<<+<+②和④都是对的; 4 A 11(10)()1,()(10)1,(10)(10)111010
f f f f f f =+=-+=-++ 5 C ()()(),()()()()(),f x
g x
h x f x g x h x g x h x =+-=-+-=-+
()()()()()lg(101),()222x f x f x f x f x x h x g x +---==+==
6 C a b c =====
=二、填空题 1 (1,)+∞ 2210ax x ++>恒成立,则0440
a a >⎧⎨∆=-<⎩,得1a > 2 []0,1 221ax x ++须取遍所有的正实数,当0a =时,21x +符合
条件;当0a ≠时,则0440
a a >⎧⎨
∆=-≥⎩,得01a <≤,即01a ≤≤ 3 [)[)0,,0,1+∞ 111()0,()1,022x x x -≥≤≥;11()0,01()1,22
x x >≤-< 4 2 ()()11011
x x m m f x f x a a --+=+++=-- (1)20,20,21x x m a m m a -+=-==-
5 19 2
93(3)18lg1019-⨯-+=+=
三、解答题 1 解:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++ 4
0.2543213log log log ,1321
x x x x x x -++==-++ 33121x x x x -+=-+,得7x =或0x =,经检验0x =为所求 (2)2
(lg )lg lg lg lg 1020,(10)20x x x x x x x +=+=
lg lg lg 220,10,(lg )1,lg 1,x x x x x x x x +====± 10,x =1或
10,经检验10,x =1或10为所求 2 解:21111()()1[()]()14222
x x x x y =-+=-+ 2113[()],224
x =-+ 而[]3,2x ∈-,则11()842
x ≤≤ 当11()22x =时,min 34y =;当1()82
x =时,max 57y = ∴值域为3[,57]4
3 解:3()()1log 32log 21log 4
x x x f x g x -=+-=+, 当31log 04x
+>,即01x <<或43
x >时,()()f x g x >; 当31log 04x +=,即43x =时,()()f x g x =;