北师大版八年级下册数学课件
合集下载
最新北师大版八年级数学下册《直角三角形》精品教学课件
∴∠ABP=∠ACP=90°
∵PB=PC,AP=AP
∴Rt△ABP≌Rt△ACP(HL)
∴∠APB=∠APC
PB=PC,
在△PBD和△PCD中,
∠DPB=∠DPC, DP=DP,
∴△PBD≌△PCD(SAS)
∴∠BDP=∠CDP
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
实践探究,交流新知
猜想: 斜边和一条直角边分别相等的两个直角三角形全等.
1.分析命题: 条件:两个直角三角形的斜边和一条直角边分别相等; 结论:这两个直角三角形全等.
2.数学语言: 已知:如图,在△ABC和△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′; 求证:△ABC≌△A′B′C′.
开放训练,体现应用
例2 如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E
,CF⊥AD于点F.求证:AF=BE.
证明:∵∠BAC=90°
∴∠BAE+∠FAC=90°
∵BE⊥AD,CF⊥AD
∴∠BEA=∠AFC=90°
∴∠BAE+∠EBA=90°
∴∠EBA=∠FAC.
∴∠BFD=∠CED=90°
DF=DE,
在△BDF和△CDE中 ∠BFD=∠CED,
BF=CE,
∴△BDF≌△CDE(SAS)
∴∠B=∠C
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,∠ABC=∠ADC=90°,
BE⊥AC于点E,DF⊥AC于点F,CF=AE,BC=DA.
求证:Rt△ABE≌Rt△CDF.
开放训练,体现应用
例1 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方 向的长度DF相等,两个滑梯的倾斜角∠ABCБайду номын сангаас∠EFD的大小有什么关系?
八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件
(2)设商店所获利润为y(单位:元),购进篮球的个数为 x(单位:个),请写出y与x之间的函数关系式(不要 求写出x的取值范围).
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.
八年级数学北师大版初二下册--第五单元5.4《分式方程:第二课时--解分式方程》课件
分式方程 去分母 整式方程
知1-讲
解分式方程的一般步骤:
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程. (转化思想)
2、解这个整式方程. 3、检验 . 4、写出原方程的根.
例1 解方程
1 = 3. x- 2 x
解:方程两边都乘x(x-2),得x=3(x-2).
解这个方程,得x=3.
解得x=2.
检验:当x=2时,( x+2)( x-2)=0,
所以x=2是原方程的增根,即原方程无解.
易错总结:
分式方程转化为整式方程后,由于去分母使未 知数的取值范围发生了变化,有可能产生增根, 因此在解分式方程时一定要验根,如果不验根, 有可能误将x=2当成原分式方程的根.
2 易错小结
2.当k为何值时,关于x的方程
综上可知,当k<3且k≠-12时,原分式方程的
解为负数.
易错总结:
在解分式方程时,要注意出现未知数的取值使 原分式方程中的分式的分母为零,即产生增根 的情况.因此本题中要使方程的解为负数,除 了k<3外,还必须考虑原分式方程的分母不等 于0.
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
2+ x-1
a 1-x
=4
的解为正数,且使关于y的不等式组
ìïïïíïïïî
y+2- y 32
2( y-a) £
> 0
1,
的解集为y<-2,则符合条件的所有整数a的和为
( A) A.10
B.12
C.14
D.16
知识点 3 分式方程的增根
议一议
在解方程
1x-
x= 2
12- x
2 时,小亮的解法如下:
方程两边都乘 x-2,得 1-x=-1-2(x-2 ).
知1-讲
解分式方程的一般步骤:
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程. (转化思想)
2、解这个整式方程. 3、检验 . 4、写出原方程的根.
例1 解方程
1 = 3. x- 2 x
解:方程两边都乘x(x-2),得x=3(x-2).
解这个方程,得x=3.
解得x=2.
检验:当x=2时,( x+2)( x-2)=0,
所以x=2是原方程的增根,即原方程无解.
易错总结:
分式方程转化为整式方程后,由于去分母使未 知数的取值范围发生了变化,有可能产生增根, 因此在解分式方程时一定要验根,如果不验根, 有可能误将x=2当成原分式方程的根.
2 易错小结
2.当k为何值时,关于x的方程
综上可知,当k<3且k≠-12时,原分式方程的
解为负数.
易错总结:
在解分式方程时,要注意出现未知数的取值使 原分式方程中的分式的分母为零,即产生增根 的情况.因此本题中要使方程的解为负数,除 了k<3外,还必须考虑原分式方程的分母不等 于0.
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
2+ x-1
a 1-x
=4
的解为正数,且使关于y的不等式组
ìïïïíïïïî
y+2- y 32
2( y-a) £
> 0
1,
的解集为y<-2,则符合条件的所有整数a的和为
( A) A.10
B.12
C.14
D.16
知识点 3 分式方程的增根
议一议
在解方程
1x-
x= 2
12- x
2 时,小亮的解法如下:
方程两边都乘 x-2,得 1-x=-1-2(x-2 ).
八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件
知1-讲
例2 如图,在下列图形中,中心对称图形有( C ) A.1个 B.2个 C.3个 D.4个
导引:这些图形绕某一点旋转一定角度都能与原图形完 全重合,但旋转180°后能与原图形重合的有3个, 只有最后一个图形不重合.
总结
知1-讲
正多边形图案是否为中心对称图形的识别方法: 边数为偶数的正多边形图案是中心对称图形,
知识点 1 中心对称图形的定义
知1-导
问题
(1)如图,将线段AB绕它的中点旋转180°,你 有什么发现?
A
B
可以发现:线段AB绕它的中点旋转180°后与 它BCD 绕它的两条对角线的交点O旋
转180°,你有什么发现?
A
D
O
B
C
Y 可以发现: ABCD 绕它的两条对角线的交点O旋
第三章 图形的平移与旋转
3.3 中心对称
第2课时 中心对称图形
1 课堂讲解 2 课时流程
中心对称图形的定义 中心对称图形的性质 中心对称图形的作图
逐点 导讲练
课堂 小结
作业 提升
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
相应地,与边数为偶数的正多边形具有类似的特 征的图形是中心对称图形;边数为奇数的正多边 形或具有类似的特征的图形一定不是中心对称图 形.
1 下列哪些图形是中心对称图形?
知1-练
解:中心对称图形有(1)(2)(3).
(来自《教材》)
知1-练
2 下面扑克牌中,哪些牌的牌面是中心对称图形?
解:第一张和第三张牌的牌面是中心对称图形.
(2)本题还有其他分割方法,请分割试一试.
北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)
= −(4 ∙ 6 2 − 4 ∙ 3 + 4 ∙ 7)
= −4(6 2 − 3 + 7).
易错注意:1.公因式要提尽;
2.公因式是某项时剩余的系数1别忘;
错误
提公因式后括号里少了一项.
正确解:原式=3x·
x-6y·
x+1·x
=x(3x-6y+1)
请你判断小明的解法有误吗?
因式分解: - x2+xy-xz.
解:原式= - x(x+y-z).
错误
提出负号时括号里的项
没变号
正确解:原式= - (x2-xy+xz)
=- x(x-y+z)
探索新知
巩固练习 将下列各式分解因式
项式的各项变号;
2.公因式的系数是多项式各项__________________;
系数的最大公约数
相同的字母
3.字母取多项式各项中都含有的____________;
4.相同字母的指数取各项中最小的一个,即 最低次幂
_________.
合作探究
因式分解:a(x-3)+2b(x-3)
(1)多项式的公因式是什么?
B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)
C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)
D.3x(x+y)-(x+y)2=(x+y)(2x+y)
4.用提公因式法因式分解:
(1)6p(p+q)-4q(p+q);
解:6p(p+q)-4q(p+q)
=2(p+q)(3p-2q).
A.x4
B.x3+1
C.x4+1
D.x3-1
北师大版八年级数学下册:分式方程课件
所以,该市今年居民用水的价格为2元/m3.
四、随堂练习
1.勤洗手,戴口罩.小明第一次用120元买了若干包口罩,第二次用240元 在同一商家买同样的口罩,这次商家每包优惠4元,结果比上次多买了20包, 求第一次买了多少包口罩?若设第一次买了x包口罩,列方程正确的是( D.).
A. 240 120 4 x 20 x
3
x
11x 3
15
30 15 5. 11x x
3
30
三、典例分析
解:设该市去年居民用水的价格为x元/m3, 则今年居民
用水的价格为
1
1 3
x 元/m3.
30
根据题意,得:
1
1
x
15 x
5.
3
解得:
x3 2
经检验, x 3 是原方程的根.
2
整理
45 15 5.
2x x
3 1 1 2 元 / m3 23
所有房屋出租的租金第一年为9.6万元, 第二年为10.2万元.
第一年所有房屋出租的租金=9.6万元 第二年所有房屋出租的租金=10.2万元
1.你能找出这一情境中的等量关系吗?
找等量 关系
第二年每间房屋的租金 = 第一年每间房屋的租金+ 500.
第一年出租的房屋间数 = 第二年出租的房屋间数.
发掘隐含条件!
在“火神山”医院的建造过程中,有两个工程队共同参其中一项搬运工程,
甲队单独施工1天完成总工程的三分之一,这时增加了乙队,两队又共同工 作了半天天,总工程全部完成. 乙单独干这项工程需要多长时间?
解:设小亮每小时各加工x个,则小明每小时各加工(x+10)个.
根据题意,得:
150 120 . x 10 x
北师大版数学八年级下册1.等腰三角形的特殊性质及等边三角形的性质课件
新课讲授
典例分析
例 如图,已知△ABC,△BDE都是等边三角形. 求证:AE=CD.
分析:要证AE=CD,可通过证AE,CD所在的两个三角 形全等来实现,即证△ABE≌△CBD,条件可从 等边三角形中去寻找.
新课讲授
证明:∵△ABC和△BDE都是等边三角形, ∴AB=BC,BE=BD,∠ABC=∠DBE=60°. AB=CB, 在△ABE与△CBD中, ABE=CBD, BE=BD, ∴△ABE≌△CBD(SAS). ∴AE=CD.
第一章 三角形的证明
1 等腰三角形
课时2 等腰三角形的特殊性质及等边三角形的性质
学习目标
等腰三角形中相等的线段 等边三角形的性质.(重点、难点)
新课导入
等腰三角形有哪些性质?
1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,即等腰三角形
顶角的平分线、底边上的中线及底边上的高线互相 重合.
新课讲授
典例分析
例 求证:等腰三角形两腰上的中线相等.
分析:先根据命题分析出题设和结论,画出图形,写 出已知和求证,然后利用等腰三角形的性质和 三角形全等的知识证明.
新课讲授
解:如图,在△ABC中,AB=AC,CE和BD分别是AB 和AC上的中线, 求证:CE=BD.
证明:∵AB=AC,CE和BD分别是AB 和AC上的中线,
新课讲授
知识点2 等边三角形的性质
1.等边三角形的定义是什么? 2.想一想
等边三角形是特殊的等腰三角形,那么等边三角 形的内角有什么特征呢?
新课讲授
定理 等边三角形的三个内角都相等,并且每个角 都等于60°.
新课讲授
典例分析
例 已知:如图, 在△ABC中,AB= AC=BC. 求证:∠A= ∠ B = ∠ C = 60°. ∵AB = AC, ∴∠ B = ∠ C (等边对等角). 又∵AC = BC, ∴∠A= ∠ B (等边对等角). ∴∠A= ∠ B = ∠ C. 在△ABC中,∠A+∠ B+∠ C = 180°. ∴∠A= ∠ B = ∠ C = 60°.
北师大版八年级数学下册第一章《角平分线(2)》课件
A
B
C
老师提示:三角形一个内角和与它不相邻的两个外角的平
分线交于一点,这个的点叫做三角形的傍心,这样点有
三个。
定理 角平分线上的点到这个角的两边距 离相等.
逆定理 在一个角的内部,且到角的两边 距离相等的点,在这个角的平分线上.
定理:三角形的三条角平分线相交于一点, 并且这一点到三边的距离相等(这个交点 叫做三角形的内心).
结论:三角形三个角的平分线相 交于一点.
怎样证明这个 结论呢?
点拨:要证明三条直线相交于一点,只要证明其中两条 直线的交点在第三条直线上即可。
命题:三角形三个角的平分线相交于一点.
已知:如图,设△ABC的角平分线.
A
M
BM、CN相交于点P,
N
求证:P点在∠BAC的角平分线上.
D PF
证明:过P点作PD⊥AB,PF⊥AC, B PE⊥BC,其中D、E、F是垂足
EC
∵BM是△ABC的角平分线,点P在BM上
∴PD=PE
同理:PE=PF.∴PD=PF.
∴点P在∠BAC的平分线上
∴△ABC的三条角平分线相交于点P.
定理:三角形的三条角平分线相交于一点,并且这一点到
三边的距离相等. 如图,在△ABC中, ∵BM,CN,AH分别是△ABC的
A
ND
M
PF
三条角平分线,且PD⊥AB,
You made my day!
我们,还在路上……
∵PD⊥OA,PE⊥OB,垂足分别是D,E(
已知), 且PD=PE,
O
∴点P在∠AOB的平分线上.(在一个
角的内部,且到角的两边距离相等的
点,在这个角的平分线上).
A D
1
B
C
老师提示:三角形一个内角和与它不相邻的两个外角的平
分线交于一点,这个的点叫做三角形的傍心,这样点有
三个。
定理 角平分线上的点到这个角的两边距 离相等.
逆定理 在一个角的内部,且到角的两边 距离相等的点,在这个角的平分线上.
定理:三角形的三条角平分线相交于一点, 并且这一点到三边的距离相等(这个交点 叫做三角形的内心).
结论:三角形三个角的平分线相 交于一点.
怎样证明这个 结论呢?
点拨:要证明三条直线相交于一点,只要证明其中两条 直线的交点在第三条直线上即可。
命题:三角形三个角的平分线相交于一点.
已知:如图,设△ABC的角平分线.
A
M
BM、CN相交于点P,
N
求证:P点在∠BAC的角平分线上.
D PF
证明:过P点作PD⊥AB,PF⊥AC, B PE⊥BC,其中D、E、F是垂足
EC
∵BM是△ABC的角平分线,点P在BM上
∴PD=PE
同理:PE=PF.∴PD=PF.
∴点P在∠BAC的平分线上
∴△ABC的三条角平分线相交于点P.
定理:三角形的三条角平分线相交于一点,并且这一点到
三边的距离相等. 如图,在△ABC中, ∵BM,CN,AH分别是△ABC的
A
ND
M
PF
三条角平分线,且PD⊥AB,
You made my day!
我们,还在路上……
∵PD⊥OA,PE⊥OB,垂足分别是D,E(
已知), 且PD=PE,
O
∴点P在∠AOB的平分线上.(在一个
角的内部,且到角的两边距离相等的
点,在这个角的平分线上).
A D
1
北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)
创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式
不等式的基本性质教学课件--北师大版初中数学八年级(下)
(2) 1 x
3
<
1 y (不等式的基本性质 2 )
3
(3)-x > -y (不等式的基本性质 3 )
(4)x-m < y-m (不等式的基本性质 1 )
3、下列各题是否正确?请说明理由
(1)如果a>b,那么ac>bc
×
(2)如果a>b,那么ac2 >bc2
×
(3)如果ac2>bc2,那么a>b
√
a c
>
b c
a c
<
b c
知识讲授
不等式的基本性质 3 :
不等式的两边都乘(或除以)同一个负数, 不等号的方向 改变 .
即:若a b且c 0, 则a c<b c , 若a b且c 0,则a c> b c ,
ac <
b c
a c
>
b c
例题讲授
例1 将下列不等式化成“x>a”或“x<a”的情势:
-4<3 -4×2< 3×2 -4÷2< 3÷2 -4×(-2)> 3×(-2)
-4÷(-2)> 3÷(-2)
6×0 = 3×0
知识讲授
不等式的基本性质 2 :
不等式的两边都乘(或除以)同一个正数,不 等号的方向 不变 .
即:若a b且c 0, 则a c> b c , 若a b且c 0,则a c<b c ,
2
能力提升
1、单项选择:
(1)由 x>y 得 ax>ay 的条件是(B )
A.a ≥0 B.a > 0 C.a< 0 D.a≤0 (2)由 x>y 得 ax≤ay 的条件是( D ) A.a>0 B.a<0 C.a≥0 D.a≤0
北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件
横坐标减4,纵坐标减4,
所以点P的对应点P′的坐标是(m-4,n-4).
(3)△ABC的面积为
3×5-1×1×5- 1×2×2- 1×3×3=6
2
2
2
例3、如图,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0), 现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度, 得到A,B的对应点C,D.连接AC,BD,CD. (1)点C的坐标为______,点D的坐标为______, 四边形ABDC的面积为________;
图形的平移
学习目标
1.掌握平面直角坐标系中图形的两次平移与一次平移的转 化,以及平移引起的点的坐标的变化规律; 2.了解平面直角坐标系是数与形之间的桥梁,感受代数与 几何的相互转化,初步建立空间观念.
新课导入
在坐标系中,将坐标作如下变化时,图形将怎样变化?
1. (x,y)(x,y+4) 2. (x,y)(x,y -2)
(1)分别写出下列各点的坐标:A′_______;B′______;C′_______;
(2)若点P(m,n)是△ABC内一点,求平移后△A′B′C′内的对应点P′的坐标;
(3)求△ABC的面积.
解:(1)由题图可知A′(-3,-4),B′(0,-1),C′(2,-3).
(2)点A(1,0)的对应点A′的坐标是(-3,-4),
,-1),则a,b的值为(A
)
A.a=-2,b=-3 C.a=2,b=-3
B.a=-2,b=3 D.a=2,b=3
3.在平面直角坐标系中,点A′(2,-3)可以由点A(-2,3)通过两次平移得到 ,正确的是(D )
A.先向左平移4个单位长度,再向上平移6个单位长度 B.先向右平移4个单位长度,再向上平移6个单位长度 C.先向左平移4个单位长度,再向下平移6个单位长度 D.先向右平移4个单位长度,再向下平移6个单位长度
三角形的中位线课件(共19张PPT)数学北师大版八年级下册
感悟新知
知1-练
解题秘方:紧扣三角形中位线定理的数量关系, 将证明线段的倍数关系转化为证明 OF 是△ ABC 的中位线 .
感悟新知
证明:如图 6-3-2,连接 BE. ∵四边形 ABCD 为平行四边形, ∴ AB ∥ CD, AB=CD,点 O 是 AC 的中点 . ∵ E 为平行四边形 ABCD 中 DC 边延长线 上的一点,且 CE=DC, ∴ AB ∥ CE, AB=CE. ∴四边形 ABEC 是平行四边形 .
感悟新知
知1-讲
2. 三角形中位线定理 三角形的中位线平行于第三边,且等 于第三边的一半 . 几何语言: 如图 6-3-1,∵ AD=BD, AE=EC,
∴
DE
∥
BC,且
Hale Waihona Puke DE=1 2BC.
感悟新知
3. 三角形中位线的应用
知1-讲
(1) 三角形中位线定理反映了三角形的中位线与第三边的
双重关系:一是位置关系,可以用来证两直线平行;
感悟新知
证明:∵AB=AC,∴∠ABC=∠ACB.
知1-练
∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB.
∴∠ADE=∠AED.∴AD=AE.∴DB=EC.
∵点 F,G,H 分别为 BE,DE,BC 的中点,
∴FG 是△EDB 的中位线,FH 是△ BCE 的中位线.
∴FG=12BD,FH=12CE.∴FG=FH.
感悟新知
特别提醒
知1-讲
◆一个三角形有三条中位线 .
◆三条中位线将原三角形分割成四个全等的三角形, ▲▲ 三个面积相等的平行四边形 . ▲▲
◆三角形的中位线与三角形的中线的区别:
三角形的中线是连接一顶点和它的对边中点的线段,
北师大版八年级数学下册第一章《直角三角形》精品课件
w斜边及一个锐角对应相等的两个直角三角形全等;真
w两直角边对应相等的两个直角三角形全等; 真
w一条直角边和另一条直角边上的中线对应相等的
两个直角三角形全等. 真
A
E
C
D
BG
H
F
2、如图,两根长度为12m的绳子,一端系 在旗杆上,另一端分别固定在地面的两个木 桩上,两个木桩离旗杆底部的距离相等吗? 说明理由。 解:相等。
用HL可证Rt△ACD≌Rt△AED; 证明Rt△ACD≌Rt△AED
(3)不能
•
你们得到的三角形全等吗?你能得到什么样的结论呢?
斜边和一条直角边对应相等的两个直角三角形全等 简述为:“斜边、直角边”或“HL”
你能证明它吗?
合作探究
w已知:如图,在△ABC和△A′B′C′中, ∠C=∠C′=900
BC=B′C ′, AB=A′B′
w求证:△ABC≌△A′B′C′.
B
B′
C
A C′
测试评价 l1、已知:如图,D是△ABC的BC边的中点,
DE⊥AC,DF⊥AB,垂足分别是E.F,且DE=DF, 求证:△ABC是等腰三角形
l证明:∵ D是△ABC的BC边的中点
l∴BD=CD
l∵ DE⊥AC,DF⊥AB
l∴∠1=∠2=90° l∵BD=CD,DE=DF
1
2
l∴Rt△BDF≌Rt△CDE (HL)
A′
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,
AB=A′B′B′
C
A C′
A′
证明: ∵在Rt△ABC中,AC2=AB2-BC2(勾股定理). 又∵在Rt△ A' B' C'中,A' C' 2=A'B'2-B'C'2 (勾股定理) ∵ AB=A'B',BC=B'C',∴AC=A'C'. ∴Rt△ABC≌Rt△A'B'C' (SSS).
北师大版八年级数学下册课件:1.3.1线段的垂直平分线(共17张PPT)
已知:如图,AC=BC,MN⊥AB,P是MN上任 意一点. 求证:PA=PB.
证明:∵MN⊥AB,
M P
∴∠PCA=∠PCB=90°
∵AC=BC,PC=PC,
A
C
B
∴△PCA≌△PCB(SAS);
N
∴PA=PB(全等三角形的对应边相等).
讲授新课
性质定理:线段垂直平分线上的点到 这条线段的两端点的距离相等.
比一比:你的写作过程完整吗?
巩固训练
讲授新课
3. 已知:如图AB=AC,BD=CD, P是AD上一点,
求证:PB=PC.
本题综合运用了线段垂 直平分线的性质定理和
B
判定定理,认真写出过
程哦!
A P
C D
巩固训练
3.已知:如图,AB=AC,BD=CD,P是AD上一点。
求证:PB=PC
证明:
∵AB=AC
∴A在线段BC的垂直平分线上
∵BD=CD
∴ D在线段BC的垂直平分线上
∴ AD是线段BC的垂直平分线
B
∵P是AD上一点
∴PB=PC。
A P
C D
归纳小结
1.线段垂直平分线的定理及证明 2.线段垂直平分线的逆定理及证明 3.两个定理之间的区别与联系
再见
1、只要有坚强的意志力,就自然而然地会有能耐、机灵和知识。2、你们应该培养对自己,对自己的力量的信心,百这种信心是靠克服障碍,培养意志和锻炼意志而获得的。 3、坚强的信念能赢得强者的心,并使他们变得更坚强。4、天行健,君子以自强不息。5、有百折不挠的信念的所支持的人的意志,比那些似乎是无敌的物质力量有更强大 的威力。6、永远没有人力可以击退一个坚决强毅的希望。7、意大利有一句谚语:对一个歌手的要求,首先是嗓子、嗓子和嗓子……我现在按照这一公式拙劣地摹仿为:对 一个要成为不负于高尔基所声称的那种“人”的要求,首先是意志、意志和意志。8、执着追求并从中得到最大快乐的人,才是成功者。9、三军可夺帅也,匹夫不可夺志也。 10、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志,并把研究继续下去。11、我的本质不是我的意志的结果, 相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。12、公共的利益,人类的福利,可以使可憎的工作变为可 贵,只有开明人士才能知道克服困难所需要的热忱。13、立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。14、意志的出现不是对愿 望的否定,而是把愿望合并和提升到一个更高的意识水平上。15、无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。16、即使 遇到了不幸的灾难,已经开始了的事情决不放弃。17、最可怕的敌人,就是没有坚强的信念。18、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下 去。19、意志若是屈从,不论程度如何,它都帮助了暴力。20、有了坚定的意志,就等于给双脚添了一对翅膀。21、意志坚强,就会战胜恶运。22、只有刚强的人,才有神 圣的意志,凡是战斗的人,才能取得胜利。23、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。24、疼痛的强度,同自然赋于人类的意志和刚度成正比。25、能 够岿然不动,坚持正见,度过难关的人是不多的。26、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中 锻炼出来的,学习了不在生活面前屈服。27、只要持续地努力,不懈地奋斗,就没有征服不了的东西。28、立志不坚,终不济事。29、功崇惟志,业广惟勤。30、一个崇高 的目标,只要不渝地追求,就会居为壮举;在它纯洁的目光里,一切美德必将胜利。31、书不记,熟读可记;义不精,细思可精;惟有志不立,直是无着力处。32、您得相 信,有志者事竟成。古人告诫说:“天国是努力进入的”。只有当勉为其难地一步步向它走去的时候,才必须勉为其难地一步步走下去,才必须勉为其难地去达到它。33、 告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。34、成大事不在于力量的大小,而在于能坚持多久。35、一个人所能做的就是做出好榜样,要有勇气在风 言风语的社会中坚定地高举伦理的信念。36、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。37、你既然期望辉煌伟大的一生,那么就应该从今 天起,以毫不动摇的决心和坚定不移的信念,凭自己的智慧和毅力,去创造你和人类的快乐。38、一个有决心的人,将会找到他的道路。39、在希望与失望的决斗中,如果 你用勇气与坚决的双手紧握着,胜利必属于希望。40、富贵不能淫,贫贱不能移,威武不能屈。41、生活的道路一旦选定,就要勇敢地走到底,决不回头。42、生命里最重 要的事情是要有个远大的目标,并借助才能与坚持来完成它。43、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头, 缓步的骆驼继续向前。44、有志者事竟成。45、穷且益坚,不坠青云之志。46、意志目标不在自然中存在,而在生命中蕴藏。47、坚持意志伟大的事业需要始终不渝的精神。 48、思想的形成,首先是意志的形成。49、谁有历经千辛万苦的意志,谁就能达到任何目的。50、不作什么决定的意志不是现实的意志;无性格的人从来不做出决定。我终 生的等待,换不来你刹那的凝眸。最美的不是下雨天,是曾与你躲过雨的屋檐。征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。 真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样可口!人格的完善是本,财富的确立是末能力可以慢 慢锻炼,经验可以慢慢积累,热情不可以没有。不管什么东西,总是觉得,别人的比自己的好!只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹 出世间的绝唱。对时间的价值没有没有深切认识的人,决不会坚韧勤勉。第一个青春是上帝给的;第二个的青春是靠自己努力的。不要因为寂寞而恋爱,孤独是为了幸福而 等待。每天清晨,当我睁开眼睛,我告诉自己:我今天快乐或是不快乐,并非由我所遭遇的事情造成的,而应该取决于我自己。我可以自己选择事情的发展方向。昨日已逝,
北师大版八年级数学下册直角三角形(第1课时)课件
则在Rt△ADE中,AD2=DE2+AE2,
又∵AB=AC,∠BAC=90°,
E
∴AE=BE=CE,
∵BD2+CD2=(BE-DE)2+(CE+DE)2
=BE2+CE2+2DE2=2AE2+2DE2=2AD2,
即BD2+CD2=2AD2.
课堂检测
1.2 直角三角形/
能力提升题
2、如图,直角三角形ABC中,∠ACB=90°,AC=12cm,BC=5cm,
探究新知
1.2 直角三角形/
小结 直角三角形的性质与判定
直角三角形的性质定理: 1.直角三角形的两个锐角互余. 2.勾股定理:直角三角形两条直角边的平方和等于斜边的平方.
直角三角形的判定定理: 1.有两个角互余的三角形是直角三角形 2.如果三角形两边的平方和等于第三边的平方, 那么这个三角形 是直角三角形.
(1)直角三角形的两个锐角有怎样的关系?
根据三角形的内角和定理,即可得到“直角三角 形的两锐角互余”.
(2)如果一个三角形中有两个角互余,那么这个三角 形是直角三角形吗? 是直角三角形.
探究新知
1.2 直角三角形/
证明: 如果一个三角形中有两个角互余,那么这个三 角形是直角三角形.
已知:如图,在△ABC中, ∠A +∠B=90°.
∵AC2+BC2=AB2(已知), DE=AC,FE=BC(作图), C
B
∴AB2=DF2,∴AB=DF,
∴△ABC≌△DFE(SSS).
D
∴∠C=∠E=90°,
∴△ABC是直角三角形.
┏
E
F
探究新知
1.2 直角三角形/
结论 勾股定理与逆定理
勾股定理 直角三角形两条直角边的平方和等于斜边的平方.
北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件(第1课时)
实践探究,交流新知
( 1 ) 变换前后对应点的连线平行且相等:平移变换 是图形的每一个点的变换,一个图形沿某个方向移 动一定的距离,那么每一个点也沿着这个方向移动 相同的距离,所以对应点的连线平行且相等. ( 2 ) 变换前后的图形全等:平移变换是由一个图形 沿着某个方向移动一定的距离,所以平移前后的图 形是全等的. (3)变换前后对应角相等. (4)变换前后对应线段平行且相等.
学习重点
探索图形平移的主要特征和基本性质,会画简单图形的平移图.
学习Hale Waihona Puke 点探索和理解平移的基本性质.
创设情境,导入新课
请同学们观察如图所示的两幅图片.
问题1:你能发现传送带上的箱子和手扶电梯上的人在移动前后什么没有改变, 什么发生了改变吗? 问题2:在传送带上,如果箱子的把手向前移动了80 cm,那么箱子的其他部位 向什么方向移动?移动的距离是多少? 问题3:如果把移动前后的同一个箱子看成长方体,那么移动前后的长方体各 个面的形状、大小是否相同?
北师大版 八年级下册
第三章 图形的平移与旋转
图形的平移(第1课时)
前言
学习目标
1. 通过具体实例认识平移,理解平移的基本内涵,理解和运用平移的基本性质. 2.认识平面图形的平移,探索平移的基本性质,会进行简单的平移画图. 3.通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣; 通过欣赏生活中的平移图案,使学生感受数学美.
实践探究,交流新知
探究2 平移的性质 如图,将△ABC沿射线XY的方向平移一定距离后得到△DEF.
问题1:(1)平移前后的两个图形有什么关系? (2)在上图中,线段AD,BE,CF有怎样的位置关系和数量关系? (3)图中每对对应线段之间有怎样的位置关系和数量关系? (4)图中的对应角有什么关系?
北师大版八年级数学下册第五章分式与分式方程课件
X=-3
(4) X2 -1 X2 +2x+1 X=1
6.当x为何值时,分式 2x (x-2) 5x (x+2)
(1) 有意义
(2) 值为 0
X≠0且x≠-2
X=2
7.要使分式 -2 的值为正数,则x的取值范围是 X>1 1-x
8.当x <-2 时,分式 X2+1 的值是负数. X+2
9.当x ≥7
依题意得:
180
240
=
x
x5
请完成下面的过程
甲:15 乙:20
1
x2
的值.
变:已知 x+ 1 =3 ,求
x
x2 x4+x2+1
的值.
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
用符号语言表达:
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
用符号语言表达:
(1)
4 3
x y
y 2x
3
ab3 5a2b2 (பைடு நூலகம்) 2c2 4cd
4
2
2
x
1
解:原方程可化为 1 4x 2 1
NNoox 2 (x 2)(x 2) x 2
两边都乘以 (x 2)(x 2) ,并整理得;
IImmaaggee x2 3x2 0 解得 x1 1, x2 2
检验:x=1是原方程的根,x=2是增根
∴原方程的根是x=1
例2
已知
x3 (x 2)2
1.约分: 把分子、分母的最大公因式(数)约去。 2.通分:
把分母不相同的几个分式化成分母相同的分式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3-14
[解析] 利用“平移不改变图形的形状和大小”这一性质可迅 速解决本题.由图形可知图(1)和图(2)的阴影部分经过平移 可以组成一个长方形,如图3-15.则图(1)中的长为a,宽为 (b-1),所以面积为a(b-1)=ab-a.图(2)中的长为a,宽为 (b-1),所以面积为a(b-1)=ab-a.
考 查 意 图
思想方法
数形结合 转化思想
知识归纳
1.平移 某个方向 移动一 定义:在平面内,将一个图形沿____________ 定的______ 距离 ,这样的图形移动称为平移. 性质:平移不改变图形的大小和形状.图形平移后, 对应线段________ ;对应点连线 相等 ,对应角_________ 相等 __________________________ . 平行 (或在同一直线)且相等 作图:先确定图形的关键点平移后的位置,再按原来 的方式连接,即可得到平移后的图形.
►考点二
旋转和旋转作图
►考点三
平移和旋转的应用
例3
图QZ1-4
针对训练 C
2.在图3-8的四个三角形中,不能由3-7中的△ABC 经过旋转或平移得到的是( B )
图3-7
图3-8
3、 如图3-9,△ABC和△ADE都是等腰直角三角形,
∠ACB和∠ADE都是直角,点C在AE上,△ABC绕着 A点经过逆时针旋转后与△ADE重合得到图(1),再 将图(1)作为“基本图形”绕着A点经过逆时针连 续旋转得到图(2).图(1),图(2)中旋转的角度分 别为( ) A A.45°,90° B.90°,45° C.60°,30° D.30°,60°
图3-15
图3-9
下列图案都是由字母“m”经过变形、组合而 成的,其中不是中心对称图形的是( B )
4
5
45°
图3-11
6
如图3-12,右边的平行四边形可以看作由左边 的图形经过平移得到,则第n个图形中有多少个 这样的平行四边形ABCD?
图3-12
解: 由图形可知从左到右平行四边形 ABCD 的个 数分别是 1,2,4,8,则第 5 个图形中平行四边 形 ABCD 的个数为 24=16(个),…,则第 n 个图 形中的平行四边形 ABCD 的个数为 2n-1 个.
八年级数学 下册复习课件
第一章 第二章 第三章 第四章 第五章 第六章
三角形的证明 一元一次不等式(组) 平移与旋转 因式分解 分式及分式方程 平行四边形的证明
第三章 平移与旋转
考点分析
平移与旋转是继轴对称之后的图形变换,是 近年各类考试的热点,有关平移、旋转的题目题 型多样,变化灵活,从注重考查学生空间想象能 力与动手操作能力的实践操作题到直接运用动态 操作的说理计算题、图案设计题,再发展到基于 动态操作与探究的综合探究题. 考查的着眼点日 趋灵活,能力立意的意图日渐明显. 本章主要考 查平移、旋转的概念与性质,借助图形的变换作 图与操作等,运用与构建相关图形之间的形状、 位置及大小关系进行相关的作图、计算、探究与 图案设计等,试题以低、中档题为主.
3.中心对称 (1)中心对称 定义:如果把一个图形绕着某一点旋转180°,能 够与另一个图形重合,那么就说这两个图形关于这 个点对称或中心对称,这个点叫做它们的对称中 心. (2)中心对称图形 把一个图形绕某个点旋转180°,如果旋转后的图 形与原来的图形重合,那么这个图形叫做中心对称 图形,这个点叫做它的对称中心. 性质:成中心对称的两个图形中,对应点所连线段 经过对称中心,且被对称中心平分.
2.旋转 定义:在平面内,将一个图形绕一个_________ 定点 沿某 角度 ,这样的图形运动称为旋 个方向转动一个_______ 转. 性质:旋转不改变图形的大小和形状.图形旋转后 对应线段_________ ,对应角________ 相等 相等 ,对应点到旋 转中心的距离_____________ .任意一对对应点与旋 相等 转中心的连线所成的角都是_________ 旋转角 . 作图:(1)先找出图形中的关键点;(2)分别作出这 几个点旋转后的对应点;(3)按原来位置依次连接各 点即可得到旋转后的图形.
4.关于常见图形的对称 (1)中心对称:平行四边形 (2)轴对称:等腰三角形、等边三角形、 等腰梯形、奇数边的正多边形 (3)既是轴对称又是中心对称的常见图形 有:线段、矩形、菱形、正方形、圆、偶数边 的正多边形
考点攻略
►考点一
例1
平移和平移作图
[方法技巧] 平移要注意起点和终点,平移的方向和距离。
7 如图3-13,在长方形ABCD中,横向阴影 部分是长方形,另一阴影部分是平行四边 形,依照图中标注的数据,计算图中空白 部分的面积,其面积是( )
B
Hale Waihona Puke 图3-138.如图3-14(1)所示,在长为a,宽为 b的一块草坪上修了一条宽为1的笔直小 路,则余下草坪的面积可表示为 ab-a ;如图(2),现为了增加美感 ________ ,把这条小路改为宽恒为1的弯曲小路 ab-a . ,则此时余下草坪的面积为________