自动跟踪太阳智能型太阳能系统设计

合集下载

基于AT89S52的智能型双精度太阳自动跟踪系统设计

基于AT89S52的智能型双精度太阳自动跟踪系统设计
张勇涛 , 王华华 , 李光提
( 山东农业大学 机械与电子工程学 院, 山东 泰安 2 11) 7率 , A 8 S 2单片机为控制核心 , 以 T95 采取极轴式 跟踪方 式 , 设计 了一套 以视 日运动轨 迹跟 踪为主 、 电跟踪进行 跟踪校正 的智能型双精度太 阳跟踪系统 , 光 该系统 通过采 集时钟 芯片信 息计算 当前 太 阳位 置 , 实现视 日运动轨迹 跟踪 ; 同时利用 光电传感器采集 的光强偏 差控 制步进 电机 , 实现光 电跟踪 , 校正轨迹 偏差 , 证聚光板与太 阳光相垂直 。试 验表 明, 保 该太 阳跟踪 系统 能在不 同天 气状 况下对太 阳进行较准 确跟踪 , 能 量接 收效率提 高 2 % 以上 , 到了充分利用太 阳能 的目的。 0 达
w sa o t .T esnt jc r t c ig a sda ma o e wt hte c c rc ig sdf glt g a d pe d h u a t yr kn s e s i m d , i p o l t a kn e r eua n . r e o a w u n h oer t i u or i T ess m clua s h rsn oio f u ycl c n fr t nf m cokc i.t aheet jc r h yt a l e epee t si o nb o et gi oma o o l hp o c i a t y e c t t p tn s i n i r c v r eo
t c i g h l h h t ee ti s n o sc l c g t n e s y d v a o o a h e e p o o lcrc t c i g h c r k n ;w i t e p o o l cr e s r ol t i h tn i e it n t c iv h te e t r k n ,w ih a e c e l i t i i a

光伏发电自动跟踪系统的设计

光伏发电自动跟踪系统的设计

光伏发电自动跟踪系统的设计一、本文概述随着全球能源危机和环境问题的日益严重,可再生能源的开发和利用受到了越来越多的关注。

其中,光伏发电作为一种清洁、可再生的能源形式,具有广泛的应用前景。

然而,传统的光伏发电系统往往存在固定安装、无法有效跟踪太阳位置的问题,导致能量接收效率不高。

因此,本文旨在设计一种光伏发电自动跟踪系统,以提高光伏电池板的能量接收效率,从而推动光伏发电技术的发展和应用。

本文首先介绍了光伏发电的基本原理和现状,分析了传统光伏发电系统存在的问题和不足。

然后,详细阐述了光伏发电自动跟踪系统的设计原理和实现方法,包括硬件设计和软件编程两个方面。

在硬件设计方面,介绍了系统的主要组成部分,如传感器、电机驱动器等,并阐述了它们的工作原理和选型依据。

在软件编程方面,介绍了系统的控制算法和程序流程,包括太阳位置计算、电机控制等。

本文对所设计的光伏发电自动跟踪系统进行了实验验证和性能分析,证明了该系统的有效性和优越性。

也指出了该系统存在的不足之处和改进方向,为未来的研究提供了参考和借鉴。

通过本文的研究和设计,旨在为光伏发电领域提供一种高效、可靠的自动跟踪系统解决方案,推动光伏发电技术的进一步发展和应用,为实现可持续发展和环境保护做出贡献。

二、光伏发电原理及关键技术光伏发电是利用光生伏特效应将光能直接转换为电能的发电方式。

当太阳光照射到光伏电池上时,光子与光伏电池内的半导体材料相互作用,激发出电子-空穴对。

这些被激发的电子和空穴在光伏电池内部电场的作用下分离,形成光生电流,从而实现光能向电能的转换。

光伏发电的关键技术主要包括光伏电池材料的选择、光伏电池的结构设计、光电转换效率的提升以及系统的集成与优化。

光伏电池材料是光伏发电的基础,常用的材料有单晶硅、多晶硅、非晶硅以及薄膜光伏材料等。

不同材料具有不同的光电转换效率和成本,因此在选择时需要综合考虑性能和经济性。

光伏电池的结构设计也是影响光伏发电效率的重要因素。

《2024年太阳能自动跟踪系统的设计与实现》范文

《2024年太阳能自动跟踪系统的设计与实现》范文

《太阳能自动跟踪系统的设计与实现》篇一一、引言随着环境保护和可再生能源的日益重视,太阳能的利用成为了全球关注的焦点。

太阳能自动跟踪系统作为一种提高太阳能利用效率的重要手段,其设计与实现显得尤为重要。

本文将详细阐述太阳能自动跟踪系统的设计原理、实现方法和应用前景。

二、系统设计目标本系统的设计目标是为了提高太阳能的利用率和发电效率,通过自动跟踪太阳的运动,使太阳能电池板始终面向太阳,从而最大限度地接收太阳辐射。

同时,系统应具备操作简便、稳定可靠、成本低廉等特点。

三、系统设计原理太阳能自动跟踪系统主要由传感器、控制系统和执行机构三部分组成。

传感器负责检测太阳的位置,控制系统根据传感器的数据控制执行机构进行相应的动作,使太阳能电池板能够自动跟踪太阳。

1. 传感器部分:传感器采用光电传感器或GPS传感器,实时检测太阳的位置。

光电传感器通过检测太阳光线的强度和方向来确定太阳的位置,而GPS传感器则通过接收卫星信号来确定地理位置和太阳的位置。

2. 控制系统部分:控制系统是太阳能自动跟踪系统的核心部分,负责接收传感器的数据,并根据数据控制执行机构的动作。

控制系统采用微处理器或单片机等控制器件,通过编程实现控制算法。

3. 执行机构部分:执行机构主要负责驱动太阳能电池板进行动作。

常见的执行机构有电机、齿轮、导轨等,通过控制执行机构的动作,使太阳能电池板能够自动跟踪太阳。

四、系统实现方法1. 硬件实现:太阳能自动跟踪系统的硬件主要包括传感器、控制系统和执行机构。

传感器和执行机构的选择应根据实际需求和预算进行选择,而控制系统的硬件则需根据所采用的微处理器或单片机等器件进行设计。

2. 软件实现:软件实现主要包括控制算法的编写和系统调试。

控制算法的编写应根据传感器的数据和执行机构的动作进行编程,通过控制算法实现太阳能电池板的自动跟踪。

系统调试则需要对整个系统进行测试和调整,确保系统的稳定性和可靠性。

五、应用前景太阳能自动跟踪系统的应用前景广阔,可以广泛应用于太阳能发电、太阳能热水器、太阳能干燥等领域。

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计解决方案:跟踪系统驱动器接口电路步进电机驱动电路限位信号采集电路太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。

但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。

跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。

光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。

光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。

而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。

该系统适用于各种需要跟踪太阳的装置。

该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。

系统总体设计本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。

跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。

任意时刻太阳的位置可以用太阳视位置精确表示。

太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。

太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。

太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。

系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。

上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。

太阳自动追踪系统设计毕业设计论文 精品

太阳自动追踪系统设计毕业设计论文 精品

目录中文摘要 (3)英文摘要 (4)1 引言 (5)1.1 课题研究的背景和意义 (5)1.2 课题研究的现状 (5)1.3 课题研究的主要内容 (6)2 系统的总体设计方案 (7)2.1 跟踪方法 (8)2.1.1太阳轨迹跟踪方法的设计 (8)2.1.2 光电跟踪方法的设计 (10)2.2 机械结构的设计 (13)2.3 充电模块的设计 (14)2.3.1 充电策略的选择 (14)2.3.2 充电控制器的选择 (17)3 系统的硬件设计 (18)3.1 电源模块的设计 (19)3.1.1 24V到5V的转化 (21)3.1.1 24V到负15V的转化 (22)3.1.1 24V到15V的转化 (22)3.1.1 24V到12V的转化 (23)3.1.1 24V到-12V的转化 (23)3.2 光电检测模块的设计 (24)3.2.1 太阳方位检测模块 (24)3.2.2 太阳光强检测模块 (26)3.3 单片机控制模块 (28)3.3.1 单片机的选择 (28)3.3.2 外部时钟电路 (29)3.3.3 步进电机驱动电路 (29)3.4 蓄电池充电模块 (31)3.4.1 DC/DC变换电路 (31)3.4.2 MOSFET驱动电路 (33)3.4.3 电压采样电路 (34)3.4.4 电流采样电路 (35)3.4.5 蓄电池温度检测电路 (35)3.4.6 PWM方波设计 (36)4 电路仿真 (37)4.1 降压(BUCK)电路的仿真 (37)4.2 太阳光强和方位检测电路的放大电路的仿真 (37)结论 (38)致谢 (39)[参考文献] (40)附件1: (44)附件2: (45)太阳自动追踪系统设计摘要:人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。

太阳能自动跟踪装置设计

太阳能自动跟踪装置设计

太阳能自动跟踪装置设计摘要随着能源需求的不断增长和传统能源的禁限,太阳能作为一种可再生,环保且无限可用的清洁能源显得越来越重要。

但是由于其发电量受到日照角度的影响,因此需要设计一种能够自动跟踪太阳光线的装置,以最大化太阳能电池板的能量输出。

本文设计了一种太阳能自动跟踪装置,并对其原理、结构、控制系统以及实验结果进行了分析和评价。

实验结果表明,本文设计的太阳能自动跟踪装置可以有效提高太阳能电池板的能量输出,同时具有结构简单、节能环保等优点。

关键词:太阳能,自动跟踪,电池板,能量输出AbstractWith the continuous increase of energy demand and the limitations of traditional energy, solar energy as a renewable, environmentally friendly and unlimited clean energy is becoming more and more important. However, sinceits power generation is affected by the angle of sunlight, it is necessary to design a device that can automatically track solar rays in order to maximize the energy output of solar panels. In this paper, a solar automatic tracking device is designed, and the principle, structure, control system and experimental results are analyzed and evaluated. The experimental results show that the solar automatic tracking device designed in this paper can effectively improve the energy output of solar panels, and has the advantages of simple structure, energy saving and environmental protection.Keywords: solar energy, automatic tracking, solar panel, energy output.1.引言随着环保意识的提高和可再生能源需求的不断增长,太阳能作为一种非常重要的清洁能源被广泛应用于各个领域。

太阳能自动跟踪系统的设计与实践

太阳能自动跟踪系统的设计与实践

1 引 言 .
方 面 也 应 该 抓 住 机 遇 , 进 行 相 应 的基 础 池充 电,进而在夜间给路灯提供 电源 。
传统 的燃料 能源正在一天天减 少,
研究和应用开 发,为开设相关 的专业做
2 太阳能自动跟踪 系统硬件设计 . 2 i 太 阳能 自动跟踪系统 的机械 构 . 太 阳能 自动跟踪系统 的机械结构 由 太 阳能 电池板 、减速 电机 、齿轮传动机
描述 的硬 件 电路 实现 。
【 Al r op rt nNisI ls rga 6 t aC roai . o IFahP ormme e ] e o rUsr
Gu d . 0 . i e 2 09
其在 目前 的多媒体娱乐市场上 具有 很高
的 竞 争 力 ,并 且 应 用 前 景 广 泛 。用 基 于
文设计一种太 阳能自动跟踪 系统,其 能根据 太阳相 对地球运动轨迹的规律 ,控制太 阳能板 自 实时跟踪太 阳方位 ,保 持太阳能电池板始终与太 阳入射 光线垂直 , 动
从而保持较高的太阳能利用率 。本文重 点叙述太阳能 自动跟踪控制系统的硬件与软件设计与实践的内容。
【 关键词 】太阳能; 自 动跟踪 ;G S P ;单 片机
政策 ( T )续延2 6 。太 阳能光伏 发 位计算的 的太 阳 自动跟踪装置 ,该装置 动作等 。 IC -年 电和风 电在我 国是一个新兴事物 ,光 伏 能 自动跟踪太 阳的运动 ,保证太阳 能设 产业让 国内企 业看 到了机遇 ,而 且该产 备的能量转换部分 所在平面始终与太 阳
[] t aC roainNisI S f r vlpr s 5AJr op rt . o I ot eDeeo e e o wa

太阳能智能追光系统的设计毕业论文

太阳能智能追光系统的设计毕业论文

太阳能智能追光系统的设计毕业论文目录1绪论 (1)1.1 太阳追光系统的发展现状 (1)1.2 太阳能追光系统的设计思想 (1)1.3 太阳能智能追光系统的研究意义 (1)1.4 研究目标、研究容和拟解决的关键问题 (2)2硬件设计 (3)2.1 主控制器 (3)2.1.1 主控制器的选用 (3)2.1.2 控制器的介绍 (3)2.2 驱动元件 (4)2.2.1 直流电机与步进电机的比较 (4)2.2.2 步进电机控制原理 (5)2.3 输入模块 (6)2.3.1 电压比较器 (6)2.3.2 光敏电阻 (7)2.4 硬件结构框图与原理图 (9)2.4.1 系统整体结构框图 (9)2.4.2 整体硬件原理图 (10)3方案研究 (11)3.1 基于挡板的传感部分方案 (11)3.2 接收系统方案 (12)4系统软件设计 (14)5智能追光算法 (15)6仿真与实验调试 (19)6.1 Protues仿真 (19)6.1.1 仿真原理 (19)6.1.2 软件仿真及调试 (19)6.1.3 仿真结果 (20)6.2 实验调试 (20)6.2.1 硬件调试 (20)6.2.2 解决过程 (21)6.3 PCB制版 (21)结束语 (22)参考文献 (24)致谢 (25)附录 (26)附录A:程序清单 (26)附录B:电路原理图 (30)附录C: PCB图 (31)附录D:实物照片 (32)1绪论太阳能既是一次能源,又是可再生能源。

它资源丰富,既可免费使用,又无需运输,对环境无任何污染。

为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代,所以研究实现对太阳能的高效利用有重大意义。

1.1太阳能追光系统的发展现状目前对太阳进行跟踪的仪器有:单轴太阳能自动跟踪器,步进式太阳能自动跟踪,可自动跟踪的太阳灶,五像限法太阳自动跟踪仪,单轴液压式自动跟踪,极轴式跟踪。

不足之处:结构复杂,跟踪精度不高,不能全自动跟踪[1]。

自动跟踪太阳智能型太阳能系统设计任务书

自动跟踪太阳智能型太阳能系统设计任务书

徐州工程学院毕业设计(论文)任务书机电工程学院机械设计及其自动化专业设计(论文)题目自动跟踪太阳智能型太阳能系统设计学生姓名张士新班级 04机本4班起止日期 2008.02.25—2008.06.02指导教师张建化教研室主任陈跃发任务书日期 2008 年 5月 20 日1.毕业设计的背景:人类对于再生能源的需求在石化原料日渐耗尽的同时日受重视。

太阳能利用是个源源不绝的绝佳能源替代方案,因为每天太阳投射到地球表面的能量大于地球所需的一以上。

太阳能电池自动跟踪系统的开发与研究,提高了太阳能电池板的发电效率,达到了低成本、高精度、使用灵活的要求,为大规模使用太阳能发电,合理利用能源进行了有益的探索。

太阳能自动跟踪系统设计是为了解决太阳能转换效率低的问题,为了更大程度的利用太阳能。

此系统能使太阳能电池板始终对着太阳,保持最大的效率, 具有低成本、免维护等优点,有较好推广应用价值。

2.毕业设计(论文)的内容和要求:本设计内容:本设计要求设计一种自动跟踪太阳的机械和控制系统,使太阳能板能随太阳光线的移动而转动。

机械设计部分包括机械设计整体方案,重要部件的校核计算,装配图和零件图;控制系统部分包括追踪模式选择,单片机驱动步进电机和整体电路图。

本设计要求:(1)机械部分:跟踪系统能水平方向360度旋转,垂直方向两边能大于60度旋转,要求系统有一定的抗风性,有机械计算并且要画定量的机械图;(2)控制系统部分:要求系统能准确跟踪太阳,说明跟踪的过程,分析控制跟踪系统的原理,完成电路图;(3)完成20000字的论文,包含以上全部内容。

3.主要参考文献:[1]余海.太阳能利用综述及提高其利用率的途径[J].能源研究与利用,2004,(03):2-7.[2]孙孝仁.太阳能利用的现状与未来[J].山西省科技情报研究所,2005,(08):15-14.[3]李建庚.一种智能型全自动太阳跟踪装置的机械设计[J].太阳能学报,2003,24(03):330-333.[4]陈维,李戬洪.太阳能利用中的跟踪控制方式的研究[J].能源工程,2OO3,(03):18-21.[5]陈维,李戬洪.太阳能利用中的跟踪控制方式的研究[J].能源工程,2OO3,(03):18-21.4.毕业设计(论文)进度计划(以周为单位):。

太阳能自动跟踪器系统设计

太阳能自动跟踪器系统设计

太阳能自动跟踪器系统设计摘要:人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点。

但是太阳能又存在着低密度间歇性空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高,太阳能自动跟踪装置解决了太阳能利用率不高的问题。

采用光线自动跟踪的方式,使太阳能电池板的朝向始终精确跟随太阳位置的变化,保持太阳能电池板表面与太阳光垂直,这样会大大提高发电效率。

本文主要介绍太阳能跟踪控制系统的设计,该控制系统具有结构简单、稳定性好、精度高的特点。

关键词:太阳能;自动跟踪;能源;自动化;光伏发电1系统总体结构太阳能自动跟踪装置由四象限光电探测器、照度传感器、方位角跟踪机构、高度角跟踪机构和自动控制装置组成。

方位角跟踪机构由电源、方位角传感器、放大器、执行器组成。

执行器由步进电机和传动齿轮组成。

方位角传感器由外壳与安装在外壳内的一对光电二极管组成。

高度角跟踪机构由高度角传感器、放大器、执行器组成。

执行器包括电机和传动齿条。

高度角传感器的一对光电二极管与方位角传感器和照度传感器的光电二极管安装在一个传感器壳内。

控制单元由运算放大器、晶体管和继电器组成,并与照度传感器、方位角和高度角传感驱动电机连接。

(见图1)2太阳能自动跟踪器工作原理太阳能自动跟踪装置采用四象限光电探测器,该器件实际由四个光电探测器构成,每个探测器一个象限,器件由于象限化,当太阳光辐射到器件各象限的辐射通量相等时,各象限输出的光电流相等。

而当光线发生偏移时,象限辐射量的变化将引起各象限输出光电流的变化,由此可测出太阳的方位并实现跟踪。

跟踪方式采用光电跟踪与太阳视日运动轨迹跟踪相结合,可加强系统的稳定性,步骤如下:步骤1 通过太阳视日运动轨迹跟踪,将系统带入一个预知的足够小的范围内,再启动光电跟踪或视日运动轨迹跟踪。

步骤2 开机后光电检测电路检测白天还是黑夜。

当检测为黑夜时系统停止运行;若检测为白天,系统进行初始化。

自动跟踪太阳光伏发电设备控制器的设计

自动跟踪太阳光伏发电设备控制器的设计

自动跟踪太阳光伏发电设备控制器的设计图片:引言能源是人类面临经济发展和环境维护平衡需要解决的最根本最重要的问题。

太阳能是一种极为丰富的清洁能源,同时通常最普遍且最方便使用的是电能。

因而太阳能光伏发电是最有应用前景的太阳能利用方式。

目前,光伏发电的成本太高,世界各国正在积极改进电池制造工艺。

采用新技术以提高转换效率,降低光伏发电的成本。

全自动跟踪太阳发电设备从控制技术出发,采用新的光伏发电装置技术,与固定式相比发电能力提高35%,成本下降25%。

全自动跟踪控制是控制器的核心任务。

本文设计的这套控制装置是以工控计算机作为检测与控制的核心,利用其PCI总线插槽、插入采集卡和I/O卡,实现巡回检测多路模拟信号以及开关信号,可对检测信号进行采集、显示、查询、图形图像处理、打印输出,并且具有自校准、自诊断和自测试功能,同时可以根据测试的结果进行自动控制,形成智能化控制器。

2 全自动跟踪控制器硬件设计2.1 硬件结构的基本组成全自动跟踪太阳光伏发电控制器主要由各种传感器、转换电路、A/D采集卡、工控计算机、I/O卡、执行元件等组成。

其硬件结构图如图1所示。

各种传感器检测到的参数信号通过转换电路,转换成标准的1 V~5 V电信号,传输到模-数(A/D) 采集卡,将采集的各参数信号转换为计算机可以处理的数字量,然后计算机对这些经过离散并量化的数字信号进行监测与处理,并通过输入/输出卡(I/O)输出控制信号,以控制执行元件的接通或断开。

利用人机界面的系统监控软件。

设置系统运行方式,选择控制算法,显示实时和历史的数据与图表、分析、保存、报警、打印、发送命令控制系统运行等功能。

2.2 传感器的选择和模拟输入电路设计该装置可检测14路系统参数,分别是光伏阵列的输出电压/电流、跟踪光强、环境光强、蓄电池充电电流/电压、逆变器的输出交流电流、交流电压、环境温度、蓄电池温度、光伏阵列温度、太阳方位角、高度角和风速。

电流检测是采用北京中新康达电子有限公司生产的电流传感器CHT50A-S实现的。

智能型太阳能跟踪系统设计

智能型太阳能跟踪系统设计

2.IARM微处理器
本文选用微控制器LPC2290oLPC2290是一个基于实时仿真和嵌入式跟踪的16/32位ARM7TDMbS(ARM芯片 )CPU的微控制器,对代码规模有严格控制,可使用16位Thumb模式将代码规模降低超过30%而性能的损失却很小 [3]。由于LPC2290的144脚封装、极低的功耗、2个32位定时器、8路10位模数转换器(analog-todigitaiconverter,ADC)>脉宽调制输出(puIsewidthmoduIation,PWM)以及多达9个外部中断使它们应用得非常广泛。 并通过外部存储器接口,可将存储器配置成4组,每组容量高达16MB,共64MB0因此,LPC2290高性能的 ARM7CPU内核和丰富的片上外设,可使系统设计简化,并大幅降低系统成本。
图3LPC2290与SST39VF160的连接
3)电源电路。电源电路主要为微控制器、外围器件以及控制系统中所用到的其他芯片提供工作电源。由于采用 的ARM微控制器为LPC2290,而它具有独立的模拟电源和数字电源,为降低出错几率,模拟电源和数字电源应该隔 离。因此接入的220V电源经滤波后分为2路:一路作为步进电机驱动器工作电源;一•路经整流后为系统提供+5V和 +15V电源。微控制器的2组电源在+5V的基础上经过一个电压调节器分别输出+3.3V和+1.8Vo
智能型太阳能跟踪系统设计
智能型太阳能跟踪系统设计
在主动式跟踪太阳能热发电系统中,要求计算太阳位置以实现跟踪,提高发电效率。对于开环控制的太阳能跟 踪系统,太阳位置的计算精度尤为重要。采用水平-俯仰双轴坐标系统,利用32位嵌入式微处理器,以步进电机作为 执行机构,提出了基于程控跟踪和光电跟踪相结合的复合跟踪方式,并采用太阳位置计算系统,减小计算误差,提 高跟踪精度。该跟踪装置是一种能根据不同地理位置和时间自动计算太阳运行参数,通过光电检测构成反馈回路, 实现在不同环境下自动跟踪的智能型跟踪装置。

一种自动跟踪太阳能照明系统的设计

一种自动跟踪太阳能照明系统的设计
IE Tas o s E E rn .C n .El t o 0 F b 0 4 e .v l e ,2 0 . c 5
图 4 不 同色光 的 卜一 特性 V
[] T 3 .K mn. M N kgw .nert yt o i oi , e aaa a It a dS s m fW t g e e h e
图 2 简 单 的 太 阳 能 单 兀 电 池 等 效 电 路 图
图 2表示简 单 的太 阳能单 元 电池等 效 电路 图, 其 中有 P 砷一 * , 中 是 光 电流 ( 其 单位 : , A) 是 逆向饱 和电流 , 是二极管 电压( 单位 : , 是理想 V)M 参数, 理想情况下 M一1 ] l. 4
mui t nJ .IE rn .C n. Eet o 9 e n ai [ ] E E Tas o s l .v1 ,F b c o c .4
2 03 0 .
E] N dr a aeda , ii G . i f E -ae i 4 aa ̄ hN r r Ymn uLf o DB s W t n n e L dh e Lgt o r sJ.E E O A Junl f i l eho — i ue E]IE / S ra o Ds a Tcnl hS e o py o
长等优点.
1 系统 组成
图1 为本系统 的组 成框 图. 面就 图 1中的太 阳 下
22 自动追踪 电路部分 .
不 同地区 日照强度和水平方 向夹角是不同的, 1 表 给出了我 国南方某地 的 日照强度和水平方 向夹 角参照
表.
表 1 我 国南 方某地 某 月的 日照强 度和 水平 方 向夹角 参照 表
我们使用 了 P WM 的技术 . 使用 P WM 技 术 , WM 控 P

智能型太阳能跟踪系统设计.

智能型太阳能跟踪系统设计.

1 绪论1.1课题研究的背景能源是人类生存与经济发展的物质基础,然而随着世界经济持续、高速地发展,能源短缺、环境污染、生态恶化等问题逐渐加深,能源供需矛盾日益突出。

当前世界能源消费以化石资源为主。

根据专家预测,按目前的消耗量,石油、天然气最多只能维持不到半个世纪,煤炭也只能维持一二百年。

同时我们也知道,化石能源的大量开发和利用是造成人类生存环境恶化的主要原因之一,如燃烧化石能源所排放出的二氧化碳和含氧硫化物直接导致了地球温室效应和酸雨的产生。

因此,人类必须未雨绸缪,及早寻求替代能源。

所以不管是哪一种常规能源结构,人类面临的能源危机都将日趋严重[1]。

针对日趋严重的能源问题,人们对核能、风能、地热能、水力能等可再生能源的利用日益重视。

其中,太阳能作为一种洁净的能源,既是一次能源,又是可再生能源,有着化石能源无法比拟的优越性。

1) 储量丰富:经测算表明,太阳每秒能够释放出391x1021kw的能量,而辐射到地球表面的能量虽然只有它二十二亿分之一,但也相当于全世界目前发电量的8万倍。

2) 普遍性:太阳能不像其它的能源那样具有分布的偏集性,它处处都可就地利用,有利于缓解能源供需矛盾,缓解运输压力,对解决偏僻边远地区及交通不便的农村,海岛的能源供应,更有其巨大的优越性。

3) 无污染性:人类比以往更强烈地认识到,实现可持续发展、环境保护是发展进程的一个整体组成部分,环境与发展不能相互脱离。

在众多环境问题中矿物燃料形成的污染十分严重,而利用太阳能作能源,没有废渣、废气、废水排出、无噪声、不产生有害物质,这在环境污染日趋严重的今天显得尤为可贵[2]。

4) 经济性:随着太阳能利用技术的发展,太阳能利用的成本已经大大下降。

世界银行1994年的一项研究认为,许多国家发展太阳能发电站是具有经济性的,并为此给与资助。

太阳能电站的运营成本主要由以下几部分组成:建造费、燃料费、运行管理维修及环保投资等。

而利用太阳能发电,既不会污染环境,又取之不尽,无处不在。

太阳能自动跟踪装置控制系统设计

太阳能自动跟踪装置控制系统设计

题目太阳能自动跟踪装置控制系统设计目录摘要 (1)1 设计研究背景及意义 (2)2 主要研究内容 (3)2.1 系统的设计目标 (3)2.2 设计的主要内容 (3)3 系统的总体设计 (4)3.1 太阳自动跟踪方式的确定 (4)3.2 本设计的设计思想 (4)4 太阳能充电控制器的设计 (5)4.1 太阳能电池的选型 (5)4.2 蓄电池的选型 (7)4.2.1 铅酸蓄电池基本概念 (7)4.2.2 本系统蓄电池的选型 (8)4.3 太阳能充电控制器的设计 (8)4.3.1 UC3906芯片的介绍 (9)4.3.2 BUCK电路的设计 (9)4.4 充电控制器外围电路设计 (11)5 跟踪系统传感器检测装置的设计 (13)5.1 阴天检测装置的设计 (13)5.2 白天黑夜检测装置 (14)5.3 太阳位置传感器的介绍 (15)5.3.1 传感器检测部分的设计 (15)5.3.2 光敏二极管的介绍 (17)5.3.3 LM324芯片的介绍 (17)6 视日运动轨迹模块设计 (18)6.1 太阳赤纬角的计算 (18)6.2 太阳高度角的计算 (18)6.3 太阳方位角的计算 (18)6.4 日出日落时间计算 (19)7 执行器件的选型 (19)7.1 步进电机的选型 (19)7.2 步进电机驱动器的选型 (20)7.3 执行器件的连接方式 (21)8 控制系统的设计 (21)8.1 单片机电源模块的设计 (22)8.2 驱动器电源模块的设计 (23)8.2.1 GS3660芯片介绍 (23)8.2.2 Boost电路基本拓扑设计 (25)8.2.3 驱动器电源模块的硬件设计 (26)8.3 单片机硬件系统设计 (27)8.3.1单片机简介 (27)8.3.2 单片机的特点 (27)8.3.3 AT89C51单片机的特性 (28)8.4 单片机软件系统的设计 (28)8.4.1 主程序的设计 (28)8.4.2 光电追踪模块 (31)8.4.3 视日跟踪模块 (31)9 结论 (32)参考文献: (34)谢辞 (35)附录 (36)李鹏万指导老师:杨宛章、张静摘要:太阳能作为一种新型清洁能源,受到了世界各国的广泛重视。

太阳能自动跟踪系统设计

太阳能自动跟踪系统设计
图2.1 系统控制框图
3 详细设计
3.1 单片机概述
单片机因将其主要组成部分集成在一个芯片上而得名,具体说就是把中央处理器CPU(Central processing unit)。随机存储器RAM(Random access memory)。只读存储器ROM(Read only memory)。中断系统、定时器/计数器以及I\O(Input/output)接口电路等主要微型机部件集成在一个芯片上。虽然单片机只是一个芯片,但从组成和功能上看,它已具有了计算机系统的属性。为此,称它为单片微型计算机SCMC(Single chip micro computer),简称单片机。 单片机主要应用与控制领域,用以实现各种测试和控制功能,为了强调起控制属性,也可以把单片机称为微控制器MCU(Micro controller unit)。在国际上,“微控制器”的叫法似乎更通用一些,而在我国则比较习惯用“单片机”这一名称。 单片机在应用时,通常是处于控制系统的核心地位并融入其中,即以嵌入的方式进行使用,为了强调其"嵌入"的特点,也常常将单片机称为嵌入式微控制器EMCU(Embedded micro controller unit)。在单片机的电路和结构中,有许多嵌入式应用的特点。
(4)信息和通信产品方面.信息和通信产品的自动化和智能化程度很高,这当然离不开单片机的参与,例如计算机的外部设备和自动化办公设备中,都有单片机在其中发挥着作用。
(5)军事装备方面。科技强军、国防现代化离不开计算机,在现代化的飞机、军舰、坦克、大炮、导弹火箭和雷达等各种军用装备上,都有单片机深入其中。
3.1.4单片机基础
根据控制应用的需要,可以将单片机分成为通用型和专用型两种类型。通用型单片机是一种基本芯片,他的内部资源比较丰富,性能全面且适用性强,能覆盖多种应用需要。用户可以根据需要设计成各种不同应用的控制系统,即通用单片机有一个在设计的过程,通过用户的进一步设计,才能组建成一个以通用单片机芯片为核心再配以其它外围电路的应用控制系统。然而在单片机的控制应用中,有许多时候是专门针对某个特定产品的,例如电度表和IC卡读写器上的单片机等。这种应用的最大特点是针对性强而且数量巨大,为此厂家常与芯片制造商合作,设计和生产专用的单片机芯片。由于专用单片机芯片是针对一种产品或一种控制应用而专门设计的,设计时已经对系统结构的最简化,软硬件资源利用的最优化,

自动跟踪太阳智能型太阳能系统设计毕业设计.doc

自动跟踪太阳智能型太阳能系统设计毕业设计.doc
3.5.4步进电机2输出轴与小齿轮2的联接25
3.6抗风性分析26
3.6.1底座上螺钉校核26
3.6.2轴校核26
4自动跟踪系统设计27
4」系统总体结构27
4.2光电转换器28
4.2.1光电转换电路28
4.3单片机及其外围电路29
431AT89C51单片机29
4.3.2外围电路31
4.4步进电动机及驱动电路32
第一,它是人类可以利用的最丰富的能源,据估计,在过去漫长的11亿年中,太阳 消耗了它本身能量的2%,可以说是取之不尽,用之不竭。
第二,地球上,无论何处都有太阳能,可以就地开发利用,不存在运输问题,尤其对 交通不发达的农村、海岛和边远地区更具有利用的价值。
第三,太阳能是一种洁净的能源,在开发和利用时,不会产生废渣、废水、废气,也 没有噪音,更不会影响生态平衡。
关键词太阳能;跟踪;光敏电阻;单片机;步进电机
1绪论1
1」课题来源1
1.2课题背景1
121能源现状及发展1
1.2.2我国太阳能资源1
1.2.3目前太阳能的开发和利用2
1.2.4太阳能的特点2
1.3课题研究的目的2
1.4研究课题的意义2
141新环保能源2
1.4.2提高太阳能的利用率3
1.5太阳能利用的国内外发展现状3
1.2.
人类直接利用太阳能有三大技术领域⑷,即光热转换、光电转换和光化学转换,此外, 还有储能技术。
太阳光热转换技术的产品很多,如热水器、开水器、干燥器、采暖和制冷,温室与太 阳房,太阳灶和高温炉,海水淡化装置、水泵、热力发电装置及太阳能医疗器具。
1.2.
太阳能作为一种新能源,它与常规能源相比有三大优点⑸:
自动跟踪太阳智能型太阳能系统设计

太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究太阳能双轴自动跟踪系统设计与研究一、引言近年来,随着全球对清洁能源需求的不断增加,太阳能作为一种绿色环保的能源形式,受到了广泛的关注和研究。

太阳能光伏系统的效率取决于太阳光的照射角度,而太阳能跟踪系统能够实时调整太阳能电池板的位置,以最佳角度接收太阳光,从而提高能源转化效率。

因此,对太阳能双轴自动跟踪系统的设计与研究具有重要意义。

二、太阳能双轴自动跟踪系统的工作原理太阳能双轴自动跟踪系统主要由光敏电阻、控制电路、电机、轴承和太阳能电池板等组成。

光敏电阻用于实时感知光照强度,然后通过控制电路对电机进行驱动,使太阳能电池板跟随太阳的运动。

该系统的工作原理如下:1. 光敏电阻感知:将光敏电阻安装在太阳能电池板的一侧,用于感知光照的强度。

电阻的电阻值与光照强度呈反比关系,因此可以通过电阻值来判断光照的强弱。

2. 控制电路驱动:利用控制电路对电机进行驱动,实现太阳能电池板的双轴自动跟踪。

控制电路根据光敏电阻感知到的电阻值来判断光照的强弱,并根据一定的算法计算出电机驱动的方向和速度,以实现太阳能电池板的准确跟随。

3. 电机驱动:太阳能双轴自动跟踪系统采用两个电机,分别用于水平轴和垂直轴的驱动。

电机通过与控制电路的配合,实现太阳能电池板的水平和垂直方向的旋转,使其能够跟随太阳的运动轨迹,并保持最佳接收太阳光的角度。

4. 轴承:太阳能电池板通过轴承连接到电机,以实现旋转。

轴承设计应具有较高的承载能力和较小的摩擦阻力,确保太阳能电池板的平稳运转。

三、太阳能双轴自动跟踪系统的设计要点1. 光敏电阻的选择:选择感光度高、响应速度快、稳定性好的光敏电阻,以确保系统能够准确感知光照强度变化。

2. 控制电路的设计:控制电路要能够准确判断光敏电阻感知到的光照强度,根据一定的算法计算出电机驱动的参数,并能够稳定、准确地驱动电机。

3. 电机的选用:选择符合系统需求的电机,应考虑电机的转速、转矩和功率等参数,并能够与控制电路进行良好的配合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图书分类号:密级:摘要人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。

太阳光线自动跟踪装置解决了太阳能利用率不高的问题。

本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。

第一,机械部分设计:机械结构主要包括底座、主轴、齿轮和齿圈等。

当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。

第二,控制部分设计:主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。

系统采用光电检测追踪模式实现对太阳的跟踪。

传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。

当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。

关键词太阳能;跟踪;光敏电阻;单片机;步进电机AbstractHuman being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed.First, the mechanical part is designed.Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rays has a deviation, small gear are rotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together.Second, control system part is designed.Control system mainly includes the sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection system is used to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances received different light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors.Keywords Solar energy Tracking Photosensitive resistance SCM Stepping motor目录1绪论 (I)1.1课题来源 (I)1.2课题背景 (I)1.2.1能源现状及发展 (I)1.2.2我国太阳能资源 (I)1.2.3目前太阳能的开发和利用 (II)1.2.4太阳能的特点 (II)1.3课题研究的目的 (II)1.4研究课题的意义 (II)1.4.1新环保能源 (II)1.4.2提高太阳能的利用率.................................................................................................... I II 1.5太阳能利用的国内外发展现状.......................................................................................... I II 1.6太阳追踪系统的国内外研究现状...................................................................................... I V 1.7论文的研究内容. (V)1.8论文结构 (V)2太阳能自动跟踪系统总体设计 (V)2.1太阳运行的规律 (V)2.2跟踪器机械执行部分比较选择.......................................................................................... V I2.2.1立柱转动式跟踪器........................................................................................................ V I2.2.2陀螺仪式跟踪器 (VII)2.2.3齿圈转动式跟踪器 (VII)2.2.4本课题的机械设计方案 (VIII)2.3跟踪方案的比较选择 (VIII)2.3.1视日运动轨迹跟踪........................................................................................................ I X2.3.2光电跟踪........................................................................................................................ I X2.3.3视日运动轨迹跟踪和光电跟踪相结合........................................................................ X I2.3.4本设计的跟踪方案 (XII)3机械设计部分 (XIII)3.1太阳能自动跟踪系统机械设计方案 (XIII)3.2第一齿轮转动计算 (XIII)3.2.1材料选择 (XIII)3.2.2尺寸计算 (XIII)3.2.3校核计算..................................................................................................................... X IV3.2.4齿根弯曲疲劳强度验算 (XV)3.3第二齿轮转动计算 (XVII)3.3.1材料选择 (XVII)3.3.2尺寸计算 (XVII)3.3.3校核计算 (XVII)3.3.4齿根弯曲疲劳强度验算............................................................................................. X IX 3.4轴瓦校核计算.. (XX)3.4.1大轴瓦校核计算 (XX)3.4.2小轴瓦校核计算 (XXII)3.5键联接计算.................................................................................................................... X XIV3.5.1主轴与大齿轮的键联接.......................................................................................... X XIV3.5.2小轴与齿圈的键联接 (XXV)3.5.3步进电机1输出轴与小齿轮1的联接 (XXV)3.5.4步进电机2输出轴与小齿轮2的联接 (XXV)3.6抗风性分析.................................................................................................................... X XVI3.6.1底座上螺钉校核...................................................................................................... X XVI3.6.2轴校核...................................................................................................................... X XVI 4自动跟踪系统设计............................................................................................................. X XVII 4.1系统总体结构............................................................................................................... X XVII 4.2光电转换器.. (XXVIII)4.2.1光电转换电路 (XXVIII)4.3单片机及其外围电路.................................................................................................... X XIX4.3.1 AT89C51单片机...................................................................................................... X XIX4.3.2外围电路.................................................................................................................. X XXI 4.4步进电动机及驱动电路............................................................................................... X XXII4.4.1步进电动机介绍..................................................................................................... X XXII4.4.2步进电机的主要特性............................................................................................. X XXII4.4.3步进电机的选择 (XXXIII)4.4.4驱动电路 (XXXIV)4.5系统的实现 (XXXV)4.5.1光敏电阻光强比较法 (XXXV)4.5.2光敏电阻光强比较法的工作过程 (XXXVI)4.5.3系统的流程图...................................................................................................... X XXVII 5结论.. (XXXIX)5.1结论 (XXXIX)5.2展望 (XXXIX)致谢.............................................................................................................................................. X L 参考文献.................................................................................................................................... XLI 附录1 .............................................................................................................. 错误!未定义书签。

相关文档
最新文档