(完整版)初一上册几何练习题50道
人教版七年级数学上册第4章几何图形初步练习题
人教版七年级数学上册第4章几何图形初步练习题明日复明日,明日何其多,我生待明日,万事成蹉跎。
不要等到明日才来做七年级数学练习题。
小编整理了关于人教版七年级数学上册第4章几何图形初步练习题,希望对大家有帮助!人教版七年级数学上册第4章几何图形初步习题一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是( )A. B. C. D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有( )A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )A. B. C. D.5.下面等式成立的是( )A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )A.25°B.35°C.45°D.55°8.如图,∠1+∠2等于( )A.60°B.90°C.110°D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为( )A.3cmB.4cmC.5cmD.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=°.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B 点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.人教版七年级数学上册第4章几何图形初步练习题参考答案一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是( )A. B. C. D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有( )A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )A. B. C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是( )A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )A.25°B.35°C.45°D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC= ∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于( )A.60°B.90°C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为( )A.3cmB.4cmC.5cmD.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD= BC= ×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1= ×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4= ×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数= .13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.故答案为:90°.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B 点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.故答案为360.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2= ∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON 是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得 .【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴ , .∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵ = ,又∠AOB是直角,不改变,∴ .【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC 的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC= AC= BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x= (180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.。
2024年数学七年级上册几何基础练习题(含答案)
2024年数学七年级上册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形2. 下列哪个图形是一个矩形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形3. 下列哪个图形是一个菱形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形4. 下列哪个图形是一个正三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形5. 下列哪个图形是一个等腰三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,两个角是直角的三角形D. 三条边不等长,两个角是锐角的三角形6. 下列哪个图形是一个等边三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形7. 下列哪个图形是一个梯形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,两个角是直角的四边形D. 四条边不等长,两个角是锐角的四边形8. 下列哪个图形是一个平行四边形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形9. 下列哪个图形是一个圆形?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形10. 下列哪个图形是一个椭圆?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形二、判断题(每题2分,共10分)1. 正方形的对角线互相垂直且相等。
(完整版)初中几何题练习
初中几何练习题一. 三角形1.三角形的有关概念 一、填空题:1、三角形的三边为1,a 1,9,则a 的取值范围是 。
2、已知三角形两边的长分别为1和2,如果第三边的长也是整数,那么第三边的长为 。
3、在△ABC 中,若∠C =2(∠A +∠B ),则∠C = 度。
4、如果△ABC 的一个外角等于1500,且∠B =∠C ,则∠A = 。
5、如果△ABC 中,∠ACB =900,CD 是AB 边上的高,则与∠A 相等的角是 。
6、如图,在△ABC 中,∠A =800,∠ABC 和∠ACB 的外角平分线相交于点D ,那么∠BDC = 。
7、如图,CE 平分∠ACB ,且CE ⊥DB ,∠DAB =∠DBA ,AC =18cm ,△CBD 的周长为28 cm ,则DB = 。
8、纸片△ABC 中,∠A =650,∠B =750,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=200,则∠2的度数为 。
9、在△ABC 中,∠A =500,高BE 、CF 交于点O ,则∠BOC = 。
第6题图FEDC BA第7题图EDC BA第8题图A二、选择题:1、若△ABC 的三边之长都是整数,周长小于10,则这样的三角形共有( )A 、6个B 、7个C 、8个D 、9个 2、在△ABC 中,AB =AC ,D 在AC 上,且BD =BC =AD ,则∠A 的度数为( )A 、300B 、360C 、450D 、720 3、等腰三角形一腰上的中线分周长为15和12两部分,则此三角形底边之长为( )A 、7B 、11C 、7或11D 、不能确定 4、在△ABC 中,∠B =500,AB >AC ,则∠A 的取值范围是( ) A 、00<∠A <1800 B 、00<∠A <800 C 、500<∠A <1300 D 、800<∠A <13005、如果三角形的一个外角等于它相邻内角的2倍,且等于它不相邻内角的4倍,那么这个三角形一定是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、正三角形 三、解答题:1、有5根木条,其长度分别为4,8,8,10,12,用其中三根可以组成几种不同形状的三角形?2、长为2,3,5的线段,分别延伸相同长度的线段后,能否组成三角形?若能,它能构成直角三角形吗?为什么?3、如图,在△ABC 中,∠A =960,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于1A ,∠1A BC 与∠1A CD 的平分线相交于2A ,依此类推,∠4A BC 与∠4A CD 的平分线相交于5A ,则∠5A 的大小是多少?2A 1A 第3题图DC B A4、如图,已知OA =a ,P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =600,填空:(1)当OP = 时,△AOP 为等边三角形; (2)当OP = 时,△AOP 为直角三角形; (3)当OP 满足 时,△AOP 为锐角三角形; (4)当OP 满足 时,△AOP 为钝角三角形。
七年级上册几何题50道
七年级上册几何题50道1.画出一个点A,并从点A画出两条射线,形成一个角∠BAC,测量并写出∠BAC的度数。
2.如果∠1=35°且∠2与∠1互为余角,求∠2的度数。
3.画出一个直角三角形,其中一个锐角为45°,并测量另一锐角的度数。
4.证明等腰三角形底角相等。
5.一个三角形的两个内角分别为60°和50°,求第三个内角的度数。
6.画出一个平行四边形ABCD,如果∠A=110°,求∠B的度数。
7.一个矩形的长是宽的两倍,如果宽是10厘米,求矩形的面积。
8.一个正方形的周长是20厘米,求它的面积。
9.一个圆的半径是3厘米,求圆的周长和面积。
10.如果一个圆的直径是10厘米,求半圆的周长。
11.画出一个直角梯形,上底3cm,下底7cm,高5cm,求它的面积。
12.一个等边三角形的边长为6cm,求它的高。
13.求一个边长为5cm的正六边形的周长。
14.如果一个平行四边形的两邻边分别是5cm和8cm,且夹角为60°,求它的面积。
15.一个直角三角形的两直角边分别为3cm和4cm,求斜边的长度。
16.画出一个角,然后使用圆规和直尺将其二等分。
17.证明直角三角形斜边上的中线等于斜边的一半。
18.一个圆的周长是31.4cm,求它的半径。
19.画出一个等腰梯形,底边分别是12cm和8cm,高为5cm,求它的面积。
20.如果一个矩形的面积是24cm²,长是6cm,求它的宽。
21.一个直角三角形的斜边为10cm,其中一个锐角为30°,求较短的直角边的长度。
22.画出一个角,使用圆规和直尺将其三等分。
23.如果一个圆的面积是100πcm²,求它的半径。
24.一个正方形的对角线长为8cm,求它的边长。
25.一个等腰三角形的底边为10cm,腰长为8cm,求底角的度数。
26.画出一个正五边形,如果一个内角是108°,求它的一个外角的度数。
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
七年级上册数学几何图形练习题
七年级上册数学几何图形练习题
课前练习
1、足球类似于几何体中的;易拉罐类似于几何体中的
2、右图中共有个长方形
3、正方体有个顶点,条棱,角。
4、右图中共有个平面图形。
课堂练习:
6、几何图形包括和
7、在几何学中研究一个物体时,我们不研究别的问题,而仅可能考虑()
A 它是不是红的
B 它是不是脆的
C 它是不是甜的
D 它是不是球的
8、在同一平面内用火柴棍搭4个一样大小的等边三角至少要根,在空间搭4个一样大小的等边三角形,至少要根
9、右图中的立体图形的表面中包含有那些平面图形?
10、下面图形不可能是多面体展开图的是()。
初一数学几何图形初步几何图形练习题
长方形的面积:5a· a= a2≈21.65a2,
圆的半径r:r2= =7a2,
r= a≈2.6458a
圆的面积:π·(2.6458a)2≈21.98a2.
∵21.65a2<21.98a2,
∴甲的硬板纸利用高.
(2)画图
考点:1.长方形的面积公式;2.圆的面积公式.
20.见解析
【解析】
(1)长方形(非正方形);
(2)平行四边形;
(3)四边形(非平行四边形).
18.(本题满分10分)(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.
(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.
故选A.
考点:截一个几何体.
14.B.
【解析】
试题分析:A、左视图与主视图都是正方形,故A不符合题意;
B、左视图与主视图不相同,分别是正方形和长方形,故B符合题意;
C、左视图与主视图都是矩形,故C不符合题意;
D、左视图与主视图都是等腰三角形.故D不符合题意.
故选B.
考点:简单几何体的三视图.
15.A.
①请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;
②若图中的正方形边长5cm,长方形的长为8cm,宽为5cm,请直接写出修正后所折叠而成的长方体的表面积为cm2.
25.(4分)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体的主视图和左视图.
故选C.
考点:简单组合体的三视图.
2024年数学七年级上册立体几何基础练习题(含答案)
2024年数学七年级上册立体几何基础练习题(含答案)试题部分一、选择题:1. 下列哪个图形是正方体?()A. 长方体B. 正六面体C. 圆柱体D. 球体2. 一个长方体的长、宽、高分别为2cm、3cm、4cm,它的对角线长度是多少cm?()A. 5cmB. 6cmC. 7cmD. 9cm3. 下列哪个图形的表面积最小?()A. 正方体B. 长方体C. 球体D. 圆柱体4. 一个正方体的体积是64立方厘米,它的棱长是多少厘米?()A. 2cmB. 4cmC. 6cmD. 8cm5. 下列哪个图形有6个面?()A. 三棱锥B. 四棱锥C. 圆锥D. 球体6. 一个圆柱的底面半径为3cm,高为5cm,它的侧面积是多少平方厘米?()A. 45πcm²B. 54πcm²C. 75πcm²D. 90πcm²7. 下列哪个图形的体积最大?()A. 长方体(长、宽、高分别为2cm、3cm、4cm)B. 正方体(棱长为3cm)C. 球体(半径为2cm)D. 圆柱体(底面半径为2cm,高为3cm)8. 一个圆锥的底面半径为4cm,高为3cm,它的体积是多少立方厘米?()A. 48πcm³B. 64πcm³C. 72πcm³D. 96πcm³9. 下列哪个图形可以展开成一个长方形?()A. 正方体B. 球体C. 圆锥D. 圆柱体10. 一个正方体的棱长为x,它的表面积是多少?()A. 6x²B. 8x²C. 12x²D. 24x²二、判断题:1. 正方体的六个面都是正方形。
()2. 圆柱体的底面和顶面都是圆形。
()3. 球体的表面积和体积相等。
()4. 长方体的对角线长度等于其长、宽、高的和。
()5. 圆锥的体积等于底面积乘以高。
()6. 正方体的体积是棱长的三次方。
()7. 两个相同体积的正方体,它们的表面积也相同。
完整版)初一几何练习题及答案
完整版)初一几何练习题及答案初一几何:三角形一、选择题(本大题共24分)1.以下列各组数为三角形的三条边,其中能构成直角三角形的是()A。
17,15,8B。
1/3,1/4,1/5C。
4,5,6D。
3,7,112.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()A。
锐角三角形B。
直角三角形C。
钝角三角形D。
等腰三角形3.下列给出的各组线段中,能构成三角形的是()A。
5,12,13B。
5,12,7C。
8,18,7D。
3,4,84.如图已知:Rt△ABC中,∠C=90°,AD平分∠BAC,AE=AC,连接DE,则下列结论中,不正确的是()A。
DC=DEB。
∠___∠ADEC。
∠DEB=90°D。
∠___∠DAE5.一个三角形的三边长分别是15,20和25,则它的最大边上的高为()A。
12B。
10C。
8D。
56.下列说法不正确的是()A。
全等三角形的对应角相等B。
全等三角形的对应角的平分线相等C。
角平分线相等的三角形一定全等D。
角平分线是到角的两边距离相等的所有点的集合7.两条边长分别为2和8,第三边长是整数的三角形一共有()A。
3个B。
4个C。
5个D。
无数个8.下列图形中,不是轴对称图形的是()A。
线段MNB。
等边三角形C。
直角三角形D。
钝角∠AOB9.如图已知:△ABC中,AB=AC,BE=CF,AD⊥BC于D,此图中全等的三角形共有()A。
2对B。
3对C。
4对D。
5对10.直角三角形两锐角的平分线相交所夹的钝角为()A。
125°B。
135°C。
145°D。
150°11.直角三角形两锐角的平分线相交所夹的钝角为()A。
125°B。
135°C。
145°D。
150°12.___已知:∠A=∠D,∠C=∠F,如果△ABC≌△DEF,那么还应给出的条件是()A。
AC=DEB。
AB=DFC。
七年级上册《数学》几何图形专项练习题((含答案)
七年级上册《数学》几何图形专项练习题第1课时几何图形一、能力提升1.下列所列举的物体中,与圆锥的形状类似的是()A.足球B.字典C.易拉罐D.标枪的尖头2.下列图形属于柱体的是()3.下列第一行所示的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如由a,b组成的图形记作a☉b,那么由此可知,下面第二行的图中可以记作a☉d的是()4.如图,下面各几何体中,是三棱柱的是.(只填序号)5.下列说法:①圆锥和圆柱的底面都是圆;②棱锥底面边数与侧棱数相等;③棱柱的上、下底面是形状、大小相同的多边形;④四棱柱是长方体.其中正确的是.(填序号)6.有一个几何体,形状如图所示,这个几何体的面数为.7.如图,下列各图形主要由哪些简单的几何图形组成?二、创新应用8.请利用图中的几何体拼出蘑菇、台灯等图案,并和同伴一起交流,尽量拼出最多的图案.答案一、能力提升1.D.2.C.3.A.根据题意,知a代表长方形,d代表直线,因此记作a☉d的图形是长方形和直线的组合,故选A.4.④.5.①②③.6.6.7.解:(1)由圆组成;(2)由长方形和正方形组成;(3)由菱形(或四边形)组成;(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).二、创新应用8.分析:本题是开放性试题,只要所给答案合理即可.解:答案不唯一,如图.第2课时几何图形的三种形状图与展开图一、能力提升1.如图,小李书桌上放了一本书,从上往下看得到的平面图形是()2.如图,一个带有方形空洞、圆形空洞的儿童玩具.如果用下列几何体作为塞子,那么既可以堵住方形空洞又可以堵住圆形空洞的几何体是()3.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看到的图形如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.144.有3块正方体积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑5.图①是一个小正方体的侧面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是.图①图②6.根据下列多面体的平面展开图,填写多面体的名称:(1),(2),(3).7.如图,将下列图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去.(填序号)8.如图,画出所给几何体的从正面看、从左面看和从上面看得到的图形.9.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图②中标出点P,Q,S的位置.二、创新应用10.火箭的示意图如图所示(火箭圆柱底面的周长不等于圆柱的高),请你画出火箭的平面展开图.11.如图,在一个长方体的展开图上,每一面上都标注了字母(标字母的面是外表面),根据要求回答问题:(1)如果D面在多面体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)如果C面在前面,从上面看是D面,那么左面是哪个面?(4)如果B面在后面,从左面看是D面,那么前面是哪个面?(5)如果A面在右面,从下面看是F面,那么B面在哪里?答案一、能力提升1.A.2.B.从正面与上面分别看圆柱体所得的平面图形分别是长方形和圆,它既可以堵住方形空洞又可以堵住圆形空洞.3.B.因为右上角的碟子有5个,左下角的碟子有3个,左上角的碟子有4个,所以碟子的总数为3+4+5=12.4.C.根据第一个图和第二个图可知,与绿色相邻的四个面的颜色分别为白、黑、蓝、红,从第三个图可知第六个面为黄色,即为绿色一面的对面.5.国.翻到题图②第1格时朝下的为“了”字,第2格为“害”字,第3格为“厉”字,其对面为“国”字,即为这时小正方体朝上一面的字.6.(1)长方体.(2)三棱柱.(3)三棱锥.7.1或2或6.8.解:9.解:如图所示.二、创新应用10.解:11.解:(1)右面.(2)E面.(3)B面.(4)E面.(5)后面.4.1.2点、线、面、体一、能力提升1.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()2.下列几何体有6个面的有()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱.A.1个B.2个C.3个D.4个3.如果一个直棱柱有12个顶点,那么它的面的个数是()A.10B.9C.8D.74.下列说法正确的有()①四面体的各个面都是三角形;②棱柱的顶点数一定是偶数,棱的条数一定是3的倍数;③圆柱是由两个面围成的;④长方体的面不可能是正方形.A.1个B.2个C.3个D.4个5.观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()6.薄薄的硬币在桌面上转动时,看上去像球,这说明了.7.航天飞机拖着“长长的火焰”,我们用数学知识可解释为点动成线.用数学知识解释下列现象:(1)一只小蚂蚁爬行留下的路线可解释为.(2)电动车车辐条运动形成的图形可解释为.8.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体从正面看的图形的面积是cm2.9.观察右图,填空:(1)这个图形的名称是;(2)这个几何体有个面,有个底面,有个侧面,底面是形,侧面是形.(3)侧面的个数与底面多边形的边数有什么关系?10.用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形都存在着某种联系,用线将它们连起来.11.如图①,把一张长为6厘米、宽为10厘米的长方形纸板分成两个相同的直角三角形.(1)甲三角形(如图②)绕轴旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?(2)乙三角形(如图③)绕轴旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?二、创新应用12.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:顶点数多面体面数(F) 棱数(E)(V)四面体 4 4长方体8 6 12正八面体8 12正十二面20 12 30体你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)若一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表三角形的个数为x,八边形的个数为y,求x+y的值.答案一、能力提升1.D.2.C.3.C.直棱柱有12个顶点,一定是六棱柱,因此它的面的个数是8.4.B.5.D.由题中图形可以看出,左边的长方形的竖直的两条边与已知的直线平行,因而这两条边旋转形成两个柱形表面,旋转一周后可能形成的立体图形是一个管状的物体.6.面动成体.从运动的观点可知,薄薄的硬币在桌面上转动时,看上去像球,这种现象说明面转动成体.7.(1)点动成线.(2)线动成面.8.18.将正方形旋转一周所形成的图形是圆柱,从正面看圆柱是一个长方形,长方形的一边长为3cm,另一边长为6cm.因此面积为18cm2. 9.解:(1)六棱柱.(2)8;2;6;六边;长方.(3)侧面的个数与底面多边形的边数相等.10.解:从第一行的平面图形绕某一边旋转或沿某一方向平移可得到第二行的立体图形,从第二行的立体图形的上面看可得到第三行的平面图形.(1)→(三)→(D);(2)→(二)→(C);(3)→(四)→(B);(4)→(一)→(A).11.解:(1)甲三角形绕它的一条直角边所在直线旋转一周,形成一个底面半径是6厘米,高是10厘米的圆锥,它的体积是×π×62×10=120π(立方厘米).(2)乙三角形(如题图③)绕轴旋转一周,形成一个圆柱,且中间挖去了一个和圆柱同底等高的圆锥,它的体积是π×62×10-π×62×10=240π(立方厘米).二、创新应用12.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为V+F-E=2.(2)由题意,得F-8+F-30=2,解得F=20.(3)因为有24个顶点,每个顶点处都有3条棱,两点确定一条直线,所以共有24×3÷2=36条棱.由(1)得24+F-36=2,解得F=14,所以x+y=14.。
初一上几何试题大全及答案
初一上几何试题大全及答案一、选择题1. 一个点可以确定几条直线?A. 0条B. 1条C. 无数条D. 不确定答案:C2. 线段AB和线段CD是平行的,那么线段AB和线段CD的长度关系是?A. 相等B. 不相等C. 可能相等D. 无法确定答案:C3. 在平面内,不共线的三点可以确定几个平面?A. 1个B. 2个C. 3个D. 无数个答案:A4. 一个角的度数是30°,那么它的补角是?A. 30°B. 60°C. 90°D. 120°答案:B5. 直角三角形的两条直角边分别为3和4,那么它的斜边长是?A. 5B. 6C. 7D. 8答案:A二、填空题6. 如果一个三角形的内角和为180°,那么一个四边形的内角和为______。
答案:360°7. 一个圆的半径为5厘米,那么它的直径是______厘米。
答案:10厘米8. 如果两条直线相交,那么它们所形成的角中,最大的角是______。
答案:平角9. 一个正方体的棱长为2厘米,那么它的表面积是______平方厘米。
答案:24平方厘米10. 如果一个角是直角的一半,那么这个角是______。
答案:45°三、解答题11. 如图所示,点A、B、C在同一条直线上,点D不在直线AB上。
如果AB=5厘米,BC=3厘米,求线段AD的长度。
答案:由于点D不在直线AB上,根据题意,我们无法直接得出AD 的长度。
需要更多信息,例如点D的位置或与AB、BC的关系。
12. 一个正五边形的内角和是多少度?答案:正五边形的每个内角都是108°,因为正五边形的内角和=(n-2)×180°,其中n是边的数量。
对于五边形,n=5,所以内角和=(5-2)×180°=540°。
四、证明题13. 证明:如果两条直线平行,那么它们与第三条直线所形成的同位角相等。
人教版数学七年级上册《4.1 几何图形》练习
B.
C.
D.
11.如图,共有 12 个大小相同的小正方形,其中阴影部分的 5 个小正方形是一个正方
体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,能构成这个正
方体的表面展开图的有( )个.
A. 4
B. 5
C. 6
D. 7
12.如图是一个直三棱柱,则它的平面展开图中,错误的是( )
A.
B.
宽是原正方形边长的两倍;
(2)俯视图为半径为 1 的圆,根据圆的面积公式求出即可.
22.【答案】解:分两种情况:
3
①绕长所在的直线旋转一周得到圆柱体积为:π×32×5=45π(c );
3
②绕宽所在的直线旋转一周得到圆柱体积为:π×52×3=75π(c ).
3
3
故它们的体积分别为 45πc 或 75πc .;
5.【答案】C;
【解析】解:A、是田字格,不是正方体的平面展开图,故选项错误;
B、缺少上下 2 个底面,不是正方体的平面展开图,故选项错误;
C、是一个正方体的平面展开图,故选项正确;
D、是凹字格,不是正方体的平面展开图,故选项错误.
故选 C.
6.【答案】C;
【解析】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,D 选项可以拼成
而另一端一定与圆锥的底面相交,即靠近 A、B 两点的两个空白部分无法围成环并且
紧贴底面.
故选 B.
16.【答案】线动成面;
【解析】解:汽车的雨刷把玻璃上的雨水刷干净,是运用了线动成面的原理,
故答案为:线动成面.
17.【答案】②;
【解析】解:平面图形②绕虚线旋转一周,可以得到图 1,
七上几何计算题专项练习
七上几何计算题专项练习
本文档为七年级上学期几何计算题专项练,在这里你将能够巩固和提高你的几何计算能力。
以下是一些练题供你参考:
1. 长方形的面积计算
问题:一个长方形的长为5米,宽为3米,求其面积。
解答:
面积计算公式为:面积 = 长 ×宽
所以,该长方形的面积为 5米 × 3米 = 15平方米
2. 三角形的周长计算
问题:一个三角形的三边长分别为6厘米、8厘米和10厘米,求其周长。
解答:
周长计算公式为:周长 = 边1长 + 边2长 + 边3长
所以,该三角形的周长为 6厘米 + 8厘米 + 10厘米 = 24厘米
3. 圆的周长和面积计算
问题:一个圆的半径为2米,求其周长和面积。
解答:
圆的周长计算公式为:周长= 2πr (其中π取3.14)
所以,该圆的周长为 2 × 3.14 × 2米 = 12.56米
圆的面积计算公式为:面积= πr²
所以,该圆的面积为 3.14 × 2米 × 2米 = 12.56平方米
4. 平行四边形的面积计算
问题:一个平行四边形的底边长为8厘米,高度为5厘米,求其面积。
解答:
平行四边形的面积计算公式为:面积 = 底边长 ×高度
所以,该平行四边形的面积为 8厘米 × 5厘米 = 40平方厘米
希望以上练习题能够帮助你加深对几何计算的理解和应用。
继续努力,你会越来越擅长几何计算!。
七年级数学上册几何题_三十余道
第四单元几何图形典型练习题一、精心选一选1.下列说法中错误的是().A.A、B两点之间的距离为3cm B.A、B两点之间的距离为线段AB的长度C .线段AB 的中点C 到A 、B 两点的距离相等D .A 、B 两点之间的距离是线段AB 2.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( )A. ∠1=∠3B. ∠1=180°-∠3C. ∠1=90°+∠3D. 以上都不对 3、. 一副三角板按如图方式摆放,且∠1比∠2小40°,则∠2的度数是( )A. 20°B. 25°C. 40°D. 65°124.如图4,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ). A .CD=AC-BD B .CD=21BC C .CD=21AB-BD D .CD=AD-BC 5.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( ). A .M 点在线段AB 上 B .M 点在直线AB 上 C .M 点在直线AB 外D .M 点可能在直线AB 上,也可能在直线AB 外 6.下列图形中,能够相交的是( ).7.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ). A .8cm B .2cm C .8cm 或2cm D .4cm8、从不同方向看同一物体所得平面图形如下,则该物体可能是( )从正面看从左面看从上面看9. 如图所示,∠AOD =∠BOC =60°,∠AOB =100°,给出下列结论:①∠COD =20°;②∠AOC =∠BOD ;③∠BOD =40°,其中正确的是( ) A. 只有①B. 只有②C. ①②D. ①②③图4AOBCD10. 如图所示,∠1=15°,∠AOC =90°,点B 、O 、D 在同一直线上,则∠2的度数是( )ABCDO12A. 75B. 15°C. 105°D. 165°11. 如图所示,已知点M 是线段AB 的中点,N 是线段AM 上一点,下列说法错误的是( ) ABM N12. 在海上,灯塔位于一艘船的北偏东60度方向,那么这艘船位于这个灯塔的( )A. 南偏西30°方向B. 南偏西60°方向C. 北偏东30°方向D. 北偏东60°方向二、填空13.如图,三棱锥有________个面,它们相交形成了________条棱, 这些棱相交形成了________个点. 14.如图1-4,A ,B ,C ,D 是一直线上的四点,则 ______ + ______ =AD -AB ,AB +CD=______ - ______ .15.如图1-5,OA 反向延长得射线 ______ ,线段CD 向 ______ 延长得直线CD . 三.解答题16、 如图所示,已知A 、O 、B 三点共线,∠COD =120°,OE 是∠AOC 的平分线,OF 是∠BOD 的平分线,求∠EOF .ABCDE FO17. 如图所示,AB ∶BC ∶CD =3∶4∶5,M 是AB 的中点,N 是CD 的中点,M 、N 两点的距离为16cm .求线段AB 、BC 、CD 的长.ABCDMN18、右面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。
人教新课标七年级上册数学几何的代数练习题50道
人教新课标七年级上册数学几何的代数练
习题50道
概述:
本文档提供了人教新课标七年级上册数学几何的代数练题共50道。
这些练题涵盖了数学几何中的代数概念和技巧,并旨在帮助学生巩固和提高其代数运算能力。
练题列表:
1. 求下列各式代数和的值:(3x + 2) + (4x - 1)
2. 计算下列各数的和:-5 + (x - 3) + (2x + 7)
3. 化简下列各式并求值:2(3x + 5) - (4x - 2)
4. 计算下列各数的和:(-2x + 3) + (4 - x) + (2x - 1)
5. 求下列各式代数和的值:(2a + 3b) - (a - b) + (3a - 2b)
......(以下练题依次类推)
目标:
通过完成这些代数练题,学生能够:
- 理解代数运算的基本概念和原则
- 掌握代数运算的基本技巧
- 运用代数知识解决实际问题
注意事项:
- 在进行计算过程中,注意进行合并同类项、化简等基本操作- 确保在计算过程中准确使用各种代数运算法则
期望效果:
通过完成这50道代数练题,学生能够在数学几何的代数运算方面提高其技能水平,为进一步研究数学打下坚实的基础。
参考答案:
为了更好地帮助学生自我检测和巩固知识,建议提供每道题的参考答案。
请参考相关教材或教师提供的参考答案。
备注:
根据教育部《中小学教材修订管理办法》的规定,请保密和尊重教材的版权,遵循合理使用原则。
初中上册几何试题及答案
初中上册几何试题及答案一、选择题(每题3分,共30分)1. 下列哪个图形是轴对称图形?A. 平行四边形B. 等腰三角形C. 不规则多边形D. 矩形答案:B2. 一个圆的半径为3厘米,那么它的周长是多少?A. 6π厘米B. 9π厘米C. 12π厘米D. 18π厘米答案:C3. 在直角三角形中,如果一个锐角为30度,那么另一个锐角的度数是多少?A. 30度B. 45度C. 60度D. 90度答案:C4. 一个等边三角形的边长为6厘米,那么它的高是多少?A. 3厘米B. 6厘米C. 3√3厘米D. 6√3厘米答案:C5. 一个矩形的长为8厘米,宽为4厘米,那么它的面积是多少?A. 32平方厘米B. 24平方厘米C. 16平方厘米D. 12平方厘米答案:B6. 一个正方体的棱长为5厘米,那么它的体积是多少?A. 125立方厘米B. 250立方厘米C. 125√3立方厘米D. 250√3立方厘米答案:A7. 一个圆柱的底面半径为2厘米,高为5厘米,那么它的体积是多少?A. 6π立方厘米B. 10π立方厘米C. 20π立方厘米D. 30π立方厘米答案:C8. 一个圆锥的底面半径为3厘米,高为4厘米,那么它的体积是多少?A. 12π立方厘米B. 18π立方厘米C. 24π立方厘米D. 36π立方厘米答案:B9. 一个球的直径为10厘米,那么它的体积是多少?A. 250π立方厘米B. 500π立方厘米C. 1000π立方厘米D. 2000π立方厘米答案:C10. 一个长方体的长、宽、高分别为4厘米、3厘米和2厘米,那么它的表面积是多少?A. 52平方厘米B. 62平方厘米C. 72平方厘米D. 82平方厘米答案:A二、填空题(每题2分,共20分)1. 一个圆的直径为8厘米,那么它的半径是________厘米。
答案:42. 一个等腰直角三角形的直角边长为5厘米,那么它的斜边长是________厘米。
答案:5√23. 一个正五边形的内角和是________度。
初一上册几何试题及答案
初一上册几何试题及答案一、选择题(每题2分,共10分)1. 以下哪个图形是正方形?A. 四边形,四边相等,对角线相等B. 三角形,三个角相等C. 四边形,对边平行D. 四边形,四边相等,对角线垂直2. 一个三角形的内角和是多少度?A. 90度B. 180度C. 270度D. 360度3. 以下哪个选项是圆的特征?A. 所有半径相等B. 所有直径相等C. 所有周长相等D. 所有面积相等4. 一个圆的周长是其直径的多少倍?A. π倍B. 2倍C. 3倍D. 4倍5. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8二、填空题(每空1分,共10分)6. 一个长方形的长是10厘米,宽是5厘米,其面积是________平方厘米。
7. 如果一个圆的半径为r,则其面积公式为________。
8. 一个三角形的高是6厘米,底是8厘米,其面积是________平方厘米。
9. 一个平行四边形的对角线互相平分,如果一条对角线长为10厘米,另一条对角线长为8厘米,则其面积是________平方厘米。
10. 一个正六边形的内角是________度。
三、简答题(每题5分,共20分)11. 请简述什么是等腰三角形,并给出其两个主要性质。
12. 请解释什么是圆周角,并给出圆周角定理的内容。
13. 请说明什么是相似三角形,并给出相似三角形的判定条件。
14. 请解释什么是勾股定理,并给出一个简单的应用实例。
四、计算题(每题10分,共20分)15. 已知一个圆的半径为7厘米,求其周长和面积。
16. 已知一个三角形的三边长分别为5厘米、12厘米和13厘米,请判断它是否为直角三角形,并计算其面积。
五、解答题(每题15分,共30分)17. 一个长方形的长是20厘米,宽是15厘米,求其对角线的长度。
18. 一个圆的直径是14厘米,求其半径、周长和面积。
六、结束语本试题涵盖了初一上册几何的主要知识点,通过选择题、填空题、简答题、计算题和解答题等多种形式,全面考察学生对几何概念的理解和应用能力。
初一上册几何图形试题及答案
初一上册几何图形试题及答案一、选择题(每题3分,共15分)1. 下列哪个图形不是平面图形?A. 三角形B. 圆形C. 立方体D. 正方形答案:C2. 一个正方形的边长为4厘米,它的周长是多少厘米?A. 8厘米B. 12厘米C. 16厘米D. 20厘米答案:C3. 一个圆的半径为3厘米,它的面积是多少平方厘米?A. 28.26平方厘米B. 36平方厘米C. 45平方厘米D. 54平方厘米答案:A4. 一个长方形的长为6厘米,宽为3厘米,它的对角线长度是多少厘米?A. 3厘米B. 6厘米C. 9厘米D. √45厘米答案:D5. 一个平行四边形的对边相等,下列哪个选项不是它的属性?A. 对角线相等B. 对边平行C. 对角相等D. 对角线互相平分答案:A二、填空题(每空2分,共10分)6. 一个三角形的内角和为________度。
答案:1807. 如果一个角是直角,那么它是一个________角。
答案:直8. 一个圆的周长公式为C=2πr,其中r代表________。
答案:半径9. 一个长方形的面积公式为S=lw,其中l代表________。
答案:长10. 如果两条直线相交,它们可以形成最多________个交点。
答案:1三、简答题(每题5分,共10分)11. 请简述什么是轴对称图形?答案:轴对称图形是指一个图形沿一条直线对折后,直线两旁的部分能够完全重合的图形。
12. 什么是相似图形?答案:相似图形是指两个图形的对应角相等,对应边成比例的图形。
四、计算题(每题10分,共20分)13. 已知一个三角形的三个角度分别为40°、60°和80°,请计算这个三角形的面积,如果它的底边长度为8厘米。
答案:首先,根据三角形内角和定理,三个角之和为180°,所以这个三角形是合法的。
其次,根据三角形面积公式S=1/2*底*高,由于三角形的高未知,我们可以使用正弦定理来计算高。
设三角形的高为h,底边为a,另外两边分别为b和c,根据正弦定理,我们有h/b =sin(80°),h = b * sin(80°)。
(完整版)初一上册几何练习题50道
一.选择题1.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形2.下列给出的各组线段中,能构成三角形的是()(A)5,12,13(B)5,12,7(C)8,18,7(D)3,4,83.一个三角形的三边长分别是15,20和25,则它的最大边上的高为()(A)12(B)10(C)8(D)54.两条边长分别为2和8,第三边长是整数的三角形一共有()(A)3个(B)4个(C)5个(D)无数个5.下列图形中,不是轴对称图形的是()(A)线段MN(B)等边三角形(C)直角三角形(D)钝角∠AOB6.直角三角形两锐角的平分线相交所夹的钝角为()(A)125°(B)135°(C)145°(D)150°7.已知∠α,∠β是某两条平行线被第三条直线所截得的同旁内角,若∠α=50°,则∠β为()A.40°B.50°C.130°D.140°8.如图,下列推理中正确的是()A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥DCC.若∠A=∠3,则AD∥BC D.若∠3=∠4,则AB∥DC9.下列图形中,可以折成长方体的是()10.一个几何体的三视图如图所示,那么这个几何体是()11.如图1,在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为() A.30°B.36°C.45°D.70°12.、如图2,AB∥CD,AC⊥BC于C,则图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个图1 图2 图313. 如图3,直线AB、CD、EF相交于O,图中对顶角共有()A.3对B.4对C.5对D.6对14.下列说法错误的是()A.平面内的直线不相交就平行B.平面内三条直线的交点个数有1个或3个C.若a∥b,b∥c,则a∥cD.平面内过一点有且只有一条直线与已知直线垂直15. 2.设α是等腰三角形的一个底角,则α的取值范围是( )(A)0<α<90°(B)α<90°(C)0<α≤90°(D)0≤α<90°二.填空题1.有一个三角形的两边长为3和5,要使这个三角形是直角三角形,它的第三边等于2.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是三角形。
初一上册几何试题及答案
初一上册几何试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是直线的性质?A. 直线是无限长的B. 直线可以弯曲C. 直线是封闭的D. 直线是可测量的答案:A2. 一个三角形的内角和是多少度?A. 180度B. 360度C. 90度D. 270度答案:A3. 一个圆的直径与半径的关系是什么?A. 直径是半径的两倍B. 直径是半径的一半C. 直径等于半径D. 直径是半径的四倍答案:A4. 一个正方形的对角线与边长的关系是什么?A. 对角线是边长的两倍B. 对角线是边长的一半C. 对角线等于边长D. 对角线是边长的根号二倍答案:D5. 一个正五边形有多少个内角?A. 5个B. 10个C. 15个D. 20个答案:A二、填空题(每题3分,共15分)1. 一个圆的周长是其直径的______倍。
答案:π2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。
答案:903. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是______平方厘米。
答案:504. 一个等腰三角形的两个底角相等,如果一个底角是60度,那么顶角是______度。
答案:605. 一个圆的半径是5厘米,那么它的直径是______厘米。
答案:10三、解答题(每题5分,共20分)1. 已知一个圆的半径是7厘米,求这个圆的直径和周长。
答案:直径是14厘米,周长是2πr = 2 × 3.14 × 7 = 43.96厘米。
2. 一个等边三角形的边长是8厘米,求它的高。
答案:高是4√3厘米。
3. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
答案:周长是(15 + 10) × 2 = 50厘米,面积是15 × 10 = 150平方厘米。
4. 一个圆的周长是62.8厘米,求这个圆的半径。
答案:半径是62.8 ÷ (2π) = 10厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题
1.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()
(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形
2.下列给出的各组线段中,能构成三角形的是()
(A)5,12,13(B)5,12,7(C)8,18,7(D)3,4,8
3.一个三角形的三边长分别是15,20和25,则它的最大边上的高为()(A)12(B)10(C)8(D)5
4.两条边长分别为2和8,第三边长是整数的三角形一共有()
(A)3个(B)4个(C)5个(D)无数个
5.下列图形中,不是轴对称图形的是()
(A)线段MN(B)等边三角形(C)直角三角形(D)钝角∠AOB
6.直角三角形两锐角的平分线相交所夹的钝角为()
(A)125°(B)135°(C)145°(D)150°
7.已知∠α,∠β是某两条平行线被第三条直线所截得的同旁内角,若∠α=50°,则∠β为()
A.40°B.50°C.130°D.140°
8.如图,下列推理中正确的是()
A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥DC
C.若∠A=∠3,则AD∥BC D.若∠3=∠4,则AB∥DC
9.下列图形中,可以折成长方体的是()
10.一个几何体的三视图如图所示,那么这个几何体是()
11.如图1,在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为() A.30°B.36°C.45°D.70°
12.、如图2,AB∥CD,AC⊥BC于C,则图中与∠CAB互余的角有()
A.1个B.2个C.3个D.4个
图1 图2 图3
13. 如图3,直线AB、CD、EF相交于O,图中对顶角共有()
A.3对B.4对C.5对D.6对
14.下列说法错误的是()
A.平面内的直线不相交就平行
B.平面内三条直线的交点个数有1个或3个
C.若a∥b,b∥c,则a∥c
D.平面内过一点有且只有一条直线与已知直线垂直
15. 2.设α是等腰三角形的一个底角,则α的取值范围是( )
(A)0<α<90°(B)α<90°(C)0<α≤90°(D)0≤α<90°
二.填空题
1.有一个三角形的两边长为3和5,要使这个三角形是直角三角形,它的第三边等于
2.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是三角形。
3.如图,BO、CO分别是∠ABC和∠ACB的平分线,∠BOC=136°,则∠A= 。
第3题第7题
6.如果等腰三角形的一个外角为80°,那么它的底角为度
7.如图,已知:△ABC中,AB=AC,AB的垂直平分线DE交AC于E,垂足为D,如果∠A=40?,那么∠BEC= ;如果△ABC的周长为35cm,△BEC的周长为20cm,那么底边BC= 。
9. 如图,∠AOC=2∠COB,OD是∠AOB的平分线,已知∠COB=20°,则∠COD=_________。
10.如图,直线AB、CD相交于点O,OE平分∠AOD,FO OD于点O,∠1=40°,则∠2=,∠4=。
三.计算题
1.如图,已知,BE平分∠ABC,∠CBF=∠CFB=650,∠EDF=500,,求证:BC∥AE
2. 如图,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°,求∠DOE、∠BOE的度数.
3. 如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.
(1)指出图中∠AOD的补角,∠BOE的补角;
(2)若∠BOC=68°,求∠COD和∠EOC的度数;
4. 如图4,AB、CD相交于点O,∠DOE=90,∠AOC=37,求∠BOC,∠BOE的度数。
5. 如图,AO⊥CO,BO⊥DO,且∠AOB=160,求∠COD的度数。
6. 如图6所示,已知CD是∠ACB的平分线,∠ACB=50,∠B=70DE∥BC,求∠EDC和∠BDC的
度数。
7. 如图所示,已知∠ABC=50°,∠ACB=60°,BF、CF为∠ABC、∠ACB的平分线且交于点F,过点F作DE∥BC交AB、AC于点D、E,求∠BFC的度数.
8. 已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.
9. 如图,AD∥BC,∠D=100°,AC平分∠BCD,求∠DAC的度数.
10. 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.
11. 如图,
12. 如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37o,求∠D的度数.
13. 如图,已知:∠1=∠2,∠D=50°,求∠B的度数。
14. 已知:如图,AB//CD,∠B=40°,∠E=30°,求∠D的度数。
15. 如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.
四.证明题
1.如图,已知OM平分∠AOB,ON平分∠BOC,且OM⊥ON,求证:A、O、C在一直线上
2. 已知:如图所示,AB∥CD试说明:∠B+∠BED+∠D=360°
3.已知:如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠ADE=∠AED,求证:DE//FB
4.已知:如图,∠1=∠2,∠3=∠B,AC//DE,且B、C、D在一条直线上,求证:AE//BD。
5. 如图,AB//CD,AF⊥CD于F,DE⊥AB于E。
连BC,BC交AF于H,交DE于G。
求证:∠BGE=∠CHF.
6. 如图,在ΔABC中,AD平分∠BAC,DE||AC,EF⊥AD交BC延长线于F。
求证:∠FAC=∠B
7. 如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由
8. 如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,求证AD平分∠BAC。
9. 已知:如图,AD∥BE,∠1=∠2.求证:∠A=∠E.
10. 已知:如图,AB//CD,∠ABE=∠DCF,请说明∠E=∠F的理由。