(精心整理)高三数学复习二次函数

合集下载

完整版)二次函数知识点复习

完整版)二次函数知识点复习

完整版)二次函数知识点复习二次函数知识点一、二次函数概念:二次函数是形如y=ax²+bx+c(a≠0)的函数。

需要强调的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。

二次函数的定义域是全体实数。

二、二次函数的基本形式1.二次函数基本形式:y=ax²的性质:a的绝对值越大,抛物线的开口越小。

a的符号决定开口方向,顶点坐标为(0,0),对称轴为y轴。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值。

a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值。

2.y=ax²+c的性质:上加下减。

a的符号决定开口方向,顶点坐标为(0,c),对称轴为y轴。

性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值c。

a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值c。

3.y=a(x-h)²的性质:左加右减。

a的符号决定开口方向,顶点坐标为(h,0),对称轴为x=h。

性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值。

ah时,y减小;当x<h时,y增大;当x=h时,y有最大值。

4.y=a(x-h)²+k的性质:a的符号决定开口方向,顶点坐标为(h,k),对称轴为x=h。

性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值k。

ah时,y减小;当x<h时,y增大;当x=h时,y有最大值k。

三、二次函数图象的平移平移步骤:方法一:将抛物线解析式转化成顶点式y=a(x-h)²+k,确定其顶点坐标(h,k),具体平移方法如下:保持抛物线y=ax²的形状不变,将其顶点平移到(h,k)处,向上(k>0)或向下(k<0)平移|k|个单位。

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。

其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。

二、二次函数的图像二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

抛物线的对称轴是直线 x = b / 2a 。

抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。

三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。

函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。

2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。

函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。

五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。

向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。

向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。

六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。

高中数学二次函数知识点总结

高中数学二次函数知识点总结

高中数学二次函数知识点总结二次函数是高中数学中的重要内容之一,本文将对二次函数的知识点进行总结和概述。

一、基本概念1. 二次函数的标准形式是 $f(x) = ax^2 + bx + c$,其中 $a$、$b$、$c$ 是实数,$a \neq 0$。

2. 二次函数的图像是抛物线,开口方向由 $a$ 的符号决定。

正值 $a$ 的函数开口向上,负值 $a$ 的函数开口向下。

3. 二次函数的顶点坐标为 $(-\frac{b}{2a}, f(-\frac{b}{2a}))$。

4. 零点是指函数取值为 $0$ 的横坐标,可以通过求解二次方程$ax^2 +bx + c = 0$ 来确定。

二、性质和特点1. 对称轴是指二次函数图像的对称轴,由顶点确定。

2. 函数的奇偶性由系数 $a$ 的奇偶性确定。

奇函数关于原点对称,偶函数关于 $y$ 轴对称。

3. 二次函数的最值由 $a$ 的符号决定。

对于开口向上的函数,最小值是 $f(-\frac{b}{2a})$;对于开口向下的函数,最大值是 $f(-\frac{b}{2a})$。

三、变形与图像的平移、翻折1. 二次函数的变形包括对 $a$、$b$、$c$ 进行系数的调整。

2. 平移:对函数图像进行上下平移或左右平移。

水平平移$h$ 个单位:$f(x) \to f(x - h)$;垂直平移 $k$ 个单位:$f(x) \to f(x) + k$。

3. 翻折:对函数图像进行关于 $x$ 轴、$y$ 轴或原点的翻折。

四、相关定理和公式1. 零点定理:二次函数有 $0$、$1$ 或 $2$ 个零点,取决于判别式的值。

判别式为 $b^2 - 4ac$。

2. 平方差公式:$(a + b)^2 = a^2 + 2ab + b^2$,$(a - b)^2 = a^2 - 2ab + b^2$。

3. 配方法解二次方程:当判别式大于等于 $0$ 时,可以使用配方法解二次方程。

4. 根与系数的关系式:设 $x_1$ 和 $x_2$ 是二次函数的两个根,则有 $x_1 + x_2 = -\frac{b}{a}$ 和 $x_1x_2 = \frac{c}{a}$。

二次函数知识点高三

二次函数知识点高三

二次函数知识点高三一、概念和基本形式二次函数是指具有形如y = ax^2 + bx + c的函数,其中a、b、c 为常数,且a不等于0。

其中,x为自变量,y为因变量。

二次函数的图像为抛物线。

二、顶点坐标和轴对称性质1. 顶点坐标:二次函数的图像在平面直角坐标系中的顶点坐标为(h,k),其中h为抛物线的对称轴的横坐标,k为抛物线的最低点(或最高点)的纵坐标。

2. 轴对称性质:二次函数的图像关于抛物线的对称轴对称。

三、开口方向和开口大小1. 开口方向:由二次函数的系数a的取值决定。

- 当a > 0时,抛物线开口向上;- 当a < 0时,抛物线开口向下。

2. 开口大小:由二次函数的系数a的绝对值决定。

- 当|a| > 1时,抛物线开口较为狭窄;- 当0 < |a| < 1时,抛物线开口较为宽阔;- 当|a| = 1时,抛物线为特殊情况,开口方向上等于1。

四、零点(根)和交点1. 零点(根):二次函数零点指的是使得函数值为0的自变量值,即方程ax^2 + bx + c = 0的解。

- 若方程有两个不同实数解,则二次函数与x轴有两个不同交点;- 若方程有两个相等实数解,则二次函数与x轴有一个重复交点;- 若方程无实数解,则二次函数与x轴没有交点。

2. 交点:二次函数与y轴的交点为(0,c)。

五、对称轴和焦点1. 对称轴:二次函数的对称轴是通过顶点的垂直线,对称轴方程为x = h。

2. 焦点:二次函数的焦点是抛物线的最低点(或最高点),焦点坐标为(h,k + 1/4a)。

六、求解二次函数图像与其他函数的交点1. 与直线的交点:将二次函数与直线的方程相等,解方程即可求得交点的横坐标,进而带入二次函数中得到纵坐标。

2. 与其他二次函数的交点:将两个二次函数的方程相等,解方程即可求得交点的横坐标,进而带入任意一个二次函数中得到纵坐标。

七、二次函数的应用1. 建模问题:二次函数可以用于对现实生活中的一些问题进行建模,如抛射问题、物体运动轨迹的描述等。

高三数学复习(理):第4讲 二次函数与幂函数

高三数学复习(理):第4讲 二次函数与幂函数

第4讲 二次函数与幂函数[学生用书P23]1.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞) (-∞,+∞)值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞⎝⎛⎦⎥⎤-∞,4ac -b 24a 单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减 对称性 函数的图象关于x =-b2a 对称常用结论一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”;(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0且Δ<0”.2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)五种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数y=2x 12是幂函数.()(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(3)当n<0时,幂函数y=x n是定义域上的减函数.()(4)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.()(5)二次函数y=ax2+bx+c,x∈R不可能是偶函数.()(6)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.()答案:(1)×(2)√(3)×(4)×(5)×(6)√二、易错纠偏常见误区|K(1)二次函数图象特征把握不准; (2)二次函数单调性规律掌握不到位;(3)忽视对二次函数的二次项系数的讨论出错; (4)对幂函数的概念理解不到位.1.如图,若a <0,b >0,则函数y =ax 2+bx 的大致图象是________.(填序号)解析:由函数的解析式可知,图象过点(0,0),故④不正确.又a <0,b >0,所以二次函数图象的对称轴为x =-b2a >0,故③正确.答案:③2.若函数y =mx 2+x +2在[3,+∞)上是减函数,则m 的取值范围是________.解析:因为函数y =mx 2+x +2在[3,+∞)上是减函数, 所以⎩⎪⎨⎪⎧m <0,-12m ≤3,即m ≤-16. 答案:⎝ ⎛⎦⎥⎤-∞,-163.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________. 解析:因为函数f (x )=ax 2+x +5的图象在x 轴上方,所以⎩⎪⎨⎪⎧a >0,Δ=12-20a <0,解得a >120.答案:⎝ ⎛⎭⎪⎫120,+∞4.当x ∈(0,1)时,函数y =x m 的图象在直线y =x 的上方,则m 的取值范围是________.答案:(-∞,1)[学生用书P24]幂函数的图象及性质(自主练透)1.幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数解析:选C.设幂函数f (x )=x α,代入点(3,33),得33=3α,解得α=13,所以f (x )=x 13,可知函数为奇函数,在(0,+∞)上单调递增.2.若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<mC .-1<m <0<nD .-1<n <0<m <1解析:选D.幂函数y =x α,当α>0时,y =x α在(0,+∞)上为增函数,且0<α<1时,图象上凸,所以0<m <1;当α<0时,y =x α在(0,+∞)上为减函数,不妨令x =2,根据图象可得2-1<2n ,所以-1<n <0,综上所述,选D.3.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c解析:选D.因为y =x 23在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫1223>b =⎝ ⎛⎭⎪⎫1523,因为y =⎝ ⎛⎭⎪⎫12x是减函数,所以a =⎝ ⎛⎭⎪⎫1223<c =⎝ ⎛⎭⎪⎫1213,所以b <a <c .4.若(a +1)12<(3-2a )12,则实数a 的取值范围是________.解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎢⎡⎭⎪⎫-1,23(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.二次函数的解析式(师生共研)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 方法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 方法二:(利用顶点式) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8, 即4a (-2a -1)-a 24a =8.解得a =-4,所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R .都有f (1+x )=f (1-x )成立,则f (x )的解析式为____________.解析:由f (0)=3,得c =3, 又f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称, 所以b2=1,所以b =2, 所以f (x )=x 2-2x +3. 答案:f (x )=x 2-2x +32.已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________________.解析:设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0),方程a ⎝ ⎛⎭⎪⎫x +322+49=0的两个根分别为x1,x2,则|x1-x2|=2-49a=7,所以a=-4,所以f(x)=-4x2-12x+40.答案:f(x)=-4x2-12x+40二次函数的图象与性质(多维探究)角度一通过图象识别二次函数如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的结论是()A.②④B.①④C.②③D.①③【解析】因为二次函数的图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-b2a=-1,2a-b=0,②错误;结合图象,当x =-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.【答案】 B确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向.二是看对称轴和最值,它确定二次函数图象的具体位置.三是看函数图象上的一些特殊点,如函数图象与y轴的交点、与x轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.角度二 二次函数的单调性函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是单调递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a 2a ,由f (x )在[-1,+∞)上单调递减知⎩⎨⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0]【迁移探究】 (变条件)若函数f (x )=ax 2+(a -3)x +1的单调递减区间是[-1,+∞),求a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调递减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.对于二次函数的单调性,关键是确定其图象的开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.角度三 二次函数的最值问题设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 【解】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.角度四 一元二次不等式恒成立问题(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________.(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为____________.【解析】 (1)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.(2)由题意得x 2+x +1>k 在区间[-3,-1]上恒成立.设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.所以g (x )min =g (-1)=1.所以k <1.故k 的取值范围为(-∞,1).【答案】 (1)⎝ ⎛⎭⎪⎫-22,0 (2)(-∞,1)由不等式恒成立求参数取值范围一般有两个解题思路:一是分离参数,二是不分离参数.两种思路都是将问题归结为求函数的最值,若不分离参数,则一般需要对参数进行分类讨论求解;若分离参数,则a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .1.已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D.A 项,因为a <0,-b 2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错.B 项,因为a <0,-b 2a >0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错.C 项,因为a >0,-b 2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b 2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D.2.函数f (x )=ax 2-2x +3在区间[1,3]上为增函数的充要条件是( )A .a =0B .a <0C .0<a ≤13D .a ≥1解析:选D.当a =0时,f (x )为减函数,不符合题意;当a ≠0时,函数f (x )=ax 2-2x +3图象的对称轴为x =1a ,要使f (x )在区间[1,3]上为增函数,则⎩⎪⎨⎪⎧a <0,1a≥3或⎩⎪⎨⎪⎧a >0,1a≤1,解得a ≥1.故选D. 3.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.解析:2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,成立;当x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16, 因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 答案:⎝ ⎛⎭⎪⎫-∞,12[学生用书P26]思想方法系列4 分类讨论思想在二次函数问题中的应用已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值.【解】 (1)当a =0时,f (x )=-2x 在[0,1]上单调递减,所以f (x )min =f (1)=-2;(2)当a >0时,f (x )=ax 2-2x 的图象开口向上且对称轴为x =1a .①当0<1a ≤1,即a ≥1时, f (x )=ax 2-2x 的对称轴在(0,1]内,所以f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,1上单调递增. 所以f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a ; ②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,所以f (x )在[0,1]上单调递减.所以f (x )min =f (1)=a -2;(3)当a <0时,f (x )=ax 2-2x 的图象开口向下且对称轴x =1a <0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上单调递减,所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1且a ≠0,-2,a =0,-1a ,a ≥1.二次函数是单峰函数(在定义域上只有一个最值点的函数),x =-b 2a 为其最值点的横坐标,在其两侧二次函数具有相反的单调性,当已知二次函数在某区间上的最值求参数时,要根据对称轴与已知区间的位置关系进行分类讨论确定各种情况的最值,建立方程求解参数.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解:f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.[学生用书P281(单独成册)][A 级 基础练]1.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( )A .-1B .0C .1 D.-2解析:选D.函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.2.设函数f (x )=x 23,若f (a )>f (b ),则( )A .a 2>b 2B .a 2<b 2C .a <bD .a >b解析:选A.函数f (x )=x 23=(x 2)13,令t =x 2,易知y =t 13,在第一象限为单调递增函数.又f (a )>f (b ),所以a 2>b 2.故选A.3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一直角坐标系中的图象大致是( )解析:选C.若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b 2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0解析:选A.由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b 2a =2,所以4a +b =0,又f (0)>f (1),f (4)>f (1),所以f (x )先减后增,于是a >0,故选A.5.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( )A .[0,4]B .⎣⎢⎡⎦⎥⎤32,4 C.⎣⎢⎡⎭⎪⎫32,+∞ D.⎣⎢⎡⎦⎥⎤32,3 解析:选D.二次函数图象的对称轴为x =32,且f ⎝ ⎛⎭⎪⎫32=-254,f (3)=f (0)=-4,结合函数图象(如图所示)可得m ∈⎣⎢⎡⎦⎥⎤32,3.6.已知函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上递减,则实数m=________.解析:根据幂函数的定义和性质,得m2-m-1=1.解得m=2或m=-1,当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,所以m=2.答案:27.已知二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3),则它的解析式为________.解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),所以3=9a,即a=13.所以y=13(x-3)2=13x2-2x+3.答案:y=13x2-2x+38.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是________.解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x=2+x+2-x2=2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.答案:[0,4]9.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解:(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],对称轴x=-32∈[-2,3],所以f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15,所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,所以-2a -1=1,即a =-1满足题意.综上可知,a =-13或a =-1.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +1(a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).[B 级 综合练]11.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a 2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;③当-a 2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关.故选B.12.已知函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系是( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与x 的值无关解析:选C.由题知二次函数f (x )的图象开口向下,图象的对称轴为x =14,因为x 1+x 2=0,所以直线x =x 1,x =x 2关于直线x =0对称,由x 1<x 2,结合二次函数的图象可知f (x 1)<f (x 2).13.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________.解析:因为函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1或x 0=m -1.所以必有-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2).答案:(0,2)14.已知幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增.(1)求m 的值及f (x )的解析式;(2)若函数g (x )=-3f 2(x )+2ax +1-a 在[0,2]上的最大值为3,求实数a的值.解:(1)幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增,故⎩⎪⎨⎪⎧(m -1)2=1,m 2-4m +3>0,解得m =0,故f (x )=x 3. (2)由f (x )=x 3,得g (x )=-3f (x )2+2ax +1-a =-x 2+2ax +1-a , 函数图象为开口方向向下的抛物线,对称轴为x =a .因为在[0,2]上的最大值为3,所以①当a ≥2时,g (x )在[0,2]上单调递增,故g (x )max =g (2)=3a -3=3,解得a =2.②当a ≤0时,g (x )在[0,2]上单调递减,故g (x )max =g (0)=1-a =3,解得a =-2.③当0<a <2时,g (x )在[0,a ]上单调递增,在[a ,2]上单调递减,故g (x )max =g (a )=a 2+1-a =3,解得a =-1(舍去)或a =2(舍去).综上所述,a =±2.[C 级 提升练]15.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b 2a =-1,解得a =1,b =2,所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b ≤0. 故b 的取值范围是[-2,0].。

高三数学知识点总结9:二次函数和幂函数

高三数学知识点总结9:二次函数和幂函数

(十一)二次函数一.二次函数解析式(1)一般式:).0()(2≠++=a c bx ax x f(2)顶点式:若二次函数的顶点坐标为),,(k h 则其解析式).0()()(2≠+-=a k h x a x f(3)交点式:若二次函数的图象与x 轴的交点为),0,(),0,(21x x 则),)(()(21x x x x a x f --= .0≠a二.二次函数的对称轴(1)对于二次函数)(x f y =的定义域内有21,x x 满足),()(21x f x f =则二次函数的对称轴为.221x x x += (2)对于一般函数)(x f y =对定义域内所有,x 都有)()(x a f x a f -=+成立,那么函数 )(x f y =图像的对称轴方程为:a x =.三.二次函数)0(2≠++=a c bx ax y 在],[n m 上的最值(1)0>a ① 最小值讨论三种情况 1.)(2min m f y m a b =≤-,;2.)2(2min a b f y n a b m -=<-<,;3.)(2min n f y n ab =≥-,. ② 最大值讨论两种情况 1.)(,22max n f y n m a b =+≤-;2.)(22max m f y n m a b =+>-,. (2)0<a ① 最大值讨论三种情况 1.)(2max m f y m a b =≤-,;2.)2(2max a b f y n a b m -=<-<,;3.)(,2max n f y n ab =≥-. ② 最小值讨论两种情况 1.)(,22min n f y n m a b =+≤-;2.)(22min m f y n m a b =+>-,. 四.三个二次的关系一元二次方程的根=一元二次函数的零点=一元二次不等式解集的端点.五.一元二次方程)0(02≠=++a c bx ax 的实根分布(1)数的角度:① 两实根异号等价于0<a c ;② 有两个正根等价于.0,0,0>>-≥∆a c a b ;③ 有两个负根等价于.0,0,0><-≥∆ac a b (2)形的角度:画出满足要求的图像,用“内有无,内无有”(开口内有端点则不需要考虑对称轴和,∆开口内无端点则需要考虑对称轴和.∆)。

二次函数高三知识点

二次函数高三知识点

二次函数高三知识点二次函数是高中数学中的一个重要知识点,也是高三学习中会详细探讨的内容之一。

本文将就二次函数的定义、图像特征、性质以及应用等方面进行详细介绍。

一、定义二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a ≠ 0。

其中,a称为二次函数的二次项系数,b为一次项系数,c为常数项。

二次函数的定义域为全体实数。

二、图像特征1. 开口方向:二次函数的开口方向由二次项系数a的正负决定。

若a > 0,则图像开口向上;若a < 0,则图像开口向下。

2. 顶点坐标:二次函数的顶点坐标可通过平移法或公式法求得。

公式法给出的顶点坐标为:(h, k),其中h = -b/(2a),k = f(h)。

3. 对称轴:对称轴是二次函数图像的一条对称线。

对称轴的方程为x = h,其中h为顶点的横坐标。

4. 最值:若二次函数开口向上,则最值为最小值,即在顶点处取得;若二次函数开口向下,则最值为最大值,即在顶点处取得。

三、性质1. 单调性:二次函数的单调性与二次项系数a的正负有关。

若a > 0,则函数在对称轴两侧递增;若a < 0,则函数在对称轴两侧递减。

2. 零点与方程解:二次函数的零点为使得f(x) = 0的x值。

可以通过因式分解、配方法或求根公式等方法求解二次方程。

对于一元二次方程ax^2 + bx + c = 0,判别式Δ = b^2 - 4ac可用于判断方程的解的情况。

四、应用1. 最值问题:二次函数的最值常在实际问题中得到应用,如求解最大面积、最短时间等问题。

2. 抛物线运动:抛体的运动轨迹往往满足二次函数的特点,通过二次函数可以分析抛体的运动规律。

3. 物体抛射问题:物体从一定高度抛射出去后,其高度随时间变化的关系常用二次函数来表示。

总结:本文介绍了二次函数的定义、图像特征、性质以及应用等知识点。

二次函数在高三阶段的数学学习中占有较为重要的地位,掌握好这些知识点对于进一步拓展数学理解和解题能力非常有帮助,希望本文能对高三学生的学习有所帮助。

二次函数复习讲义

二次函数复习讲义

二次函数复习讲义一、基本概念1. 二次函数的定义二次函数是指一个变量的二次多项式方程所定义的函数。

其一般形式可表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。

2. 二次函数的图像二次函数的图像是一条开口向上或向下的抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标为(-b/2a, f(-b/2a))。

3. 二次函数的对称轴和顶点二次函数的对称轴是与抛物线对称的直线,由x = -b/2a表示。

抛物线的顶点坐标即为对称轴的交点。

二、性质与变换1. 平移变换二次函数可通过平移变换进行移动。

设二次函数为f(x),平移的规则如下:a)水平平移:f(x + h)表示将抛物线沿x轴正方向移动h个单位;b)垂直平移:f(x) + k将抛物线沿y轴正方向移动k个单位。

2. 拉伸与压缩变换二次函数可通过拉伸或压缩变换进行缩放。

设二次函数为f(x),变换的规则如下:a)水平拉伸或压缩:f(mx)表示将抛物线的横坐标压缩到原来的1/m倍;b)垂直拉伸或压缩:m*f(x)表示将抛物线的纵坐标拉伸到原来的m 倍。

3. 顶点形式与标准形式的转换二次函数可以通过顶点形式和标准形式之间的转换来说明抛物线的性质。

顶点形式可表示为:f(x) = a(x - h)^2 + k其中,(h, k)为抛物线的顶点坐标。

标准形式可表示为:f(x) = ax^2 + bx + c其中,(h, k)为对称轴的交点。

三、特殊二次函数1. 平方函数平方函数是一种特殊的二次函数,其形式为:f(x) = x^2平方函数的图像是一条开口向上的抛物线,其顶点在(0, 0)处。

2. 平移后的二次函数对于二次函数f(x) = ax^2 + bx + c,进行平移变换可以得到新的二次函数g(x) = a(x - h)^2 + k。

3. 开口向上与开口向下的二次函数当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

高三数学一轮复习二次函数常用结论及考点归纳

高三数学一轮复习二次函数常用结论及考点归纳

高三数学一轮复习二次函数常用结论及考点归纳二次函数一、基础知识1.二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0);顶点式:f(x)=a(x-h)2+k(a≠0);两根式:f(x)=a(x-x1)(x-x2)(a≠0).2.二次函数的图象与性质二次函数系数的特征(1)二次函数y=ax2+bx+c(a≠0)中,系数a的正负决定图象的开口方向及开口大小;(2)-的值决定图象对称轴的位置;(3)c的取值决定图象与y轴的交点;(4)b2-4ac的正负决定图象与x轴的交点个数.2.已知二次函数f(x)的图象经过点(4,3),它在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则函数的解析式f(x)=____________.解析:∵f(2-x)=f(2+x)对x∈R恒成立,∴f(x)的对称轴为x=2.又∵f(x)的图象被x轴截得的线段长为2,∴f(x)=0的两根为1和3.设f(x)的解析式为f(x)=a(x-1)(x-3)(a≠0).又∵f(x)的图象经过点(4,3),∴3a=3,a=1.∴所求f(x)的解析式为f(x)=(x-1)(x-3),即f(x)=x2-4x+3.答案:x2-4x+3[解题技法]1.二次函数最值问题的类型及解题思路(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动.(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三点”是指区间两个端点和中点,“一轴”指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想解决问题.2.二次函数单调性问题的求解策略(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.。

二次函数知识点总结(详细)

二次函数知识点总结(详细)

2.已知二次函数 的图象如图所示, 有以下结论: ① ;② ;③ ;④ ;⑤ 其中所有正确结论的序号是( ) A. ①②B. ①③④C. ①②③⑤D. ①②③④⑤3.二次函数 的图象如图所示, 则下列关系式中错误的是( ) A. a <0 B. c >0 C. >0 4、D. >0图12为二次函数 的图象, 给出下列说法:① ;②方程 的根为 ;③ ;④当 时, y 随x 值的增大而增大;⑤当 时, . 其中, 正确的说法有 .(请写出所有正确说法的序号)5.已知=次函数y =ax +bx+c 的图象如图. 则下列5个代数式: ac, a+b+c, 4a -2b+c, 2a+b, 2a -b 中, 其值大于0的个数为( ) A. 2B 3C 、4D 、5四、二次函数解析式的确定 例4.求二次函数解析式:(1)抛物线过(0, 2), (1, 1), (3, 5);(2)顶点M (-1, 2), 且过N (2, 1);(3)已知抛物线过A (1, 0)和B (4, 0)两点, 交y 轴于C 点且BC =5, 求该二次函数的解析式。

(1) 练习: 根据下列条件求关于x 的二次函数的解析式 当x=3时, y 最小值=-1, 且图象过(0, 7)图象过点(0, -2)(1, 2)且对称轴为直线x=图象经过(0, 1)(1, 0)(3, 0)五、二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系)11 1 Oxy已知抛物线y=x2-2x-8,(1)求证: 该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B, 且它的顶点为P, 求△ABP的面积。

2、1.二次函数y=x2-2x-3图象与x轴交点之间的距离为如图所示, 二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C,则△ABC的面积为( )A.6B.4C.3D.13.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方, 则m 的取值范围是六、直线与二次函数的问题例6 已知: 二次函数为y=x2-x+m, (1)写出它的图像的开口方向, 对称轴及顶点坐标;(2)m为何值时, 顶点在x轴上方, (3)若抛物线与y轴交于A, 过A作AB∥x轴交抛物线于另一点B, 当S△AOB=4时, 求此二次函数的解析式.1.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。

高中数学中的二次函数知识点总结

高中数学中的二次函数知识点总结

高中数学中的二次函数知识点总结二次函数是高中数学中重要且常见的内容之一。

它的形式可以用一般式和顶点式表示,具有许多特性和性质。

下面将对二次函数的基本定义、图像特征、方程解法以及应用等知识点进行总结。

一、基本定义二次函数的一般式表示为:y = ax^2 + bx + c,其中a、b、c为常数,而a不等于0。

我们称y = ax^2 + bx + c为二次函数的标准形式。

在这个形式中,二次项系数a决定了函数的凹凸性质,常数项c则是函数图像与y轴的纵截距。

二、图像特征1. 抛物线的开口方向:- 当a > 0时,抛物线开口向上,形状类似于一个U型;- 当a < 0时,抛物线开口向下,形状类似于一个倒置的U型。

2. 顶点坐标:二次函数的顶点坐标可以通过顶点公式(-b/2a, f(-b/2a))求得,其中f(x)表示二次函数的值。

3. 对称轴:对称轴是垂直于x轴的一条直线,它通过二次函数的顶点。

对称轴的方程为x = -b/2a。

4. 零点:二次函数与x轴的交点称为零点或根。

求二次函数的零点可以通过解二次方程ax^2 + bx + c = 0来实现。

使用配方法、求根公式或图像法等方法,可以得到二次函数的零点。

三、方程解法解二次方程 ax^2 + bx + c = 0 通常有以下三种方法:1. 配方法:当二次方程的系数较为复杂时,可以使用配方法将其化简为完全平方的形式,进而求解方程。

2. 求根公式:对于一般的二次方程ax^2 + bx + c = 0,可以使用求根公式x = (-b ± √(b^2 - 4ac))/(2a)来求解。

3. 利用图像法:通过绘制二次函数的图像,可以大致估算出它的零点的位置。

四、应用二次函数在实际生活中有广泛的应用,例如:1. 物体运动的模拟:二次函数可以模拟抛物线形状的物体运动,如抛体运动的轨迹、炮弹的飞行轨迹等。

2. 经济学和金融学中的应用:二次函数可以描述成本、利润、市场需求等经济学和金融学中的概念。

完整版)二次函数公式汇总

完整版)二次函数公式汇总

完整版)二次函数公式汇总二次函数是高中数学中的重要章节,它涉及到函数、方程、图像等多个概念。

本文将从二次函数公式的定义、性质、图像和应用等方面进行详细介绍。

一、二次函数公式的定义二次函数是指由一元二次方程所表示的函数。

一元二次方程的一般形式为:f(x) = ax² + bx + c其中a、b、c为常数,且a≠0。

二、二次函数公式的性质1.首先,二次函数的图像是一个抛物线,开口方向由二次项系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2.二次函数的对称轴与y轴平行,对称轴的方程为x=-b/2a。

3.二次函数的顶点是抛物线的最高点或最低点,顶点坐标为(-b/2a,f(-b/2a)),即对称轴上的点。

4.二次函数的值域依赖于抛物线的开口方向。

当a>0时,值域为(-∞,f(-b/2a)];当a<0时,值域为[f(-b/2a),+∞)。

三、二次函数的图像二次函数的图像是一个平面上的曲线,也就是抛物线。

根据二次函数的性质,我们可以通过以下步骤来画出二次函数的图像:1.确定抛物线的开口方向。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2.找出对称轴的方程x=-b/2a,并绘制出对称轴。

3.找出顶点坐标(-b/2a,f(-b/2a)),并绘制出顶点。

4.求出两个非顶点的点,可以选择求解方程f(x)=0,或者求出x=-b/2a的两侧点,然后根据二次函数的性质绘制出这两个点。

5.通过连接各点,得到完整的二次函数图像。

四、二次函数的应用二次函数在现实生活中有广泛的应用,以下是一些常见的应用场景:1.抛物线轨道模型:比如炮弹抛射、物体抛掷等问题,可以通过二次函数来描述物体的轨迹。

2.行程时间模型:比如汽车行驶、火车行驶等问题,可以通过二次函数来描述行驶的距离与时间的关系。

3.成本收益模型:比如生产成本、销售收益等问题,可以通过二次函数来描述成本与收益的关系,从而找到最大利润或最小成本的情况。

二次函数知识点总结大全

二次函数知识点总结大全

二次函数知识点总结大全二次函数是高中数学中的重要内容之一,掌握了二次函数的相关知识,能够解决很多与实际问题相关的数学计算。

下面是二次函数的知识点总结。

一、基本概念1. 二次函数的定义:一个二次函数是指形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数,且a表示二次项的系数。

2.二次函数的图像:二次函数的图像是一个开口朝上或朝下的抛物线。

3.二次函数的顶点:二次函数的图像的最高点或最低点称为顶点,记为(Vx,Vy)。

4.二次函数的轴对称性:二次函数的图像关于顶点所在的直线对称。

5.二次函数的零点:二次函数的图像与x轴交点的横坐标称为零点。

6.二次函数的平移:二次函数的图像在平面上的平移。

二、二次函数的图像1.抛物线开口的方向:当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

2. 求顶点:对于形如y=ax²+bx+c的二次函数,顶点坐标为(Vx, Vy),其中Vx=-b/2a,Vy=f(Vx)。

3.确定抛物线的图像:已知顶点和另一点,可以确定一个抛物线的图像。

4.求零点:二次函数的零点可以通过解一元二次方程求得。

三、二次函数的性质1. 平移性质:对于二次函数y=ax²+bx+c,平移后的函数是y=a(x-h)²+k,其中(h,k)为平移后的抛物线的顶点。

2.对称性质:二次函数的图像关于顶点对称。

3.零点性质:一个二次函数最多有两个零点,可以通过求解一元二次方程求得。

4.范围性质:对于抛物线开口朝上的二次函数,其值域为[y,+∞);对于抛物线开口朝下的二次函数,其值域为(-∞,y]。

四、二次函数的解析式1. 标准型:形如y=ax²+bx+c的二次函数。

2.顶点式:形如y=a(x-h)²+k的二次函数。

3.概率型:形如y=a(x-p)(x-q)的二次函数。

五、二次函数的应用1.最值问题:二次函数的最值可以通过求顶点得到。

高三数学复习讲义二次函数

高三数学复习讲义二次函数

城东蜊市阳光实验学校二、函数与导数10二次.函数一、考纲要求二、命题规律1.二次函数是历年高考的重点,常与导数、一元二次方程根的分布、一元二次不式综合考察。

在填空题和解答题中都会出现。

一般为中档题或者者难题。

2.二次函数的解析式、图象及其性质是解题的重要根底。

配方法是解题关键。

3.解题中常运用分类讨论思想和数形结合的思想。

三、要点回忆:1.二次函数的解析式的三种形式(求一个二次函数的解析式需三个独立条件)(1)一般式:f(x)=ax2+b x+c(a≠0),其中a是决定,c是,而ba-是决定。

(2)顶点式〔配方式〕:f(x)=a(x-h)2+k其中是抛物线的顶点坐标。

(3)两根式〔因式分解〕:f(x)=a(x-x1)(x-x2),其中x1,x2是抛物线与2.二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,对称轴,顶点坐标〔1〕a>0时,抛物线开口向上,函数在(,]2ba-∞-上单调,在[,)2ba-+∞上单调,〔2〕a<0时,抛物线开口向下,函数在(,]2ba-∞-上单调,在[,)2ba-+∞上单调,3.二次函数f(x)=ax2+bx+c(a≠0)当240b ac∆=->时图象与x轴有两个交点M1(x1,0),M2(x2,0)=21MM4.〔1〕二次函数与一元二次方程关系方程20(0)ax bx c a++=≠的根为二次函数f(x)=ax2+bx+c(a≠0)y=的x的取值。

〔2〕二次函数与一元二次不等式的关系一元二次不等式20(0)ax bx c++><的解集为二次函数f(x)=ax2+bx+c(a≠0)0(0)y><的x的取值范围。

二次函数△情况一元二次方程一元二次不等式解集y=ax2+bx+c(a>0)△=b2-4ac ax2+bx+c=0(a>0)ax2+bx+c>0(a>0)ax2+bx+c<0(a>0)图象与解△>0△=0△<0四、预习检查:苏大教学与测试P20根底训练1~6五例题分析:苏大教学与测试P20~21例1~例4六、例题拓展:例1二次函数f(x)满足f(2)=-1,(1)()f x f x-=,且f(x)的最大值是8.求二次函数的解析式例2.务实数a的范围,使关于x的方程22=++axx〔1〕有两个实根,且一个比2大,一个比2小;〔2〕有两个实根βα,,且满足410<<<<βα;例3.对于任意2m≤,函数2()21f x mx x m=-+-恒负,求x的取值范围。

(完整版)高考二次函数

(完整版)高考二次函数

二次函数知识梳理知识点1 二次函数的图象和性质1.二次函数的定义与解析式(1)二次函数的定义形如:f(x) = ax2+ bx+ c (a^ 0)的函数叫做二次函数.(2)二次函数解析式的三种形式①一般式:f (x) = ___ ax2+ bx+ c ( a* 0) ______ .②顶点式:f (x) = __ a (x- m) + n(a*0) ________ .③零点式:f(x) = ____ a (x —x i)( x-X2) ( a*0) __________________ .点评:.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式或零点式中的一种来求.①已知三个点的坐标时,宜用一般式.②已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式③已知二次函数与x轴有两个交点,且横坐标已知时,选用零点式求 f (x)更方便. 2.nb 4ac — b 2 ②顶点:(—2a ,二^)3.二次函数f (x ) = ax 2 + bx + c ( a *0),当A = b 2— 4ac >0时,图象与x 轴有两个交点M (x i,O)、M (X 2,O), I MM | = |x i — X 2| =f —1 a|2ax bx c 0的实根分布问题,用图象求解,有如下结论:令f(x) ax bx c ( a 0)(同理讨论a 0的结论)知识点2 二次函数、 •兀二次方程及一兀二次不等式之间的关系当f(x)2 2ax bx c 的图像与x 轴无交点 ax bxc 0无实根ax 2 bxc 0( 0)的解集为 或者是R;当 0f(x)2 2ax bx c 的图像与x 轴相切 ax bx c0有两个相等的实根ax 2 bxc 0( 0)的解集为 或者是R;当f(x)2ax bx c 的图像与x 轴有两个不同的交点ax 2 bx c 0 有两个不等的实根ax 2 bx c 0( 0)的解集为(,)()或者是( ,)U(,)。

二次函数复习专题讲义全

二次函数复习专题讲义全

二次函数复习专题讲义全1.二次函数概念:指形如y=ax^2(a≠0)的函数。

2.简单二次函数:其图像为过原点的一条抛物线,对称轴为y轴,最值依赖于a的正负性。

3.增减性:当a>0时,在对称轴左边(x0),y随x的增大而增大;当a0),y随x的增大而减小。

4.一般二次函数概念:指形如y=ax^2+bx+c(a≠0)的函数,注意还有顶点式、交点式以及它们之间的转换。

5.二次函数图像:是一条抛物线,开口方向依赖于a的正负性,顶点坐标为(-b/2a。

c-b^2/4a)。

6.对称轴:为x=-b/2a。

7.最值:当a>0时,y的最小值为c-b^2/4a;当a<0时,y 的最大值为c-b^2/4a。

8.增减性:当a>0时,在对称轴左边(x-b/2a),y随x的增大而增大;当a-b/2a),y随x的增大而减小。

9.待定系数法可以用来求解析式,二次函数可以应用于建立函数模型解决实际问题。

10.二次函数的三种解析式:一般式、顶点式和交点式。

其中,顶点式和交点式可以相互转换。

注意,a≠0,而b和c可以为零。

1.系数a决定抛物线的开口方向和大小。

当a>0时,开口向上;当a<0时,开口向下。

绝对值|a|决定开口大小,|a|越大,开口越小;|a|越小,开口越大。

2.系数c决定抛物线与y轴的交点位置。

当c>0时,交点在y轴正半轴;当c=0时,交点在抛物线顶点上方;当c<0时,交点在y轴负半轴。

3.系数a和b共同决定抛物线对称轴的位置。

当- b/2a>0时,对称轴在y轴右侧;当- b/2a<0时,对称轴在y轴左侧;当- b/2a=0时,对称轴为y轴。

4.特别地,当a=1时,顶点坐标为(-b/2.a+b+c),当x=-1时,有y=a-b+c。

5.抛物线y=ax^2+bx+c(a≠0)与一元二次方程ax^2+bx+c=0(a≠0)的关系:若抛物线与x轴有两个交点,则方程有两个不相等的实根;若抛物线与x轴有一个交点,则方程有两个相等的实根;若抛物线与x轴无交点,则方程无实根。

高中数学二次函数知识点总结

高中数学二次函数知识点总结

高中数学二次函数知识点总结二次函数是高中数学中的重要内容之一,它在数学和实际问题中有着广泛的应用。

本文将对二次函数的基本知识点进行总结和归纳,帮助读者更好地理解和掌握这一内容。

一、基本定义与性质1. 二次函数的定义:二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。

a称为二次函数的二次项系数,b称为一次项系数,c称为常数项。

2. 基本性质:a) 对称轴:二次函数的对称轴是一个垂直于x轴的直线,它通过抛物线的顶点。

对称轴的方程可以通过x = -b/2a来确定。

b) 顶点:二次函数的顶点是抛物线上最高或最低的点,它对应于函数的最值。

顶点的坐标为(-b/2a, f(-b/2a))。

c) 开口方向:二次函数的开口方向由二次项系数a的正负决定。

若a > 0,则抛物线开口向上;若a < 0,则抛物线开口向下。

二、图像与轨迹1. 抛物线的图像:二次函数的图像是一个抛物线,其形状、开口方向和位置由函数的系数决定。

a) 当a > 0时,抛物线开口向上,顶点是抛物线的最低点;b) 当a < 0时,抛物线开口向下,顶点是抛物线的最高点;c) 若a的绝对值较大,则抛物线较为扁平,开口较为宽;d) 若a的绝对值较小,则抛物线较为狭长,开口较为窄。

2. 轨迹与参数:通过调整二次函数的系数可以改变抛物线的形状和位置,从而得到不同的轨迹。

a) a的变化:改变a的值可以使抛物线的开口方向和形状发生变化;b) b的变化:改变b的值可以使抛物线在x轴方向上发生平移,即改变对称轴位置;c) c的变化:改变c的值可以使抛物线在y轴方向上发生平移,即改变抛物线在y轴上的截距。

三、二次函数的解析式1. 一般式:二次函数的一般式形式为f(x) = ax^2 + bx + c,其中a、b、c为常数。

a) 一般式可以直观地表示二次函数的系数和常数项,并可用于进行系数之间的比较和运算;b) 一般式中的a不等于0,通过a的正负可以确定抛物线的开口方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6 二次函数●知识梳理二次函数的基本性质(1)二次函数的三种表示法: y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n .(2)当a >0,f (x )在区间[p ,q ]上的最大值为M ,最小值为m ,令x 0=21(p +q ). 若-ab2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-a b2)=m ,f (q )=M ;若x 0≤-a b 2<q ,则f (p )=M ,f (-a b2)=m ;若-a b 2≥q ,则f (p )=M ,f (q )=m .●点击双基1.设二次函数f (x )=ax 2+bx +c (a ≠0),如果f (x 1)=f (x 2)(其中x 1≠x 2),则f (221x x +)等于A.-ab2 B.-a b C.cD.ab ac 442-解析:f (221x x +)=f (-ab2)=a b ac 442-.答案:D2.二次函数y =x 2-2(a +b )x +c 2+2ab 的图象的顶点在x 轴上,且a 、b 、c 为△ABC 的三边长,则△ABC 为A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形 解析:y =[x -(a +b )]2+c 2+2ab -(a +b )2=[x -(a +b )]2+c 2-a 2-b 2. ∴顶点为(a +b ,c 2-a 2-b 2). 由题意知c 2-a 2-b 2=0. ∴△ABC 为直角三角形. 答案:B3.已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的范围是 A.f (1)≥25 B.f (1)=25 C.f (1)≤25 D.f (1)>25解析:由y =f (x )的对称轴是x =8m ,可知f (x )在[8m,+∞)上递增,由题设只需8m≤-2⇒m ≤-16, ∴f (1)=9-m ≥25. 答案:A4.函数f (x )=2x 2-6x +1在区间[-1,1]上的最小值是___________,最大值是___________.解析:f (x )=2(x -23)2-27.当x =1时,f (x )min =-3;当x =-1时,f (x )max =9. 答案:-3 95.若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =__________. 解法一:二次函数y =x 2+(a +2)x +3的图象关于直线x =1对称,说明二次函数的对称轴为1,即-22+a =1.∴a =-4.而f (x )是定义在[a ,b ]上的,即a 、b 关于x =1也是对称的,∴2b a +=1.∴b =6.解法二:∵二次函数y =x 2+(a +2)x +3的对称轴为x =1,∴f (x )可表示为f (x )=(x -1)2+c ,与原二次函数的表达式比较对应项系数,可得a +2=-2.∴a =-4,b 的计算同解法一.解法三:∵二次函数的对称轴为x =1,∴有f (x )=f (2-x ),比较对应项系数,∴a =-4,b 的计算同解法一.答案:6 ●典例剖析【例1】 设x 、y 是关于m 的方程m 2-2am +a +6=0的两个实根,则(x -1)2+(y -1)2的最小值是A.-1241B.18C.8D.43剖析:由Δ=(-2a )2-4(a +6)≥0,得a ≤-2或a ≥3.于是有(x -1)2+(y -1)2=x 2+y 2-2(x +y )+2=(x +y )2-2xy -2(x +y )+2=(2a )2-2(a +6)-4a +2=4a 2-6a -10=4(a -43)2-449.由此可知,当a =3时,(x -1)2+(y -1)2取得最小值8. 答案:C 深化拓展Δ≥0是二次方程有实根的隐含条件.2x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46解析:由表知y =a (x +2)(x -3),又x =0,y =-6,代入知a =1.∴y =(x +2)(x -3). 答案:{x |x >3或x <-2} 【例3】 已知二次函数f (x )=ax 2+bx +c 的图象与直线y =25有公共点,且不等式ax 2+bx +c >0的解是-21<x <31,求a 、b 、c 的取值范围.解:依题意ax 2+bx +c -25=0有解,故Δ=b 2-4a (c -25)≥0.又不等式ax 2+bx +c >0的解是-21<x <31, ∴a <0且有-a b =-61,a c =-61.∴b =61a ,c =-61a .∴b =-c ,代入Δ≥0得c 2+24c (c -25)≥0.∴c ≥24.故得a 、b 、c 的取值范围为a ≤-144,b ≤-24,c ≥24.评述:二次方程ax 2+bx +c =0,二次不等式ax 2+bx +c >0(或<0)与二次函数y =ax 2+bx +c 的图象联系比较密切,要注意利用图象的直观性来解二次不等式和二次方程的问题.●闯关训练 夯实基础1.下图所示为二次函数y =ax 2+bx +c 的图象,则|OA |·|OB |等于A.ac B.-ac C.±ac D.无法确定解析:|OA |·|OB |=|OA ·OB |=|x 1x 2|=|a c |=-ac(∵a <0,c >0). 答案:B2.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是___________________.解析:通过画二次函数图象知m ∈[1,2]. 答案:[1,2]3.已知函数y =(e x -a )2+(e -x -a )2(a ∈R ,且a ≠0),求y 的最小值.解:y =(e x +e -x )2-2a (e x +e -x )+2a 2-2.令t =e x +e -x ,则f (t )=t 2-2at +2a 2-2.∵t =e x +e -x ≥2,∴f (t )=(t -a )2+a 2-2的定义域为[2,+∞). ∵抛物线的对称轴方程是t =a ,∴当a ≥2时,y min =f (a )=a 2-2;当a <2且a ≠0时,y min =f (2)=2(a -1)2. 4.要使y =x 2+4x (x ≥a )有反函数,则a 的最小值为___________________.解析:要使y =x 2+4x (x ≥a )有反函数,则y =x 2+4x 在[a ,+∞)上是单调函数.∴a ≥-2.答案:-25.已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,求实数m 的取值范围.解:若m =0,则f (x )=-3x +1,显然满足要求. 若m ≠0,有两种情况: ①原点的两侧各有一个,则⇒⎪⎩⎪⎨⎧<=>--=0104)3(212m x x m m Δm <0; ②都在原点右侧,则⎪⎪⎪⎩⎪⎪⎪⎨⎧>=>-=+≥--=,01,023,04)3(21212m x x m m x x m m Δ 解得0<m ≤1.综上可得m ∈(-∞,1]. 培养能力6.设f (x )=x 2-2ax +2.当x ∈[-1,+∞)时,f (x )≥a 恒成立,求实数a 的取值范围. 解:(1)当a ≤-1时,f (x )min =f (-1)=3+2a ,x ∈[-1,+∞),f (x )≥a 恒成立⇔f (x )min ≥a ,即3+2a ≥a ⇔a ≥-3.故此时-3≤a ≤-1.(2)当a >-1时,f (x )min =f (a )=a 2-2a 2+2=2-a 2,x ∈[-1,+∞),f (x )≥a 恒成立⇔f (x )min ≥a ,即2-a 2≥a ⇔a 2+a -2≤0⇔-2≤a ≤1.故此时-1<a ≤1.由(1)(2)知,当-3≤a ≤1时,x ∈[-1,+∞),f (x )≥a 恒成立. 7.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +b -1(a ≠0).(1)当a =1,b =-2时,求f (x )的不动点;(2)若对于任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-x -3=x ⇔x 2-2x -3=0⇔(x -3)(x +1)=0⇔x =3或x =-1,∴f (x )的不动点为x =3或x =-1.(2)对任意实数b ,f (x )恒有两个相异不动点⇔对任意实数b ,ax 2+(b +1)x +b -1=x 恒有两个不等实根⇔对任意实数b ,Δ=(b +1)2-4a (b -1)>0恒成立⇔对任意实数b ,b 2+2(1-4a )b +1+4a >0恒成立⇔Δ′=4(1-4a )2-4(1+4a )<0⇔(1-4a )2-(1+4a )<0⇔4a 2-3a <0⇔a (4a -3)<0⇔0<a <43. 8.设函数f (x )=x 2+|x -2|-1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值.解:(1)f (x )=⎪⎩⎪⎨⎧<+-≥-+.2,1,2,322x x x x x x∵f (0)=1≠0,∴f (x )不是R 上的奇函数.∵f (1)=1,f (-1)=3,f (1)≠f (-1), ∴f (x )不是偶函数.故f (x )是非奇非偶的函数.(2)当x ≥2时,f (x )=x 2+x -3,此时f (x )min =f (2)=3.当x <2时,f (x )=x 2-x +1,此时f (x )min =f (21)=43. 总之,f (x )min =43.探究创新9.二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足2+m p +1+m q +mr=0,其中m >0, 求证:(1)pf (1+m m)<0; (2)方程f (x )=0在(0,1)内恒有解.证明:(1)pf (1+m m )=p [p (1+m m )2+q (1+m m)+r ]=pm [2)1(+m pm +1+m q +m r ]=pm [2)1(+m pm -2+m p] =p 2m [)2()1()1()2(22+++-+m m m m m ] =p 2m [-)2()1(12++m m ].由于f (x )是二次函数,故p ≠0.又m >0,所以pf (1+m m)<0. (2)由题意,得f (0)=r ,f (1)=p +q +r .①当p >0时,由(1)知f (1+m m)<0.若r >0,则f (0)>0,又f (1+m m)<0,∴f (x )=0在(0,1+m m)内有解;若r ≤0,则f (1)=p +q +r =p +(m +1)(-2+m p -m r )+r =2+m p -mr>0,又f (1+m m)<0,所以f (x )=0在(1+m m,1)内有解.因此方程f (x )=0在(0,1)内恒有解. ②当p <0时,同样可以证得结论. 评述:(1)题目点明是“二次函数”,这就暗示着二次项系数p ≠0,若将题中的“二次”两个字去掉,所证结论相应更改.(2)对字母p 、r 分类时先对哪个分类是有一定讲究的.本题的证明中,先对p 分类,然后对r 分类显然是比较好的.●思悟小结1.二次函数f (x )=ax 2+bx +c 的图象形状、对称轴、顶点坐标、开口方向等是处理二次函数问题的重要依据.2.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们相互之间的关系,能用函数思想来研究方程和不等式,便是抓住了关键.●教师下载中心 教学点睛1.二次函数是最重要的初等函数之一,因为很多问题可化归为二次函数来处理,所以必须熟练掌握二次函数的性质,并能灵活运用这些性质去解决问题.2.求二次函数的解析式就是确定函数式f (x )=ax 2+bx +c (a ≠0)中a 、b 、c 的值.二次函数也可以表示为y =a (x -x 0)2+h 或y =a (x -x 1)(x -x 2)(b 2-4ac ≥0)等形式,应提醒学生根据题设条件选用适当的表示形式,用待定系数法确定相应字母的值.3.结合图象可以得到一系列与二次方程ax 2+bx +c =0(a ≠0)的根的分布有关的结论,教学时可引导学生总结:(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0.(2)二次方程f (x )=0的两根都大于r ⎪⎪⎩⎪⎪⎨⎧>⋅>->-=⇔.0)(,2,042r f a r abac b Δ (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=⇔.0)(,0)(,2,042p f a q f a q ab p ac b Δ (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0,另一根在(p ,q )内或f (q )=0,另一根在(p ,q )内.(5)方程f (x )=0的两根中一根大于p ,另一根小于q (p <q )⎩⎨⎧>⋅<⋅⇔.0)(,0)(q f a p f a4.二次函数与二次不等式密切相关,借助二次函数的图象和性质,可方便直观地解决与不等式有关的问题.例如:(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是(-∞,α]∪[β,+∞)⇔a <0且f (α)=f (β)=0.(2)当a >0时,f (α)<f (β)⇔|α+a b 2|<|β+a b 2|; 当a <0时,f (α)<f (β)⇔|α+a b 2|>|β+ab2|.(3)当a >0时,二次不等式f (x )>0在[p ,q ]上恒成立⇔⎪⎩⎪⎨⎧><-)(,2p f p a b或⎪⎪⎩⎪⎪⎨⎧>-<-≤0)2(,2a b f q ab p 或⎪⎩⎪⎨⎧≥≥-.0)(,2q f q a b (4)f (x )>0恒成立⇔⎩⎨⎧<>0,0Δa 或⎩⎨⎧>==;0,0c b af (x )<0恒成立⇔⎩⎨⎧<<0,0Δa 或⎩⎨⎧<==.0,0c b a拓展题例【例1】 已知当m ∈R 时,函数f (x )=m (x 2-1)+x -a 的图象和x 轴恒有公共点,求实数a 的取值范围.解:(1)m =0时,f (x )=x -a 是一次函数,它的图象恒与x 轴相交,此时a ∈R .(2)m ≠0时,由题意知,方程mx 2+x -(m +a )=0恒有实数解,其充要条件是Δ=1+4m (m +a )=4m 2+4am +1≥0.又只需Δ′=(4a )2-16≤0,解得-1≤a ≤1,即a ∈[-1,1].∴m =0时,a ∈R ;m ≠0时,a ∈[-1,1].评述:g (a )是a 的函数,可作出g (a )的草图来求最大值. 【例2】 已知f (x )=ax 2+bx +c 的图象过点(-1,0),是否存在常数a 、b 、c ,使不等式x ≤f (x )≤212+x 对一切实数x 都成立?解:∵f (x )的图象过点(-1,0), ∴a -b +c =0①∵x ≤f (x )≤212+x 对一切x ∈R 均成立,∴当x =1时也成立,即1≤a +b +c ≤1. 故有a +b +c =1.②由①②得b =21,c =21-a . ∴f (x )=ax 2+21x +21-a .故x ≤ax 2+21x +21-a ≤212+x 对一切x ∈R 成立,也即⎪⎩⎪⎨⎧≥+--≥-+-02)21(,0212122a x x a a x ax 恒成立⎪⎪⎪⎩⎪⎪⎪⎨⎧>->≤--≤--⇒⎪⎪⎩⎪⎪⎨⎧>->≤≤⇔.021,0,0)21(81,0)21(44102100021a a a a a a a a ΔΔ 解得a =41.∴c =21-a =41. ∴存在一组常数a =41,b =21,c =41,使不等式x ≤f (x )≤212+x 对一切实数x 均成立.评述:赋值法(特殊值法)可以使“探索性”问题变得比较明朗,它是解决这类问题比较常用的方法.。

相关文档
最新文档