态有关),通过对每个状态采取不同的策略(行动)以最大化期望收益。

5. 最小费用流问题:最小费用流问题是指在网络流模型中,每条边都有一个容量限制和单位流量的成本,寻找满足所有节点流量平衡的同时使得总成本最小的流方案。

二、填空题1. 运筹学的主要研究对象是系统最优化问题,其核心在于寻求在各种(约束条件)下实现(目标函数)最优的方法。

2. 在运输问题中,供需平衡指的是每个(供应地)的供应量之和等于每个(需求地)的需求量之和。

3. 博弈论中的纳什均衡是指在一个博弈过程中,对于各个参与者来说,当其他所有人都不改变策略时,没有人有动机改变自己的策略,此时的策略组合构成了一个(纳什均衡)。

4. 在网络计划技术中,关键路径是指从开始节点到结束节点的所有路径中,具有最长(总工期)的路径。

5. 对于一个非负矩阵A,如果存在一个非负矩阵B,使得AB=BA=A,则称A为(幂等矩阵)。

三、单项选择题1. 下列哪项不是线性规划的标准形式所具备的特点?(D)A. 目标函数是线性的B. 约束条件是线性的C. 决策变量非负D. 变量系数可以为复数2. 当线性规划问题的一个基解满足所有非基变量的检验数都非正时,那么该基解(C)。

A. 不是可行解B. 是唯一最优解C. 是局部最优解D. 不一定是可行解3. 下列哪种情况适合用动态规划法求解?(B)A. 问题无重叠子问题B. 问题具有最优子结构C. 问题不能分解为多个独立子问题D. 子问题之间不存在关联性4. 在运输问题中,如果某条路线的运输量已经达到了其最大运输能力,我们称这条路线处于(A)状态。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。

答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。

答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。

答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。

答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。

答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。

它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。

2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。

其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。

数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。

最新(整理)《运筹学》期末考试试题及参考答案

最新(整理)《运筹学》期末考试试题及参考答案

(整理)《运筹学》期末考试试题及参考答案------------------------------------------作者xxxx------------------------------------------日期xxxx《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。

2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。

4、在图论中,称 无圈的 连通图为树。

5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料。

do c”中已有,不再重复. 2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为ab cda,最优解为b 点。

由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T∴m in z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解.(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z是产品售后的总利润,则m ax z =70x 1+120x 2s .t 。

运筹学试习题及答案

运筹学试习题及答案

运筹学试习题及答案《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2、图解法适用于含有两个变量的线性规划问题。

3、线性规划问题的可行解是指满足所有约束条件的解。

4、在线性规划问题的基本解中,所有的非基变量等于零。

5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7、线性规划问题有可行解,则必有基可行解。

8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9、满足非负条件的基本解称为基本可行解。

10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13、线性规划问题可分为目标函数求极大值和极小_值两类。

14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。

20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m行解的个数最为_C_。

′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。

2013运筹学答案

2013运筹学答案

《运筹学》参考答案一、(1)首先化标准型:1231234125123452 6.. 4,,,,0MaxZ x x x x x x x s t x x x x x x x x =-++++=⎧⎪-++=⎨⎪≥⎩此时所有的检验数都不大于零,可以得到最优解x 1*=6,x 2*=0,x 3*=0,最优值z *=12。

(2)由(1)中的最优表知1 1 01 1B -⎛⎫=⎪⎝⎭, 16 1 06642 1 14210B λλλλλλ-+++⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭,要使原最优基不变,必有60,100λλ+≥-≥且,即610λ-≤≤。

(3)要使(1)的原最优解不变,必须11130,10,20c c c --∆≤--∆≤--∆≤且,即11c ∆≥- (4)由(1)中的最优表知,对偶问题的最优解为**122,0y y ==。

二、(1) 该问题的对偶问题为(2)设Z =-W ,x 1=x 1’-x 1’’ ,x 2=-x 2’, 则原问题的标准型为三、(1)112311234112351123112345max 2'2''2'42'2''3'5 23'3'''7 3..'''4'6 5','',',,,0W x x x x x x x x x x x x x x s t x x x x x x x x x x =-++---+-=⎧⎪--++=⎪⎨--+=⎪⎪≥⎩123123123123123max 235232342..57640,0,W y y y y y y y y y s t y y y y y y =++++=⎧⎪++≥⎪⎨++≤⎪⎪≥≤⎩无约束V s V 1V 2 V 3V 4 V t (8,6)(7,4)(5,5) (5,5)(10,5) (6,2)(5,2)(3,3)(6,1)(0,+∞)(Vs,2)(V 1,2)(V 4,2)(V 3,2)(2)根据(1),C 12=1,对应的检验数为0,此时有无穷多最优运输方案,另外一个最优解是X=(1,3,0,0,0,0,2,4,4,0,2,0),(1)中的最优解记为X ’,则也是最优解。

运筹学试题及答案

运筹学试题及答案

一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。

2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。

3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X 1≤1 和 X 1≥2 。

5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。

6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。

11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分) MaxZ=3X1+4X 2 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤81,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C 2从4变成5时,σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。

运筹学期末考试试题及答案

运筹学期末考试试题及答案

楚大2012---2013上学期经济信息经管及计算机应用系《运筹学》期末考试试卷及答案班级: 学号一、单项选择题:1、在下面的数学模型中,属于线性规划模型的为( A )。

⎪⎩⎪⎨⎧≥-≥-+=0Y ,X 1Y X 2.t .s Y X 3S min .B ⎪⎩⎪⎨⎧≥≤+=0Y ,X 3XY .t .s Y X 4S max .A ⎪⎩⎪⎨⎧≥≤-+=0Y ,X 2Y X .t .s Y X S max .C 22⎪⎩⎪⎨⎧≥≥+=0Y ,X 3Y X .t .s XY 2S min .D 2、线性规划问题若有最优解,则一定可以在可行域的 (A )上达到。

A .顶点B .内点C .外点D .几何点3、在线性规划模型中,没有非负约束的变量称为 ( C )A .多余变量B .松弛变量 C.自由变量D .人工变量4、若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为( C )。

A.两个B.零个C.无穷多个D.有限多个5、线性规划具有唯一最优解是指( B )A .最优表中存在常数项为零B .最优表中非基变量检验数全部非零C .最优表中存在非基变量的检验数为零D .可行解集合有界6、设线性规划的约束条件为⎪⎩⎪⎨⎧≥=++=++0,,422341421321x x x x x x x x 则基本可行解为( C )。

A .(0, 0, 4, 3)B . (3, 4, 0, 0)C .(2, 0, 1, 0)D . (3, 0, 4, 0)7、若运输问题已求得最优解,此时所求出的检验数一定是全部( D )A 、小于或等于零B .大于零C .小于零D .大于或等于零8、对于m 个发点、n 个收点的运输问题,叙述错误的是( D )A .该问题的系数矩阵有m ×n 列B .该问题的系数矩阵有m+n 行C .该问题的系数矩阵的秩必为m+n-1D .该问题的最优解必唯一9、关于动态规划问题的下列命题中错误的是( A )A 、动态规划分阶段顺序不同,则结果不同B 、状态对决策有影响C 、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D 、动态规划的求解过程都可以用列表形式实现10、若P 为网络G 的一条流量增广链,则P 中所有正向弧都为G 的( D )A .对边B .饱和边C .邻边D .不饱和边一、判断题。

2013《运筹学》考试题及其答案

2013《运筹学》考试题及其答案

2012-2013 学年第 1 学期《运筹学》考试题答案要求 :第一题必做( 50 分),二三四题任选两题(每题各25 分)。

一、考虑下面线性规划问题minz 4x1x23x1x23()14 x13x26()2s.t.2x23()x13x1, x20(1)用图解法求解该问题;(2)写出该问题的标准形式;(3)求出该问题的松弛变量和剩余变量的值;(4)用单纯形法求解。

【解答】(1)图中阴影部分为此线性规划问题的可行域 ,目标函数z 4 x1x2,即 x24x1z 是斜率为 4 的一族平行直线 ,由线性规划的性质知 ,其最值在可行域的顶点取得 ,将直线z4x1 x2沿其法线方向逐渐向上平移,直至A点,A 点的坐标为 ( 3,6),所以 min z 43618 55555此线性规划问题有唯一解x13, x26。

55(2)给等式( 2)左端添加剩余变量x3,给等式(3)左端添加松弛变量x4,则得到该问题的标准型为:maxz 4 x1x20x30x43x1x23,()14x1 3x2x3 6 ,()2s.t.2 x2x43,()x13 x1 , x2 , x3 , x40(3)在上面标准型中令x13, x26,得到剩余变量 x3=0,松弛变量 x4=0。

55(4)先在上面标准型中约束条件(1)、( 2)中分别加入人工变量x5, x6,得到如下数学模型,maxz4x1x20x30x4Mx 5 Mx63x1x2x53,()14x13x2x3x6 6 ,()2s.t.2x2x43,()x13x1 , x2 , x3 , x4 , x5 , x60由此列出单纯形表逐步迭代,用大M 法求解计算结果如下表所示。

C j-4-100- M- Mx jC B X B x1x2x3x4x5x6b i - M x5【3】1001031-M x643- 100163/20x412010033 r j7M-4 4M-1- M000- 9M - 4x111/3001/3013- M x60【5/3】- 10- 4/3126/50x405/301- 1/3026/5 r j(-z)0(5M+1)/3- M0(-7M+4)/30- 4-2M - 4x1101/503/5- 1/53/51/3- 1x201- 3/50- 4/53/56/5-0x400【 1】11100 r j(-z)001/50- M+8/5- M-1/5-18/5- 4x1100- 1/52/503/5- 1x20103/5- 1/506/50x300111- 10r j(-z)000-1/5- M+7/5- M-18/5表中所有检验数 r j0,根据最优解定理,问题存在唯一的最优解36T ,目标函X (, ,0,0,0,0)55数的最优值 maxz43618 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学 院: 专 业: 学 号:
姓 名:
毕节学院考试试卷 ( A )
考试时间: 第 十九 周 星期三 (7 月9 日)
题 号 一 二 三 四 五 六 七 八 九 十 总分
评卷得

一、 单项选择题。

下列每题给出的四个答案中只有一个是正确
的,将表示正确答案的字母写这答题纸上。

(10分, 每小题2分)
1、使用人工变量法求解极大化线性规划问题时,当所有的检验数
0j σ≤,在基变量中仍含有非零的人工变量,表明该线性规划问题
( )
A. 有唯一的最优解;
B. 有无穷多个最优解;
C. 无可行解;
D. 为无界解
2、对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中( )
A .b 列元素不小于零
B .检验数都大于零
C .检验数都不小于零
D .检验数都不大于零
2、单纯形法计算中,如不按最小比列原则选取换出变量,则在下一个解中至少有一个基变量的值为负。

()
3、任何线性规划问题存在并具有惟一的对偶问题。

()
4、若线性规划的原问题有无穷多最优解,则其最偶问题也一定具有无穷多最优解。

()
5、运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。

()
6、如果运输问题的单位运价表的某一行(或某一列)元素再乘上那个一个常数k,最有调运方案将不会发生变化。

()
7、目标规划模型中,应同时包含绝对约束与目标约束。

()
8、线性规划问题是目标规划问题的一种特殊形式。

()
9、指派问题效率矩阵的每个元素都乘上同一常数k,将不影响最优指派方案。

()
三、解答题。

(72分)
1、(20分)用单纯形法求解12
121212
12max 334
26218
0,0
z x x x x x x x x x x =+⎧⎪+≤⎪⎪
-+≤⎨⎪+≤⎪≥≥⎪⎩;并对以下情况作灵敏度分析:
(1)求2c 的变化范围;(2)若右边常数向量变为⎥⎥⎦

⎢⎢⎣⎡=2025b ,分析最优解的
变化。

2、 (15分)已知线性规划问题:
其对偶问题最优解为121.2,0.2y y ==,试根据对偶理论来求出原问题的最优解。

3、 (15分)用表上作业法求下表中给出的运输问题的最优解。

销地
产地




产量
Ⅰ 3 2 7 6 50
Ⅱ 7 5 2 3 60
Ⅲ 2 5 4 5
25
销量
60 40 20 15
4、(12分)求下表所示效率矩阵的指派问题的最小解,
工作
工人
A
B
C
D
E
甲 12 7 9 7 9
乙 8 9 6 6 6
丙 7 17 12 14 9
丁 15 14 6 6 10
戊 14 10 7 10 9
5、(10分)用大M 法求解⎪⎪⎩
⎪⎪⎨
⎧≥≥≥+≥++=0023
35121212
12
1x x x x x x t s x x z ,...min 毕节学院期末考试试卷参考答案及评分标准 ( A 卷 )
课程名称: 运筹学
考试时间: 7月9日 (第 19周 星期 三 )
一、单项选择题:
1-5 CDABD (每题 2 分) 二、判断题:
1-5 √√√√× 6-10 ××√×√ (每题 2 分) 三、解答题: 1、解:
加入人工变量,化问题为标准型式如下:
1234512312412512345max 3300042.6218,,,,0
z x x x x x x x x x x x s t x x x x x x x x =++++++=⎧⎪-++=⎪⎨
++=⎪⎪≥⎩ (3分)
下面用单纯形表进行计算得终表为:
3
3

1 0 2/3 1 0 -1/6
5 0 4/3 0 1 1/6
3
3 1 1/3 0 0 1/6
0 0 0 0 -1/2
(5分)
所以原最优解为 *(3,0,1,5,0)T X = (2分)
(1)设2c 变化∆,将2c 得变化带入最终单纯形表得2c 的变化范围为
21
c ≤;
(5分)
(2)若右边常数向量变为⎥⎥⎦

⎢⎢⎣⎡=2025b ,将变化带入最终单纯形表得:最优基解不变,最
优解的值由(3,0)T 变为(10/3,0)T 。

(5分) 2、解:
(1)该问题的对偶问题为:
12121212
1
212min 20202122..233324,0
w y y y y y y s t y y y y
y y =++≥⎧⎪
+≥⎪⎪+≥⎨⎪+≥⎪⎪≥⎩
①②③④
(5分)
将121.2,0.2y y ==带入约束条件的①②为严格不等式,由互不松弛性得**
12
0,0x x ==,因
为12,0y y ≥ 故有:
**34**34**34232032204,4
x x x x x x +=+===最后求得 (6分)
最优解:()*0,0,4,4T
X = (2分)
目标函数最优值:*28z = (2分) 3、解:
因为销量:3+5+6+4+3=21;产量:9+4+8=21;为产销平衡的运输问题。

(1分) 由最小元素法求初始解:
销地
产地

乙 丙 丁 戊 产量

4 5
9

4
4
Ⅲ 3 1
1 3
8
销量 3 5 4 6 3
(5分)
用位势法检验得:
销地
产地





U

4 5

4
-9
Ⅲ 3 1
1 3 1
V 0 19 5 9 3
(7分) 所有非基变量的检验数都大于零,所以上述即为最优解且该问题有唯一最优解。

此时的总运费:min 45594103112011034150z =⨯+⨯+⨯+⨯+⨯+⨯+⨯=。

(2分) 4、解: 系数矩阵为:
1279798966671712149151466104107109⎡⎤
⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
(3分)
从系数矩阵的每行元素减去该行的最小元素,得:
50202 23000 010572 98004 06365⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
经变换之后最后得到矩阵:
70202 43000 08350 118004 04143⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
相应的解矩阵:
01000
00010
00001
00100
10000
⎡⎤
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎣⎦
(13分)
由解矩阵得最有指派方案:甲—B,乙—D,丙—E,丁—C,戊—A
或者甲—B,乙—C,丙—E,丁—D,戊—A (2分)
所需总时间为:Minz=32 (2分)
5、解:将问题标准后,构造辅助为:

56
,x x为初始基变量,列单纯形表计算如下:
1 1.500M M

0313-1010
32110-101
1-2M
1.5-4
M
M M00 011/31-1/301/30 012/301/3-1-1/31
0.5-2M
/30
0.5-M/
3
M
4M/3-0
.5
1/
2
01-1/21/21/2-1/2 3
3/
2
101/2-3/2-1/23/2
001/43/4M-1/4
M-3/
4由于所有系数都为正,所以此为最优解,()
3/21/20000
x*=
最优目标函数值为:9/4
z*=。

2020-2-8。

相关文档
最新文档